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ABSTRACT

If the top quark mass is above 86 GeV, then a stringent lower bound on the
mass of the Higgs boson arises from the requirement of vacuum stability. Since
previous calculations of this bound differ by up to 20 GeV, we calculate the bound
as precisely as possible by explicitly solving the renormalization group equations
to two-loop order. If the lower bound on the top mass is 100 (110, 120) GeV, the
the lower bound to the Higgs mass is found to be 20 (34, 50) GeV. Thus, if the
standard model is correct, then a nondiscovery of the top quark at the Fermilab
Collider implies that the Higgs boson cannot be discovered at CUSB, SLC or
LEP L
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The recent observation of B — B mixing at ARGUS™ and the analysis of
UA2 data' indicates that the top quark mass must be larger than 50 GeV, a
mass region which will be probed in the next few months at Fermilab and CERN.
Failure to find the top quark during the current Collider run will imply a lower
bound of approximately 100 — 110 GeV on the top quark mass, m;. This has led
to renewed interest in the theoretical upper bound on m;. The most stringent of
these bounds comes from requiring that the standard model vacuum be stable,

and gives a bound which will actually be tested during the current Collider run.

The instability™ is generated by loop corrections to the Higgs potential. The

tree level potential is
1 1
Vo = —5#2¢2 + Z/\¢4 (1)

where %q&z = $'P. The one-loop leading logarithm corrections to the potential
were first calculated by Coleman and E. Weinbergm and give (ignoring scalar

loops for the moment)

V=V, + 1 B4t ¢
=Vot gam B¢ 0y (2)
where M is the renormalization scale and
6miyy +3my —12m¢ 9 , 3 , 5, 3 , 4
B = o = Ié-y + g.q g+ R‘!I - 3gy- (3)

Here, o ~ 246 GeV is the minimum of the potential, g, g' and gy are the SU(2),
U(1) and top quark Yukawa couplings respectively. One can see that if m; is
large enough, then B is negative, and the potential is unbounded for large ¢, i.e.

the vacuum is unstable.

Although this demonstrates the existence of a possible instability for large
top quark masses, the above expression cannot be used to reliably determine the
bound. The reason is that the above loop expansion is an expansion in powers
of aln —%, where o is the largest coupling in the theory, and not an expansion in

powers of a. To determine whether the vacuum is stable, large regions of field



space must be considered, and thus the logarithm can be quite large. Since the
Yukawa coupling is also relatively large, the above loop expansion is unreliable.
As shown in Ref. 5, using running couplings in the potential can change the

bounds that would be obtained from eq. (2) by as much as a factor of 3.

A simple procedure does exist for including the large logarithms — the renor-
malization group approach. In Refs. 6 and 7, the renormalization group equation
for the effective potential was explicitly solved, and one-loop beta functions and
the one-loop anomalous dimension were input; the resulting potential is an ex-
pansion in powers of a, without large logarithms. The bound obtained on m;
in Refs. 6 and 7 increases with the Higgs mass mp, intercepting the mg = 0
axis at 80 — 90 GeV. Both references quoted an uncertainty in the bound of

approximately 10 GeV (and the two differed by that amount).

It is easy to see how this uncertainty arises. Suppose, for example, that
eq. (2) were used to determine the bound. One can see that the bound on
m; is roughly linearly dependent on mw and myz. Given that the latter are
experimentally uncertain by several percent (or were when Ref. 6 appeared),
that radiative corrections to their masses (which would appear in next order) are
several percent, and that threshold effects, Higgs mass corrections, etc. were not

included, it is not surprising that previous bounds are uncertain by 10 GeV.

This Letter is motivated by the fact that the experimental lower bound on m;
could reach 100 GeV or even more in the next few months. A experimental lower
bound on m; in excess of 80 — 90 GeV will give a very stringent lower bound to
the Higgs mass. Furthermore the lower bound to the Higgs mass is very sensitive
to the precise bound on m;. In fact, a 10 GeV uncertainty in the upper bound of
m; converts into an uncertainty as large as 20 GeV in the derived lower bound to
the Higgs mass. The objective of this Letter is to calculate the top quark mass
bound as precisely as possible. Our final result can then be used to convert an
experimental lower bound or a measurement of m; to a theoretical lower bound

(caused by requiring vacuum stability) on the Higgs mass. We emphasize that we



are working in the context of the minimal standard model. If there are additional

Higgs fields or supersymmetric particles, then this work is irrelevant'”

