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Abstract

The Kibble Zurek mechanism describes the universal formation of topological

defects during continuous symmetry breaking phase transitions. It has been con-

firmed in a wide variety of systems and is of interest within theoretical high energy

physics and cosmology. While during high temperature phase transitions classi-

cal methods can be used to study topological defect formation, in zero temperature

quantum phase transitions, quantum e↵ects can dominate dynamics such that classi-

cal approximations fail. This is problematic in quantum field theory because topolog-

ical defect formation constitutes a non-perturbative non-equilibrium phenomenon,

yet there are at present no well-developed non-perturbative non-equilibrium meth-

ods available for calculations. Nonetheless, due to its generality and confirmation

in other cases, the Kibble-Zurek mechanism is expected to hold. This means that

in addition to being of physical interest in its own right, the Kibble-Zurek mech-

anism is also an excellent test for any potential non-perturbative non-equilibrium

techniques.

In this thesis, tensor network techniques are applied to the problem of confirm-

ing the Kibble Zurek mechanism in the �4 quantum field theory in D = (1 + 1)

spacetime dimensions. Such techniques have already been highly successful in con-

densed matter and to some extent in quantum field theory. The kink defects of the

theory are studied both in equilibrium and in the non-equilibrium scenario of their

formation. Results consistent with the Kibble-Zurek mechanism are found, which

provides evidence that the mechanism holds in this case and confirms tensor net-

works as a promising non-perturbative non-equilibrium method for quantum field

theory. As tensor network methods are developed further to higher dimensions and

more sophisticated theories, they could one day provide a powerful method for the

non-perturbative study of non-equilibrium high energy physics and cosmology, an

area of physics which remains essentially unexplored yet important for our under-

standing of nature.
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Preface

Thesis Intention

In this thesis, I summarise the key results of the Engineering and Physical

Sciences Research Council (EPSRC) funded research project “Defect Formation in

Quantum Phase Transitions” conducted by the author and supervised by Arttu

Rajantie. The presentation is intended to be self-contained and includes an intro-

duction to the concepts and methods used during the project. The main results of

the project are outlined in two separate chapters, 7 and 9. These follow the work

published in

1. Gillman, E., Rajantie A. (2017). “Topological Defects in Quantum Field The-

ory with Matrix Product States.” Phys. Rev. D, 96:094509, 2017. arXiv:1705.09802

and

2. Gillman, E., Rajantie A. (2017) .“The Kibble Zurek Mechanism of Topological

Defect Formation in Quantum Field Theory with Matrix Product States.” pre-

print, arXiv:1711.10452. Accepted for publication in Phys. Rev. D.

respectively, which constitute the key outcomes of the project for which the author

was the primary researcher.

Context and Motivation

Currently, there is no well-developed general method for performing non-equilibrium

quantum field theory calculations non-perturbatively. Access to such a technique

would open up significant new areas for study within theoretical high energy physics

and cosmology making the development of potential methods extremely appealing.

In one spatial dimension, tensor network methods have emerged as a domi-

nant non-perturbative technique within quantum many body physics and condensed

19
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matter theory. These techniques can be applied both to equilibrium scenarios (in-

cluding finite fermion densities since they are free of the sign-problem) and to non-

equilibrium scenarios, having been highly successful in both cases. Furthermore,

they have been successfully applied to quantum field theories previously, including

to the �4 theory in equilibrium [1] and in non-equilibrium Kibble-Zurek mechanism

type scenarios [2].

The previous success of tensor network methods indicate they are a promising

candidate for the study of non-equilibrium quantum field theory more generally.

Topological defect formation via the Kibble-Zurek mechanism then provides a par-

ticularly interesting area of application since, in addition to being of interest in its

own right, it is known to be challenging for non-equilibrium methods to capture,

with some standard methods failing in this case [3]. Due to its generality, the Kibble-

Zurek mechanism is expected to hold so that topological defect formation functions

as an excellent benchmark for potential non-perturbative non-equilibrium methods.

Since topological defect formation has a non-trivial realisation in D = (1+1) in the

�4 scalar field theory, it is particularly good as a test for tensor network techniques.

Finally, there is at present significant interest in developing tensor network tech-

niques in higher dimensions as well as to Abelian and non-Abelian gauge theories.

Therefore, this is an ideal time to also develop them as non-equilibrium quantum

field theory methods with the hope that they can one day simulate realistic theories

in high energy physics and cosmology.

Aims

The first main aim of this thesis is to provide evidence for the validity of the

Kibble Zurek mechanism of topological defect formation, in the case of a quantum

field theory undergoing a quantum phase transition (QPT). To achieve this, we study

the �4 scalar field theory in D = (1 + 1) spacetime dimensions. We then consider

a non-equilibrium scenario that should, according to the Kibble-Zurek mechanism,

lead to topological defect formation and compare the results of our calculations

against these expectations.

The second main aim of the thesis is to benchmark and develop the use of tensor

network techniques as a non-perturbative non-equilibrium method for quantum field

theory. This is achieved by applying tensor network methods to the study of the

kink defect in the �4 model in equilibrium, comparing to known analytic results, and

by performing the non-equilibrium calculations needed to study the Kibble-Zurek
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mechanism in this theory.

