
PROPOSAL OF THE DAQ SYSTEM FOR THE BM@N
PROJECT

A.Yu.Isupova,l, V.P.Ladygina, S.G.Reznikova

a) JINR, 141980, Dubna1 Moscow region1 Russia

Abstract
The proposal of the DAQ architecture for the BM@N setup is described. The requirements

to the DAQ, Trigger, and Slow Control hardware suitable for this architecture are issued. The
DAQ software will be responsible for the managing of the experimental data transportation
and processing. This software implementation is proposed on the base of the ngdp (for
NetGraph Data Processing) framework, which allows us to:
- use the already implemented OS kernel modules for the data streams handling and control
(netgraph (4) package);
- implement the DAQ specific kernel modules in the uniform object-oriented style, which
provides the high scalability and the easy remote distribution;
- execute the netgraph(4)-style code out of the regular scheduling scope (with the very
high, practically realtime performance);
- reduce the data copying over the context boundaries;
- eliminate the intermediate storages on the media slower than memory.

1. Introduction

The Baryoni Matter at t h Nuclot ron (BM@N) project is approved in 2012 for the
comprehensive technical design report preparation. The present proposal is written in
the frame of th se !forts. According to the BM@N Letter f Intent the BM@N setup
will contain approximately 370000 channels of the front-end ele t ronics (see Table 1) .
The Au beam intensity of 107 Hz and the Au target with 13 nuclear interaction length
leads to the mean interactions rate 105 Hz. Th detectors occupancy from this Table
accounts (as the most severe case) the average event multiplicity 164 from the minimal
bias collision into the 82.5 msr around the forward direction, excluding 1.4 msr around
the beam direction (for TO - 107 Hz Au) . This assumption allows us t o estimate the
average single event size as 44100 bytes and leads to the up to 40 Gbit/s data flow.
The transportation of this data bandwidth through the 10 Gbit/ s Ethernet require 4
or more (for 1 Gbit/s Ethernet - more than 40) such Ethernet channels. On the other
hand, the whole dataset belonging to some physical event should at some processing
stage to appear on the single computer for the full event building. This requirement
is true for the each event. So the system should contain more than one Event Builder
(EvB) in principle. This fact requires to solve the nontrivial questions related with the
data streams organization and management.

The proposed technical design has potential to be used by the larger experiments
like MPD, SPD. It seems reasonable to implement and debug both hardware and
software components of this design for the BM@N setup to obtain experience with the
corresponding technologies. Anyway, the large scale DAQ system design is inevitable
step for the upcoming NICA experiments.

1 E-mail: isupov©moonhe. j inr. ru

43

Table 1: Data flows estimations
Digitization types legend: T - time, Q - charge, A - amplitude, c - coordinate (=channel number, embedded if we use hptdc).

Per each Ethernet frame 1500 bytes we have overhead: 40 bytes of ngdp packet header+ 38 bytes Ethernet overhead= 78 bytes ('""6%).

subdet number of digitization digitization required for dynamic detector syn- syn- full data stream, channels per
channels I type time re- precision I range occu- chro- chro- bit per event / board x
number of quired, really ac- pancy nous nous Mbit per second boards per
stations I ns quired value, (per trig- trig- (w/o 63 over- subdet
number of bit/channel event ger ger head)
planes (assuming per pro- con-

hptdc) plane) ducer sumer
TO 64/1/2 T+Q s?3o /64x?3 + 32, 100/32 yes yes 15584+1024 32 x 2

t
16(?8) (512) / 1661 a

ZDC 300/1/1 A(?Q) <120 .. 150 /64(32) 1.0 ?yes yes 19200(9600) I 128 x 3
1920(960)

DTE 64/1/1 A(?Q) <120 .. 150 /64(32) 1.0 ?yes yes 4096(2048) I 64 x 1..2
410(205)

RPC 1200/1/1 T+Q(+c) :<:;100 12+?(+0) I 0 .. 64 ns 0.16 yes yes 12288(6144) I 256 x 5 .. 6
?64(32) 1229(615)

DC 4000/2/8 (c+)T s111 (11+)?/?32 0 .. 128 ns 0.66 no yes 84480 / 8448 256 x 16 .. 20
ST 7000/1/3 (c+)T {13+)? /?32 :<:;0.16 no yes 35904 / 3590 256 x 28 .. 30
Sum: r-vl6000 172580/ 17258
IT 350000/4/ 2 c+A / 24+8 0.016 no could 180000(225280) 16384 x
(STS) {450000/5/2) / 18000(22528) (3x8(10))
Sum: ,...,370000 352580/35258

a6% overhead included.

2. Overview

Logically the whole proposed DAQ system for the BM@N setup could be subdivided
by the three big subsystems:
•the Data AcQuisition subsystem itself (Fig. 1);
• the Fast Control and THgger (FC+T) subsystem, which intended to produce and
handle all the synchronous signals in the setup (Fig. 2);
• the Slow Control (SC) subsystem (Fig. 3).

storage [] 1 Gbit/sec 10 Gbit/sec I 10 Gbit/sec

~]l-- ~l.c ... SubEvB[nJU] ~----.
~ ~l·.g +L1.5filter •••

LiJ ~ 1st 2nd
' interfaces interfaces

iill
~j :tj storage []

w ~

FEM level SubEvB level EvB level storage I pool level

Figure 1: The levels of the DAQ system.
• FEM [n] [k] - k-th entity of then-th subdetector;

• SubEvB [n] [j] - j-th computer belonging to then-th subdetector;
• EvB [l] - 1-th computer of the Event Builders level;

• L1. 5 - software filter on the SubEvB level;
• L2. 5 - software filter on the EvB level;
• pool[] - computers of the pool level;

• storage [] - computers of the storage level.

Of course, the same hardware card or board physically could contain parts of more
than one subsystem due to th high lectronics integration.