We will explicitly solve the renormalization group equation for the effec-
tive potential, use two-loop beta functions and anomalous dimension, and use
one-loop boundary conditions to the differential equations. The renormalization
group equation for the effective potential is nothing more than the statement

that the potential cannot depend on the choice of renormalization scale:

d 3 F2) a d
(MW +3A3—)“+2’. ﬁ”‘a_g,-’Lﬁ""z'é}ﬁJrW%) V(g)=0 (4)

where the sum is over the gauge and Yukawa couplings, 8y = M 3‘9——]"‘1, Ba =M gf&
and Bup? = M gﬁ‘& v is the anomalous dimension of the scalar field. It should
be noted that we are working in the Landau gauge, thus the scale-dependence of

the gauge parameter is zero.

The exact solution of this equation is given by

V(g) = 221G (W) + TG (1), )
where

d;tz - 1ﬂz-7 ; for gz =X, 9,9 190 97

dp’ = u? By

# 01 (6

G(t) = exp (— / dt’ TZ_')') .
0

Each of the beta functions and the anomalous dimension is a function of all of

the other couplings, which are functions of ¢ =1In -%



This solution is ezact. Perturbation theory enters when one inputs the per-
turbative expansions for the beta functions and anomalous dimension. It is in-
structive to derive eq. (2) from this solution. Suppose one assumes (without
justification) that v = B, = 0 and that ) is a constant. Then the first equation
of eq. (6) for A can be trivially integrated, and plugged into eq. (5). The result

is eq. (2).

We will choose our renormalization scale to be the Z mass and we will input
the two-loop expressions for the beta functions and gamma. To solve for the
potential, boundary conditions for the six first order differential equations are
needed. These six conditions will be the initial values of g,g', ), gy,u? and g,
(the strong coupling constant). As our input parameters, we choose the Fermi
constant, G, the Z mass, mz, the strong coupling a,(mz), the fine-structure
constant aem(0) and the physical top-quark and Higgs masses. Given these six
input parameters, the potential can be examined for stability. For given top quark
and Higgs masses, the only significant uncertainties are in the values chosen for

myz and a,(mz).

The two-loop anomalous dimension and the two-loop beta functions can all
be found in the works of Machacek and Va.ughn?—m We have used their results
(in Landau gauge).

The initial values for g and g' can be extracted from the value of G Fm% and
aem(0). The expressions for g and g', evaluated at our renormalization scale mz,
can be found explicitly in the works of Marciano and Sirlin™*** The value of
myz will be taken to be 91.6 GeV; the uncertainty caused by this choice will be

[15]

discussed shortly.

For the initial value of the strong coupling, we take a,(mz) = 0.115 £ 0.015,
as suggested by a combination of measurements and theoretical calculations™
This corresponds roughly to a range of Agcp, in the five-flavor MS scheme to
two-loops, of 50 — 300 MeV. Results will be presented for the central value (which

corresponds to Agcp =~ 150 MeV); the uncertainties will be discussed later.



Since p? is the only scale in the theory, its initial value is irrelevant; one
adjusts the value to get the correct minimum of the potential. Rather than
attempt to use an expression for the Higgs mass in terms of the initial value
of A, we adopt the following procedure. An initial value of A is chosen, and
the potential is numerically calculated. The curvature of the potential at the
minimum can then be found. However, the curvature is not necessarily the
square of the Higgs mass. The inverse scalar propagator can be written as

—iG~Y(p) = p* —m? - B(p) ,
where Z(p) is the scalar self-energy. If we expand Z(p) about p? = m?, and
then recognize that the curvature of the potential at the minimum is the inverse
propagator at zero external momentum, we find that the pole of the propagator

occurs at

dz

mly = (1 t 32 ) V(¢ = o). (7)

p? =m?
The p-dependent part of ¥ can easily be found, and the Higgs mass extracted.

The correction factor is generally less than one percent.

Finally, we need the initial value of the Yukawa coupling, given the top quark
mass. There are many different possible definitions of the top quark mass; the
mass given by half the energy to pair-produce a top quark will differ from the
mass given by the energy needed (in virtual W decay) to make a single top
quark. Since the only precise bound for the top quark mass will come from

pair-production, we will define the top quark mass to be
me = gy(¢* = 4m)—=, (8)
V2
where o = 246.225 GeV. We also require that the beta function for the Yukawa

coupling vanish for ¢? < 4m?.

