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Abstract
We summarize the derivation of thefinite temperature, finite chemical potential thermodynamic
potential in the bag-model approximation to quantum chromodynamics (QCD) that includes a finite
s-quarkmass in the Feynman diagram contributions for both zero-order and two-loop corrections to
the quark interaction. The thermodynamic potential for quarks inQCD is a desired ingredient for
computations of the equation of state in the early universe, supernovae, neutron stars, and heavy-ion
collisions. The 2-loop contributions are normally divergent and become evenmore difficult in the
limit offinite quarkmasses andfinite chemical potential.We describe variousmeans to interpolate
between the low and high chemical potential limits. Although physically wellmotivated, we show that
the infinite series Padé rational polynomial interpolation scheme introduces spurious poles.
Nevertheless, we show that lower order interpolation schemes such as polynomial interpolation
reproduce the Padé result without the presence of spurious poles.We propose that in this way one can
determine the equation of state for the two-loop corrections for arbitrary chemical potential,
temperature and quarkmass. This provides a new realistic bag-model treatment of theQCDequation
of state.We compute theQCDphase diagramwith up to the two-loop corrections.We show that the
two-loop corrections decrease the pressure of the quark-gluon plasma and therefore increase the
critical temperature and chemical potential of the phase transition.We also show, however, that the
correction forfinite s-quarkmass in the two-loop correction serves to decrease the critical temperature
for the quark-hadron phase transition in the early universe.

1. Introduction

Adescription of the equation of state (EoS) ofmatter formed in the early universe, heavy-ion nuclear
collisions, supernovae, or neutron stars should include the consequences of a possible phase transition
between hadronicmatter and quark gluon plasma (QGP). Formany astrophysical applications the
description of quarkmatter has only been considered in the zero-order bagmodel (e.g. [1–6]). However, the
2-loop corrections at the next order are also significant and should be considered in the EoS [7]. In this
approach one can then construct the QGP EoS from a phase-space integral representation over the scattering
amplitudes. Another approach is tomodel the QGP in the context of a chiral effective field theory (e.g. [8, 9]
and refs. therein). Although considerable recent progress has beenmade in this later approach, here we
consider the former bagmodel approach because it is often employed in astrophysical simulations for its
simplicity.

In this approach, it is convenient to compute the EoS for theQGP in terms of the grand thermodynamic
potential,Ω(T,V,μ) [10]. Adopting the convention of Landau and Lifshitz [11], the thermodynamic potential
can be defined in terms of the partition functionZ as:
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where b º kT1 (henceforthwe adopt units = = =k c 1). In the Feynman path integral formulation, the
partition function is represented as a functional integral of the exponential of an effective action integrated over
allfields;
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Here,C(β) is a normalization and the integration is performed over periodic boson loops and anti-periodic
fermion loops. In quantum chromodynamics thefieldsf are the fermion, gluon, and ghostfields [7].

When including up to 2-loop corrections, the grand thermodynamic potential takes the form:
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where the sum is over quarkflavors, (for our purposes i=up, down, and strange). Here, q0 and g0 denote the
0th-order bagmodel thermodynamic potentials for quarks and gluons, respectively, while q2 and g2 denote the
2-loop corrections. In the last termBV is theQCDvacuumenergy withB the bag constant. Inmost calculations
sufficient accuracy is obtained by usingfixed current-algebramasses. For this workwe utilize a strange quark
mass of = -

+m 95s 3
9 MeV,while = ~-

+m 2.2 0 MeVu 0.4
0.5 and = ~-

+m 4.7 0 MeVd 0.3
0.5 from the ParticleData

Group [12].We also adopt a bag constantB1/4=165–240MeV as this range should lead [2] to a critical
temperature consistent with the range deduced in the low chemical potential limit from from lattice gauge
theory [13].

With the parameters thus defined, the quark contribution to the thermodynamic potential is then given in
terms of a sumof the ideal gas contribution plus a two loop correction fromphase-space integrals over the
Feynman amplitudes [7, 10]:
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where the sumon i is over quarkflavors,Nc=3 is the number of colors,Ng=8 is the number of gluons, and
( ) = +E p m pi

2 is the relativistic energy. The Ni denote the quark and anti-quark Fermi–Dirac
distributions:
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The one- and two-loop gluon and ghost contributions to the thermodynamic potentials can be evaluated in a
similar fashion to that of the quarks.
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Formassless quarks, equations (4)–(5) are easily evaluated [10] to give
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whereαs is the strong coupling constant. Here, one can immediately see from the pre-factors that the 2-loop
contribution is comparable to the 0-order contribution. It is only suppressed by a factor of∼2αs/π. For the
application herewe adopt the low-energy value ofαs=0.33 [12].

