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Abstract
These notes offer an introductory overview of the essentials of classical brane dynamics in
a space-time background of arbitrary dimension, using a systematic geometric treatment
emphasising the role of the second fundamental tensor and its trace, the curvature vector
Kµ . This approach is applied to the problem of stability of vorton equilibrium states of
cosmic string loops in an ordinary 4-dimensional background.

1 Worldsheet Curvature Analysis

1.1 The first fundamental tensor

Earlier treatments of the classical dynamics of strings and higher p-branes were inclined to rely too much on
gauge dependent auxiliary structures such as internal coordinates σi on the d=p+1 dimensional worldsheet,
which can be useful for various computational purposes but tend to obscure what is essential. The present
notes offer an introductory overview of a more geometrically elegant approach [1] that is particularly useful for
work in a background spacetime whose dimension n is 5 or more [2–4], but that I originally developed for the
purpose of studying cosmic string loops and particularly the question of the stability of their vorton equilibrium
states [5] in a background of dimension n=4. Following the strategy originally advocated by Stachel[6], the
guiding principle of this approach [1] is to work as far as possible with a single kind of tensor index, which
must of course be the one that is most fundamental, namely that of the n-dimensional coordinates, xµ , on
the background spacetime with metric gµν .

The idea is to avoid unnecessary use of the internal coordinate indices, which are lowered and raised

by contraction with the induced metric ηij = gµνx
µ
,ix

ν
,j (using the notation xµ

,i = ∂xµ/∂σi ) on

the worldsheet, and with its contravariant inverse ηij . This is achieved by working instead with the (first)

fundamental tensor as given by projection back onto the background according to the prescription

ηµν = ηijxµ
,ix

ν
,j , (1)

(in the manner that is applicable to the contravariant version of any worldsheet tensor) so that ηµ
ν will be

the tangential projector. The complementary orthogonal projector is ⊥µ
ν = gµ

ν − ηµ
ν . As well as having

the properties ηµ
ρ ηρ

ν = ηµ
ν , and ⊥µ

ρ⊥ρ
ν = ⊥µ

ν these projection tensors will evidently be related by

ηµ
ρ⊥ρ

ν = 0 = ⊥µ
ρη

ρ
ν .

1.2 The second fundamental tensor

In so far as we are concerned with tensor fields such as the frame vectors whose support is confined to the d-

dimensional world sheet, the effect of Riemannian covariant differentation ∇µ along an arbitrary directions on

the background spacetime will not be well defined, only the corresponding tangentially projected differentiation

operation

∇µ

def

= η ν
µ∇ν , (2)
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being meaningful for them, as for instance in the case of a scalar field ϕ for which the tangentially projected

gradient is given in terms of internal coordinate differentiation simply by ∇µϕ = ηijxµ
,i ϕ,j . The action of

this operator on the first fundamental tensor ηµν itself gives the entity

Kµν
ρ

def

= η σ
ν∇µη

ρ
σ (3)

that we refer to [1] as the second fundamental tensor.
As this second fundamental tensor, Kµν

ρ will play an important role in the work that follows, it is worth

lingering [1] over its essential properties. The expression (3) could of course be meaningfully applied not only to

the fundamental projection tensor of a d-surface, but also to any (smooth) field of rank-d projection operators

η µ
ν as specified by a field of arbitrarily orientated d-surface elements. What distinguishes the integrable case

– in which the elements mesh together to form a well defined d-surface through the point under consideration

– is the Weingarten identity, whereby that the tensor defined by (3) will have the symmetry property

K [µν]
ρ = 0 , (4)

an integrability condition that is derivable [1] as a version of the well known Frobenius theorem.

As well as being symmetric, the tensor Kµν
ρ is obviously tangential on the first two indices and also

orthogonal on the last: ⊥σ
µKσν

ρ = Kµν
σησ

ρ = 0 . It fully determines the tangential derivatives of the

first fundamental tensor η µ
ν by the formula

∇µηνρ = 2Kµ(νρ) , (5)

(using round brackets to denote symmetrisation) and it is characterisable by the condition that the orthogonal
projection of the acceleration u̇ µ = u ν∇ν u µ of any tangential unit vector field u µ (with u µ u µ = −1
) will be given by u µ u νKµν

ρ = ⊥ρ
µ u̇

µ .

1.3 Extrinsic curvature vector and Conformation tensor

It is very practical for a great many purposes to introduce the extrinsic curvature vector Kµ , defined [1]

as the trace of the second fundamental tensor,

Kµ
def

= Kν
ν
µ = ∇νη

µν , (6)

which is automatically orthogonal to the worldsheet, ηµ
νK

ν = 0 . It is useful for many specific purposes

to work this out in terms of the intrinsic metric ηij and its determinant |η| . For the tangentially projected

gradient of a scalar field ϕ on the worldsheet, it suffices to use the simple expression ∇µϕ = ηijxµ
,iϕ,j .

However for a tensorial field (unless one is using Minkowski coordinates in a flat spacetime) the gradient will also

have contributions involving the background Riemann Christoffel connection Γ ν
µ ρ = gνσ

(
gσ(µ,ρ)− 1

2 gµρ,σ

)
.