Results and Basis for Future Research

We use the matrix product state and related tensor network techniques to study

the �4 kink defect both in equilibrium and out of equilibrium in the Kibble-Zurek

mechanism scenario. In the equilibrium case, we show that matrix product states

and tensor networks can be used to capture the physics of kink defects comparing

with analytic results for the kink mass at both weak and strong couplings. Out

of equilibrium, we find that the two-point function computed using tensor network

methods is consistent with expectations from the Kibble-Zurek mechanism of topo-

logical defect formation. In addition to these main results, we develop strategies and

methods for the application of tensor networks to quantum field theory and topo-

logical defects that can be applied more broadly than the specific theory considered

here. The results of this work suggest that tensor networks are indeed a promising

method for non-equilibrium quantum field theory calculations.

The results of this project can be adapted and built on with applications to

more sophisticated theories, in parallel with the development of tensor network

techniques more generally.



Chapter 1

Introduction

1.1 Topological Defects and Their Formation

1.1.1 Topological Defects

The existence of topological defects is a highly generic phenomenon found in

condensed matter systems, for example liquid crystals [4] and superfluids [5], and

proposed in high energy scenarios such as cosmology [6] and beyond standard model

theories [7].

Intuitively, a topological defect can be thought of as a discontinuity in an other-

wise ordered system, typically at the interface between ordered domains, that cannot

be removed by local changes. Some of the most intuitive examples of topological

defects are found in classical spin systems [8]. For example, the classical Ising model

has topological defects known as domain walls which separate uniform domains of

spins as illustrated in Figure 1.1. In the two-dimensional case shown, the wall de-

fect is line-like (one-dimensional) and, in DS spatial dimensions, such a defect will in

general be of dimension Ddef = DS �1 i.e. of codimension Dco = DS �Ddef = 1. The

relationship with topology comes from the fact that local changes such as single spin

flips cannot remove such a defect from the system for given boundary conditions.

Rather, a global change to the configuration is required - all spins in a domain must

be flipped - and such defects can be considered topologically stable for this reason.

The physical importance of defects lies in the fact that they can be formed

quite generically during the process of symmetry breaking and are typically very

long lived relative to other excitations. Once formed, they are then highly relevant

for the subsequent physics in the system of interest.

22
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Figure 1.1: The domain wall (solid black line) is a defect that separates uniform
regions of spins (red pluses and blue crosses). The defect is topologically stable
since local spin-flips can only shift the domain-wall and a global change to the
system which flips all the spins in one of the two domains is required to remove it.

1.1.2 The Formation of Topological Defects and Symmetry

Breaking

The formation of defects can occur during phase transitions characterised by the

breaking of symmetry [7]. The case of global symmetry breaking in continuous phase

transitions is described by the Kibble-Zurek mechanism (KZM). The KZM combines

the work of Kibble, who considered the formation of defects in cosmology [9], with

that of Zurek in condensed matter systems [10]. Initially, Kibble observed that the

process of any realistic continuous phase transition is in fact a non-equilibrium pro-

cess where topological defects are formed, assuming they can exist in the system in

the first place. Zurek then developed this idea and argued that, despite equilibrium

being lost during a continuous phase transition, the process is nonetheless universal.

The key prediction of the KZM is then that the density of topological defects n in a

system following an appropriate symmetry breaking phase transition has a universal
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scaling. The scaling is determined by the equilibrium critical exponents ⌫ and µ,

associated with the spatial and temporal correlation lengths, along with the quench

rate ⌧Q - a dynamical scale that characterises the rate of the phase transition. The

KZM prediction for the defect density n in the post-transition state is

n ⇠ ⌧
�Dco

⌫
1+µ

Q , (1.1)

where Dco is the codimension of the defect.

While the KZM constitutes a generic description of a continuous symmetry

breaking phase transition and predicts the universal scaling of a number of related

quantities, the uncommonly long lifetimes of defects make the scaling (1.1) par-

ticularly important. Even long after other excitations have equilibrated and the

universal information encoded in their distribution has been lost, details of the

phase transition will still be present in the distribution of topological defects. For

this reason, topological defects are often described as “fossilised evidence” of the

phase transition. This is especially important since confirmation of the KZM can be

challenging both experimentally and theoretically as it requires the measurement of

quantities within a non-equilibrium scenario over a wide range of parameters (quench

rates). As such, having a measurement that can be performed even sometime after

the transition has ended is essential and this makes the scaling of the defect density

the key testable prediction of the KZM.

1.1.3 The Kibble-Zurek Mechanism in Quantum Theory

The universal scaling (1.1) predicted by the Kibble Zurek Mechanism has been

confirmed experimentally in a wide variety of systems. There is also significant

theoretical evidence for its validly within classical systems and quantum systems

where a classical-statistical approximation is valid such as those at su�ciently high

temperatures or occupation numbers, see e.g. the reviews [11, 7].

In the case of zero-temperature quantum phase transitions (QPT), thermal

fluctuations are absent and cannot dominate dynamics. The understanding of out

of equilibrium physics in this case then requires a truly quantum picture, making

confirmation of the KZM more challenging. On the one hand, the necessary non-

equilibrium calculations are even more di�cult in the quantum case. On the other,

it may not be clear how to pick an appropriate observable to estimate the defect

density in the first place. Nonetheless, in the special case of integrable quantum

lattice theories such as the quantum Ising model, it is possible to confirm the KZM
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prediction (1.1) exactly [12, 13] for two key reasons. Firstly, the unitary quantum

dynamics though the QPT can be computed analytically. Secondly, topological

defects can be identified explicitly which allows for the construction of exact defect

counting operators. Of course, such analytic calculations and constructions are

not possible in non-integrable theories. Some aspects of the KZM have still been

confirmed by studying other scaling predictions such as the variance of winding

numbers using mean field theory [14], quasi-particle excitations densities and the

evolution of initial perturbations into domains [15]. However, such observables may

well be unrelated to the defect density [16] and the question of topological defect

formation remains.