For themassive strange quark the ideal gas contribution (equation (5)) can be easily integrated as described
below.However, the two-loop correction (equation (4)) cannot be integrated numerically due to inherent
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divergences. It is, therefore, common to ignore the 2-loop correction or to approximate the two loop strange
quark contributionwith the zeromass limit [10].

Thismay, however, over estimate the strange-quark contribution as it ignores the Boltzmann factor
suppression of the thermodynamic potential for quarkswith finitemass.When the quarkmass is relatively small
compared to its chemical potential, thismay be a reasonable approximation. However, this is not necessarily the
case as one approaches theQCDphase transition atmoderate values of the chemical potential.

In this paper, therefore, we attempt to extend this zero-mass quark approximation tofinitemasses and
chemical potential followed by an analytic extension to themassless limit.We propose that this provides amore
realistic input to the equation of state than the zero-quarkmass limit for the 2-loop diagrams that is often
employed. As an illustrationwe compute the bag-model QCDphase diagram for afinite-mass s-quark and
contrast this with themassless limit.

2. Feynman diagrams

The Feynman diagrams for the fermions thatmake the 2-loop contribution to the thermodynamic potential are
shown infigure 1.However, it is a well knownproblem that for finitemass all of the Feynman diagrams diverge
asΛ4 as the ultraviolet cutoff increases. Here, however, one can slightly circumvent this problemby introducing
periodic regularization as in [7]. That is, the quarkmasses are individually treatedwith periodic cut-offs.

The 2-loop gluon Feynman diagrams that contribute to the potential due to the ghost loops are shown in
figure 2.

3.Method of calculation

It is generally expected that for sufficiently high densities and/or temperature, a transition fromhadronicmatter
to quark-gluon plasma (QGP) can occur [10]. Progress in lattice gauge theory (LGT)has shed light on the
transition to aQGP in the lowbaryon chemical potential, high-temperature limit [13]. It is nowbelieved that at
high temperature and lowdensity a deconfinement and chiral symmetry restoration occur simultaneously at the
crossover boundary. In particular, at low density and high temperature, it has been found that the order

Figure 1. Second order fermion 2-loop contributions to the thermodynamic potential.

Figure 2. Second order gluon ghost 2-loop contributions to the gluon thermodynamic potential.
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parameters for deconfinement and chiral symmetry restoration changes abruptly for critical temperatures of
Tc=145–170MeV [13–15]. However, neither order parameter exhibits the characteristic change expected
froma 1st order phase transition. Indeed, an analysis ofmany thermodynamic observables confirms that the
transition from a hadron phase to a high temperatureQGP is a smooth crossover [16, 17]. However, it is
expected that for higher chemical potentialμ300MeV, a critical point appears at which first order chiral
transition can occur [13].We note that the bag-model described here does not distinguish between the chiral
and deconfinement transition. Hence, we do not describe the critical point deduced fromLGT, but take that as a
given.Moreover, the order of the transition requires a determination of the surface tension for nucleated
bubbles ofQGP [2, 18]. However, there is considerable uncertainty in the surface tension.Hence, we assume an
abrupt transition between hadronic and quarkmatter as in [18].

In spite of these limitations, it is nevertheless worthwhile for astrophysical applications to evaluate the
impacts on theQCDphase diagram fromboth the zero-order bagmodel plus themassless two-loop
contributions, alongwith effects of thefinite s-quarkmass on the 2-loop contribution. That is our goal in this
paper.

3.1. Evaluation of feynman diagrams
The evaluation of the fermion Feynmandiagrams shown infigure 1 can be reduced to the following the contour
integral [7],
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One can then evaluate the bd +n n n,p q p
factor using periodic conditions to regularize the function:
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and performing the contour integral one has the desired result,

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

( )
( )

( ) ( )

( ) ( )
[ ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]] ( )