The curvature vector is thus obtained in explicit detail as

Kν =
1√
‖η‖

(√
‖η‖ηijxν

,i

)
,j + ηijxµ

,ix
ρ
,jΓ

ν
µ ρ . (7)

This expression is useful for specific computational purposes, but much of the literature on cosmic string
dynamics has been made unnecessarily heavy by a tradition of working all the time with long strings of non
tensorial terms such as those on the right of (7) rather than exploiting more succinct tensorial expressions,

such as Kν = ∇µη
µν .

As an alternative to the universally applicable tensorial approach advocated here, there is of course another
more commonly used method of achieving succinctness in particular circumstances, which is to sacrifice
gauge covariance by using specialised kinds of coordinate system. In particular, for the case of a string,
i.e. for a 2-dimensional worldsheet, it is standard practise to use conformal coordinates σ0 and σ1 so
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that the corresponding tangent vectors ẋµ = xµ
,0

and x′µ = xµ
,1

satisfy the restrictions ẋµx′
µ = 0 ,

ẋµẋµ + x′µx′
µ = 0 , which implies

√
‖η‖ = x′µx′

µ = −ẋµẋµ , so that (7) simply gives
√

‖η‖Kν =
x′′ν −ẍν + (x′µx′ρ −ẋµẋρ)Γ ν

µ ρ .
The physical specification of the extrinsic curvature vector (6) for a timelike d-surface in a dynamic theory

provides what can be taken as the equations of extrinsic motion of the d-surface [1], the simplest possibility
being the “harmonic” condition Kµ = 0 that is obtained (as shown below) from a surface measure variational
principle such as that of the Dirac membrane model [7], or of the Goto-Nambu string model [8] whose dynamic
equations in a flat background are therefore expressible with respect to a standard conformal gauge in the
familiar form x′′µ −ẍµ = 0 ,

There is a certain analogy between the Einstein vacuum equations, which impose the vanishing of the
trace Rµν of the background spacetime curvature Rλµ

ρ
ν , and the Dirac-Gotu-Nambu equations, which

impose the vanishing of the trace Kν of the second fundamental tensor Kλµ
ν , Moreover, just as it is

useful to separate out the Weyl tensor [9], i.e. the trace free part of the Ricci background curvature which is
the only part that remains when the Einstein vacuum equations are satisfied, so also analogously, it is useful
to separate out the the trace free part of the second fundamental tensor, namely the extrinsic conformation
tensor [1], which is the only part that remains when equations of motion of the Dirac - Goto - Nambu type
are satisfied.

Explicitly, the trace free extrinsic conformation tensor C µν
ρ of a d-dimensional imbedding is defined

[1] in terms of its first and second fundamental tensors as

C µν
ρ

def

= Kµν
ρ − 1

d
ηµνK

ρ , C ν
ν
µ = 0 . (8)

Like the Weyl tensor Wλµ
ρ
ν of the background metric (whose definition is given implicitly by (13) below)

this conformation tensor has the noteworthy property of being invariant with respect to conformal modifications

of the background metric: gµν 7→ e2αgµν ⇒

Kµν
ρ 7→ Kµν

ρ + ηµν⊥ρσ∇σα , C µν
ρ 7→ C µν

ρ . (9)

This is useful [10] for work like that of Vilenkin [11] in a Robertson-Walker cosmological background, which
can be obtained from a flat spacetime by a conformal transformation for which eα is a time dependent Hubble
expansion factor.

1.4 Codazzi, Gauss, and Schouten identities

As the higher order analogue of (3) we can go on to introduce the third fundamental tensor[1] as

Ξλµν
ρ

def

= η σ
µη

τ
ν⊥ρ

α∇λKστ
α , (10)

which by construction is obviously symmetric between the second and third indices and tangential on all the
first three indices. In a spacetime background that is flat (or of constant curvature as is the case for the
DeSitter universe model) this third fundamental tensor is fully symmetric over all the first three indices by
what is interpretable as the generalised Codazzi identity.

In a background with arbitrary Riemann curvature Rλµ
ρ
σ the generalised Codazzi identity is expressible

[1] as

Ξλµν
ρ = Ξ(λµν)

ρ +
2

3
η σ

λη
τ
(µη

α
ν)Rστ

β
α⊥ρ

β (11)

A script symbol R is used here in order to distinguish the (n- dimensional) background Riemann curvature
tensor from the intrinsic curvature tensor of the (d- dimensional) worldsheet to which the ordinary symbol
R has already allocated. For many of the applications that will follow it will be sufficient just to treat the
background spacetime as flat, i.e. to take Rστ

β
α = 0 .
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For n > 2, the background curvature tensor will be decomposible (if present) in terms of the background

Ricci tensor and its scalar trace,

Rµν = Rρµ
ρ
ν , R = Rν

ν , (12)

and of its trace free conformally invariant Weyl part Wµν
ρ
σ – which can be non zero only for n ≥ 4 – in

the well known [9] form

Rµν
ρσ = Wµν

ρσ +
4

n−2
g

[ρ
[µR

σ]
ν] −

2

(n−1)(n−2)
Rg

[ρ
[µg

σ]
ν] . (13)

In terms of the tangential projection of this background curvature, the corresponding internal curvature

tensor takes the form

Rµν
ρ
σ = 2Kρ

[µ
τKν]στ + η κ

µη
λ
νRκλ

α
τη

ρ
αη τ

σ , (14)

which is the translation into the present scheme of what is well known in other schemes as the generalised
Gauss identity.