In the case of quantum field theory (QFT), the question of choosing an appro-

priate observable to estimate the defect density becomes even more important since

observables that are UV sensitive, such as those that perform explicit counting in

the lattice case, are ruled out. A more suitable observable for QFT was suggested

in [17] where it was shown that in the classical statistical �4 theory, the two-point

function could be used to extract a well behaved long-distance estimate of the defect

density in addition to providing an explicit signature of defects. However, confirm-

ing this suggestion still requires a non-equilibrium quantum field theory calculation

of defect formation, which has proven challenging for standard, otherwise successful

methods [3, 18].

To summarise, theoretical confirmation of the KZM and defect formation in the

case of a QFT undergoing a quantum phase transition remains unclear. However, the

generality and substantial evidence for the KZM in other cases strongly suggests its

validity. What is then lacking are the necessary calculation tools with the di�cultly

of capturing defect formation in QFT suggesting that a truly non-perturbative non-

equilibrium method is required. The KZM and defect formation can then be viewed

not only as a phenomena of significant interest in its own right, but a powerful

benchmark for any potential non-perturbative non-equilibrium QFT methods, of

which there are no well-developed examples at present.

1.2 Thesis Outline

In this thesis, we first provide an introduction to topological defects in the �4

theory in Chapter 2 and an outline of the Kibble Zurek mechanism and defect for-

mation in Chapter 3. In Chapter 4 we outline the Hamiltonian lattice regularisation,

which allows standard quantum many body physics techniques to be applied to the
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study of quantum field theories. In Chapter 5 we introduce the concept of tensor

networks and in Chapter 6 outline some relevant methods for their use in approx-

imations. These ideas are applied in Chapter 7 to the study of the �4 kink defect

in equilibrium, where the tensor network approximations are compared to known

perturbative and universal results. Chapter 8 introduces the application of ten-

sor networks to non-equilibrium problems and discusses some other non-equilibrium

quantum field theory methods for comparison. These are then applied to the prob-

lem of defect formation in Chapter 9 before concluding in Chapter 10



Chapter 2

Topological Defects

2.1 Introduction

In classical field theory, field configurations �(x) can be classified into topolog-

ical sectors so that configurations lying in di↵erent sectors cannot be continuously

deformed into one another. Since time evolution is a form of continuous deforma-

tion, the existence of multiple topological sectors corresponds to the existence of a

conserved topological charge Qtop. Thus, the topology of the theory, as specified by

the homotopy classes of field configurations, results in a conserved charge which is

not related to the symmetries of the system through Noether’s theorem.

The topological sector that contains the minimum energy solution to the equa-

tions of motion 'v(x) is called the vacuum sector and given Qtop = 0. A topological

defect or topological soliton (which we will use synonymously) is then a static (time-

independent) solution to the equations to motion that lies outside the vacuum sector,

i.e. Qtop 6= 0, and is of minimum energy within that sector so that it is stable.

In a quantum field theory, one can extend the concept of topological sectors by

introducing a Hermitian topological charge operator Q̂top which commutes with the

Hamiltonian
h
Ĥ, Q̂top

i
= 0 and partitions the physical states of the theory according

to a superselection rule [19]. The vacuum sector, which contains the ground-state,

is labelled by Qtop = 0 and a topological defect is then a minimum energy state

within a sector with Qtop 6= 0. Since they lie in a di↵erent sector to the vacuum,

these objects cannot be reached by standard perturbation theory and one must turn

to other methods such as semi-classical expansions starting from the classical defect

configurations or non-perturbative methods such as lattice theory.

In this thesis, we will focus on one of the simplest examples of a topological

defect, the kink defect of the �4 theory in D = (1 + 1). This defect is particularly

27
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interesting since an explicit classical form can be found for it, it is zero-dimensional

and so appears like a particle in the classical theory and the corresponding topo-

logical charge can be defined in terms of a choice of boundary conditions which

allows the defect to be studied in the quantum theory using non-perturbative lattice

methods.

In this chapter, we will first introduce the classical �4 theory and the kink defect.

Second, we will introduce the corresponding quantum theory before reviewing the

results obtained for the quantum kink using semi-classical methods and universality

arguments.

2.2 Topological Defects in Classical Field Theory

2.2.1 Action, Energy Functional and Equations of Motion

The classical �4 theory in D = (1 + 1) provides one of the simplest examples

of topological defects in a field theory. The theory can be defined by the action

S[�] =

Z
dxdt

h
1
2(@t�)2 � 1

2(@x�)2 � µ2
0
2 �

2 � �0
4! �

4
i

, (2.1)

where we will set �0 > 0 but allow µ2
0 to take on negative values. The corresponding

energy functional is given by

E[�] =

Z
dx
h

1
2(@t�)2 + 1

2(@x�)2 + µ2
0
2 �

2 + �0
4! �

4
i

=

Z ⇥
1
2(@t�)2 + 1

2(@x�)2 + V (�)
⇤
dx

=

Z ⇥
1
2(@t�)2

⇤
dx + U [�] , (2.2)

where V (�) is the potential density and U [�] is the potential energy, which includes

the contribution of the spatial gradient energy.

