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It was recently shown that the Strong Cosmic Censorship conjecture might be violated for near-
extremally-charged black holes in de Sitter space. Here, we extend our study to charged fermionic fields 
in the exterior of Reissner-Nordström-de Sitter black holes. We identify three families of modes; one 
related to the photon sphere, a second related to the de Sitter horizon and a third which dominates 
near extremality. We show that for near-extremally-charged black holes there is a critical fermionic 
charge below which Strong Cosmic Censorship may potentially be violated. Surprisingly enough, as one 
approaches extremality even more, violation of Strong Cosmic Censorship may occur even beyond the 
critical fermionic charge.

© 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

We recently studied the implications of massless neutral scalar 
perturbations on Strong Cosmic Censorship (SCC) in Reissner–
Nordström (RN) black holes (BHs) in de Sitter (dS) spacetime [1]. 
Three different families of modes were identified in such space-
time; one directly related to the photon sphere, well described by 
standard Wentzel-Kramers-Brillouin (WKB) tools, another family 
whose existence and timescale is closely related to the dS horizon 
and a third family which dominates for near-extremally-charged 
BHs. Surprisingly enough, our results show that near-extremal 
RNdS BHs might violate SCC at the linearized level, leading to a 
possible failure of determinism in General Relativity (GR). The key 
quantity controlling the stability of the Cauchy horizon (CH), and 
therefore the fate of SCC, is given by [2,3]

β ≡ −Im(ω0)/κ− , (1)

where ω0 is the longest-lived/dominant non-zero quasinormal 
mode (QNM [4–6]) and κ− is the surface gravity of the CH. The 
results in [7–9] suggest that β remains the key quantity in the 
non-linear setting: the higher β , the more stable the CH. Con-
cretely, the modern formulation of SCC requires that

β < 1/2 (2)

in order to guarantee the breakdown of field equations at the CH 
[10]. In [1], a thorough linear numerical study of β throughout the 
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whole parameter space of subextremal RNdS spacetimes revealed 
that 1/2 < β < 1 in the near-extremal regime, leading to a CH 
with enough regularity for metric extensions to be possible past it. 
This provides evidence for the existence of CHs which, upon per-
turbation, are rather singular due to the divergence of curvature 
invariants, but where the gravitational field can still be described 
by the field equations; the evolution of gravitation beyond the CH, 
however, is highly non-unique. Recent studies [11,12] have gener-
alized the linear massless scalar field study in higher-dimensional 
RNdS BHs and RNdS BHs on the brane finding potential violation 
in the near-extremal regime.

There are different ways to interpret the results of [1]. If one 
takes the SCC conjecture as a purely mathematical question about 
GR then the results of [1] either signify a failure of SCC, or are su-
perseded by nonlinear effects. In fact, the results of [13] proved 
that even nonlinear effects could not save the conjecture from fail-
ing for near-extremally-charged BHs.

An interesting suggestion to restore SCC, in the presence of a 
positive cosmological constant, was proposed in [14], where it was 
shown that the pathologies identified in [1] become non-generic if 
one considerably enlarges the allowed set of initial data by weak-
ening their regularity. The considered data are also compatible 
with Christodoulou’s formulation of SCC.

A subsequent study of metric fluctuations in RNdS BHs showed 
that such perturbations possibly exhibit a much worse violation of 
SCC. In [15] it was shown that for a sufficiently large near-extremal 
RNdS BH, perturbations arising from smooth initial data can be 
extended past the CH in an arbitrarily smooth way. Nevertheless, 
astrophysical BHs are expected to be nearly neutral [16,17]. Taking 
this into consideration, one can question the relevance of SCC vio-
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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lations in highly charged, non-spinning BHs. In fact, a recent study 
suggests that rapidly rotating BHs in cosmological backgrounds do 
not violate SCC. According to [18], in Kerr-dS spacetime (1) remains 
unchanged, but now β seems to be bounded exactly by 1/2, at 
extremal rotation. Similar results were obtained in [12] for higher-
dimensional Kerr-dS BHs.

Considering the formation of a charged BH, one would argue 
that charged matter has to be present. In [19,20], it was claimed 
that charged scalar fields would lead to restoration of SCC in 
an appropriate region of the parameter space of RNdS and Kerr-
Newmann-dS BHs. This implication requires working in the large-
coupling regime for which β < 1/2. Taking into account the whole 
parameter space, subsequent studies [21–23] presented numerical 
evidence that SCC may still be violated in the setting of charged 
scalar perturbations in RNdS.

In [21], massive charged scalars were taken into account pro-
viding evidence that β > 1. Recall that this is related to bounded 
curvature and therefore opens the possibility to the existence 
of solutions to the Einstein-Maxwell-Klein-Gordon system with a 
scalar field satisfying Price’s law and bounded curvature across the 
CH. Nonetheless, if the neutral scalar perturbations where super-
imposed to the charged massive ones, then the smaller of the two 
types of perturbations is the one relevant for SCC, thus getting 
β < 1, which should be enough to guarantee the blow-up of cur-
vature components.