The less well known analogue (attributable [9] to Schouten) for the (trace free conformally invariant) outer
curvature is expressible [1] in terms of the relevant projection of the background Weyl tensor as

Ωµν
ρ
σ = 2C [µ

τρ C ν]τσ + η κ
µη

λ
νWκλ

α
τ⊥ρ

α⊥τ
σ . (15)

In a background that is flat or conformally flat (for which it is necessary, and for n ≥ 4 sufficient, that the
Weyl tensor should vanish) the vanishing of the extrinsic conformation tensor C µν

ρ will therefore be sufficient
(independently of the behaviour of the extrinsic curvature vector Kµ ) for vanishing of the outer curvature
tensor Ωµν

ρ
σ , which is the condition for it to be possible to construct fields of vectors λµ orthogonal to the

surface and such as to satisfy the generalised Fermi-Walker propagation condition to the effect that ⊥ρ
µ∇νλρ

should vanish.

2 Laws of motion for a regular brane complex

2.1 Definition of brane complex

The term p-brane has come [12, 13] to mean a dynamic system localised on a timelike support surface of
dimension d=p+1 , in a spacetime background of dimension n> p . Thus a zero - brane means a “point
particle”, and a 1-brane means a “string”, while a 2-brane means what is commonly called a “membrane”.
At the upper extreme an ( n-1)-brane is what is commonly referred to as a “medium” (as exemplified by
a simple fluid). The codimension-1 (hypersurface supported) case of an ( n-2)-brane (as exemplified by a
cosmological domain wall) is what may be referred to as a “hypermembrane”, while the codimension-2 case
of an ( n-3)-brane is what may analogously be referred to as a “hyperstring”.

A set of branes forms a “brane complex” if the support surface of each (d-1)-brane member is a smoothly
imbedded d-dimensional timelike submanifold of which the boundary, if any, is a disjoint union of support
surfaces of lower dimensional members of the set. For the complex to qualify as regular [1] it is required that
a p-brane member can act directly only on an (p-1)-brane member on its boundary or on a (p + 1)-brane
member on whose boundary it is itself located, though it may be passively influenced by higher dimensional
background fields.

Direct mutual interaction between branes with dimension differing by 2 or more would usually lead to
divergences, symptomising the breakdown of a strict – meaning thin limit – brane description. To cure that
properly, a more elaborate treatment – allowing for finite thickness – would be needed, but it may suffice to
use a thin limit approximation [15] whereby the divergence is absorbed [16, 17] in a renormalisation.

In the case of a brane complex, the total action I will be given as a sum of contributions from the various

(d-1)-branes of the complex, of which each has its own Lagrangian d-surface density scalar (d)L say. Each

supporting d-surface will be specified by a mapping σ 7→ x{σ} giving the local background coordinates xµ
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Figure 1: Nautical archetype of a regular brane complex in which a 3-brane (the wind) acts (by pressure
discontinuity) on a 2-brane (the sail) hemmed by three 1-branes (bolt ropes) terminating on 0-branes
(shackles) that are held in place by three more (free) 1-branes (external stay/sheet ropes).

(µ = 0, .... , n-1) as functions of local internal coordinates σi ( i = 0, ... , d-1). The corresponding d-

dimensional surface metric tensor (d)ηij induced as the pull back of the n-dimensional background spacetime

metric gµν , determines the surface measure, (d)dS , in terms of which the total action will be expressible

as

I =
∑

d

∫
(d)dS (d)L , (d)dS =

√
‖(d)η‖ ddσ . (16)

2.2 Conserved current and the stress-energy tensor

As well as on its own internal (d-1)-brane surface fields and their derivatives, and those of any attached

d-brane, each contribution (d)L will also depend (passively) on the spacetime metric gµν and perhaps other

background fields, of which the most common example is a Maxwellian gauge potential Aν , for which the

corresponding field Fµν = 2∇[µAν] , is invariant under gauge changes Aν 7→Aν+∇να, and is automatically

closed, ∇[ρFµν] = 0 , Subject to the internal dynamic equations of motion given by the variational principle

stipulating preservation of the action by variations of the independent field variables, the effect of arbitrary

infinitesimal “Lagrangian” variations
L
δAν ,

L
δgµν , of the background fields will be to induce a corresponding

variation

δI=
∑

d

∫
(d)dS

(
(d)jµ

L
δAµ+

1

2
(d)T µν

L
δgµν

)
, (17)

from which, for each (d−1)-brane, one can read out the electromagnetic surface current vector (d)jµ , and

also (since
L
δ((d)dS) = 1

2
(d)ηµν(

L
δgµν) (d)dS , ) the surface stress momentum energy tensor

(d)T µν = (d)T νµ = 2
∂(d)L

∂gµν

+ (d)L (d)ηµν . (18)
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For any d-dimensional support surface (d)S , Green’s theorem gives∫
(d)dS (d)∇ν

(d)jν =

∮
(d−1)dS (d)λν

(d)jν , (19)

taking the integral on the right over the boundary (d-1)-surface of ∂ (d)S of (d)S , where (d)λν is the
(uniquely defined) outward directed unit tangent vector on the d-surface at its (d-1)-dimensional boundary.