ò òpa
p

pa
p p

W =

´ +
- - -

+

+ +

- - + +

+ - - +

N VT
d p N p

E
N V

d p d q

E E

m

E E p q
N p N q N p N q

N p N q N p N q

1

6
2

2

1

2
2

2 2

1
1

2

, 18

q s g
F

p
s g

p q p q
F F F F

F F F F

2
2

3

3

3

3

3

3

2

2 2

where, +NF and -NF are the fermion distribution functions as defined in equation (6).
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In the zero-temperature limit then,
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where,NF is also defined in equation (6) for ghosts. In thefinite temperaturem→0 limit we then have:
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which trivially reduces to equation (10).
Finally, formoderate temperature andμ�mwehave the result of interest for this paper.
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This expression obviously diverges exponentially forμ>m and diverges with temperature asT2. Nevertheless,
it is useful for low tomoderate chemical potential and temperatures up to and beyond∼ms .Moreover, in the
next sectionwe describe an analytic interpolation between themassive andmassless regimes thatwe propose is a
more accurate representation of the true EoS than to assumemassless quarks for the two-loop correction.

4. Results

Infigure 3we compare calculations of themagnitude of the the s-quark 2-loop contribution to the pressure as a
function of chemical potential, where
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⎞
⎠ ( )= -

¶W
¶ m

P
V

. 22
T ,

Here, we take a realistic s-quarkmass ofms=95MeV and select a typical core-collapse supernova temperature
ofT=10MeV. Lines are drawn for calculations in thems=0 limit (green line) and in the finite-mass periodic-
regularization of equation (21) (blue line). Forfinite s-quarkmass, there is an obvious divergence at largeμ/T
due to the exp[2μ/T] term in equation (21). This limits the range of validity of this periodic regularization
approach.Moreover, as can be seen in the example given infigure 3, for low chemical potential,μ<ms, the
massless approximation over-estimates the pressure contribution due to the s-quark bymore than an order of
magnitude, and continues to overestimate the pressure by at least a factor of twoup toμ∼1.5ms.

Thus, one can only apply equation (21) in the low chemical-potential limit, i.e.μ�ms. On the other hand,
in the large chemical potential limit,μ2ms one expects the thermodynamic potential to approach the
massless limit of equation (20). So, we are facedwith the dilemma that the function is well posed forμ<ms and
μ2ms, but is not well defined between.Hence, we have considered various interpolation schemes.

Figure 3.Two loop contribution to the s-quark pressure as a function of chemical potential. Green line is based upon themassless
limit of equation (20). The blue line shows the results of equation (21) forms=95 MeV. Black lines show an interpolation between
the regimes for a 5th order polynomial betweenμ=65 to 285 MeV (dot-dashed line) andμ=75 to 190 MeV (dashed line).
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4.1. Interpolation schemes
To interpolate between the small and large chemical potential limits of the EoS a Padé rational polynomial
interpolationmight seemphysically wellmotivated. Indeed, there is a vast literature dealingwith the Padé
approximants and there existmany examples in physics of quantities that can be deduced by Padé approximants
[19–21]. For example, theD-Padémethod provides ameans to extrapolate from theweak coupling to strong
coupling limits ofHamiltonian LatticeQCD in the t-expansion [22, 23]. Our desire here is to reconstruct the
infinite series that connects between regimes of low to high values ofμ/T. Hence, we seek guidance in the
construction of that infinite series by Padé approximants.

The Padé approximation consists of a rational polynomial to produce an infinite series that is often a better
approximation to a function than truncating its Taylor series, andmay still work even in cases where the Taylor
series does not converge. In the application of interest here, the Padé series involves well defined approximate
functions in the low and high limits of the variable x=μ/T.

There is awell established technique for numerical Padé interpolation between the ranges of validity [21].
This is based upon the algorithmof Burlisch-Stoer [24] that generates rational functions through a recursion
relation based uponNeville’s algorithm thatmakes use of data that exist at the two limits of the
interpolation [21].

Figure 4 illustrates the numerical Padé interpolation [21] based upon this algorithm in the range from from
μ=75MeV toμ=190MeV. As can be seen by the red line infigure 4, the Padé interpolation unfortunately
leads to a number of spurious poles in the Padé function. Indeed, spurious poles in the Padé function are a
common feature of rational polynomial interpolation [25]. Althoughmethods have been discussed tominimize
them [19, 20], we have found these to be difficult to implement and not particularly useful. In the present
application these spurious poles can be traced to the fact that the application here differs from a simple truncated
Taylor series.We have explicit functions in both the low chemical potential  mm (Equation (21)) and large
 mm limit (equation (20)). Although the lower limit limit can be represented by a Taylor-Maclaurin series

around x=(μ/T)=0, the upper limit is a simple quartic function. Achieving this limit requires a cancellation
ofmany terms in the infinite Padé series in the limit of largeμ/T.