In [22] it was shown that even for large scalar field charge there 
are near-extremal BHs for which β > 1/2. A key ingredient of the 
aforementioned studies was the existence of a superradiantly un-
stable mode. In fact, it has been shown that linear instabilities 
arise in various setups (for an incomplete list see [24–29]). This 
unstable mode was the dominant one for small scalar charges ren-
dering the question of the validity of SCC irrelevant for a significant 
region of the parameter space.

Is it natural to question then, if the charged matter could just 
as well be fermionic instead of scalar. Fermions do not superra-
diate, leaving the entire range of fermionic charge open for the 
study of SCC at the linearized level. The results of [30] provide ev-
idence that fermionic perturbations of RNdS BHs might violate SCC 
for sufficiently large BH charge. As a matter of fact, the family that 
seems to dominate the dynamics near extremality is, mostly, the 
photon sphere family with a very small participation of a family 
which is purely imaginary for zero fermionic charge q and quickly 
becomes subdominant as q increases. Unfortunately, there is no 
information about the classification of the latter family and if it 
will eventually dominate the dynamics for even higher BH charges. 
Moreover, since a dS horizon is present, the dS family of modes 
might be present as well and even dominate the dynamics for 
small cosmological constants in analogy with what was found in 
[1]. The tool used to extract the modes in [30] is time domain 
analysis. Although it is a very powerful tool for such calculations, 
there is a slight chance that long-lived modes may be missed ei-
ther because of their timescale being larger than the evolution 
time of the system or cause of improper initial data.

In this paper, we study the propagation of charged fermions on 
a fixed RNdS background and extract the QNMs with the spectral 
method in [31] which is based on numerical methods introduced 
in [32] (for a topical review see [33]). After characterizing the fam-
ilies of modes that are present, we will examine the implications 
on SCC for near-extremal RNdS BHs.

2. Charged fermions in Reissner-Nordström-de Sitter spacetime

We focus on RNdS BHs, described by the metric

ds2 = − f (r)dt2 + dr2

+ r2(dθ2 + sin2 θdϕ2) , (3)

f (r)
where f (r) = 1 − 2Mr−1 + Q 2r−2 − �r2/3. Here, M, Q are the 
BH mass and charge, respectively, and � > 0 is the cosmological 
constant. The surface gravity of each horizon is then

κh = 1

2
| f ′(rh)| , h ∈ {−,+, c} , (4)

where r− < r+ < rc are the Cauchy, event and cosmological hori-
zon radius. Since fermions are described by spinors, we use the 
tetrad formalism to accommodate them in curved space. The 
tetrads by definition satisfy the relations

e(a)
μ eν

(a) = δν
μ,

e(a)
μ eμ

(b)
= δ

(a)

(b)
.

The choice of the tetrad field determines the metric through

gμν = e(a)
μ e(b)

ν η(a)(b),

η(a)(b) = eμ
(a) eν

(b) gμν,

where η(a)(b) and gμν are the Minkowski and RNdS metric, respec-
tively. In order to write the Dirac equation, we also introduce the 
spacetime-dependent gamma matrices Gμ which are related to the 
special relativity matrices, γ (a) , by

Gμ = eμ
(a)γ

(a),

and are chosen in a proper way to satisfy the anti-commutation 
relations

{γ (a), γ (b)} = −2η(a)(b),

{Gμ, Gν} = −2gμν.

Consequently, we define Gμ with respect to a fixed tetrad as

Gt = et
(a)γ

(a) = γ t√
f (r)

, Gr = er
(a)γ

(a) = √
f (r)γ r,

Gθ = eθ
(a)γ

(a) = γ θ , Gϕ = eϕ
(a)γ

(a) = γ ϕ,

where γ t , γ r, γ θ and γ ϕ are the γ -matrices in “polar coordi-
nates” [34]

γ t = γ (0),

γ r = sin θ cosϕ γ (1) + sin θ sinϕ γ (2) + cos θ γ (3)

γ θ = 1

r

(
cos θ cosϕ γ (1) + cos θ sinϕ γ (2) − sin θ γ (3)

)
,

γ ϕ = 1

r sin θ

(
− sinϕ γ (1) + cosϕ γ (2)

)
and

γ (0) =
(

1 0
0 −1

)
, γ (k) =

(
0 σ k

−σ k 0

)

the standard Dirac γ -matrices, where σ k, k = 1, 2, 3 the Pauli ma-
trices. The propagation of a spin 1/2 particle of mass m f on a 
fixed RNdS background is then described by the Dirac equation in 
curved spacetime [35]

(iGμDμ − m f )ψ = 0, (5)

with the covariant derivative

Dμ = ∂μ − iq Aμ + �μ,
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where q the charge of the Dirac particle, A = −(Q /r)dt the elec-
trostatic potential and �μ the spin connection coefficients defined 
as

�μ = −1

8
ω(a)(b)μ

[
γ (a), γ (b)

]
.