The Maxwell gauge invariance condition (independence of α ) is thus seen to be equivalent to the electric

current conservation condition
(p)∇µ

(p)jµ =
∑

d=p+1

(d)λµ
(d)jµ , (20)

which means that the source of charge injection into any particular (p-1)-brane is the sum of the currents
flowing in from the p-branes to which it is attached.

2.3 Force and the stress balance equation

The condition of being “Lagrangian” means that
L
δ is comoving as needed to be meaningful for fields

with support confined to a particular brane. However for background fields one can also define an “Eulerian”
variation,

E
δ , with respect to some appropriately fixed reference system, in which the infinitesimal displacement

of the brane complex is specified by a vector field ξµ . The difference will be given by
L
δ −

E
δ = ~ξ–L , where

the ~ξ–L is the Lie differentiation operator, which will be given for the relevant background fields by the

familiar formulae ~ξ–LAµ = ξρ∇ρAµ+Aρ∇µξ
ρ , and ~ξ–Lgµν =2∇(µξν) .

In a fixed Eulerian background, the background fields will have Lagrangian variations given just by their Lie

derivatives with respect to the displacement ξµ . Subject to the internal field equations, the action variation δI
due to the displacement of the branes will therefor just be

∑
d

∫
(d)dS

(
(d)jν ~ξ–LAν + 1

2
(d)T µν ~ξ–Lgµν

)
.

The postulate that this vanishes for any ξµ entails the further d-surface tangentiality restriction (d)⊥µ
ν

(d)T νρ =
0 and (by the Green theorem) the dynamic equations

(p)∇µ
(p)T µ

ρ = (p)fρ , (21)

in which total force density,
(p)fρ = (p)fρ + (p)f̌ρ , (22)

includes the Faraday-Lorenz contribution (p)fρ = F ρµ
(p)jµ , from the background, while on each (p-1)-

brane, the contact force exerted by attached p-branes is

(p)f̌ρ =
∑

d=p+1

(d)λµ
(d)T µ

ρ , (23)

in which it is to be recalled that, on the (p+1)-dimensional support surface of each attached p-brane, (d)λµ

is the unit vector that is directed normally towards the bounding (p-1)-brane.

The tangential force balance equations will hold as identities when the internal field equations are satisfied

(because a surface tangential displacement has no effect). The non-redundent information governing the

extrinsic motion of a (d−1)-brane will be given just by the orthogonal part. Integrating by parts, as the surface

gradient of the rank-(n−d) orthogonal projector (p)⊥µ
ν will be given in terms of the second fundamental tensor

(p)K ρ
µν of the d-surface by

(p)∇µ
(p)⊥ν

ρ = − (p)K ρ
µν − (p)K ρ

µ ν , (24)
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the extrinsic equations of motion are finally obtained in the form

(p)T µν (p)K ρ
µν = (p)⊥ρ

µ
(p)fµ . (25)

It is to be remarked that this is valid not just for a conservative force such as the electromagnetic example
considered above, but also for dissipative forces such as frictional drag[10] by a relatively moving background
medium.

The most familiar application is to the case p = 1 of a point particle of mass m with unit velocity vector

ẋµ and orthogonally directed acceleration vector ẍµ , for which one has ηµν = −ẋµẋν , T µν = m ẋµẋν ,
Kµνρ = ẋµẋν ẍρ , so that Kρ = −ẍρ and T µνK ρ

µν = m ẍρ .

3 Canonical Liouville and symplectic currents

3.1 Canonical formalism for Branes

For the study of small perturbations, and particularly for the systematic derivation of conservation laws asso-
ciated with symmetries, it is useful to employ a treatment of the canonical kind that was originally developped
in the context of field theory (as a step towards quantisation) by Witten, Zuckerman, and others [18–24].
This section describes the generalisation of this procedure to brane mechanics in the manner initiated by
Cartas-Fuentevilla [25, 26] and developed in collaboration with Dani Steer [27]. After a general presentation,
including a review of the relationships between the various (Lagrangian, Eulerian and other) relevant kinds of
variation, the procedure is illustrated by application to a particular category that includes the case of branes
of purely elastic type.