Hence, it is difficult to impose a rational polynomial that asymptotes to equation (20)without introducing
spurious poles in the recursion relation.Nevertheless, the correct interpolation is evident in the trend
represented in the Padé approximant. The next obvious choice is that of a simple polynomial interpolation
scheme.However, because of the rather steep transition between the behavior at low and high chemical potential
a rather high order polynomial is needed.

The dashed line onfigures 3 and 4 shows a 5th-order polynomial interpolation between the same limits as
the Padé series. One can see that a polynomial interpolation based upon the sameNeville recursion relation [21]
follows the trend of the Padé interpolationwithout the introduction of spurious poles. Hence, a simple 5th order
polynomial interpolation between the regimes obtains a result that is equivalent to the Padé interpolation but
avoids the spurious poles.

As onemore possibility, we have considered the application of a simple cubic spline between the smallμ and
largeμ regimes [21]. This interpolation is shown onfigure 5 and comparedwith the polynomial interpolations
offigure 3.Herewe see, that although a spline interpolation is easier to implement, it does notmake use of the

Figure 4. Same asfigure 3, but in this case, the redline shows a Padé interpolation between the regimes fromμ=75 MeV to
μ=190 MeV. For comparison the dashed line shows a 5th order polynomial interpolation in the same interval. Clearly, spurious
poles affect the reliability of Padé interpolation, although on average it follows the polynomial interpolation.
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entire data set as in the Polynomial recursion relation.Hence, it does well represent the Padé or polynomial
interpolations. For this reason, we do not recommend a spline interpolation.

Although a 5th order polynomial interpolation is a possiblemeans to generate the 2-loop contribution, we
have found that this choice is difficult to implement in practical calculations. Indeed, when applied overmany
different temperatures a 5th order polynomial can lead to spuriousfluctuations as serious as the poles in the
numerical Padémethod.Moreover, as can be seen infigures 4 and 5, there is inherent uncertainty of about
±30%due to the ambiguity in the choice of when to begin and end the interpolation between themassive and
massless limit. For this reason (and for the fastest practical numerical applications)we suggest a simple
logarithmic interpolation betweenμ=ms andμ=2ms. This gives a comparable uncertainty to that of the best
polynomialfits and avoids completely the dangers of spurious poles andwiggles in the interpolation scheme.
This is illustrated by a straight red line onfigure 5.

4.2. Impact of presentwork on theQCDphase diagram
There are three aspects of the present work of physical relevance: 1)On the one hand, we havemade a study of
the importance of two-loop corrections to theQGPEoS. These are shown to be significant even in themassless
limit; 2)On the other hand, we have discussed the fact that including themass of the s-quark in the two-loop
correction is divergent, but possible for low tomoderate chemical potential by introducing periodic
regularization of the relevant Feynman diagrams; and 3)Wehave shown, however, that there is a natural way to
extrapolate from the low to high chemical potential regime that allows for the inclusion of thefinite s-quark
mass.Herewe discuss these aspects and how they affect theQCDphase diagram, i.e. a plot of the critical
temperatureTc versus the baryon chemical potential for the transition between the hadron phase and quark-
gluon plasma.

The construction of the phase diagram requires amodel for both theQGPphase described here and the
confined hadron phase. The equation of state for the hadron phase at very high chemical potential and density
relevant to cold neutron stars, however, requires a detailed treatment of the nuclear-matter equation of state at
high density.Wewill address this in a futurework following the approach outlined in [26]. However, ourmain
interest here is the effects of the s-quarkmass at low tomoderate chemical potential. For this purpose one can
treat the hadron phase as a non-interacting gas of baryons andmesons that obey the usual Fermi–Dirac or Bose–
Einstein statistics. For this purpose we can expand the relevant Fermi integrals in terms ofmodifiedBessel
functions so that the thermodynamic potential for baryonswith m ~ m 900 MeVb can bewritten [1, 2]:
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n T K nm T
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i
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where ¯ ( )K x2 is related to themodified Bessel function of second order [ ¯ ( )=K x K22
2

2], and the sum is over all
baryon resonances listed in the particle data book [12], with gi the usual spin factor. Similarly, formesons one
canwrite:

Figure 5. Same asfigure 3, but in this case, the red dotted lines line show a cubic spline interpolation between the regimes from
65<μ<285 MeV (upper curve) and 75<μ<190 MeV (lower curve). For comparison the dashed and dot-dashed lines show the
5th order polynomial interpolations as discussed infigure 3. The spline interpolation is not a goodmatch to the polynomial or Padé
interpolation schemes. The red solid line shows a simple logarithmic interpolation between 95�μ�190 MeV as discussed in the
text.
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From the above thermodynamic potentials one can deduce the critical temperature for the sharp transition
between theQCDand hadronic phases via aMaxwell construction [2].