The spin connection ω(a)(b)μ is defined as

ω(a)(b)μ = η(a)(c)

(
e(c)
ν eλ

(b)�
ν
μλ − eλ

(b)∂μe(c)
λ

)
,

with �ν
μλ the Christoffel symbols. By choosing the ansatz ψ =

f (r)−1/4r−1�, (5) can be written as[
iγ t√
f (r)

∂

∂t
+ i

√
f (r)γ r ∂

∂r
− iγ r

r
+ i

(
γ θ ∂

∂θ
+ γ ϕ ∂

∂ϕ

)

−γ t qQ

r
√

f (r)
− m f

]
� = 0. (6)

Since the external fields are spherically symmetric and time-
independent, we can separate out the angular and time depen-
dence of the wave functions via spherical harmonics and plane 
waves, respectively. For the Dirac wavefunctions, we choose the 
ansatzes

�+
jkω = e−iωt

(
φk

j−1/2 F +(r)

iφk
j+1/2G+(r)

)
, (7)

�−
jkω = e−iωt

(
φk

j+1/2 F −(r)

iφk
j−1/2G−(r)

)
, (8)

where we introduced the spinor spherical harmonics [34]

φk
j−1/2 =

⎛
⎜⎝

√
j+k
2 j Y k−1/2

j−1/2 (θ,ϕ)√
j−k
2 j Y k+1/2

j−1/2 (θ,ϕ)

⎞
⎟⎠ , for j = l + 1

2
,

φk
j+1/2 =

⎛
⎜⎝

√
j+1−k
2 j+2 Y k−1/2

j+1/2 (θ,ϕ)

−
√

j+1+k
2 j+2 Y k+1/2

j+1/2 (θ,ϕ)

⎞
⎟⎠ , for j = l − 1

2
,

with j = 1/2, 3/2, . . . , k = − j, − j + 1, . . . , j and Y m
l the ordinary 

spherical harmonics. By substituting (7) and (8) into (6) and utiliz-
ing the identities

K = �σ �L + 1 = −rσ r (
σ θ∂θ + σϕ∂ϕ

) + 1,

Kφk
j∓1/2 = ±( j + 1

2
)φk

j∓1/2,

σ rφk
j∓1/2 = φk

j±1/2,

with �σ , �L the Pauli and angular momentum vectors, respectively, 
and σ r, σ θ , σϕ the Pauli matrices in “polar coordinates” [34], we 
end up with the coupled Dirac equations

∂ F

∂r∗
− ξ

√
f (r)

r
F +

(
ω − qQ

r

)
G + m f

√
f (r)G = 0, (9)

∂G

∂r∗
+ ξ

√
f (r)

r
G −

(
ω − qQ

r

)
F + m f

√
f (r)F = 0, (10)

where ξ = ±( j + 1/2) = ±1, ±2, . . . and dr∗ = f /dr. Since the 
charge-to-mass ratio of the electron is of order 1011C/kg, it is rea-
sonable to explore massless fermions. By setting m f = 0 we can 
decouple (9), (10) by introducing a new coordinate
dr̄∗ =
(

1 − qQ
rω

)
f

dr,

to get

dF

dr̄∗
− W F + ωG = 0, (11)

dG

dr̄∗
+ W G − ωF = 0, (12)

and subsequently

d2 F

dr̄2∗
+

(
ω2 − V+

)
F = 0, (13)

d2G

dr̄2∗
+

(
ω2 − V−

)
G = 0, (14)

with

V± = ±dW

dr̄∗
+ W 2,

where

W = ξ
√

f

r
(

1 − qQ
rω

) . (15)

It can be shown that potentials related in this manner and sub-
jected to Sommerfeld conditions are isospectral, thus, allowing us 
to work only with the field F [5,36]. Since we are interested in the 
characteristic frequencies of this spacetime, we impose the bound-
ary conditions

F (r → r+) ∼ e−iωr̄∗ , F (r → rc) ∼ eiωr̄∗

which select a discrete set of frequencies ω called the QNMs. The 
QN frequencies are characterized, for each ξ , by an integer n ≥ 0
labeling the mode number. The fundamental mode n = 0 corre-
sponds, by definition, to the non-vanishing frequency with the 
smallest (in absolute value) imaginary part and will be denoted 
by ω �= 0. It is apparent from (11), (12) and (15) that the symme-
try ω → −ω, q → −q, ξ → −ξ holds, enabling us to only study 
positive ξ . As shown in Appendix A, for q �= 0 the stability of the 
CH continues to be determined by (1).

The results shown in the following sections were obtained with 
the Mathematica package of [31], and checked in various cases 
with a WKB approximation [37] and with a code developed based 
on the matrix method [38].