Consider a generic conservative p-brane model whose mechanical evolution is governed by an action integral

of the form

I =

∫
L dp+1σ , (26)

over a supporting worldsheet with internal co-ordinates σi (i = 0, 1, ... p) , and induced metric ηij =
gµνx

µ
,ix

ν
,j in a background with coordinates xµ , (µ = 0, 1, ... n − 1) , (n ≥ p + 1) and (flat

or curved) space-time metric gµν . The relevant Lagrangian scalar density L = ‖η‖1/2L , is given as a
function of a set of field components qA – including background coords – and of their surface deriatives,
qA

,i = ∂iqA = ∂qA/∂σi . The relevant field variables qA can be of internal or external kind, the most

obvious example of the latter kind being the background coordinates xµ themselves.

The generic action variation,

δL = L
A
δqA + p i

A
δqA

,i , (27)

specifies partial derivative components L
A

and and corresponding generalised momentum components p i
A

.
The variation principle characterises dynamically admissible “on shell” configurations by the vanishing of the

Eulerian derivative
δL
δqA

= L
A
− p i

A ,i . (28)

In terms of this Eulerian derivative, the generic Lagrangian variation will have the form

δL =
δL
δqA

δqA +
(
p i
A
δqA

)
,i
. (29)

There will be a corresponding pseudo-Hamiltonian scalar density

H = p i
A
qA

,i − L , (30)

for which

δH = qA
,iδp

i
A
− L

A
δqA . (31)
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(The covariance of such a pseudo-Hamiltonian distingushes it from the ordinary kind of Hamiltonian, which
depends on the introduction of some preferred time foliation.)

For an on-shell configuration, i.e. when the dynamical equations

δL
δqA

= 0 , (32)

are satisfied, the Lagrangian variation will reduce to a pure surface divergence,

δL =
(
p i
A
δqA

)
,i
, (33)

and the correponding on-shell pseudo-Hamiltonian variation will take the form

δH = qA
,iδp

i
A
− p i

A ,iδq
A . (34)

3.2 Symplectic structure

The generic first order variation of the Lagrangian will be given by

δL =
δL
δqA

δqA + ϑi
,i . (35)

in terms of the generalised Liouville 1-form (on the configuration space cotangent bundle) defined by

ϑi = p i
A
δqA . (36)

Now consider a pair of successive independent variations δ́ , δ̀ , which will give a second order variation

of the form

δ̀δ́L = δ̀
( δL

δqA

)
δ́qA +

δL
δqA

δ̀δ́qA +
(
δ̀p i

A
δ́qA +p i

A
δ̀δ́qA

)
,i
. (37)

Thus using the commutation relation δ̀δ́ = δ́δ̀ one gets

δ̀
( δL

δqA

)
δ́qA − δ́

( δL
δqA

)
δ̀qA = ´̀$i

,i , (38)

where the symplectic 2-form (on the configuration space cotangent bundle) is defined by

´̀$i = δ́p i
A
δ̀qA − δ̀p i

A
δ́qA . (39)

For an on-shell perturbation we thus obtain

δL
δqA

= 0 ⇒ δL = ϑi
,i , (40)

while for a pair of on-shell perturbations we obtain

δ́
( δL

δqA

)
= δ̀

( δL
δqA

)
= 0 ⇒ ´̀$i

,i = 0 . (41)
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The foregoing surface current conservation law is expressible in shorthand as

$i
,i = 0 , (42)

in which the closed (since manifestly exact) symplectic 2-form (39) is specified in concise wedge product

notation as

$i = δ ∧ ϑi = δp i
A
∧ δqA . (43)

Some authors prefer to use an even more concise notation system in which it is not just the relevant
distinguishing (in our case acute and grave accent) indices that are omitted but even the wedge symbol
∧ that indicates the antisymmetrised product relation. However such an extreme level of abbreviation is
dangerous [25] in contexts in which symmetric products are also involved.

3.3 Translation into strictly tensorial form

To avoid the gauge dependence involved in the use of auxiliary structures such as local frames and internal

surface coordinates, by working [28] just with quantities that are strictly tensorial with respect to the back-

ground space, one needs to replace the surface current densities whose components ϑi and $i depend on

the choice of the internal coordinates σi, by vectorial quantities with strictly tensorial background coordinate

components given by

Θν = ‖η‖−1/2xν
,iϑ

i , Ων = ‖η‖−1/2xν
,i$

i . (44)

and with strictly scalar divergences given by

∇νΘ
ν = ‖η‖−1/2ϑi

,i , ∇νΩ
ν = ‖η‖−1/2$i

,i . (45)

In terms of the surface projected covariant differentiation operator defined in terms of the fundamental

tensor ηµν = ηijxµ
,ix

ν
,j by ∇ν = ηµ

ν∇µ , one thus obtains a Liouville current conservation law of the

form

∇νΘ
ν = 0 (46)

for any symmetry generating perturbation, i.e. for any infinitesimal variation δqA such that δL = 0 .
Similarly a symplectic current conservation law of the form

∇νΩ
ν = 0 (47)

will hold for any pair of perturbations that are on-shell, i.e. such that δ(δL/δqA) = 0 .