Physical field configurations '(t, x) correspond to stationary points of the ac-

tion with fixed boundary conditions and solve the equations of motion (EOM) given

by the Euler Lagrange equations

2� = �µ2
0�� �0

3!
�3 , (2.3)

where 2 = @µ@µ = @2
t � @2

x. Static solutions with @t'(t, x) = 0 are given by
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stationary points of the potential energy U [�] while stable solutions are given by the

local minima.

2.2.2 Classical Vacua, Elementary Particles and Phase Tran-

sition

In addition to the spacetime Poincaré symmetry, the action (2.1) has an internal

global Z2 symmetry given by the group G = Z2 = {e, g}. The action of the non-

trivial element g is given by g : �(x) ! ��(x) and leaves the action (2.1) invariant

as S[�] ! S[��] = S[�].

The minimum energy solutions of the equations of motion '⌦ are known as

the vacua and can be identified by minima of the potential density, see Figure

2.1. When µ2
0 > 0, there is a unique solution '⌦ = '0 = 0 which minimises the

energy (2.2). The solution '0 is spatially uniform and Z2 symmetric such that

g : '0 ! '0. However, when µ2
0 < 0, there are two degenerate minimum energy

solutions '± = ±
q

�6µ2
0

�0
= ±v. The solutions are still spatially uniform but form an

antisymmetric Z2 pair as g : '± ! �'± = '⌥. This is an example of a continuous

symmetry breaking phase transition where the stable '0 solution becomes unstable

for µ2
0 < 0 and perturbations will lead to spontaneous symmetry breaking down

to the stable, antisymmetric solutions '±. In the present case, the location of the

critical point is given by µ2
0 = 0 for all �0, though more generally the critical point

is located at some non-zero µ2
0 = m2

C . The distance from the critical point can be

characterised by ✏ = µ2
0�m2

C for a given �0 so that the symmetric (disordered) phase

with ✏ > 0, is separated from the symmetry broken (ordered) phase with ✏ < 0 by

the critical point where ✏ = 0.

The classical elementary (scalar) particles in the �4 theory can be considered as

small linearised excitations about the minimum energy configuration. The action of

these excitations can be found by expanding about a chosen vacuum as � = '⌦+��.

In the symmetric phase with µ2
0 > 0 the minimum energy configuration is '0 = 0

such that � = �� and the particle mass mS is given by the usual quadratic coe�cient

mS = µ0 =
p

|µ2
0|. In the symmetry broken phase, the classical action (2.1) can be

expanded as � = ±v + �� so that for +v

S[��] =

Z
dxdt

"
1

2
(@t��)2 � 1

2
(@x��)2 � |2µ2

0|
2

��2 �
r
�0|µ2

0|
6

��3 � �0

4!
��4 + V (v)

#
,

(2.4)
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Figure 2.1: The classical potential density V (�) (2.2) with µ2
0 = �1, 1 and �0 = 0.5.

For µ2
0 > 0 there is a single minimum corresponding to a unique vacuum solution

'0 = 0 while for µ2
0 < 0 there are two global minima corresponding to the degenerate

vacua '± = ±v = ±
q

�6µ2
0

�0
.

and the classical particle mass is found via the coe�cient of the quadratic term ��2

such that mS =
p

2µ0.

2.2.3 Topological Charge and Sectors

The topological charge for the classical �4 theory can be introduced in the

symmetry broken phase by considering the necessary criteria for a given field con-

figuration to have finite energy. It is easy to see that such configurations must

necessarily fall o↵ to a vacuum configuration as x ! ±1 i.e. �(x) ! ±v as

x ! ±1. Therefore, there are four possible boundary conditions for finite energy

field configurations and these can be given an integer charge

Qtop =
1

2v
(�(1) � �(�1)) . (2.5)

This charge is necessarily conserved since no finite energy process can change the

disconnected boundary conditions. The corresponding conserved current is given by

jµ =
1

2v
✏µ⌫@⌫� , (2.6)
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where ✏µ⌫ is the Levi-Civita symbol. Generally, since no continuous deformation can

occur at the boundary without leaving the set of finite energy configurations, the

charge Qtop is indeed a topological charge for the theory and partitions the set of

finite energy configurations into topological sectors. Configurations that fall o↵ to

the same vacuum configuration (including the vacua themselves) have Qtop = 0 and

are topologically trivial, while those falling to distinct vacua have Qtop = ±1 and

are topologically non-trivial.

2.2.4 Topological Charge and Sectors in Classical Field The-

ory: A General Analysis

While it is quite intuitive in the �4 case that the charge (2.5) defined on the

boundary corresponds to a topological charge for the theory, in general situations

the existence of multiple topological sectors is less obvious. However, there is a

powerful general analysis that can be used to determine the presence of non-trivial

topological charges in classical field theory [20]. While the mathematical details of

this analysis can be somewhat subtle, the basic idea is quite intuitive and we will

outline it here.

The separation of a theory into topological sectors can be established quite

generally by examining the symmetries of the theory along with the topology of

the vacuum manifold M i.e. the set of physically distinct minimum energy field

configurations. To achieve this, consider a theory with a symmetry group G such

that the action of its elements on field configurations g : � ! �g leaves the energy

functional invariant E[�] = E[�g]. Given a configuration �0 that minimises E[�] this

symmetry means that all configurations �g
0 will also minimise the energy. However,

labelling the minimum energy configurations by the elements of G can be redundant

as there is always a subgroup H (possibly trivial) that will leave the configuration

�0 invariant i.e. �h
0 = �0 for all h 2 H. As such, the distinct minimum energy

configurations are really labelled by the elements of the (left) coset gH and the

vacuum manifold is isomorphic to the coset space M ' G/H.