3. QNMs of massless, charged fermionic fields: the three families

In [1,21], we found three qualitatively different families of 
QNMs: the photon sphere (PS) family, the dS family and the near-
extremal (NE) family. The first two connect smoothly to the modes 
of asymptotically flat Schwarzschild and of empty dS, respectively, 
while the last family cannot be found in either of these spacetimes. 
Here we, again, distinguish three families of modes.

Photon sphere modes The PS is a spherical trapping region of space 
where gravity is strong enough that photons are forced to travel 
in unstable circular orbits around a BH. This region has a strong 
pull in the control of decay of perturbations and the QNMs with 
large frequencies. For asymptotically dS BHs, we find a family that 
can be traced back to the photon sphere and refer to them as PS 
modes. These modes are shown with blue colors in Figs. 1–2 and 
B.4. They satisfy the symmetry ω → −ω for q = 0 and the sym-
metry breaks as the fermionic charge is turned on, according to 



214 K. Destounis / Physics Letters B 795 (2019) 211–219
Fig. 1. Lowest lying fermionic QNMs for ξ = 1, q = 0 and �M2 = 0.06 as a function of Q /M . The right plot shows the imaginary part, with dashed red lines corresponding 
to purely imaginary modes, and solid blue lines to complex PS modes, whose real part is shown in the left plot. The red circles in the right plot designate the ξ = 1 Dirac 
modes of empty dS space at the same �, which closely match the first imaginary mode shown here, but lie less close to the higher overtone. Near extremality, another set 
of purely imaginary modes (dotted green lines) come in from −∞ and approach 0 in this limit. Only a finite number of modes are shown, even though we expect infinitely 
many near-extremal modes in the range shown.
(15). For very small �, q and Q , ξ → ∞ defines the dominant 
mode which can be very well approximated by a WKB approxima-
tion and asymptote to the Schwarzschild BH Dirac QNMs [39]. The 
lowest lying PS modes are weekly dependent on the BH charge as 
it is apparent for the case presented in Fig. 1. For sufficiently large 
� the former does not hold. For large BH charges the ξ = 1 PS 
modes dominate the family (see Appendix B). As the BH “disap-
pears” (M → 0) we observe that the PS family have increasingly 
large frequencies and timescales until they abruptly vanish (see 
Appendix C).

It is important to note that at the eikonal limit the fermionic 
PS QNMs coincide with the scalar ones. This occurs since at the 
eikonal limit the effective potentials for fermionic and scalar per-
turbations are dominated by the angular numbers ξ , l thus gaining 
a similar form. A basic difference between scalar and fermionic 
perturbations is that the eikonal scalar QNMs are the dominant 
ones for all BH parameters, in contrast with the eikonal fermionic 
QNMs which are dominant for a very small region of the BH pa-
rameter space.

de Sitter modes In pure dS space solutions of the Dirac equation 
with purely imaginary ω exist [40]

ωpure dS/κ
dS
c = −i

(
ξ + n + 1

2

)
(16)

where ξ = 1, 2, . . . . The second family of modes we find are the 
Dirac BH dS QNMs, which are deformations of pure dS QNMs (16). 
The dominant BH dS mode (ξ = 1, n = 0) has almost identical 
imaginary part with (16) and higher overtones have increasingly 
larger deformations.

These modes have weak dependence on the BH charge and are 
described by the surface gravity κdS

c = √
�/3 of the cosmological 

horizon of pure dS space, as opposed to that of the cosmological 
horizon in the RNdS BH in study. This could be explained by the 
fact that the accelerated expansion of RNdS spacetimes is also gov-
erned by κdS

c [41,42].
To the best of our knowledge, this family of Dirac BH dS modes 

has been identified here for the first time. The scalar equivalent 
of these modes has been identified for the first time in the QNM 
calculations of [31,1]. Moreover, as the black hole vanishes (M →
0), these modes converge smoothly to the exact pure dS modes 
(16) (see Appendix C).

A key similarity of fermionic dS QNMs and scalar dS QNMs is 
the fact that they are both proportional to the surface gravity of 
the cosmological horizon of pure dS space (see [1]). On the other 
hand, the fermionic dS QNMs do not admit an ω = 0 mode, while 
scalars do. Such mode has been seen in time evolutions [26,27]
and rises from the fact that the effective potential forms a po-
tential well right outside the photon sphere, serving as a trapping 
region. This region is connected to a superradiant instability in 
RNdS against charged scalar fluctuations which effectively puts the 
validity of SCC out of discussion since the internal and external 
regions of the BH in study are effectively unstable. The effective 
potential of fermionic perturbations does not contain any potential 
wells which is gonna play an important role in our discussion.

Near-extremal modes In the limit where the Cauchy and event 
horizon approach each other, a third NE family dominates the dy-
namics. In the extremal limit and for sufficiently small fermionic 
charges this family approaches

ωNE ≈ qQ

r−
− iκ−

(
ξ + n + 1

2

)
≈ qQ

r+
− iκ+

(
ξ + n + 1

2

)
, (17)

where ξ = 1, 2, . . . , with weak dependence on � as shown by our 
numerics. As indicated by (17), the dominant mode of this family 
is the ξ = 1, n = 0. In the asymptotically flat case, such modes have 
been identified in [43]. Here, we show that these modes exist in 
RNdS BHs, and that they are the limit of a new family of modes.