We now have all of the ingredients. The potential is evaluated numerically up
to a cutoff scale of A = 10'® GeV (other cutoffs will be discussed shortly). The

results are shown in Fig. 1. We have included a line giving the lower bound to



the Higgs mass for lighter top quarks (which is /2 times the “Linde-Weinberg”
bound; see Ref. 8 for an extensive review). We find for A = 1015 | for a given
lower bound on the top quark mass of 90 (100, 110, 120) GeV, that there is a
lower limit to the Higgs mass of 7.4 (19.8, 33.8, 49.6) GeV.

The sensitivity of the results to the input parameters can be easily deter-
mined. For light Higgs masses, the bound is roughly proportional to the choice
of mz; a 1% increase (decrease) in mz corresponds to a 1% increase (decrease) in
the bound on m;. As the Higgs mass increases, this correction becomes smaller
as scalar loops dominate. Thus, the current 1% uncertainty in mz will affect the
value of the bound on m; by at most 1 GeV. The uncertainty due to the choice of
o, is somewhat more severe. For a top quark mass of 100 GeV, the lower bound on
the Higgs mass is 17.6, 19.8, 22.0 GeV for a, = .100, .115, .130. For a top quark
mass of 120 GeV, the bound is 45.1, 49.6, 53.8 GeV for o, = .100, .115, .130.
This uncertainty is much larger than the uncertainty caused by neglecting three
loop beta functions and two-loop boundary conditions and gauge or scheme de-
pendences and thus this calculation is as precise as possible given current data

on ay.

To test the sensitivity of the calculation to our assumptions about thresholds,
we performed a second independent analysis where we replaced the one loop
boundary conditions by massless one or two loop conditions with #-functions for
thresholds. This enabled us in the one loop case to compare full thresholds with
the massless approximation, where there is no gauge or scheme dependence. Next,
we compared massless one loop boundary conditions with the corresponding two
loop conditions. With the second method we could also test the contribution of
individual terms in the @-functions to the final result in a consistent way. Our
tests show us that we can determine the bounds with an systematic uncertainty

less than 1 GeV for a given set of input data.

We had cutoff the potential at A = 101> GeV. From Fig. 1 we can see that
modifications in the bounds for different A start at a threshold value of m; which



decreases for smaller A. The effect of lower cutoffs is to reduce the vacuum
stability bounds above this threshold somewhat. For a top quark mass of 120
" GeV, the lower bound on the Higgs mass was 49.6 GeV. If the cutoff is lowered to
105,10%,10® GeV, then the bound decreases to 48.7, 42.8, 29.5 GeV. Thus, the
choice of the value of the cutoff is irrelevant, unless it is below a given threshold.
It is interesting to observe that the bounds for small Higgs mass do not depend
on the cutoff at all. This is related to the fact, that the cutoff represents the
scale where the effective A gets negative. For small Higgs masses this happens
either at low scales or never. Since we are restricting ourselves to the standard
model, we must assume that no new physics appears until at least 1-10 TeV (or
else the model is not the standard model); our results are thus quite insensitive

to the choice of the cutoff.

Finally, in the case of N generations m} must be replaced approximately by
the sum of the fourth power of all heavy quarks. For N = 4 nondiscovery of any
new quark would imply my > my > 110 GeV. If we assume my > m; we get

myg > 96 GeV.

We conclude that the vacuum is unstable unless the Higgs mass is above the
curves shown in Fig. 1" In the current Fermilab Collider run, a limit as high
as 110 GeV on the top quark mass should be reached, which would then imply
a lower bound of 33.8 GeV on the Higgs mass. In the second run, scheduled
for the fall of 1990, this bound will be increased beyond 50 GeV. Since it will
be several years before LEP I can experimentally search for Higgs bosons with
masses above 30 GeV, we conclude that if the top quark is not discovered at the
Fermilab Collider, then, within the context of the minimal standard model, the
Higgs boson cannot be discovered at CUSB, SLC or LEP 1. This result, as can be
seen from Fig. 1, is independent of the choice of the scale at which new physics
might enter, as long as this scale exceeds 1 TeV, which it must if the minimal

standard model is valid.
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Fig. 1: The vacuum stability bounds at the two loop level with one loop
boundary conditions for different cutoffs. The solid line is for A = 10'® GeV and
the dashed lines represent lower cutoffs. Systematic uncertainties are smaller
than 1 GeV. The dominant uncertainty is the current knowledge of a, (see text).
The lower bound for smaller top quark masses (the “Linde-Weinberg” bound; see

ref. 8) is also shown as a dotted line.
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