Figure 6 shows an example of the impact of the formulation presented here on theQCDphase diagram. For
this illustration, we chose a bag constant (B1/4=165MeV). This leads to a high-temperature phase transition
on the low end of the range (145MeV�Tc�170MeV) suggested by latticeQCD.We choose this value
because the phase transition for lower values of B aremore likely to bemanifest in astrophysical environments.
We note, that sincewe do not include hadronic interactions in the nuclear equation of state, and themodified
bessel function expansion is only valid up toμ900MeV,we do not compute the phase diagrambeyond
900MeV. This is adequate for our purpose.

The blue dot-dashed line infigure 6 shows the effect of the usually adopted assumption of only the zero-
orderMITBagmodel [3–6]. The importance of adding the two-loop contribution in themassless limit is shown
by the red dashed line.Here it is evident that the 2-loop contribution raises the critical temperature and/or
chemical potential of theQCDphase transition. The reason for this is easy to understand. The 2-loop
contribution to the thermodynamic potential enters with the opposite sign. The effect of the 2-loop diagrams is,
therefore, to decrease the pressure in theQGPphase relative to that of the 0-order contribution. Since the
pressure is lower onemust go to higher temperature or chemical potential before the pressure of theQGPphase
exceeds that of the hadron phase. Hence, a higher critical temperature results. Indeed, for this value of the bag
constant, the 2-loop correction is required to obtain a critical temperatureTc�145MeV as suggested by LGT.

4.3. s-quarkmass and the high-temperature phase transition
The black line onfigure 6 shows the impact of incorporating the finite s-quarkmass (95MeV) into the 2-loop
contribution via the procedure of periodic regularization and interpolation as discussed in the preceding
sections. As expected, this correctionmainly affects the regime of low chemical potential (μ300MeV) for
which the periodic renormalization and extension described above should be valid. Here one can see that adding
afinite s-quarkmass slightly decreases critical temperature. This is easy to understand as the effect of the finite
mass is to decrease the 2-loop contribution from the s-quark until the chemical potential exceeds the s-quark
mass. Thus, the diminishedmagnitude of the 2-loop contributionmeans that the pressure of theQGPphase can
exceed that of the hadrons for a slightly lower critical temperature.

The portion of theQCDphase diagram in the regime of low chemical potential affected by the s-quarkmass
corresponds to the high temperatures of the early universe or perhaps in heavy ion collisions. There have been a
number of studies of theQCDphase diagram and its effect on neutron stars in the context of chiral perturbation
theory (e.g. [8, 9]). It is expected that the finite-density QCDphase transition is afirst-order chiral transition that

Figure 6.QCDphase diagram relevant to the present work. Plot shows the critical temperatureTc versus baryon chemical potential for
3 cases based upon a bag-modelQCDvacuumenergy ofB1/4=165 MeV. 1)Dot-dashed (blue) line shows the usually applied lowest
order bag-model prediction for 3massless quarks; 2)Dashed (red) line shows the importance of adding the 2-loop correctionswith 3
massless quarks; 3) Solid (black) line shows the effect of including thefinitemass of the s-quark (95 MeV) for the two-loop
contribution via the procedure outlined in this paper.
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occurs for baryon chemical potential fromμ∼300–900MeV.During a core collapse supernova the central core
approaches and exceeds nuclearmatter density withμ∼900MeV,while the core temperature can be in excess
of 50MeV. As the core experiences afirst order phase transition the baryon pressure support diminishes
(although some electron pressure support remains). The initial approach to nuclearmatter density induces a
shock as the EoS stiffens [27]. However, the subsequent onset of afirst-order transition leads to a second shock as
the core re-collapses through the phase transition to formpure quark-gluon plasma [3–6].