Comparing the NE family of modes (17) to the one discussed 
in [1], but initially found in [44] for RN BHs, we realize that their 
real parts coincide, since they only depend on the choice of BH 
parameters, but their imaginary parts differ slightly. In any case, as 
the extremal charge is approached, both families share the same 
fate; a vanishing imaginary part (κ− = κ+ = 0 at extremality).

4. Dominant modes and strong cosmic censorship

Since our purpose is to investigate the implications of charged 
fermions in SCC, we will restrict ourselves to choices of NE RNdS 
BH parameters which are problematic, since in this region κ− be-
comes comparable to the Im(ω) of the dominant QNM. For the 
region of interest, ξ = 1 modes dominate all three families (see 
Appendix B).

In [30] it was shown that for the choice of �M2 = 0.06 and 
Q /Q max = 0.996 only the ξ = 1 PS mode is relevant for SCC 
and there is a region in the parameter space where β > 1/2 (for 
qM � 0.53) implying the potential violation of SCC. Quietly in-
teresting, there was no participation of the NE modes to the de-
termination of β for these parameters. On the other hand, for 
�M2 = 0.06 and Q /Q max = 0.999 a family that originates from 
purely imaginary modes (for q = 0) comes into play to dominate 
for very small fermionic charges and quickly becomes subdomi-
nant to give its turn to the ξ = 1 PS mode. Again, β > 1/2 (for 
qM � 0.85) so SCC may be violated.
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Fig. 2. Lowest lying QNMs of a charged, massless fermionic perturbation of a RNdS BH with ξ = 1, �M2 = 0.005, 0.06 and 1 − Q /Q max = 10−3, 10−4, 10−5 as a function of 
the fermionic charge qM . The modes denoted with blue, red and green colors belong to the PS, dS and NE family, respectively.

Fig. 3. Left: Dependence of the critical fermionic charge qc on the BH charge Q /Q max and the cosmological constant �M2. Here, different colors denote different choices of 
cosmological constants. Right: Dominant ξ = 1 NE QNMs of a charged, massless fermionic perturbation of a RNdS BH with �M2 = 0.005 (red line) and �M2 = 0.06 (green 
line) for 1 − Q /Q max = 10−8 as a function of the fermionic charge qM .
Our numerics completely agree with this picture. Here, we will 
be mostly interested in the case of even higher BH charges and 
the classification of the families originating from purely imagi-
nary modes. To do so, we will study various choices of �. The 
BH charges we consider are:

1 − Q /Q max = 10−3, 10−4, 10−5. (18)

According to our results (see Fig. 2) for small BHs (�M2 = 0.005) 
with 1 − Q /Q max = 10−3 we see that β is defined by the dS mode 
up to qM ≈ 0.5; for larger q the PS mode becomes dominant. In-
terestingly enough, for qM < 0.5, the NE mode lies very close to 
the dS one being the first subdominant mode in this range. For 
larger BHs (�M2 = 0.06) with 1 − Q /Q max = 10−3 the dS mode 
moves rapidly to the subdominant side, giving its place to the NE 
mode to dominate up until qM ≈ 0.35; for larger q the PS mode 
dominates again. For BHs with 1 − Q /Q max ≥ 10−4 the NE mode 
always dominate the dynamics, while the rest of the families lie 
out of the range of interest.

For all cases presented, there is always a critical fermionic 
charge qc above which β < 1/2 and SCC is preserved. In Fig. 3
(left panel) we display the dependence of qc M on the �M2 and 
Q /Q max. We observe that as the BH becomes extremal a larger 
violation gap occurs in the parameter space. A larger qc M is also 
obtained for smaller cosmological constants. Similar results were 
obtained in [21,23] for the case of charged scalar perturbations, 
although the absence of superradiance effect in fermionic fields 
leads to even larger regimes in the parameter space where viola-
tion of SCC may occur.

By observing the cases with 1 − Q /Q max = 10−5 we see that 
above qc , β lies very close to 1/2. To examine if non-perturbative 
effects are present we plot β for �M2 = 0.005, 0.06 and 1 −
Q /Q max = 10−8 versus the fermionic charge. In Fig. 3 (right 
panel) we observe the existence of arbitrarily small oscillations of 
the imaginary part of the fundamental NE mode in highly near-
extremal RNdS BHs. Such a phenomenon was previously observed 
for charged scalar perturbations in RNdS [22] and gravitational per-
turbations in Kerr BHs [45]. These oscillations are called “wiggles” 
and have very small amplitude. They are suppressed exponentially 
fast with increasing q and are precisely the non-perturbative ef-
fect that an asymptotic series, such as the WKB approximation, can 
easily miss, since they are highly subdominant. We believe that 
these wiggles were missed from the analysis of [30] because they 
did not consider highly NE BHs.