Th re ar many reasons to functi nally subdivide the hierarchy of the DAQ hard
ware units by th logical l v ls along th data stream, e.g.:
• to formaliz and simplify the interactions between the DAQ elements,
• to provide for each subdetector the standalone working mode,
• to allow easy reconfiguration of the active subdetectors' set,
• to allow easy hardware replacement, etc.
We propose, that at least the four logical levels of the data processing (see Fig. 1) are
needed:
• FEM level implements at least the queues of ready data fragments produced by the
Dig[] [] cards;
• SubEvB level - data preprocessing computers grouped by the subdetectors. SubEvB
level requests the Li[] trigger packets and the corresponding ready data fragments from
the FEM level merges the sub- event , implements the queues of ready sub-events, and
possibly the L1 . 5 [] software filters for the sub- vents rejection;
• EvB level - full events building computers. EvB level r quests the Li<t> / L2<t>
trigger packets and the corresponding ready sub- event from h SubEvB level, merges
th foll events, implem uts the qu ues f ready full vent , and possibly the L2. 5 soft
war filters for th "' full "'V nts reje ti n;
• pool level - data postp.roc ssing computers. Pool level requests the ready events
subset from the EvB 1 v 1, converts their from a native binary format to some ROOT

45

subdets [J

. FC+ T "star''.
(STP o~ UTP)

FC+TU
master

L2<t> fifo

pure
Ethernet

TCP:/ IP over Ethernet

: EvB [1]

+ L2.5 filter

. subdet [1]

FC+TU
subdet [1]

L 1[1] flfo

FEE [1][]

Dig [1][I

FEM [1][I fii

pure
Ethernet •

Ethernet
switch

: 1st
• interfaces

:---- SubEvB [1][I
'--_ ':_·~ _ + L 1.5 filter

2nd 2nd I
int~rfaces I : I

I • I
Interfaces interfaces

(to pool/ storage)

Figure 2: The Fast Control and Trigger (FC+T) subsystem.

- E

* I- >-+ !/) (.) .g
LL t11

E
.£!1

o~
<(.c
Cl ~

• FC+TU - Fast Control and Trigger Unit card, the basic hardware unit of the FC
system, which are master (1 per setup) and subdet[n] (1 per n-th subdetector);

• Dig [n] [m] - m-th Digitizer card of the n-th subdetector;
• For other elements see legend in Fig. 1.
These elements are interconnected by the:

• dedicated lines of the trigger production ("ascending") path;
• dedicated lines of the trigger distribution ("descending") path;

• "pure" Ethernet lines;
• TCP /IP network over Ethernet lines.

[1] class representation, implements the queues of ROOT events, and provides their
to clients for the online analysis and visualization. Also the ROOT events are his
togrammed and these histograms are provided to clients for the online analysis and
visualization;
•storage level (parallel to the pool level) - computers, which request the ready events
from the EvB level and write their into the intermediate (HDD) storage. The storage
level consists of some identical computer groups switchable while the data taking, so
one group obtains the events from the EvB level while the other groups transfer the
obtained data from the intermediate into the final storage, possibly slower than HDD.

Each intermediate level behaves as a server for the downstream level and as a client
for the upstream level. This approach simplifies algorithms of inter-level interactions,
which will be reduced to the ones only between neighbour levels.

In addition, some computer groups can be outside of the data stream:
• Fast Control and Trigger group - computers, which implement the FC+ TU subsys
tem: trigger queues (see also chapter 4) and the corresponding GUI;
•Slow Control group- computers, which implement the SC subsystem (see also chap
ter 3) and the corresponding GUI;
• DAQ Operator group - computers, which perform the control over the DAQ soft
ware components and provide the user interface for them;

46

FEE [n)[~')
+SC slave

- . -. -Q 7i\

serial bus

subdetector [n]

SC

Dig [n][m]
+SC slave

SC
master [n]

Ethernet
dispatcher _ switch

operator GUI
(SC group)

FEM [n][k]
+SC slave

FC+TU
subdet [n]
+SC slave

subdetectors []

Figure 3: The Slow Control subsystem.
• FEE[n] (i] - i-th Front-End Electronic card of then-th subdetector, which

prepares signals for the Dig (n] [m] card;
•SC master[n] - Slow Control master card (1 per n-th subdetector), the basic

hardware unit of the SC system;
•SC slave - peer part for the SC master (integrated into FEE, Dig, HV /LV,

FC+ TU cards);
•SC dispatcher - the computer (1 per setup), which obtains the operator GUI

requests and forwards ones to the specific SC master[] according to their destination.

• online visualization group - clients of the pool level.
The requirements to the proposed levels are described in chapter 4. Lets also

introduce some terms absent in Figs. 1-3 legends:
Packet - the sequence of bytes, which contains the fixed length packet header (with
at least the ID string, type, timestamp, number, length, flags, CRC32) followed by the
packet body of known length (see [2) and packet(3,5,9}).
Event merging - simple kind of event building, which produces the new output
packet to contain sequence of all the input packets (headers are preserved, the ID
string reflects the encapsulation level). This operation performed on SubEvB and EvB
levels leads to the full event's encapsulation level 2: 2.
'!rigger packet - the packet is produced by the FC+ TU master or FC+ TU subdet []
card and contains the reliable (sub)event merging tag (number and/or timestamp) for
the (Sub)EvB.
Fragment, sub-event, full event -the packets represent the data and are produced
by the Dig[] [], SubEvB [] [], EvB [], correspondingly.
Queue - the software buffer of packets with the FIFO (First In - First Out) nature
and some rule set (discipline) of the packets getting.
Li [n], Li<t> / L2<t> fifo - queues of the Li [n] or Li<t> / L2<t> trigger packets
supplied by the FC+ TU subdet [n] or master card, respectively.

47

3. Hardware requirements

Here we describe requirements to the hardware proposed for development.
Currently we assume for the whole BM@N setup the L1 central synchronous ("live")

single-stage trigger to be the only trigger implemented by the hardware. This hardware
belongs to the FC+ T subsystem. This approach solves the deadtime account issues in
the straightforward and clear manner, and allows us to establish the reliable triggers
(and ngdp data packets) numbering. Such numbering will be simple and single tag
(however see also chapter 4) for the (sub)events merging: the data fragments / sub
events will be selected to belong to the same N-th sub-event / full event, if and only
if their reliable numbers are match with (i.e. corresponding integers are equal to) the
N-th trigger number. The overall architecture of the FC+T subsystem we can see in
Fig. 2. With the L1 <t> hardware trigger (possibly of some type t) the higher level
triggers are assumed to be the software filters on the SubEvB (L1. 5 []) and EvB (L2. 5)

levels.
The whole setup's L1 <t> will be assembled from the subdetector's L1 [n], while

L1 [n] - from the Dig [n] [] card's preL1 [n] [] by the hierarchy of analog and/or dig
ital summators (n corresponds to the trigger-producer subdetectors). This hierarchy
could be implemented as parts of the FEE[] [] s, Dig[] []sand FC+ TU subdet [] s (see
below), or as independent modules. Former option is preferable in respect of the power
solution, cabling arrangement, SC implementation reasons (entia non sunt multipli
canda sine necessitate). The presence of the FC+ TU subdet [] instances also allows
to operate subdetectors easily in the standalone mode for test, calibration, etc. pur
poses (setup scalability providing). Currently the trigger-producer subdetectors are
TO (existence of the beam particle), RPC (number of fired pads as the multiplicity
characteristic), and ZDC (possibly with DTE) (total energy deposition as the central
ity characteristic). The signals sum is discriminated according to the preset trigger
conditions by some controlled discriminators, possibly on the FC+ TU master card.

