
HIGH-LEVEL APPLICATION DEVELOPMENT AND
PRODUCTION INFRASTRUCTURE AT TRIUMF

E. Tikhomolov, Y. Bylinskiy, A. C. Morton∗, T. Planche, T. Tateyama, J. Lee, P. Jung†
TRIUMF, Vancouver, BC, Canada

Abstract
TRIUMF users and operators use a number of high-level

applications (HLAs) written in different languages, with
complicated graphical user interfaces, to carry out tasks
related to delivering ion beams with required characteris-
tics and to process data from TRIUMF’s EPICS-based and
legacy cyclotron control systems. Some applications have
been developed by the EPICS community, and some at TRI-
UMF. These applications run on different production com-
puters and are developed on different machines. This model
no longer satisfies TRIUMF’s needs because of the grow-
ing number of applications, the long times required for data
processing on current machines, the lack of real- time visu-
alization of beam properties and so on. New infrastructure
for HLA development has been implemented to address
these issues and is working reliably with room for further
expansion.

MOTIVATIONS
TRIUMF doesn’t have a dedicated group of software de-

velopers tasked with immediate response to issues that arise
during day-to-day beam delivery. Such issues are resolved
by operators and physicists themselves. Thus, a flexible
and simple ("user-friendly") software development environ-
ment was the main request when it was decided to set up
High-Level Application (HLA) development and produc-
tion infrastructure. At the same time, developers come with
different experience, backgrounds and their own favorite
tools for development. Thus, the HLA environment should
provide some "default set" of tools which are rather common
and compatible with other widely-used tools.

HLA SERVERS SET UP AND THEIR
DIFFERENT ROLES

The projects that are under development at TRIUMF usu-
ally have three components: the code itself (in a number of
programming languages), documentation and information,
and input/output data. Thus, the common project can be
represented as a point in a "three-dimensional space" where
each component defines an axis, as illustrated in Fig. 1.
Some projects are just data projects which process ex-

perimental data (from TRIUMF’s 520 MeV Cyclotron and
Isotope Separator and Accelerator facility, or ISAC) for use
with third-party applications. Each component has a cor-
responding location and directory structure: the code is
developed on a development server (hladevel), input/output
∗ Present affiliation: FRIB. MSU, East Lansing, MI, USA
† Present affiliation: Waterloo University, Waterloo, ON, Canada

Figure 1: Common HLA project in "3D space".

data are saved on production servers (hlaprod and hlaweb),
and documentation and information are maintained on a web
server (hlaweb [1]).

To fulfil these tasks rack-mounted Dell servers were cho-
sen [2]. All three servers have identical directories and
software. This reduces maintenance time and allows one
to easily switch from one server to another in the event of
hardware failure. This approach also allows the maintainer
to easily expand the infrastructure by cloning the existing
servers, and redistributing the load. The differences between
the servers are defined only by their different roles. Figure 2
shows these roles and the interactions between servers and
user machines and control systems. The HLA development
server hladevel and production server hlaprod are accessible
only from the TRIUMF network. The web server hlaweb is
accessible via the Internet and users can ssh to their accounts.
Users have scratch directories (public_html) which may be
used e.g. for presenting results at meetings. To reduce se-
curity threats it is not possible to connect to any TRIUMF
computers from user accounts on hlaweb.
The data and user’s scratch directories on the develop-

ment server, hladevel, are synchronized (using rsync) with
hlaweb every 4 hours. Data directories from hlaprod are also
synchronized to hladevel. This duplication of data helps to
avoid data loss. Nightly backups are done only on hlade-
vel both on local USB drives (for fast restoration) and to a
remote location (using TRIUMF’s Amanda system [3]).
For version control Git [4] is used. Public and private

remote repositories are located on hlaweb and hladevel, re-
spectively. For projects which are expected to involve large
number of inter-lab developers Github [5] may also be used.

CentOS 7 was chosen as the operating system for the HLA
servers. This is already used at TRIUMF and supported by
TRIUMF’s Core Networking and Computing Group. To
reduce the time spent on system administration the standard
tools and applications provided with CentOS 7, at installa-

THPOPRPO27 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
126Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Management of IT Projects



Figure 2: HLA servers and their roles.

tion, are used as much as possible. Users can start remote
light-weight Xfce [6] desktops via the remote desktop appli-
cation X2Go [7]. Graphics-intensive applications (like Mat-
lab [8], Opera [9]) which run very slowly via X-forwarding
are started in X2Go session in the "Single Application"mode.
Usual tasks like synchronization and backups are done by
using short customized scripts.