3.4 Application to hyperelastic case

In typical applications, the relevant set of configuration components qA will include a set of brane field

components ϕα as well as the background coords xµ , so that in terms of displacement vector ξµ = δxµ

the Liouville current will take the form

Θν = ‖η‖−1/2xν
,i

(
pα

i δϕα + p i
µ ξµ

)
= πα

ν δϕα + π ν
µ ξµ , (48)

in which the latter version replaces the original momentum components by the corresponding background

tensorial momentum variables, which are given by πα
ν = ‖η‖−1/2 xν

,i pα
i and π ν

µ = ‖η‖−1/2 xν
,i p

i
µ .

The hyperelastic category [29] (generalising the case of an ordinary elastic solid which includes the special

case of an ordinary barotropic perfect fluid) consists of brane models in which – with respect to a suitably

comoving internal reference system σi – there are no independent surface fields at all – meaning that the ϕα
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and the pα
i are absent – and in which the only relevant background field is the metric gµν that is specified

as a function of the external coordinates xµ . In any such case, the generic variation of the Lagrangian

is determined just by the surface stress momentum energy density tensor T µν according to the standard

prescription

δL =
1

2
‖η‖1/2 T

µν

L
δgµν , (49)

whereby T µν is specified in terms of partial derivation of the action density with respect to the metric.

In a fixed background (i.e. in the absence of any Eulerian variation of the metric) the Lagrangian variation

of the metric will be given by
L
δgµν = ~ξ–Lgµν = 2∇(µξν) . Comparing this to canonical prescription

δL = Lµξ
µ + p i

µ ξµ
,i with ξµ = δxµ shows that the relevant partial derivatives will be given by the

(non-tensorial) formulae Lµ = ‖η‖1/2 Γ ν
µ ρTν

ρ , p i
µ = ‖η‖1/2 T µνη

ijxν
,j . It can thus be seen that in

the hyperelastic case, the canonical momentum tensor πµ
ν and the Liouville current Θν will be given just

in terms of surface stress tensor T µν by the very simple formulae

πµ
ν = T µ

ν , Θν = T µ
νξµ . (50)

In order to proceed, we must consider the second order metric variation, whereby (following Friedman and

Schutz [30]) the hyper Cauchy tensor (generalised elasticity tensor) Cµνρσ = Cρσµν is specified [31] in terms

of Lagrangian variations by a partial derivative relation of the form

L
δ
(
‖η‖1/2 T µν

)
= ‖η‖1/2Cµνρσ

L
δgρσ . (51)

The symplectic current is thereby obtained in the form

Ων = O ν
µ ∧ ξµ , (52)

where

O ν
µ = 2C ν σ

µ ρ ∇σξ
ρ + T νρ∇ρξµ . (53)

4 Brane perturbation by gravitational radiation

4.1 Generic case

A background metric perturbation δgµν = hµν will provide an extra Lagrangian and stress contribu-

tions δL = 1
2 T

ρσhρσ , and δT µν = Cµνρσhρσ , whence a corresponding force increment δfµ =
1
2 T

νσ∇µhνσ −∇ν

(
T νσhσ

µ
)
. The effect of this is expressible as the inclusion of an extra term f

G

µ on

the right of the original force balance equation, as expressed in terms of the unperturbed values of the metric

gµν , stress tensor T µν , and force density fµ , so as to obtain a perturbed force balance of the form

∇νT
νµ = fµ + f

G

µ , (54)

in which the effective gravitational perturbation contribution is given by

f
G

µ =
1

2
T νσ∇µhνσ −∇ν

(
T νσhσ

µ + Cµνρσhρσ

)
, (55)

a formula that was not so well known until relatively recently [31].
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4.2 The case of a simple Dirac-Nambu-Goto type brane

The simplest dimensionally unrestricted application, is to a p-brane of the Dirac-Nambu-Goto type, for which

the relevant master function is simply constant, so given in terms of a corresponding Kibble mass M
K

by

L = −M p+1
K

. (In the context of superstring theory M
K

is typically of the order of magnitude of the Planck

mass MP , whereas in the context of cosmic string theory the Kibble mass is expected to comparable with

the relevant Higgs mass, M
X

. ) In this special case, the surface stress momentum energy tensor is of course

simply proportional to the fundamental tensor:

T µν = −T ηµν , T = M
p+1
K

(56)

so its trace will be given by T = − (p+1) T , where T is interpretable as the surface tension. The

corresponding the hyper-Cauchy tensor is found[31] to be

Cµνρσ = T
(
ηµ(ρησ)ν − 1

2
ηµνηρσ

)
. (57)

The dynamical equation of motion (54) will therefor reduce to the form

T Kρ = −fρ , (58)

in which (as well as the possibility of drag) the right hand side will include an effective gravitational contribution

expressible[31] in the form f
G

µ = f
I
µ + f

II
µ , with

f
I

µ = T ⊥µνηρσ
(
∇ρhνσ − 1

2
∇νhρσ

)
, (59)

f
II

µ = T
(
⊥µνKρ + 1

2
ηρνKµ − Kνρµ

)
hνρ . (60)

It was observed by Battye[32, 33] that the early work on gravitational perturbations of strings cited by Vilenkin
and Shellard in their 1994 treatise [34] was seriously flawed by the use for estimating f

G
µ of a formula (7.7.3)

without the orthogonal projection operator ⊥µν in the expression (59) for f
I
µ , and entirely lacking the

contributionf
II
µ which might be relatively negligible for high frequency radiation[32] of external origin, but

not in the case of self-interaction for which the two contributions will be comparable. The self interaction
contributions from (59) and (60) will be separately divergent, but in the “hyperstring” case these divergences
will actually cancel each other. Thus (contrary to what was claimed in (7.7.7) [34]) the total self-interaction
will remain finite[16, 17, 33] whenever the codimension is 2, as for an ordinary string in 4 dimensions (or for
a “brane-world” in 6 dimensions).