The nominal (mean over time) event rate on BM@N equals to the interactions rate
105 Hz, i.e. 10 µs per event, during which we should provide the L1 trigger decision. Of
course, the beam inhomogeneity in time tightens this requirement to < 1..2 µs. This
requirement is reachable, if the FPGA processing (the main time consuming part of
the trigger production) will be no longer than 0.5 µs (50 cycles at the 100 MHz). Note
if we can use the trigger queues on the each involved digitizer chip type (hptdc has
one of 16 triggers deep) and their possible trigger latency is > 10 µs (hptdc - up to
25 .. 50 µs), this requirement could be softened.

The proposed FC+ T hardware architecture is expected to support also the two
stage L2<t> triggers production. Possibly this will require the Trigger Protocol Mes
sages (TPMs, see below) content expansions (e.g., to carry the reliable timestamps)
and assortment additions, (sub)events merging tag change from the reliable numbers
to timestamps, etc.

The FC+ T subsystem is intended to produce and handle all the synchronous signals
in the BM@N setup (LO clock, L1 <t> / L2<t> and L1 [n] triggers, etc.), while the
FC+ TU cards are basic hardware unit of it.

The 40 MHz LO clock is the single synchronization source for all setup elements -
hptdc, FPGA, serdes of the TPMs transfer system, etc.

The FC+TU master card (1 per setup) should contain at least:
• 8 .. 16 trigger (TPM) input/output downlink connectors (UTP /STP /optic);

48

• (at least for the FC+TU subdet [Js) one trigger (TPM) input/output uplink connec
tor (UTP /STP /optic);
• Begin of Burst (BoB) input (and configurable burst length) to be able to produce
BoB and End of Burst (EoB) triggers;
• 1 Gbit/s Ethernet port (RJ-45/optic);
• the FPGA, which:
t (re)distributes the direct signals - LO clock (40 MHz), Reset, etc.;
t analyses the Li [n] trigger (TPM) inputs from FC+ TU subdet [] s according to pro
grammable (not wired) rules (trigger "ascending" path);
t produces the Li <t> / L2<t> trigger signals (of some type t) in form of the TPM
(see below), delivers ones, and obtains the TPM responses (ackLi<t> / ackL2<t>)
synchronously (trigger "descending" path);
t for each Li<t> / L2<t> trigger occurrence produces the trigger packet (of some type
t, each packet is the Ethernet frame, which encapsulates the ngdp packet), supplies
ones to the Li<t> / L2<t> fifo server, and obtains ACK/ NAK responses in the same
form (through the Ethernet port);
t implements the uniform SC slave (conversation with SC master through the Ethernet
port);
•(at least for the FC+TU master) the hardware timeserver (GPS, etc.) with the ability
to synchronize the LO with the absolute time of the accelerator cycle begin and produce
the absolute timestamp (struct t imespec {sec; nsec}) for each trigger packet;
• the uniform power solution: single input (some of 12, 24, 48 V) and on-board con
verters;
•solution for the hardware reset (by power switching or FPGA reset).

The trigger ngdp packets produced by the FC+ TU master should have both the
reliable packet number and the absolute timestamp, as well as valid type, length, flags,
CRC32 (i.e. the full packet header of 40 bytes), and possibly carry some information
in the packet body. The trigger ngdp packets are used by the EvB [] s.

The TPMs assortment should be like the following:
• FC+ TU subdet [n] +- Dig [n] []: preLi [n] [] pre-triggers, ackLi acknowledgments;
• FC+ TU master +- FC+ TU subdet [] : Li [] trigger, ackLi acknowledgments;
• FC+ TU master ---+ FC+ TU subdet []: Li <t> / L2<t> trigger (of some type: BoB,
EoB, some kinds of event), ?ackLi [] acknowledgments;
• FC+TU subdet [n] ---+ Dig[n] []: Li<t> / L2<t> triggers (with types mapped ac
cording to FC+TU subdet [n] configuration: localized kinds of event, possibly BoB,
EoB, some out of burst tests), ?ackpreLi [n] [] pre-trigger acknowledgments.

The ACK/ NAK scheme should be used for both the TPM and ngdp packet trigger
exchange control. This means the future trigger production will be suspended until
the proper acknowledgment obtaining. The TPM could be implemented as the fixed
length transfer, the front of start bit is the time moment of the trigger (for the trigger
input of the hptdc, etc.), the 32-bit value is the reliable trigger number (used by the
FPGA), and some (?16) bits for trigger type (BoB, EoB, some kinds of event). (For the
timestamps tag scheme of the (sub)events merging the two 32-bit values for sec and
nsec should be transmitted by each TPM, too.) All cable lengths should be aligned for
the simultaneous TPMs arrival at each FC+ TU subdet [] and Dig[] [] . Of course, the
TPM assortment could be expanded over these mentioned above if needed. It is very
likely that the switch to/from the test/imitation/calibration mode, the downscaling
factor, BoR and End of Run (EoR), etc. should be distributed as TPMs.

49

The FC+TU subdet [n] (1 per n-th subdetector) should be similar or identical
to the FC+ TU master one. It:
• redistributes the LO, Reset, etc.;
• redistributes the trigger TPMs (and possibly produces local trigger TPMs: e.g.,
test/calibration between EoB and BoB) to the Dig [n] [] cards (trigger "descending"
path);
• analyses the preL1 [n] [] TPM inputs from Dig [n] [] according to programmable
(not wired) rules and produces the 11 [n] trigger signal in the TPM form, delivers it,
and obtains the TPM responses (?ackL1 [])synchronously (trigger "ascending" path);
• (in the reliable numbers tag scheme) for each L1<t> trigger TPM obtained produces
the ngdp trigger packet with: the same reliable packet number as present in trigger
TPM, the mapped type, valid length, flags, CRC32, the same timestamp as present in
trigger TPM, or otherwise produced locally by the TPM arrival time;
•(in the timestamps tag scheme) for each L1<t> trigger TPM obtained/ 11 [n] trigger
TPM issued produces the ngdp trigger packet with: the same timestamp as present
in 11 <t> TPM, or otherwise produced locally by the 11 [n] TPM issuing time, the
mapped type, valid locally produced number, length, flags, CRC32;
• supplies these packets to the 11 [n] fifo server (or trigger input channel buffers of the
SubEvB [n] [] s) (through the Ethernet port).

The Dig cards are intended to the digital data preparation for the lower entities
(FEM queues) of the DAQ subsystem. Such data (and possibly error) fragments are
produced in form of the Ethernet frame, which encapsulates the ngdp packet with
the full valid header of 40 bytes and the body, which contains the data fragment
itself. Types for both data and error fragments (packets) are online configurable 16-bit
constant integer offsets relative to the trigger TPM type values.