The ramifications of the wiggles for SCC are fierce. Our results 
indicate that, even for fermionic fields with q > qc , there are still 
NE BHs for which β > 1/2 and SCC may be violated, regardless of 
the cosmological constant, in contrast with the results in [30]. Fi-
nally, notice that for all cases presented, all dominant modes orig-
inate below Im(ω/κ−) = −1, indicating that β > 1, corresponding 
to a potential scenario of bounded curvature as explained in [1].

5. Conclusions

We recently presented evidence in [1,21] for the potential fail-
ure of SCC in NE RNdS BHs under neutral and charged scalar 
perturbations. By utilizing (1) we performed thorough numerical 
analyses of β through the calculation of QNMs of the system. Here, 
we extend our analysis to charged fermionic fields.

First, we provide justification that (1) remains valid for charged 
fermionic perturbations. Then, we perform a detailed numerical 
computation of the dominant modes of RNdS BHs and distinguish 
three families of QNMs. The first family is closely related to the 
PS of the BH while the second is related to the existence and 
timescale of the dS horizon of pure dS space. The final family 
dominates the dynamics when NE BH charges are considered. Ac-
cording to our study, the only relevant region for SCC is the NE, 
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where the surface gravity of the CH, κ− , becomes comparable with 
the decay rates of the dominant QNMs. We show that all families 
admit their dominant modes for ξ = 1 in this region and search 
for potential violation, while taking into account the entire range 
of qM ≥ 0. Finally, by computing β we consider the implications 
on SCC.

Our main results are shown in Figs. 1–3 and our conclusions are 
summarized here. For all choices of �M2 we always find a region 
of fermionic charges for which β > 1/2 which predicts a poten-
tial failure of SCC, since the CH can be seen as singular due to the 
blow-up of curvature but maintain enough regularity for metric 
extensions to be possible beyond it. For sufficiently large fermionic 
charges the conjecture seems to be initially restored for highly 
charged RNdS BHs. After examining BHs even closer to extremality, 
we realize that even beyond the critical fermionic charge, violation 
can still occur due to the existence of wiggles.

We point out that for all cases presented, all dominant modes 
from the dS, PS or NE family admit β > 1 for a small but signifi-
cant regime of fermionic charges. This result is even more alarm-
ing for SCC since it is related to bounded curvature and therefore 
opens the possibility to the existence of solutions with even higher 
regularity across the CH. Nevertheless, if we superimpose all per-
turbations, then the smallest of all types of perturbations is the 
one relevant for SCC. Thus, the neutral scalar modes [1] admit 
1/2 < β < 1, which is enough to guarantee the blow-up of cur-
vature components at the CH.
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Appendix A. The definition of β for fermions

In [21] a justification of searching for β > 1/2 was provided, 
leading to potential violation of SCC in RNdS BHs under charged 
scalar perturbations. Here, we prove that the same holds for 
charged fermions. To determine the regularity of the metric up to 
the CH we study the regularity of QNMs at the CH. To do so, we 
change to outgoing Eddington-Finkelstein coordinates which are 
regular there. The outgoing Eddington-Finkelstein coordinates are 
obtained by replacing t with u = t − r∗ in (3) to get

ds2 = − f (r)du2 − 2dudr + r2(dθ2 + sin2 θ dϕ2), (A.1)

with the associated electromagnetic potential

A = − Q

r
du = − Q

r

(
dt − dr

f (r)

)
. (A.2)

A straightforward way to write down the Dirac equation (5) in this 
new coordinates is to choose a new tetrad that reproduces (A.1). 
An alternative way is to transform (6) in the new coordinates (u, r)
with the associated transformed electromagnetic potential (A.2).

To do so, we write (6) with m f = 0 and perform the transfor-
mation ∂t = ∂u , ∂r = −∂u/ f + ∂r to obtain[

iγ t∂u√
f (r)

+ i
√

f (r)γ r
(

−∂u

f
+ ∂r

)
− iγ r

r

+i
(
γ θ∂θ + γ ϕ∂ϕ

) − γ t qQ

r
√

f (r)
+ γ r qQ

r
√

f (r)

]
� = 0. (A.3)

By utilizing the ansatz for the Dirac wavefunctions

�+ = e−iωu

(
φk

j−1/2 F +(r)

iφk
j+1/2G+(r)

)
, (A.4)

�− = e−iωu

(
φk

j+1/2 F −(r)

iφk
j−1/2G−(r)

)
, (A.5)

we obtain

f ∂r F − ξ
√

f

r
F +

(
ω − qQ

r

)
G + i

(
ω − qQ

r

)
F = 0, (A.6)

f ∂r G + ξ
√

f

r
G −

(
ω − qQ

r

)
F + i

(
ω − qQ

r

)
G = 0, (A.7)

where ξ = ±1, ±2, . . . . By solving with respect to F we obtain

− 2ξω f 3/2

r(qQ − rω)
F − ξ

√
f

r
f ′ F − 2

ξ2 f

r2
F + 2qQ f

r(qQ − rω)
f ∂r F

−4iqQ

r
f ∂r F + 4iω f ∂r F + 2( f ∂r)

