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On the Universality of Einstein Equations 
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It is proved that a Lagrangian field theory based on a linear connection in 
space-time is equivalent to Einstein's general relativity interacting with 
additional matter fields. 

1. INTRODUCTION 

It has been proved [3, 4] that Einstein's general relativity can be for- 
mulated in the so-called affine language. This means that the field 
equations of the theory can be derived from the affine Lagrangian 

~-,~a := ~Pa(j lF,  j lq0)  (1) 

where F is a linear connection in space time, ~o is a matter field, and j~f 
denotes the first jet of the geometrical object f (the value of f and its 
derivatives). We assume that 5e a is a scalar density which depends on 0~F~i v 
via invariant objects, i.e., the Riemann tensor and the covariant derivatives 
of the torsion. 

The following assumptions have to be imposed in order to obtain the 
theory equivalent to general relativity interacting with the matter field: 

1. F i s  symmetric 

2. ~a depends on first derivatives of F via the symmetric part of the Ricci 
tensor only, i.e. 
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where 

K~ := F~w , -  F ~ c, ~ ~ =~v) + F ~ F ~  - F ~ . F ~  

F~F,~ : = t3 v F~, and q~ A o : = 8,~ q~ A 

Dropping out conditions 1 and 2 leads to a theory which is a priori 
more general. Field equations involve the whole Riemann tensor 

and not only the Ricci tensor as in general relativity. 
In the present paper we prove that usually this is not a genuine 

generalization: for sufficiently "regular" Lagrangians all the dynamical 
effects due to the generalization of the Lagrangian may be implemented by 
the introduction of new matter fields. This way we prove that general 
relativity is really a universal framework for the description of interaction 
of the space-time geometry with matter. 

It is well-known that the general linear connection F can be uniquely 
decomposed (cf., [7, 2])  

2 _ _  3. 2 1 3. F ~v - F,~ + A ,v + ~6 u(A u - F2u ) (2) 

where F~v is a symmetric connection, A~v is an antisymmetric traceless ten- 
sor, and Av is a linear connection in the bundle of scalar densities. Both the 
Riemann tensor of F and the covariant derivatives of the torsion can be 
expressed in terms of the Riemann tensor of F, j IA,  and j I A  together with 
F itself. Therefore 

~,(jlr, jl~0) = 5 f ( R ~ ( j l F ) ,  F, j~A, j IA ,  j~qo) (3) 

Treating A and A as additional matter fields, we have reduced the problem 
to the case of the symmetric connection F. 

The "regularity" conditions which we have to impose on • in order to 
be able to perform our construction are the following 

8 ~  

2. det \OKuv 8K~,] va 0 

where the second derivative of ~o is treated as a 10 x 10 matrix. 
Additional matter fields arising from our construction may of course 
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be unphysical if they do not lead to positive total energy. In the present 
paper the energy-positivity condition is not given in terms of the original 
Lagrangian (1). 

2. THE CASE OF THE SYMMETRIC CONNECTION 

Therefore, let the connection F in (1) be symmetric and 

f{ ,a(j lF,  j l ( p )  ,1 ;. = 2 ( R ~ o ,  F ~ ,  (pA, ~0A) (4) 

Introduce momenta canonically conjugate to both F and (p 

o2= a s  aR~o (5) Kt.tva 

&pAo - &pA (6) 

The Riemann tensor R fulfils the following identities 

2 __  R~l~v -F R~rvu - 0 
2 2 2 __  R ~  + Ru~ + R u~ ~ - 0 

(7) 

The number of independent components of R is 80. In order to define uni- 
quely the derivatives (5), we impose the symmetries of ~"~ corresponding 
to the symmetries of F~v and R~vo 

~ . . . . .  -rc; ,"~=0 (8a) 

7z~ ~'~ + 7t;' ~ + :r~ "~ = 0 (8b) 

The number of independent components of z~"~ is 80. The Euler 
Lagrange equations 

,~2o d2~ 
61_r = 0  &pX = 0  (9) 

together with the definitions (5) and (6) of the momenta can be rewritten 
in the form 

d ~  a ~,vo ;, = ~ ( ~  dr;v) + G ( p #  dq ~) 

_-- rC t~  dF;.~ ~w + C 3 ~ w  dF~v + p A~ d(pA~ + c~o p A~ d(P A (lo) 
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Let 

and 

J a k u b i e c  a n d  K i j o w s k i  

~v -- 2~..~;+v + R~;+~) 