The Dig[] [] hardware is responsible to produce the binary data in the reasonably
compact format. Probably for the calorimeters (ZDC, DTE) we need the charge value
only, so in the Q2T scheme the common FPGA of Dig cards should calculate the
difference between trailing and leading signal edges, i.e. produce 32 bits per hit instead
of 64 ones preserving the same precision 100 ps/bin.

The Dig cards location on setup is probably near the corresponding subdetector
(1..3 m), while its shape should be suitable for both the Euromechanics crate (6U/9U)
and standalone positioning.

The Dig cards use some ready digitization chips: hptdc [3] (TDC, QDC through
Q2T conversion), n-XYTER or something other (coordinate), etc. under the common
FPGA control, so it is possible to have a very few (2 .. 3) slightly different Dig card types
per BM@N setup. The common requirements for each of these types are to contain:
• connectors (with or without cables) or conductors (on the same printed circuit) to
input data signals from the FEEs;
• the FC slave implementation in the common FPGA (see below for details);
• connector(s) (1 Gbit/s Ethernet) for the bidirectional conversations under the FPGA
control:
t output - ngdp-packetized digital data fragments with the nanosecond precision
timestamp (to FEM fifo), possibly SC responses (to SC master), etc.;
t input - backward ACK / NAK ngdp control packets to acknowledge the data frag
ments acception (from FEM fifo), possibly SC commands (from SC master), etc.;
•the uniform SC slave implemented by the common FPGA;
• the means to support the test/imitation/calibration mode (not yet understood in

50

details, however should not be forgotten);
• the uniform power input (some of 12, 24, 48 V) and on-board converters;
•solution for the hardware reset (by power switching or FPGA reset).

In respect of the FC+ T subsystem the Dig cards should contain also:
•up to 8 signals sum inputs (UTP/STP/optic for digital) from the FEE[] Us;
• one trigger (TPM) input/output uplink connector (UTP /STP /optic);
•the common FPGA should in particular implement:
t the digital summator to produce the preL1 [n] [] TPMs (as part of the trigger pro
duction "ascending" path);
t the Li[] trigger TPM obtaining and the ackL1 acknowledge TPM sending (trigger
"descending" path);
t the different behaviour at arrival the different trigger TPM types (BoB/EoB, some
kinds of event or test/ calibration);
t the data fragments production (see above), where the ngdp packet has: the body,
which contains the data fragment itself, and the full packet header of 40 bytes, namely:
* (in the reliable numbers tag scheme) the reliable packet number (from the L1<t>
trigger TPM), timestamp (from the trigger TPM, if present, or otherwise produced
locally by TPM arrival time), type mapped according to Dig [n] [] configuration, valid
length, flags, CRC32;
* (in the timestamps tag scheme) the timestamp (from trigger L1<t> TPM, if present,
or otherwise produced locally by theL1 [n] TPM arrival time), type mapped according
to Dig[n] [] configuration, valid length, number (locally produced), flags, CRC32.

The Dig card with hptdc chips for the TDC and QDC is probably suitable for work
with all but the STS subdetector and could be considered now in details.

The maximal capacity of the hptdc read-out token ring is 16 chips, so we can have
no more than 512 channels per Dig card. However the reasonable size of the Dig card
(6U) as well as the data flow issues (see below) restricts us by 8 hptdc chips (256/64
channels in 100/25 ps/bin modes). To reduce the data flow we should not produce the
local (slave) header and trailer hptdc words. Some subdetector variants of the hptdc
handling should be used:
• RPC mode: leading and trailing edges (100 or ?25 ps/bin), 64 bit/hit;
• TO mode: leading and trailing edges (25 ps/bin), 64 bit/hit, without hptdc trigger
matching;
• Q2T mode: leading and trailing edges (100 ps/bin), 64 bit/hit, or with subtraction
by the common FPGA, 32 bit/hit;
• DC/ST mode: leading edge (100 ps/bin) + width (more rough like 1.6 ns/bin), 32
bit/hit.
The common FPGA of the Dig card should for each obtained trigger TPM:
t read-out and buffer the data fragment according to the trigger TPM type for further
Ethernet transfer,
t account the data fragment length;
t save the data fragment nanosecond timestamp (number of LO clock pulses from start
multiplied by 25), it is assumed the times for the same trigger in different hptdc are
differ no more than by single LO clock;
t fill in the 40 bytes of the ngdp packet header and store it in the 0th .. 9th words of the
buffer;
t produce the summary error word using all encountered hptdc error words (if any, or
fill by zeros otherwise) and store it in the 10th word of the buffer;

51

t produce the data fragment packet mentioned above;
t (as the online configurable option) produce separate packet of all hptdc error words,
if their are encountered for current trigger.

We assume the data fragment should always be carried by single Ethernet frame
to avoid the nontrivial reassembling algorithms on the obtaining side (FEM fifo). So,
the data buffer size should be :S MTU = 1500 bytes, i.e. :S 187.5 bytes per event
per chip. Note the maximal hits number per event could be enforced by the hptdc as
power of 2, so we can guarantee that for each event the data fragment will fit into the
single Ethernet frame. With up to 25 (24 for 64-bit hits) hits/event/chip the data of
(25 x 8 + 2) x 4 = 1032 bytes (24 x 8 x 8 + 2 x 4 = 1032 bytes) accompanied by the
ngdp and Ethernet overheads of 40 and 38 bytes at the events rate of 105 Hz leads to
the data flow of up to yet acceptable 888 Mbit/s.

The alternative for the hptdc usage is the TDC implementation on base of the
dedicated FPGAs.

Probably the TO Dig card should have the separate version of the FPGA firmware
to produce also both hit counts per each trigger2 and per each time slice (of the
configurable duration, 5 .. 10000 µs) for each TO channel. This will require to perform
the trigger matching (in the hptdc manner with configurable trigger latency and time
window) by the Dig FPGA itself, because each produced hit (i.e. detected beam
particle) should be evaluated for these counts calculation. At least the following trigger
TPMs should be recognized: BoB, EoB, some kinds of event.

The FEE cards are intended to the signals (possibly always logical: LVDS /
LVTTL) preparation for the Dig card. The FEE cards are located on the corresponding
subdetector and possibly do not require the crate-suitable shape.

The FEE cards are specific for the serviced subdetector (here we can not essentially
reduce entities to be designed), however in general each of them should contain and
implement:
• the uniform SC slave (or be controlled through Dig);
• the means to support the test/imitation/calibration mode;
• the means to feed output signals to the Dig card(s);
• power supply: the uniform power input (some of 12, 24, 48 V) and on-board con
verters (or obtains the ready voltages from the Dig card);
•solution for the hardware reset (by power switching or FPGA reset).