During the initial collapse, the temperature is high enough that themassless limit is appropriate for the u and
d quarks. The production of s quarkswill be delayed by the time scale for weak decays, andwill be further
suppressed by adopting the EoS discussed here due to the Boltzmann factor ( )-m Texp . This will cause the
initial evolution through the first and second shock to proceed as though only twomassless quark flavors are
present. It is only during the subsequent cooling phase where the higher chemical potentials and production of
massive s-quarkswill bemanifest.

The presence of negatively charged s quarks will neutralize thematter and diminish the isospin asymmetry. A
large abundance of s quarks leads to color superconductivity in a color-flavor locked (CFL)phase inwhich u, d,
and s quarks are paired in a symmetric and electrically neutral way. This will further decrease the pressure
support of the core due to the decreased quark degeneracy pressure as u, d quarks convert to s quarks. The higher
densities and temperatures in the corewill lead to enhanced neutrino luminosity at late timeswhichmay be
detectable. Similarly, the decreased pressure support of the core could lead tomore compact neutron stars as
deduced from the LIGO/VIRGOanalysis of gravitational waves from theGW170817 event [28]. However, the
two-loop correction introduced in this paper will suppress the s-quark content at low chemical potential.
Depending upon chemical potential and temperature, thismay inhibit the formation of theCFL phase and
diminish the softening of the EoS relative to an EoSwithmassless s-quarks. This is consistent with the results of
chiral perturbation theory inwhich the dynamical s-quarkmass increases, thereby suppressing the formation of
theCFL phase [9].

4.4. Comparison to otherworks
There have been a number of efforts to explore the phase diagram in the literature including that obtained from
LatticeQCD calculations such as [29–31], chemical freeze-out from relativistic heavy ion collision data [32–35]
and in recentNJLmodels which explore the impact of the phase transition on the physics neutron stars [36, 37].
As noted above lattice gauge theorywith a finitemass s-quark leads to a high temperature phase transition at a
temperature in the range of 145MeV�Tc�170Mev [13, 30], possibly favoring the lower end of the range of
Tc=154±9 as in [29]. A study of the free energy of 2+1 static quarks in LGThas also indicated that the chiral
and deconfinement transitions occur at near the same temperature consistent with the bag-model description
here [31]. Studies of the reconstructed phase diagrambased upon the chemical freeze-out from relativistic heavy
ion collision data indicate a critical temperature in the range 150 to180MeV [32–35]. This higher temperature is
consistent with the effect of adding two-loop corrections and possibly indicates a need for a slightly higher value
for theQCDbag constant. The calculation of the impact of this phase diagramonneutron stars would require a
detailedmodel for the nuclear equation of state at high density. Nevertheless, the studies based upon theNLJ
nuclearmodels are quite similar tofigure 6 [36, 37]. In [37] it was proposed that g-modes in neutron starsmight
be ameans to detect theQCD transition. This conclusion does not change in the present work

5. Conclusion

Wehave developed amethod for the incorporation of realistic quarkmasses into the two-loop contribution to
the bag-model thermodynamic potential for quarks withfinitemass andfinite chemical potential.We show that
themethod of periodic-regularization for finite quarkmasses is stable for an interesting windowof chemical
potential up to near the s-quarkmass, but diverges as the chemical potential exceeds the quarkmass.
Nevertheless, this is an improvement over treatments withmassless quarks that can significantly overestimate
the pressure contribution fromquarks withfinitemass at low chemical potential. A rigorous Padé interpolation
between the finitemass andmassless quark regimeswas shown to be unstable to the generation of spurious poles
in the interpolation scheme, however, we have shown that lower-order interpolation schemes gives a good
representation of the Padé infinite series without the introduction of spurious poles. Nevertheless, in all the
interpolation schemes there is an inherent uncertainty of order 30%.Moreover, we have found that it is
impractical to implement a consistent polynomial interpolation for thewide range of temperatures and
chemical potentials of relevance in practical applications.We suggest that a simple logarithmic interpolation
between the s-quarkmass and somemultiple (say 2 times the quarkmass) is within the uncertainty of the various
interpolation schemes andmuch simpler to implement.
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Wehave shown that implementing the two loop corrections leads to substantial changes in theQCDphase
diagram. In particular, the two-loop corrections push the phase transition to higher temperatures and densities.
For afixed bag constant, this will tend to diminish observable effects from theQCD transition in supernovae and
neutron stars. It will also cause a slight change in theQCDphase transition in the early universe. This could affect
the relic temperatures of neutrinos (e.g. ντ) that decouple near the temperature of theQCDphase transition.
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