4.3 Regularisation of self-interaction

To treat such self-interaction one must face the problem that the regularity condition (see Figure 1) is violated
whenever a brane of dimension d = p + 1 acts on a background of dimension n ≥ d + 2 , . To
cure this, a physically realistic regularisation involves replacing the infinitely thin worldsheet by a support of
finite thickness. The divergent self-interaction fields such as Aµ and hµν are then replaced by regularised

averages Âµ and ĥµν with dominant contribution proportional to the relevant source [16, 17]. This means

Âµ ∝ jµ and ĥµν ∝ (n− 2)Tµν − T σ
σ gµν , which for a Nambu-Goto hyperstring, p = n− 3 , gives

ĥµν ∝ (p + 1)T ⊥µν , with a proportionality coefficient that diverges as the thickness tends to zero. On
such world sheet confined fields, the ordinary gradient operator ∇ν must be replaced by the corresponding

regularised operator ∇̂ν , so that for example the field Fµν = 2∇[µAν] will have the regularised average

F̂µν = 2∇̂[µÂν] , as needed for the electromagnetic self-interaction force density f̂ρ = F̂ ρµ jµ . The

required result, giving zero gravitational contribution, f̂
G

µ = 0 , for Nambu-Goto hyperstrings (including
[33] the ordinary string case p=1 with n=4) has been shown [15] to be provided generally by the conveniently

simple and easily memorable formula ∇̂ν = ∇ν + 1
2 Kν .
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5 Vorton equilibrium states of elastic string loops

5.1 The category of simple elastic string models

For any string model the fundamental tensor of the 2 dimensional worldsheet will be expressible in terms of

any orthonormal diad of space like and timelike vectors u ν , ũ ν as ηµ
ν = −u µ u ν + ũ µ ũ ν . There

will generically be a prefered diad with respect to which the symmetric surface stress energy tensor will be

expressible as

T µν = U u µ u ν − T ũ µ ũ ν (61)

where T is the string tension, and U is the surface energy density, which, in the elastic case, is determined
as a function of T by an equation of state.

In addition to the extrinsic (transversely polarised)“wiggle” perturbations which, as in any string model,

travel with a characteristic velocity v =
√
T /U such a model has perturbation modes of only one other

kind: these are sound type (longitudinal compression) “woggle” modes, which propagate relative to the locally

preferred frame with speed given by the formula v
L

=
√

−dT /dU . A particularly important special case
is that of models of the integrable transonic type [35] for which the “wiggle” and “woggle” speeds coincide,
which occurs when the equation of state is specified simply by the specification of a fixed value for the product
UT . The kind of model appropriate for representing such familiar technical applications as bow strings, or
the strings of musical instruments, will generally be of subsonic type, meaning that the wiggle speed v is less
than the sonic speed v

L
, while on the other hand it has been shown by Peter [36] that models of supersonic

type will commonly be needed for the representation of cosmic strings of the conducting vacuum vortex type
envisaged by Witten [37].

A model of any such elastic type is specifiable in variational form by a string Lagrangian L depending
only on the magnitude of the gradient of some stream function ϕ (which in the Witten case represents
the phase of a complex scalar field). This means that the string model is characterised by a single variable

equation of state giving L as a function of the scalar w = ηijϕ,iϕ,j . It is useful [14, 38] to introduce

the corresponding adjoint formulation in terms of the quantity Λ = L + wκ , with κ = −2 dL/dw .
When w < 0 , one finds that the tension and energy density will be given by T = −L , U = −Λ ,
while when w > 0 they will be given by T = −Λ , U = −L . In all cases the phase gradient

is proportional to a surface current, cµ = xµ
,ic

i , ci = κηijϕ,j = −∂L/∂ϕ,i , that has the property of

being conserved, (
√
−η ci),i = 0 , whenever there is no external force, so that the equation of motion of

the worldsheet reduces to the simple form T µνKµν
ρ = 0 , with T µν = 2κ−1cµcν + Lηµν .

When he originally introduced the concept of conducting cosmic strings [37] Witten suggested that a simple

linear action formula, L = −m2(1 + δ 2
∗ w) , involving just a single extra parameter (namely a lengthscale

δ∗ ) might be used as a good approximation, least in the weak current limit for which w is sufficiently small.
However it subsequently became clear that such a linear formula is inadequate even in the weak current limit,
since it implies that wiggle propagation would always be subsonic v2 < v 2

L
, whereas detailed examination of

the relevant kind of vacuum vortex by Peter [36] revealed that the wiggle propagation in such a case would

typically be supersonic v2 > v 2
L

As a more satisfactory replacement for Witten’s direct linearity ansatz,
it has been found [39, 40] that at the cost of introducing one more mass scale m? , a reasonably good

representation is obtainable by using an ansatz of logarithmic form L = −m2− 1
2 m

2
? ln {1+δ 2

? w} .