In respect of the FC+ T subsystem the FEE cards should provide:
• the branching of the analog signals from the detector to feed both the main (digiti
zation) dataway and the trigger production "ascending" path;
• the analog (?or digital) summator, ADC, and single digital output as part of the
trigger production path.

The FEE cards in the TDC chains probably will use the NINO chips [4] to produce
the logical output signals for the hptdc [3].

The FEE cards in the QDC chains probably will use the Q2T converters to produce
the logical output signals for the hptdc, too.

All the SC master units (typically 1 per n-th subdetector, see Fig. 3) should be
similar or identical and contain at least:
• the standalone or Single Board computer (SBC, see also below): 1 Gbit/s Ethernet,

2Really between BoB and the first trigger, between two consequent ones, and between the last one
and EoB.

52

network bootable (PXE), optional local flash memory as the permanent storage, the
proper heat sink by the low-profile passive cooler;
• the means to converse (connector of Ethernet and/ or some standard serial bus (RS-
485, etc.)) with SC slave parts;
• the uniform power input (some of 12, 24, 48 V) and on-board converters to ATX
voltages.

All the hardware SC slaves embedded into the FEE, Dig, HV /LV, FC+TU cards
should be uniform, i.e. contain the same connector(s) and intellect (FPGA, etc.), which
implements the same protocol. The only SC function should be hardware implemented
for the SubEvB, EvB level computers is a remote reset solution (by power switching
or mother board reset) .

Also we should choose a hardware architecture of the standalone computers
to be used in all but FEM levels of the DAQ system and for the DAQ software design
and implementation purposes. On the one hand, we have no special requirements to
these computers hardware - other than performance and reliability. On the other
hand, the big DAQ system can require from tens to some hundreds of units of such
hardware with corresponding maintenance, etc. So, we should choose the most stan
dard and generic hardware reasonably cheap due to a great volume of production. This
architecture is called AMD64/EM64T, previously known also as x86-64 and IA-32e, and
should be used currently and in the near future. For the embedded SBCs involved in
the BM@N DAQ they will be very desirable to have the same architecture (or the 32-
bit x86). Note the SBC is preferable over the System-on-Chip (SoC) due to flexibility,
replaceability, low integration efforts (printed circuit design is not required).

4. Software requirements

The operating system (OS) used on the online computers determines the DAQ
system design and organization, consequently the inadequate OS selection is sure to
strongly complicate implementation, maintenance, and using of the DAQ system. The
OS itself should have adequate technical abilities for easy multiple installations, remote
maintenance and backup, read-only boot filesystem and diskless network boot, boot
without input and output devices, easy and centralized startup customization, etc.

UNIX-like OSs are optimal for the above requirements. UNIX is a multiprocess
and multiuser OS with powerful mechanisms for interprocess and inter-computer com
munications, a very advanced virtual memory subsystem, support of sophisticated
networking and graphics interfaces, extended tools for the software design. Costs for
UNIX working itself are practically negligible on the modern hardware. Availability
of the OS sources is a mandatory requirement for the present developments, while
the freely distributable nature of some UNIX-like OSs is highly desirable. After all,
high portability of UNIX programming and approximately unlimited quantity of the
existing software are also very attractive.

To achieve the reasonable performance, we should choose C programming language
(or C++ - only in such cases, where we can neither avoid an object-oriented design
nor implement it using C) and ultimately avoid interpreted languages like Perl or CINT.

Because the FPGA firmware responsibilities are described above, here we formulate
our requirements to the DAQ software modules only, which should be executed by CPUs
of the standalone computers and/ or SBCs.

In the proposed design we could use two (sub)events merging schemes based
on the reliable trigger numbers or the timestamps as the (sub)event merging tags. The

53

former is suitable for the central L1 <t> trigger only, while the latter - for any trigger
architecture, however requires more expensive TPMs for timestamps propagation from
the FC+ TU master in the central L1 <t> case. In case of the two-stage L2<t> trigger
the timestamp is the only possible merging tag, however should be produced locally by
each Dig card instead of propagated from the FC+ TU master. Anyway, the synchro
nization issues should be addressed by the FC+ T subsystem. Note the packet queues
implementation seems to be simpler for the timestamping scheme (see chapter 5 for
details). Anyway we require the proper merging tag to be present on the each produced
data fragment /sub-event and trigger packet. For the timestamps tag this means each
data fragment packet should be timestamped by the Dig with the enough (practically
nanosecond) precision: really ones could be the 64-bit numbers of the LO clock pulses3

from some start time moment (e.g., BoB), for which the absolute time ats with the
nanosecond precision is saved (in the struct timespec form) by the FC+ TU master.

The fragment searching in the queues by the corresponding merging tag will be
the only method to obtain all the fragments belonging to each the full event. For the
reliable numbers the correspondence means their equality. For the timestamping it is
the falling of the data fragment timestamp tsd into the time window, defined by the
reference timestamp ts, parameter twin, and twin's usage policy. For example, for
BOTH policy the ts-twin ::; tsd ::; ts+twin means tsd is corresponded to the reference
ts. The time window possibly should be: twin ::; 1/(2FLo) s, namely ::; 12.5 ns for the
clock LO with FLO = 40 MHz frequency. After merging the sub-events are stamped by
the reference timestamp ts of the L1 [n] trigger packet, while the full events - by the
absolute event time ets = ats+ts, where ts is the reference timestamp of the L1<t>
/ L2<t> trigger packet and the described above ats is carried in the L1 <t> / L2<t>
packet body. Anyway the strictly no more than one L1 <t> / L2<t> trigger instance
should be produced for each LO clock pulse, because otherwise we will have uncertainty
in the full event merging. The same sub-event could be collected into 2 1 full event(s),
if this required by the L1<t> / L2<t> triggers of the different types t. Alternatively
(not so easy to implement) the trigger of type t, which represents the more complicated
conditions (i.e., more sophisticated and rare physical event), should have precedence
over the simpler ones in the L1 <t> / L2<t> production to resolve EvB [] s competition
for the same sub-events. On the other hand, the most simple L1 <t> / L2<t> trigger
type could appear as often as the LO clock. This means, in principle (too huge data
flow should be processed!) we can exploit the whole setup in the almost free-streaming
mode to accept any hits in the inner tracker.

The software on the L1 [n] fifo server will behave as follows:
• some driver in the OS kernel:
t for each Ethernet frame arrival from the FC+ TU subdet [n] card on the dedicated
interface decodes this frame and obtains the trigger packet, which carries the merging
tag (i.e. it is reliably numbered and/or timestamped with the nanosecond precision);
t puts this packet into the tail of L1 [n] queue in the OS kernel;
• this queue:
t answers the SubEvB [n] [] client(s) requests by sending the next packet of the cor
responding type from the queue, or by sending the answer packet in the absence case;
t responds by ACK / NAK packets to the FC+TU subdet [n] card to propagate the
"full" state on the lower DAQ levels and prevent the queue overfull;

3 LO pulse counts of 40 MHz possibly should be multiplied by 25 to express time in nanoseconds.

54

t supports the garbage collection to remove from the queue packets, which already
obtained by all the connected clients;
t supports the queue cleaning - full or on the packet type basis.