With the vacuum manifold established, the topology of the vacuum manifold

can be identified by considering the homotopy groups ⇡n(X). The homotopy group

⇡n(X) can be defined by considering the set of maps f from the n-sphere Sn to the

space X ,

f : Sn ! X , (2.7)
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that take a fixed point a (the base point) in Sn to a fixed point b in X. Introducing

an equivalence relation such that all maps f that can be continuously deformed into

one another fall into the same equivalence class, the elements of the homotopy group

⇡n(X) are given by representatives of these equivalence classes.

Finite energy field configurations can then be partitioned into topological sec-

tors by considering them as maps at infinity from Sn
1 to the vacuum manifold M.

It can then be shown that configurations that are topologically non-trivial on the

boundary Sn
1 cannot be continuously deformed into topologically trivial configu-

rations. This means that such configurations necessarily have a non-zero energy

density somewhere in the interior which we associate to the existence of a topologi-

cal defect. For the homotopy classes with n = 0, 1, 2 and 3 the corresponding defects

have codimension Dco = n + 1 and are known as domain walls, strings, monopoles

and textures respectively.

In cases where the vacuum manifold consists of disconnected parts, then the

homotopy group ⇡0(M) is non-trivial and domain walls (kinks in D = (1+1)) must

occur. The �4 theory then falls into this category with G = Z2, H = 1 such that

M = G/H = Z2 and ⇡0(Z2) = Z2. Therefore, for a fixed boundary point e.g.

�(+1) = v, the �4 theory has two topological sectors corresponding to the topo-

logically trivial vacuum sector and the non-trivial kink sector. Of course, showing

the existence of topological sectors does not guarantee that one can explicitly find

solutions to the equations of motion within these sectors, nor that any solutions

found will be the minimum energy configurations within these sectors and therefore

stable, though this is indeed possible in the �4 case.

2.2.5 Kink Defects in �4

With the existence of a topological charge and non-trivial topological sectors

established, we would now like to find explicit forms for the topological defects i.e.

find the minimum energy solutions to the equations of motion with Qtop 6= 0. For

the �4 theory the topological defect solutions 'K(x) with Qtop = 1 are known as

kinks and can be found explicitly to give

'K(x) = v tanh

✓
µ0 (x � x0)p

2

◆
, (2.8)

with the corresponding antikink for Qtop = �1 given by �'K(x).

The kink solution (2.8) has several important features that are characteristic

of topological defects. Firstly, as can be seen in Figure 2.2, it is a solution that
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Figure 2.2: The classical kink solution 'K(x) (2.8) for µ2
0 = �1,�0 = 0.5 and x0 = 0.

The solution interpolates between the two degenerate symmetry broken vacua ±v.
The “kink width” dK =

p
�2/µ2

0 characterises the scale over which the kink has a
non-zero spatial gradient and, correspondingly, a non-zero energy density relative
to the vacua.

smoothly interpolates between two di↵erent minimum energy solutions ±v as x !
±1. Secondly, the solution has a degree of freedom x0 known as a zero-mode that

determines the point at which the kink crosses the x-axis. The kink solution (2.8) is

then in fact a continuous one-parameter family of solutions labelled by x0. Thirdly,

the kink solution has a non-zero size characterised by the length scale (which we

will call the kink-width) dK =
p

2/µ0. This length scale characterises the size of the

localised energy density of the kink solution so that, in this way, the kink appears like

a classical particle. However, there are important di↵erences with the elementary

excitations that we would consider as particles due to their association with particles

in a quantum theory. In particular, while finite size seems like a natural thing to

associate to a classical particle, the elementary excitations that are associated to

particles in the quantum theory have no such size are are considered infinitesimal.

Additionally, the kink solution is a non-linear solution to the full equations of motion

while the elementary excitations are instead solutions to the linearised equations of

motion. In this sense, the kink solutions are naturally non-perturbative objects

while the elementary excitations are naturally perturbative.

The kink mass MK , i.e. its energy above a vacuum state, is finite due to its

localised energy density. Integrating the energy density and subtracting the vacuum
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energy gives

MK = 4
p

2
|µ0|3
�0

, (2.9)

where the O(µ3
0) scaling means that the kinks are generally very heavy relative to

the scalar excitations with mS =
p

2µ0.

2.3 Topological Defects in Quantum Theory

2.3.1 Hamiltonian and Field Eigenbasis

The continuum Hamiltonian for the �4 quantum field theory in D = (1 + 1)

can be written in the Schrödinger picture as

H[�] =

Z
dx
h

1
2⇡

2(x) + 1
2(@x�)2(x) + µ2

0
2 �

2(x) + �0
4! �

4(x)
i

. (2.10)

The field operators �(x) and ⇡(x) obey the canonical commutation relations

[�(x), ⇡(y)] = i�(x � y) (2.11)

and the �(x) field is dimensionless, [�] = 0, where the square brackets indicate the

mass dimensions of the enclosed object. The ⇡(x) field is dimensionful with [⇡] = +1

as are the parameters with [µ2
0] = +2 and [�0] = +2. In D = (1 + 1) the �4 theory

then has a single dimensionless bare parameter given by the ratio g0 = �0/µ2
0. Addi-

tionally, only mass renormalisation is required so that the (dimensionless) e↵ective

coupling g, which determines the validity of perturbative expansions and is related

to the scattering cross-section, can be parametrised using the bare parameter �0

along with the physical scalar mass mS such that we can set g = �0/m2
S.