2 F = 0. (A.8)

It can be shown that the mode solutions of (A.8) are conormal at 
r = r− , meaning that they grow at the same rate |r − r−|λ . Thus, if 
F ∼ |r − r−|λ then the first four terms have higher regularity than 
the rest, where f ∼ |r − r−| near the CH modulo irrelevant terms. 
This means that these terms can be neglected, which leads to a 
regular-singular ordinary differential equation near r = r− of the 
form P F = 0 with the operator1

P = ( f ∂r)
2 + 2iω( f ∂r) − 2iqω

r
( f ∂r). (A.9)

It is convenient to use f as a radial coordinate instead of r, so 
∂r = f ′∂ f = f ′(r−)∂ f near the CH modulo irrelevant terms. More-
over, the surface gravity at the CH is κ− = − f ′(r−)/2 so f ∂r =
−2κ−( f ∂ f ). Thus, (A.9) becomes

P

4κ2−
= ( f ∂ f )

2 − iω

κ−
( f ∂ f ) + iqQ

κ−r−
( f ∂ f )

= f ∂ f

(
f ∂ f −

(
iω

κ−
− iqQ

κ−r−

))
. (A.10)

It remains to calculate the allowed growth rates λ, i.e. indicial roots 
of the differential operator (A.10). Acting with | f |λ we get

P

4κ2−
| f |λ = λ

(
λ −

(
iω

κ−
− iqQ

κ−r−

))
| f |λ. (A.11)

The indicial roots are the roots of the quadratic polynomial (A.11), 
namely

λ1 = 0, λ2 = iω

κ−
− iqQ

κ−r−
. (A.12)

The root λ1 = 0 corresponds to mode solutions which are approx-
imately constant, i.e. remain smooth at the CH and are irrelevant 
for SCC, while λ2 corresponds to asymptotics

| f |λ2 ∼ |r − r−| iω
κ− |r − r−|− iqQ

κ−r− . (A.13)

1 The same operator arises for the field G with P G = 0 by following exactly the 
same steps.
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If we consider QNMs of the form ω = ωR − iωI then

| f |λ2 ∼ |r − r−|
ωI
κ− |r − r−|i

(
ωR
κ− − qQ

κ−r−
)
. (A.14)

The second factor is purely oscillatory, so the only relevant factor 
for SCC is |r − r−| α

κ− with α := −Imω the spectral gap define in 
[1]. This function lies in the Sobolev space H s for all s < 1

2 + α
κ− .

Considering scalar perturbations, we require locally square in-
tegrable gradient of the scalar field at the CH, i.e., the mode so-
lutions should belong to the Sobolev space H1

loc for the Einstein’s 
field equations to be satisfied weakly at the CH. In our case, the 
Einstein-Hilbert stress-energy tensor of the fermionic field lying on 
the right-hand-side of Einstein’s equations has the form [46]

T μν =1

4

(
�̄iγ μ

(∇ν − iq Aν
)
� + �̄iγ ν

(∇μ − iq Aμ
)
�

− (∇μ + iq Aμ
)
�̄iγ ν� − (∇ν + iq Aν

)
�̄iγ μ�

)
(A.15)

and again this leads to the requirement of square integrability 
of the gradient of the fermionic field. Thus, the mode solutions 
should belong to the Sobolev space H1

loc for our metric to make 
sense as a weak solution of Einstein’s field equations at the CH. 
This provides the justification for our search for BH parameters for 
which β > 1/2.

Appendix B. Higher ξ modes

In this appendix we verify the expectation that the higher ξ
QNMs do not affect Strong Cosmic Censorship. In Fig. B.4 we show 
the ξ = 1, 2, 3 modes. The ones depicted with blue colors belong 
to the PS family, since they originate from complex modes for q =
0 and follow their pattern. The ones depicted with green colors 
belong to the NE family, since they originate from purely imaginary 
modes for q = 0 and follow their pattern. The dS modes are not 
present in the range of interest since they are too subdominant for 
the chosen cosmological constant. We clearly see that the modes 
defining β according to (1) will be the ξ = 1 QNMs. The same 
holds for other choices of �.