The software of the FEM fifo will behave as follows:
• some driver in the OS kernel:
t for each Ethernet frame arrival from the Dig[] [] card on the dedicated interface
decodes this frame and obtains the data fragment packet, which is reliably numbered
and/ or timestamped with the nanosecond precision;
t puts this fragment into the tail of FEM queue in the OS kernel;
• this queue:
t answers the SubEvB [n] [] client(s) requests by sending the data fragment(s) of the
corresponding type and number (and/ or timestamp) from the queue, or by sending the
answer packet in the absence case;
t responds by ACK / NAK packets to the Dig [n] [] card to propagate the "full" state
on the lower DAQ levels and prevent the queue overfull;
t supports the queue cleaning - full or on the packet type basis.

The software on the L1<t> / L2<t> fifo server will behave as follows:
• some driver in the OS kernel:
t for each Ethernet frame arrival from the FC+ TU master card on the dedicated
interface decodes this frame and obtains the trigger packet, which is reliably numbered
and/or timestamped with the nanosecond precision;
t puts this packet into the tail of L1 <t> / L2<t> queue in the OS kernel;
• this queue:
t answers the EvB [] clients requests by sending the next packet of the corresponding
type from the queue, or by sending the answer packet in the absence case;
t responds by ACK/ NAK packets to the FC+TU master card to propagate the "full"
state on the lower DAQ levels and prevent the queue overfull;
t supports the queue cleaning - full or on the packet type basis.

The software on the SubEvB [n] [] computers will behave as follows:
• sub-event merger entity in the OS kernel:
t requests the FEM queues for data fragments and L1 [n] queue for trigger packets ac
cording to own configuration, obtains their, matches merging tags, and merges packets
to produce the sub-event packet;
t puts this packet into the tail of SubEvB [n] [] queue in the OS kernel, possibly
through some filter facility, which implements the L1. 5 [n] software trigger;
• this queue:
t answers the EvB [] clients requests by sending the sub-event of the corresponding
type from the queue, or by sending the answer packet in the absence case;
t responds by ACK / NAK packets to the sub-event merger to propagate the "full"
state on the lower DAQ levels and prevent the queue overfull;
t supports the queue cleaning - full or on the packet type basis.

The software on the EvB [] computers will behave as follows:
• full event merger entity in the OS kernel:
t requests the L1 <t> / L2<t> queue for trigger packets and SubEvB [] [] queues for
sub-events according to own configuration, obtains their, matches merging tags, and
merges packets to produce the full event packet;
t puts this packet into the tail of EvB [] queue in the OS kernel, possibly through some
filter facility, which implements the L2. 5 software trigger;

55

• this queue:
t answers the pool[] client(s) requests by sending each N-th full event of the corre
sponding type from the queue (this packet is kept in the queue for the storage client),
or by sending the answer packet in the absence case;
t answers the storage [] client requests by sending the next full event of the corre
sponding type from the queue (this packet is removed from the queue), or by sending
the answer packet in the absence case;
t responds by ACK / NAK packets to the event merger to propagate the "full" state
on the lower DAQ levels and prevent the queue overfull;
t supports the queue cleaning - full or on the packet type basis.

The software on the pool[] computers will behave as follows:
• event pool entity in the OS kernel:
requests the EvB [] queues for the representative subset of full events according to own
configuration, obtains these full events, and puts into the tail of pool[] queue in the
OS kernel through the filter facility;
• this filter:
converts each of these full event packets into the representation by the corresponding
ROOT class, which is serialized and packetized again;
• this queue:
t answers the visualization group client(s) requests by sending the next ROOT packet
of the corresponding type from the queue (this packet is kept in the queue for other
clients), or by sending the answer packet in the absence case;
t supports the garbage collection to remove from the queue packets, which are already
obtained by all the connected clients;
t supports the queue cleaning - full or on the packet type basis;
t provides two policies of the full queue handling: the cleaning of the oldest possibly
not yet read packet (default) and the newcomer packet dropping.

For the proposed histogramming server and client see chapter 5.
The storage[] computers possibly should be equipped by:

• the writer(t) utility [2];
• some network demultiplexer with the requests sending ability like the pool entity
described above (possibly ported into the user context) to feed writer(1).

In Fig. 3 we can see main elements of the SC subsystem. The SC dispatcher and SC
m.aster [] s should contain CPUs and execute SC software. The SC dispatcher obtains
operator commands from the operator GUI and forwards their to the specific subde
tector's SC master[], which interacts with SC slaves to perform the corresponding
actions. The correspondence between operator command and actions to be performed
is established by the SC master[] local configuration. The remote network interac
tions between SC elements should be implemented by the standard client-server model
(possibly using RPC) over TCP /IP or UDP /IP.

The SC slaves integrated into FEE, Dig, HV /LV, FC+TU cards are controlled by
their firmware, while on SubEvB, EvB computers the SC slaves should be implemented
by software (with exclusion of the remote reset solution, see chapter 3).

5. Software implementation

The key features of the proposed DAQ software, which are natural for the UNIX
like OS, are the following:
• splitting into the software modules interconnected by the experimental data streams;

56

• spreading of these modules over CPUs and networked computers easily;
• experimental data representation in the unified form of ngdp packets (see [2] and
packet(3,5,9));
• experimental data transportation by the streams of these packets, which (without
using the media slower than memory) can:
t be buffered, copied, filtered, demultiplexed in a different manner;
t to cross the context boundaries from the kernel space to the user one and vice versa;
t be transferred between software modules locally and/ or remotely, etc.
• software modules implementation in form of the user context processes or, in the
kernel context, - the so called loadable kernel modules (KLD);
• implementation of the packet streams between the processes:
t locally - by the unnamed pipes and
t remotely - by the TCP /IP socket pairs;
• using the kernel threads to implement the process--like activity in the kernel context
allows us:
t to avoid the preemptive scheduling;
t to reduce the unnecessary data copying in the memory at the context boundary
crossing;
• using the netgraph(4.J package [5] to implement the packet streams between the
netgraph(4)-style kernel modules (nodes):
t locally - by the netgraph(4) data messages along the graph edges and
t remotely - by the TCP /IP ng_ksocket(4) pairs;
•high and easy scalability due to the object-oriented programming (OOP) style of the
netgraph(4) package.

One of the freely distributable open source UNIX-like OSs with the netgraph(4)
support, enough stable, reliable, modern, and dynamically developed simultaneously
due to its very weighted up design policy, is FreeBSD.