The field eigenstates |�(x)i, given by �(x) |�(x)i = �(x) |�(x)i, can be used

as basis for the QFT [21] with a general state | i being expanded as

| i =

Z
D[�(x)] [�(x)] |�(x)i , (2.12)

where D[�(x)] indicates an integral over all (spatial) field configurations �(x) and

 [�(x)] is known as the wavefunctional for the state, though we will use wavefunction

interchangeably.
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2.3.2 Vacua, Particles and Symmetry Breaking

As for the classical theory, the Hamiltonian (2.10) has an internal global Z2

symmetry and displays a continuous symmetry breaking quantum phase transition

(QPT) [22]. In the broken symmetry phase, the theory has degenerate vacuum

states that have field expectation values (vacuum expectation values or vev) that

are related by the non-trivial Z2 symmetry transformation. Since symmetric su-

perpositions of the symmetry broken vacuum states are unstable against symmetry

breaking perturbations, the physical vacuum/ground states (which we use inter-

changeably) can be considered the antisymmetric states [23].

In the case of finite spatial volume, due to the presence of instantons (tun-

nelling), the ground state of the theory is Z2 symmetric even within the symmetry

broken phase [24]. Nonetheless, the di↵erent phases of the quantum theory can be

can still be distinguished in the ground state by the presence of long range order in

the equal time field two-point function

G2(r) = h⌦|�(x)�(x + r)|⌦i . (2.13)

In the disordered phase G2(r) decays exponentially at asymptotic distances,

G2(r) ⇠ e� r
⇠ as r ! 1 , (2.14)

which defines the correlation length ⇠. In contrast, in the ordered phase G2(r)

displays long range order and tends to a constant as :

G2(r) ⇠ v2 as r ! 1 . (2.15)

At the critical point, the theory has a diverging correlation length which scales

universally as

⇠ ⇡ ⇠0|✏|�⌫ ✏ > 0 , (2.16)

⇠ ⇡ ⇠0
0|✏|�⌫

0
✏ < 0 , (2.17)

where ✏ is some reduced coupling and ✏ = 0 characterises the critical point. Due to

Lorentz invariance of the theory, the correlation length is equal to the inverse mass

gap � which is the mass of the elementary scalar particle, � = mS = ⇠�1, so that

the critical point is characterised by the condition mS ! 0. The dynamical critical

exponent µ can be defined similarly to ⌫, by the critical scaling of the unequal time
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two-point function, G2(t) = h⌦|�(x, t)�(x, 0)|⌦i [25], and can also be expressed as

µ = z⌫ so that z = 1 due to Lorentz Invariance.

In D = (1 + 1), there are two possible universality classes. If the e↵ective

coupling g is kept finite as mS ! 0, by letting �0 ! 0, the theory lies close to a

Gaussian fixed point where the critical point is described by a massless Gaussian

theory. In the vicinity of this critical point, assuming g < 1, perturbation theory can

be applied about the Gaussian theory and the symmetry breaking phase transition

can be understood perturbatively. In this case, in the symmetric phase, the scalar

mass can be related to the bare parameters via renormalised perturbation theory

[26] to give

µ2
0 = m2

S � 1

8⇡
log

✓
64

m2
Sa2

◆
+ O(�2

0) , (2.18)

where a spatial lattice with spacing a provides the UV regularisation. When mS !
0 this expression is infrared divergent and perturbation theory will break down

requiring resummation. Nevertheless, we can get a rough estimate for the critical

behaviour by retaining only the m2
S independent one-loop terms so that

m2
S = µ2

0 +
�0

8⇡
log(64) . (2.19)

Approaching the critical point by keeping �0 fixed such that ✏ ⇠ µ2
0 � m2

C , then,

since ✏ ⇠ µ2
0 ⇠ m2

S, the classical/mean-field critical scaling is given by ✏ ⇠ ⇠�2 i.e.

⌫MF = 1/2. The location of the critical bare mass m2
C can be also be estimated

using (2.19) by setting m2
S = 0 so that

m2
C(�0) = ��0

8⇡
log(64) . (2.20)

If �0 is kept finite as mS ! 0, rather than taking �0 ! 0, the e↵ective coupling

g diverges and the Wilson-Fisher fixed point is approached. In this case, at the

(strong-coupling) critical point the theory is not equivalent to a Gaussian scalar

theory and so standard perturbation theory cannot be applied in its vicinity. Instead,

the critical theory is one of massless fermions [27] and falls into the classical D = 2

Ising universality class. The critical exponents for this class are [28]

⌫ = 1 ,

µ = ⌫ ,

⌫ 0 = ⌫ , (2.21)
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where the second line follows from Lorentz invariance and the third line is the

hyperscaling relation for the universality class.