5.2 Stationary string states in flat background

We shall conclude this overview by considering what can be said about stationary equilibrium states, as
characterised, in a flat background a world sheet that is tangent to a timelike unit static Killing vector satisfying
∇µk

ν = 0 . In such a worldsheet there will also be an orthogonal (and therefor spacelike) unit tangent vector
eµ satisfying the invariance condition kν∇νe

µ = 0 . For such a worldsheet, the first fundamental tensor
will be given by ηµν = −kµkν + eµeν , while in terms of the curvature vector, Kµ = eν∇νe

µ , the
second fundamental tensor will be given by Kµν

ρ = eµeνK
ρ .

Within the worldsheet, the preferred timelike eigenvector of the stress energy tensor, as characterised by
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the relation T µ
νu

ν = −Uuν , will be expressible in the form

uµ = (1−v2)−1/2(kµ+v eµ) (62)

which defines the relative flow velocity v . Under these conditions, the free dynamical equation (5.1) can be

seen to reduce to the simple form (U − v2T )Kρ = 0 .
For an infinitely long string this equation can of course be solved in a trivial manner by choosing a

configuration that is straight, which means Kρ = 0 , in which case the value of v is unrestricted. However
for a finite closed loop the curvature cannot vanish everywhere, and where Kρ is non-zero the only way of
satisfying the extrinsic equilibrium condition(5.2) is for the relative flow velocity to bethe same as the relevant

wiggle propagation speed: v =
√

T /U , while to satisfy the intrinsic (current conservation) equilibrium
condition it is trivially sufficient (and generically necesssary) for the value of this speed to be uniform. Provided
this centrifugal equilibrium condition is satisfied, there is no retriction on the curvature, which need not be
uniform: thus the equilibrium configuration of the string loop need not be circular, but may have an arbitrary
shape.

After thus obtaining the generic condition for string loop equilibrium, the next problem is to find which of
such vorton equilibrium states are stable. This question has so far been dealt with [5, 41] only in the simple
case of equilibrium configurations that are circular.

5.3 Stability criterion for circular vorton states

It is easy to see that the stability of a uniform circular equilibrium state of an elastic string loop in a flat
background will depend just on the extrinsic (wiggle type) and longitudinal (sound type) perturbation speeds,
v and v

L
. Moreover it is fairly easy to show [5] that such a state will always be stable in the subsonic

case, v2 ≤ v 2
L

, which is what is most likely to be relevant in a terrestrial engineering context.Even in the

supersonic case, it has been shown [5] that monopole n = 0 and dipole n = 1 perturbation modes are
always stable. However instability may occur for higher modes, n ≥ 2 for which, in a state with radius a ,
the eigenfrequency ω is given by the solution of an equation of the cubic form x3 + b2x

2 + b1x+ b0 = 0 ,
for the quantity x = a ω/v+ n , where v+ = 2v/(1 + v2) , is the relative velocity of orthogonaly

polarised forward propagating wiggles, and the coefficients of the cubic are given by b2 = Γ − 2 − ξ ,
b1 = −2Γ + (1 + ξ) (1− n−2) , b0 = Γ (1− n−2) , using the notation ξ = Γ (1 − v 2

+
) ,

Γ = v−2
+ (v 2

L
− v2)/(1 − v 2

L
v2) .

The stability criterion, for all the roots to be real, is the positivity of a discriminant ∆ = b 2
2 b 2

1 +
18b2b1b0 − 4b 3

1 − 4b 3
2 b0 − 27b 2

0 . Figure 2 shows the zones of negativity (instability) for the lowest

relevant mode numbers, n = 2, 3, ... by Martin [41]. In the ultrarelativistic limit v → 1 , v
L
→ 1 that

is relevant for weak currents in conducting cosmic strings, one gets ξ→ 0 and

∆→ 4n−2(Γ +1+n−1)2(Γ +1−n−1)2, (63)

which is strictly positive (implying stability) almost always, the unstable exceptions being on the lines con-

verging in the plot to the limit point v2 = 1 , v 2
L

= 1 with gradient given in terms of the corresponding

node number by 1/(2n − 1) .
The upshot is that although some circular vorton states are unstable, there are plenty more – the ones that

would presumably be selected under natural conditions – that are stable, at least with respect to macroscopic
string perturbations. It is however to be remarked that – since it deals only with the thin string limit – the
kind of analysis described here can not resolve the (sensitively model dependent) issue of stability with respect
to quantum effects or other processes involving the microscopic internal structure of the vacuum vortex or
whatever else may constitute the string.



34 JGRG20 Proceedings

Figure 2: Zones of instability of circular vorton states, as obtained by X. Martin on plot of squared
rotation (and wiggle) speed, v2, against squared “sonic” speed v 2

L .
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