The netgraph(4) package [5] provides the following entities of our interest:
• ng_ksocket(4) socket for the remote data exchange by IP protocol (TCP, UDP,
etc.);
• ng_ether(4) interface for the remote data exchange by Ethernet protocol;
• ng_socket(4) socket for data and control messages interchange between the kernel
context graph and the user context process;
• means for building the graph itself: ngctl(8), nghook(8) utilities;
•service nodes for data flow managing: ng_tee(4), ng_one2many(4), ng_split(4);
•nodes for debugging: ng_source(4), ng_hole(4), ng_echo(4).

The netgraph(4) could be improved [6] in some aspects:
•the remote delivering of the netgraph(4) control messages is introduced;
• the function for the node insertion between the two already connected nodes is
implemented (very useful for the software filters implementation);
• some additions for the ngctl(8 J's scripting language are implemented;
• the maximum data message size could be tuned by changing some OS kernel variables
(without the kernel recompile) .

The ngdp framework [6] was implemented to be used for a big DAQ system
software building and provides the following netgraph(4)-style node types:
• ng_fifo(4) supports the packets buffer with some queuing disciplines;
• ng_em(4) implements the SubEvB and EvB algorithms of the event merging;
• ng_pool(4) implements the pool level functionality according to the above require-

57

men ts (see chapter 4);
• ng_filter{4) supports (chain of) KLD plug- in(s) with the filter procedure(s) and/or
the external filter implemented by the (pipe of) user context process(es) or the (chain
of) net graph node(s) ;
• ng_defrag(4) reassembles the big ngdp packets obtained from the ng_ksocket(4) af
ter passing through network, which unavoidably fragments their to fit into the TCP /IP
packets;
• ng_mm{4) (for Memory Mapping) provides the more efficient mechanism for the
ngdp packets exchange between the kernel context graph and the user context process
as the alternative to the standard ng_socket(4);
• ng_sv(4) (for SuperVisor) delivers the netgraph{4) control messages remotely, also
could be used to automatize the remote netgraph{4) graph building;
• ng_mysource(4) and ng_kthsource(4) produce the packets stream for debugging.
The ngdp framework provides the following user context utilities:
• ngput{1) injects the pipe{2)d packets into the graph;
• ngget{1) extracts the packets from the graph into the pipe{2);
• b2r{1) (for "binary-to-ROOT") converts the packetized binary data into the pack
etized ROOT class instances;
• r2h{1) (for "ROOT-to- histograms") is the runtime configurable histogramming
server;
• histGUI(1) is the client for the r2h(1).

As we can see from the chapter 4 requirements, the SubEvB, EvB, and pool levels
could be implemented by the very similar graphs like the following:
ng_ksocket '\J /' ng_ksocket

ng_em(ng_pool) --t [ng_filter --t [...]] ng_fifo
ng_ksocket /' '\J ng_ksocket

Of course, the queue and event merger nodes functionalities are slightly variated on
the different levels. The FEM fifo as well as the L1 [n] and L1 <t> / L2<t> queues on
the dedicated network nodes could be represented by the following scheme:

/' ng_ksocket
ng_ether --t ng_f if o

'\J ng_ksocket
For SubEvB level there is also option to implement FEM and L1 [n] queues as the
input channels of the event merger and, subsequently, use more fast medium (memory
instead of network) to request and obtain the data packets, which should provide
some performance benefit. This will lead to the following scheme, which requires
to implement some configurable multiplexor ng_mux and essentially revise the event
merger to be ng_ eml:

~ '\J /' ng_ksocket
ng_ether --t s, --t ng_eml --t [ng_filter --t [...]] ng_fifo

b()
i:1 /' '\J ng_ksocket

The further details about the ngdp provided entities can 0e found in [6, 7].
The queue node type (let it name as ng_fifo{4)) according to the chapter 4

requirements could be implemented with two mutually exclusive assumptions about
the (sub)event merging tag will be used, namely:
• the reliable packet numbers. This requires the following modes (i.e. buffer disci
plines) of the packet extraction from the queue:
t "N" : provides packet of the defined type type: GETPACK(type). Needed by L1<t> /

58

L2<t>, EvB, and pool queues .
t "T": provides packet of the defined type type without removing it from the queue:
COPYTRIG(type). Needed by Li [n] queue, if it is not embedded into SubEvB, other
wise replaced by "N" .
t "G": provides packet of the defined type type by its number num: GETNTHPACK(num, type).

Needed by FEM and SubEvB queues.
t "O" : provides one of each Nth packets of the defined type type without removing it
from the queue: COPY10FN(N, type). Needed by EvB and pool queues.
• the timestamps. This requires the following buffer disciplines:
t "N" . Needed by Li<t> / L2<t>, EvB, and pool queues.
t "T": provides packet of the defined type type without removing it from the queue:
COPYTRIG(type). Needed by Li [n] queue if it is not embedded into SubEvB, other
wise replaced by "N".
t "S" : provides packet(s) of the defined type type from the time window [ts-twin,

ts+twin]: GETTSPACK(ts,twin,type). Needed by FEM and SubEvB queues.
t "O". Needed by EvB and pool queues.

Both "nNTGO" [6] and "NTSO" set of the buffer disciplines are implemented now by
two separate versions of ng_fifo (4) node type. It seems the latter one is more simple.

The FEM level could be partially based on the CAMAC hardware. For the CAMAC
hardware the number f DAQs ar already built in this way using the camac package
[] and the ng_camacsrc(4) llOd [7) from the ngdp framework, e.g., SPILL DAQ,
Q ADRO DAQ [9], an l IntTarg DAQ (10], [11]. DAQ architectures like these are
practi ally ready for th BM@N DAQ integration.

The event merger ng_em(4) for bot h the SubEvB and EvB levels should work
very similar for the timestamps merging tag scheme. The "SubEvBT" mode should
(with some simplifications) behave as follows. The ng_em(4) node makes one loop
over the configured merging rules (and corresponding requests) array and launches the
kernel thread (see kthread(9)) for each configured index, so each thread serves only
its "own" request. Each request has the so called trigger input channel and is handled
in two phases:
• In the first ('frig) phase each thread emits the COPYTRIG (type) ("T") control packet
to the Li [n] trigger fifo through the hook of the trigger input channel and waits for
a positive or negative response up to obtaining one or corresponding (trigger) timeout
expiration. If the answer packet is obtained, the thread analyses the error code and
repeats the request after either the same or increased trigger timeout. If the trigger
input channel does not respond at all before the trigger timeout expiration, the thread
repeats the request and waits during the increased trigger timeout. The trigger timeout
can be increased up to the limit only. If the data packet from the Li [n] trigger fifo
is successfully obtained, the ng_em(4) node extracts the ts timestamp4 and goes
to the second phase, which for each request index is handled by the same thread as
the first phase. Note the FEM and Li [n] queues implementation as the SubEvB
input channels will simplify this behaviour and replace the "T" request by the "N" one,
however leads to essentially revised node type ng_eml (not implemented yet) and very
high requirements to the memory size available for SubEvB.
• In the second (afterTrig) phase the thread emits the GETTSPACK(ts, twin, type)

("S") control packets to the FEM queues through all the hooks of the involved input

4T type is also extracted and checked against the resulting type of the corresponding merging rule.