2.3.3 Topological Charge and Sectors

A topological charge operator for the �4 theory can be introduced by direct

analogy with the classical one [19] such that

Q̂top =
1

2vcl

Z 1

�1
@x� dx ,

=
1

2

s
�0

�6µ2
0

(�(+1) � �(�1)) . (2.22)

This operator is Hermitian and commutes with the Hamiltonian so that the corre-

sponding charge is conserved under time evolution. Furthermore, it separates the

theory into topological sectors according to a superselection rule [29]. In QFT,

the physical observables are those that are (quasi) local and causality requires that

physical observables are encoded in operators A that commute at spacelike separa-

tions. Since the charge Q̂top is defined on the boundary of the theory, it then must

commute with all physical operators: If an operator A(t) =
R

dxa(x, t) where a(x, t)

has finite spatial support for all t, then the commutator at any given time t,

h
A(t), Q̂top

i
= lim

L!1

Z
dx ([a(x, t),�(+L)] � [a(x, t),�(�L)]) ! 0 (2.23)

by causality. The topological charge Q̂top therefore introduces a superselection rule

since, for states with definite charge | , Qtopi,

h 0, Qtop
0 |A(t)| , Qtopi = 0 if Qtop 6= Qtop

0 (2.24)

for all physical operators. As such, from the perspective of physical observables,

there is no coherence between di↵erent topological sectors so that if | i ⇠ | , Qtopi+
| 0, Qtop

0i then

h |A(t)| i ⇠ h , Qtop |A(t)| , Qtopi + h 0, Qtop
0 |A(t)| 0, Qtop

0i . (2.25)

The vacuum sector of the QFT can be defined as the set of states with wave-

function  [�(x)] = 0 unless  [�(+1)] =  [�(�1)] = ±
q

�0
�6µ2

0
. These states have

definite topological charge with Qtop = 0. The kink sector can be defined similarly as
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the set of states with  [�(x)] = 0 unless  [�(+1)] = � [�(�1)] =
q

�0
�6µ2

0
. States

in this sector are once again states of definite topological charge with Qtop = +1

and the minimum energy state in this sector is the one kink state.

While the definition of Q̂top (2.22) has the desired properties of a topological

charge, its physical meaning is unclear. In the case of the Sine-Gordon theory given

by the Lagrangian density

L =
1

2
(@t�)2 � 1

2
(@x�)2 � µ4

0

�0


cos

✓p
�0

µ0
�

◆
� 1

�
, (2.26)

the kinks in the theory can be treated exactly as the theory is integrable and dual

to the Massive Thirring model (MTM) [30]. The topological charge for the Sine-

Gordon theory can be defined in the same manner as for the �4 to give

Q̂(SG)
top =

1

2vSG

Z 1

�1
@x� dx , (2.27)

where vSG is the classical vacuum expectation value. However, in the Sine-Gordon

theory the kink field operators  K can be constructed explicitly [31]. These are

given by a two-component fermion field with components

( K)1 = C : exp


�i�

2
�� 2⇡i

�

Z x

�1
dz@t�(z)

�
: ,

( K)2 = �iC : exp


�

2
�� 2⇡i

�

Z x

�1
dz@t�(z)

�
: , (2.28)

where the colons indicate normal ordering, � = µ0p
�0

and C is a constant which can

be found in [31].

In terms of  K the Sine-Gordon Lagrangian takes the form of the Massive

Thirring model

L =  ̄K (i�µ@µ � M) K �

2⇡2µ2

0

�0
� ⇡

2

� �
 ̄K�

µ K

�2
, (2.29)

where the components of �µ are given by the Pauli matrices �0 = �1, �1 = �2,  ̄K =

 K�0 and M is the bare mass which can be related to the Sine-Gordon parameters

by the duality in [30]. From the Lagrangian (2.29) the particles corresponding to

the kink operators can be seen to be (elementary) fermions of the MTM Lagrangian.

The topological charge operator can then also be expressed in terms of  K to give

Q̂(SG)
top =

Z
dx  ̄K�

µ K , (2.30)
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which shows that the topological charge is really just the standard fermion number

for the kink particles. While we cannot construct the kink field operators explicitly

in the �4 theory, the Sine-Gordon model shows that, at least in that case, topolog-

ical kink defects can be interpreted as elementary particles, despite their unusual

formulation. This also provides the physical meaning behind the definition of the

topological charge and we can use the intuition from the Sine-Gordon model in the

�4 theory.

2.3.4 Kinks

As with the vacuum state, semi-classical estimates for observables of the kink

state can be obtained far from the strong coupling (Ising class) critical point. Since

the kink lies outside the Qtop = 0 sector, they do not appear at any order in pertur-

bation theory when starting from a classical configuration within the vacuum sector.

However, perturbation theory can still be applied when starting from a classical kink

configuration, though this tends to require more sophisticated methods due to the

non-uniformity of the classical kink solutions and the presence of a zero-mode [32].

The one-loop order calculation of the kink mass is a classic result known as the

‘DHN’ result following the work of Dashen, Hasslacher and Neveu [33, 34]. This can

be written in terms of the scalar mass m2
S = 2|µ2

0| + O(�0) up to O(�0) to give

MK = 2
m3

S

�0
+

mS

2

 
1

6

r
3

2
� 3

⇡
p

2

!
+ O (�0) (2.31)

= mS

"
2g�1 +

1

2

 
1

6

r
3

2
� 3

⇡
p

2

!
+ O(g)

#
, (2.32)

where the second line indicates that in this regime the observable ratio mS/MK also

provides a reasonable measure of the e↵ective coupling. From the first expression one

can see that in the semi-classical region the kink appears again as a heavy particle

such that MK = O(m3
S). More recently, zeta-function regularisation has allowed

for one-loop results in finite size systems [35] and dimensional regularisation has

provided a more systematic approach to one-loop corrections allowing for results at

finite temperatures and in higher dimensions [36]. While giving equivalent results to

one-loop order, a rigorous treatment of the zero-mode requires more work through

e.g. the use of canonical coordinates [37], which also allow for the perturbative

computation of the scalar field n-point functions in the presence of the kink [38, 39].