P~v = R~,~ 

1P~v is the antisymmetric part of the Ricci tensor of f .  Now, the Riemann 
tensor R can be uniquely decomposed  

a _ 1  c~ ~ 1 ~ _ + 2 6 ~ P ~ ) +  ~ (11) R~u~ - ~(5uK~v-  ~ K~u) + ~ ( 6 u P ~  6~Pp~, W~v  

where the Weyl tensor  W fulfils identities (7) and addit ional ly 

Similarly (cf. [1, 6 ] )  the symmetr ic  conect ion F can be split into two 
independent  objects 

2 ~ (12) F ~ - Z a  +~6(~v )  p v  - -  p v  

The object a .  := F~u is a connect ion in the bundle of scalar densities and 
27~ is a projective connect ion (27~ = 0). P.~ is a curvature  form of 

P~,v = O~v. - o:~,v 

where as usual 

0~v# ~ OpC~v 

The Weyl tensor  is "the curvature"  of 27 

1 a 2 a 2 

ct 2 a 2 1( .8~ y~7 c~ 7 + Z;+~X~ - S a v Z ~  , + 3 v ' ~  - 6vXa~) 27~v 

The decompos i t ion  (1 1) induces the dual  decompos i t ion  in the space 
of m o m e n t a  

u~ ~ -u~-  ~ -- 2Q (~v)~a - 26~ v ) ~ a  ( 13 ) 

where 

# v  1-rr~V2 

1--2Dzv] 
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The tensor density s fulfils identities (Sb) and additionally 

-f~ -0 

#vr ,uav f~;. +s = 0  

The formula (5) splits into three independent parts 

05~ 
rc u~- (14) 

OK~v 

p,v= (15) 
OP~ 

g2e ~~ - (16) 
" ~W; /tVO- 

Equation (10) can now be rewritten in the following way 

dSA~a=O~(fc~wdFJ~-2p~d%,-2Y2~dXJ~+pa~dcp A) (17) 

The formula (17) could be interpreted as a variational formula for four 
fields /7, e, Z, and q) with the Lagrangian 

~ = ~ [ K ~ v ( f F ) ,  P av(jl~), W~%,a(jl.~), F, ~, v,, ffp] 

and with the Lagrangian constraint (12). 
Now following the method introduced in [3 ] we perform the complete 

Legendre transformation between F and ~. We define the new Lagrangian 
U by the formula 

U : =  G ,  ~,,a ~ + Y ' = G ( B ~ v ~ Z ~ ) + ~  

= , ~ % ( v L a ~  - rT,,)  + , ~ . ' [ v L v ~  e - v ~ r ~ ,  - K~,(/r) 1 
+ S(K,  P, W, ~, X, f~o) (18) 

where 

B - ._ ;. ~ _ F ~  

~,uv :_..~_ ~aT.uuv 
(19) 

The formula (17) together with the definition of U implies 

_ B ~ ~v ~ 2/2~w At;, dU-~o( ~d~ -2p el%- ;.  ~v+PA'~d~o A) (20) 
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Due to the assumption we made in the introduction the above Legendre 
transformation is regular; i.e., 10 equations (14) can be solved with respect 
to K~,,, 

K~tv = fftr~v( TE, P, W, o~, .v., j l~ )  (21) 

This enables us to express U in terms of fre, jl~, f X ,  and j'~o. More 
precisely, (18), (12), and (21) give us 

U =  U ( f = ,  j '~ ,  f o p )  

= ~[ff{(g, P, W, ~, X, jl(p), p, W, ~, X, j l r  

,w#v t ' 3~aev  cr .rr#Vl- y ' 2  y ' f l  3 fl . .~5(~,u0~v 

- ~(7c,  P, W, c~, X, j~0)] (22) 

The formula (20) gives us the Euler-Lagrange equations 

fiU fiU fiU fiU 
3~ O, fic~ O, f i x = O ,  - - = 0  (23) fiq~ 

together with the definition of corresponding momenta (e.g., Eq. 19 follows 
from the derivation of U with respect to zuvo). The above equations are 
obviously equivalent to our original equations (9). No Lagrangian con- 
straints are left. The Lagrangian (22) is coordinate-dependent, as is usual 
in the case of the first-order Einstein Lagrangians. We introduce the 
auxiliary symmetric connection 7 such that 

Y 
V~. ~z ~ = 8;~o 7r~v + rc'~vT~a + ~'~'"~,o ro;~- ~,v,,~,~ r ~  -- 0 

If 7~ "~ is nondegenerate [det(re u~) ~ 0] then 7 is defined uniquely by f x  
(Christoffel symbols). We add to the Lagrangian U the term 