59

channels (other than trigger one) using the ts trigger timestamp obtained in first phase.
After that each thread waits for positive and/or negative responses up to obtaining all
the required packets or regular timeout expiration. If all the required data packets are
obtained, the ng_em(4) node merges their (preserving the headers) into the sub-event
packet ofresulting type and with the number and timestamp of the trigger packet, and
sends it to the output hook, if it exists, or drops packet otherwise.
After that the thread sets a regular timeout to the nominal value, sends the full request
again, and so on.

The "Ev BT" mode for the timestamps merging tag uses the 11 <t> / 12<t> fifo
server in the trigger input channel and requests it by the GETPACK(type) ("N") control
packets, while the regular inputs -by the GETTSPACK(ts,twin,type) (''S") ones like
the "SubEvBT" mode.

For the reliable numbers tag merging we have two-phase "EvBt" algorithm (like
described in [6]) with "N" trigger and "G" regular requests. The SubEvB algorithm
could be implemented as the single-phase "SubEvBt" one (see [6]), where 11 [n] fifo
has not dedicated meanings (it is simply one of the FEM queues, which requested by
"N"), or like the two-phase "SubEvBT" algorithm described above, however uses the
afterTrig phase "G" requests. The latter option seems preferable, because the two
phase algorithm should be more robust and less CPU-intensive. Anyway the existing
ng_em(4) implementation [6] should be revised for BM@N purposes.

The ngdp framework implements the pool level functionality by the ng_pool(4)
node separately from the very similar ng_em(4). The existing ng_pool(4) algorithm
[6] seems suitable for us. The production of the events in a ROOT class representation
from the full events in a native binary format will be done by the ng_filter(4) node
type using the b2r(1) utility [7].

The r2h(1) histogramming server [7] could be executed to fill the ROOT his
tograms from the ROOT events. The r2h{1) could be fed by some network demulti
plexer with the requests sending ability (e.g. the pool node ng_pool(4)), as it proposed
above for the writer(t).

The r2h(1) histograms assortment and parameters could be online configured using
the histGUI(t) histogram visualization client [7] with the read-write access. This
(single per server) client as well as many read-only histG UI (1) clients will be executed
on the visualization group computers.

Note also some entities are inherited by the ngdp from the qdpb framework [2]:
• the application program interfaces (APis):
t the packet(3, 9) for the packet making, reading, writing, merging, etc.
t the pack_types(3) to deal with the packet types and corresponding attributes;
• the writer(t) utility to write the packet stream as the regular files on the HDD.
Some improvements for our needs are possible:
•the packet header could be improved by enlarging some existing fields and introducing
the new ones (without keeping the backward compatibility);
• the packet body compression by the zlib or XZ Embedded package could be provided.

6. Conclusions

The basic principles and overall architecture of the DAQ system for the BM@N
setup are described. The requirements to the DAQ, Trigger, and Slow Control hardware
suitable for this architecture are issued. The ngdp framework [6, 7] seems to be suitable
for needs of the BM@N DAQ due to the high scalability, easy remote distribution,

60

and the high performance of execution out of the scheduling scope. The ngdp nodes
implementation should be adopted for the event merging scheme, which will be chosen.
Possibly the present design can be used also by the upcoming NICA experiments, so
the essential experience can be obtained during implementation and debugging of the
proposed hardware and software.

Acknowledgments

The authors have a pleasure to thank T.A.Vasiliev for the very preliminary simula
tion results about the BM@N subdetectors occupancy and S.N.Basilev for the fruitful
discussions about the hardware DAQ part.

References

[1] R. Brun and F. Rademakers. ROOT - An Object Oriented Data Analy
sis Framework. In Proc. of the AIHENP'96 Workshop, volume A(389) of
Nucl.Instr.and Meth.in Phys.Res. (1997), pages 81-86, Lausanne, Switzerland,
(1996). See also http: I /root. cern. ch/.

[2] K. I. Gritsaj and A. Yu. Isupov. A Trial of Distributed Portable Data Acquisi
tion and Processing System Implementation: the qdpb - Data Processing with
Branchpoints. JINR Communications, El0-2001-116, 1-19, (2001).

[3] J.Christiansen. HPTDC. High Performance Time to Digital Converter. Ver.2.2
for HPTDC ver.1.3. CERN/EP-MIC, March (2004).

[4] F.Anghinolfi et al. NINO, an ultra-fast, low-power, front-end amplifier dis
criminator for the Time-of-Flight detector in ALICE experiment. IEEE Trans.
Nucl. Science, 51(5), 1974-1978, (2004).

[5] http://www. freebsd. org/cgi/man. cgi ?query=netgraph&sektion=4 (2008).
[6] A. Yu. Isupov. The ngdp framework for data acquisition systems. JINR

Communications, El0-2010-34, 1-20, (2010).
[7] A. Yu. Isupov. CAMAC subsystem and user context utilities in ngdp frame

work. JINR Communications, El0-2010-35, 1-20, (2010).
[8] K. I. Gritsaj and V. G. Olshevsky. Software package for work with CAMAC

in Operating system FreeBSD (in Russian). JINR Communications, Pl0-98-
163, 1-16, (1998).

[9] A. Yu. Isupov, V. E. Kovtun, and A. G. Foshchan. Implementation trial of the
DAQ system for the compact physics setup on base of the ngdp framework (in
Russian). In A. K. Vlasnikov, editor, Fundamental problems and applications
of nuclear physics: from space to nanotechnologies. Book of Abstracts, 59 Inter
national Meeting on Nuclear Spectroscopy and Nuclear Structure (NUCLEUS-
2009), page 346, Cheboksary, Russia, (2009). Saint-Petersburg, 2009.

[10) A. Yu. Isupov. New software of the control and data acquisition system for
the Nuclotron internal target station. JINR Communications, El0-2012-32,
1-20, (2012).

[11] A. Yu. Isupov, V. A. Krasnov, V. P. Ladygin, S. M. Piyadin, and S. G. Reznikov.
The Nuclotron Internal Target Control and Data Acquisition System. Nucl.
Instr. and Meth. in Phys. Res., A(698), 127-134, (2013).

61