HLA DEVELOPMENT FLOW

High-level design of any large project starts with creat-
ing Unified Modeling Language (UML) diagrams. In our
dynamic environment it is very important to create detailed
high-level documentation which can be understood by fu-
ture developers who may not have direct contact with the
initial creator of the project. As the default, UML modeller
Umbrello [10] is suggested; this comes with standard Cen-
tOS installation, and is relatively easy to learn and use. The
choice of programming language is based on an evaluation
of what is most appropriate for a particular project and on the
experience of the current maintainers of similar projects. At
present projects are written in Python, Perl, Java, C++, For-
tran, and Matlab. For web applications, client side scripting
is implemented in JavaScript and JQuery. The purpose of
many HLAs is to get and set data from the TRIUMF control
systems to collect and process useful analytics and hence
improve the performance of the Cyclotron, ISAC, E-Linac,

and, in future, Advanced Rare IsotopE Laboratory (ARIEL)
facilities.
Any information and documentation about the project is

kept on the HLAweb server hlaweb. To write information on
line an in-house content management system (CMS) using
TinyMCE JavaScript package [11] was developed and set up.
The frame-based design of web pages is shown in Fig. 3. All
modifications are done by clicking buttons in the Edit Bar,
access to which is password-protected. When a new project
is started, new directories, a frameset and initial Hypertext
Markup Language (HTML) files are created with a single
click. Editing Side Bar and Information HTML files is done
using either TinyMCE or the simple textarea text editor.
All of the necessary links for navigating between HTML
files are created automatically in a hierarchical and easily
maintainable manner. Navigation to necessary information
is very efficient using the Navigation and Side Bars. No
relational databases are used. For users who have accounts,
it is also possible to create, edit, and link files over a SSH
or remote desktop session by manually modifying them
directly.

INTERFACE TO TRIUMF EPICS
Control systems at TRIUMF have both new and legacy

components, Experimental Physics and Industrial Control
Systems (EPICS [12]) for ISAC, E-Linac, ARIEL and the
old VMS-based Central Control System for the 520 MeV

Proceedings of PCaPAC2016, Campinas, Brazil THPOPRPO27

Management of IT Projects
ISBN 978-3-95450-189-2

127 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs



Figure 3: Frame-based design and editing web pages on hlaweb.

main cyclotron. Several years ago an interface between these
legacy and new control systems was developed which can
be used for data exchange between them. Thus, for HLAs
we need only to communicate with EPICS servers. Interface
between HLAs and EPICS is done in two steps (Fig. 2): HLA
servers run local EPICS Soft IOCs which communicate with
EPICS via gateways. Then HLAs get and set data from or in
local Soft IOCs. Such a two-level design provides flexibility
and complete decoupling from TRIUMF’s Controls Group,
whichmaintains only the gateways. Setting values for control
system devices is allowed only from the production server
hlaprod and only after the operators in Control Rooms set
an "allow" flag with a time-out of 1 hour. This way running
HLAs are always under the control of operations staff. For
other servers, read-only access to EPICS is allowed. At
present TRIUMF control systems have typical update times
for read-backs of 500 milliseconds. The desire to maintain a
similar update rate for processed data from HLA determines
the requirement for data processing speed.

CONCLUSION
The created HLA infrastructure allows software develop-

ers to develop applications both by using the default set of
tools installed on HLA servers and remotely on the comput-
ers of individual users. The sequential versions of projects
are saved on HLA servers and are easily accessible by de-
velopers. Documentation for projects can be written on-line
and is maintained in a very simple way using a dedicated
HLA CMS. Several methods are used to run HLAs (which
work with devices in TRIUMF control systems) in a secure

manner. If the load on the servers will be increased the ex-
pansion of existing infrastructures is quite easy and won’t
create significant additional time for the maintenance.

ACKNOWLEDGMENT
This work is funded by TRIUMF under a contribution

from the National Research Council of Canada.

REFERENCES
[1] TRIUMF HLA WEB Sever, http://hlaweb.triumf.ca

[2] Dell PowerEdge Servers, http://www.dell.com/ca/
business/p/poweredge-rack-servers?~ck=anav

[3] Amanda Network Backup, http://www.amanda.org/

[4] Git, distributed version control system, https://git-scm.
com/

[5] Github, https://github.com

[6] Xfce Desktop Environment, https://www.xfce.org/

[7] X2Go - everywherehome, http://wiki.x2go.org/doku.
php

[8] Matlab. The Language of Technical Computing, http://
www.mathworks.com/products/matlab/

[9] Opera Simulation Software, http://operafea.com/

[10] Umbrello, the UML Modeller, https://umbrello.kde.
org/

[11] TinyMCE, Web Editing, https://www.tinymce.com/

[12] EPICS, http://www.aps.anl.gov/epics/

THPOPRPO27 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
128Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Management of IT Projects