). o/~vo- 8~(7~rc~ ) (24) 

We obtain an invariant Lagrangian which is second-order with respect to 
7E# v 

LH= LH(j27z, P, W, o~, S, jlc.p):=aa('y~vTZ~va)+ g 

= a J ( 7 ~ v -  r-~ ~ ~ . ~ 1  --,vJ '~ �9 + La (25) 

Easy calculations show that the only term in L ,  which contains second- 
order derivatives of re equals 

L c  = L o ( f r e )  = k.vre ~'v (26) 
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where k,~ is a Ricci tensor ofT. We denote LM=LM(jITc, P, W, Ct, X, f~o) 
the remaining part of LH 

L H = L G + L M  

Both LG and L m are now invariant scalar densities. We see that our theory 
can be interpreted as a standard Einstein theory (interacting with three 
matter fields Ct, ~, (p, and the matter Lagrangian LM) provided (26) is equal 
to the standard gravitational Lagrangian proposed by Hilbert. This is true 
if we introduce the metric tensor g by the formula 

T ~ / / v  h 
1 (_g)i/2 gUV 

2re 

~c is the gravitational constant; in geometric system of units ~c= 8~. 
Similarly, as in the standard general relativity, only those solutions have 
physical meaning which correspond to the correct signature ( - ,  + ,  + ,  + ) 
of the tensor rt ~v. Now 7 is the Levi-Civita metric connection of g and 

1 
LG = -2-~x (-g)l /2r 

where r = gF'Vk,v is the scalar curvature of 7. It is easy to calculate the mat- 
ter Lagrangian LM 

LM = Lm( fg ,  jlCt, j lS ,  jlq)) 

= L,f'(~g', P, W, Ct, S,j '(p) 

1 I ~ /~ ~ /~ ~ /~ + . ~  (_g)U2gt,~ Jl~(g,  P, W, Ct, S , j  I ~o)-+- 7e,,7:,.- yuvy~q-S~uS~v 

3SfvCt~_ 3 ~ 3 ] - -  ct. ctv-2S/~ 7 ~ + S~' + 7  ct,~7~J (27) 
5 25 " ~ ~" ~-i,~ 3 ~ 

The gravitational field enters via standard Riemannian geometry represen- 
ted by the metric tensor g and its Levi-Civita connection Y. Field equations 

aLH = 0, aLH -- 0, 6L___q_H = 0, aLH _ 0 
5g aCt aS &p 

are obviously equivalent to (23), i.e., to (9) since U and L H differ by the full 
divergence term (24). The Einstein equations 6LH/ag = 0 are equivalent to 

K,,~(j~F) - r P, IV, ct, S, jlqg) = 0 
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i.e., to (21), which in turn are equivalent to (14) in the affine formulation of 
the theory. 

The trace y~ of the Christoffel symbols defines another connection in 
the bundle of scalar densities. One can used it to rescale 

a v : = ~ - - 7  a (28) 2 #  

The new object a is a covector field. Since 

we have 

where again 

~ = O.(ln (_g)1/2) 

P.v = av. - a~,v 

av. = d . av 

Therefore we can choose a, LT, and r as independent matter fields 

LM = L M [ j l g ,  p ( j l a ) ,  W(jl~YT), a, ~', jl~0] 

The formulas (3), (25), and (26) prove that any affine theory based on the 
Lagrangian (1) can be formulated as a theory of the original matter field ~p 
and additional matter fields: A, A, a, Z" minimally coupled to the Einstein 
general relativity. Given a solution of field equations of the latter, we can 
reconstruct the original connection F due to the formulas (2), (12), and 
(28) 

2 _ _  2. 2 1 2- 1 2- 1 )~ 1 2- 1 /2  ~6uA v+~6 va .  ~ 6 . a  ~+~6 v o . ( l n ( - g )  ) F .v - X ~v + A ~,v + 

~ 6 ~ ( l n ( - - g ) l / 2 )  

It is worthwhile to notice that the derivatives of both fields A and a enter 
into the Lagrangian LM via their curls only 

F~v "-  2- - - . - R ~ u ~ ( F ) - ~ . A v  OvA. 

and 

P~v -- c~av - ~va~ 

However, the field A itself does not appear in the Lagrangian. Therefore, A 
is a "Maxwell-like" field and a is a "Proea-like" field. 
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