For completeness, in Table B.1 we show various modes from 
different families with ξ = 1, 10 for various choices of Q , q and 
�. We compare the neutral ξ = 10 PS modes with a WKB approx-
imation for arbitrarily large ξ and verify that indeed the imagi-
nary parts lie very close. It is apparent that for NE charges ξ = 1
modes always dominate. It is also apparent that the only way for 
ξ → ∞ modes to be the dominant ones of the PS family is for 
very small cosmological constants. Specifically, for �M2 = 0.001, 
ξ → ∞ modes are dominant up to a critical BH charge Q c/M ≈
0.866. Above Q c/M , ξ = 1 modes dominate the PS family. E.g. for 
Q /M = 0.865 and q = 0 the dominant (ξ → ∞) PS mode admits 
Im(ωPS)/κ− = −0.0479, while the dominant (ξ = 1) dS mode ad-
mits Im(ωdS)/κ− = −0.0135; the NE family is too subdominant for 
this BH charge. None of those modes can potentially violate SCC 
so it becomes a necessity to search closer to extremality, where 
we are aware that κ− becomes comparable to Im(ω).2 Since β is 
maximal at q = 0, any qM > 0 will make Im(ω)/κ− even smaller. 
Finally, for larger �, Q c decreases, moving even further away from 
extremality.

Considering the above, we are convinced that throughout the 
parameter space in study, ξ = 1 indeed gives the dominant modes 
for all families.

2 For the case presented, the surface gravity is ∼ 100 larger than the decay rate 
of the dominant mode.
Fig. B.4. Lowest lying QNMs of a charged, massless fermionic perturbation of a RNdS 
BH for various ξ with �M2 = 0.06 and 1 − Q /Q max = 10−3 as a function of the 
fermionic charge qM . The modes denoted with blue and green colors belong to the 
PS and NE family, respectively. The dS family is absent in this range.

Table B.1
Lowest lying fermionic QNMs of RNdS BH for various Q , q, � and ξ .

Q /M = 10−1

�M2 = 0.005

ξ qM = 0 qM = 0.1

1 ωPS = 0.1795–0.0947 i ωPS = −0.1760–0.0941 i
ωdS = −0.0614 i ωdS = −0.00003–0.0614 i

10 ωPS = 1.8831–0.0941 i ωPS = −1.8797–0.0940 i

WKB −0.0941 i –

�M2 = 0.06

ξ qM = 0 qM = 0.1

1 ωPS = 0.1280–0.0650 i ωPS = −0.1247–0.0647 i
ωdS = −0.2170 i ωdS = −0.0003–0.2170 i

10 ωPS = 1.3097–0.0654 i ωPS = −1.3064–0.0654 i

WKB −0.0654 i –

Q /Q max = 1–10−3

�M2 = 0.005

ξ qM = 0 qM = 0.1

ωPS = 0.2353–0.0865 i ωPS = −0.1875–0.0852 i
1 ωdS = −0.0613 i ωdS = −0.0003–0.0612 i

ωNE = −0.0671 i ωNE = 0.1004–0.0669 i

10 ωPS = 2.4650–0.0872 i ωPS = −2.4152–0.0872 i

WKB −0.0870 i –

�M2 = 0.06

ξ qM = 0 qM = 0.1

1 ωPS = 0.2016–0.0708 i ωPS = 0.2548–0.0692 i
ωNE = −0.0611 i ωNE = 0.0974–0.0609 i

10 ωPS = 2.0918–0.0716 i ωPS = 2.1436–0.0715 i

WKB −0.0718 i –

Appendix C. Convergence of the families

In this appendix we demonstrate the convergence of the BH 
dS modes to the pure dS QNMs, as well as the behavior of the 
PS modes, for vanishing M . In Fig. C.5 we plot with dashed lines 
the fundamental (n = 0) and first overtone (n = 1) BH dS modes 
and illustrate that as the BH disappears (M → 0) the QNMs tend 
smoothly to the exact pure dS fermionic QNMs which are denoted 
with red circles. Here, we only demonstrate this for a specific 
choice of parameters but our numerics reveal that the smooth 
convergence happens for all BH parameters. We realize that the 
increment of the BH mass affects weakly the dS family. It is im-
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Fig. C.5. Fundamental (left, dashed) and first overtone (right, dashed) ξ = 1 BH dS QNM of a neutral, massless fermionic perturbation propagating on a fixed RNdS BH with 
�M2 = 0.005 and Q /M = 10−4 as a function of the BH mass M . The red circles in each plot designate the respective pure dS QNMs.

Fig. C.6. Real (left) and imaginary (right) part of the ξ = 10 fundamental and first overtone PS QNM of a neutral, massless fermionic perturbation propagating on a fixed 
RNdS BH with �M2 = 0.06 and Q /M = 10−4 as a function of the BH mass M . The real parts coincide in the range shown.
portant to note that equivalent results for the BH dS family were 
obtained in RNdS under scalar perturbations [1].

The story is different for the PS family of modes (see Fig. C.6). 
As M → 0 the real and imaginary parts diverge. This occurs due to 
the shrinking of the photon sphere. If we consider, for example, a 
perturbed string with a specific length that vibrates, then by con-
tinuously decreasing its length we will observe that the vibrations 
will have increasingly higher frequency and smaller timescales un-
til the point where the sting vanished and oscillations cease to 
exist. The same happens for a dissipative BH like the one in study 
as it disappears.
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