In the vicinity of the critical point, analytic results can be obtained by uni-
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versality. Mean field theory results, which follow from the classical behaviour

mS = ⇠�1 ⇠ µ0 ⇠ ✏1/2 and MK = ⇠�1
K ⇠ m3

S such that ⇠K ⇠ ⇠3 i.e. ⌫K = 3/2,

are valid only in the vicinity of the Gaussian fixed point when �0 ! 0. In the Ising

model universality class, in addition to the standard critical exponents, universal

amplitude ratios [40] can be derived and the ratio of correlation length amplitudes

in the symmetric and symmetry broken phases is given by

⇠0/⇠
0
0 ⇡ 2 . (2.33)

These results can be related to the topological defects in the �4 theory through

the Kramers-Wannier duality present in the Ising Model. While explicit kink cre-

ation operators cannot be constructed for the �4 theory, the corresponding disorder

operators µ(x) can be introduced in the classical Ising model [41]. The Kramers-

Wannier duality relates the disorder operator two-point correlation function on the

dual lattice at coupling (temperature) K to the spin operator two-point function at

a coupling K⇤ as

hµ(x)µ(x0)iK = h�(x̃)�(x̃0)iK⇤ . (2.34)

This duality establishes the relation ⌫ 0
K = ⌫ between the critical exponents where ⌫ 0

K

is the critical exponent associated to the diverging correlation length ⇠K of the disor-

der two-point function hµ(x)µ(x0)i in the symmetry broken phase. When combined

with the universal amplitude ratio Equation (2.33) one can establish

⇠K/⇠ ⇡ ⇠0|✏|⌫
⇠0
0|✏|⌫

0

⇡ 2 , (2.35)

which uses the hyperscaling relation ⌫ = ⌫ 0. This result corresponds in the �4 theory

to the relationship mS ⇡ 2MK between the scalar mass mS and the kink mass MK .

While universality establishes this result rigorously in the vicinity of the critical

point, physically it should hold from the point where first mS ⇡ 2MK down to the

critical point, since in this region the scalar excitation will decay into a kink-antikink

pair excitation which is the lightest excitation for the Qtop = 0 sector in this region.
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Critical Exponent Mean Field Ising Class Notes for Ising Class
⌫ 1/2 1 Exact Solution/Conformal Field Theory
µ 1/2 1 Lorentz Invariance: µ = ⌫
⌫ 0 1/2 1 Hyperscaling: ⌫ 0 = ⌫
µ0 1/2 1 Lorentz Invariance and Hyperscaling
⌫ 0

K 3/2 1 Kramers-Wannier Duality
µ0

K 3/2 1 Lorentz Invariance

Table 2.1: Table of critical exponents for the �4 theory. The mean-field predictions
are valid only when �0 ! 0 while for any finite �0 the theory belongs to the Ising
universality class.

2.3.5 Summary of Critical Exponents

The various critical exponents for the �4 theory are summarised in Table 2.1

and are illustrated in Figure 2.3 (see also [28] for the equilibrium critical behaviour

of �4 theories and [25] for a discussion of dynamics). In Figure 2.3, the classical

behaviour of 2MK and mS are plotted as dashed blue and red lines, providing

the correct description of the QFT when �0 ! 0. The semi-classical (mean-field)

approximation is then given by a simple shift, so that mS ! 0 as µ2
0 ! m2

C , but gives

the incorrect critical behaviour when �0 6= 0, as indicated by the faded dot-dashed

lines. Instead, the semi-classical results are correct only away from the critical point,

as indicated by the solid blue and red lines, while the correct critical behaviour is

that of Ising universality class, illustrated by the solid black lines.



42 Chapter 2. Topological Defects

Figure 2.3: The perturbative estimates of scalar mass mS and twice the kink mass
MK are plotted for �0 = 0 (dashed lines) and illustrated for �0 6= 0 by the shifted
curves where mS ! 0 as µ2

0 ! m2
C . For �0 6= 0 the perturbative result is correct only

away from the critical point, as indicated by the solid lines, but gives an incorrect
result near the critical point, as indicated by faded dot-dashed lines. The correct
critical behaviour in this case is given by the Ising universality class and is illustrated
by solid black lines.



Chapter 3

Topological Defect Formation

3.1 Introduction

Topological defects can form quite generically in a wide variety of phase tran-

sitions [7]. In the case of global symmetry breaking during a continuous transition,

the dynamics of the transition and the formation of defects are described by the

Kibble Zurek mechanism (KZM). The KZM provides a picture of the transition as a

non-equilibrium but nevertheless universal process and predicts the universal scaling

of a number of physical quantities. This includes the defect density n that scales

universally as (1.1) with the equilibrium critical exponents and a simple dynami-

cal scale characterising the rate of the transition [9, 10, 11]. While similar scaling

relations hold for other quantities, the scaling of defect density is a particularity

powerful prediction as topological defects tend to be very long lived so that their

distribution can be observed even long after the transition has ended and other

excitations have equilibrated.

Recently, there has been interest in the description of the KZM in quantum

phase transitions (QPT), i.e. transitions at zero-temperature where the equilibrium

state is the ground state [42]. The early confirmation of the KZM scaling of defect

density during a QPT in the quantum Ising model [12] was made possible by several

simplifying features of the theory. Firstly, in the absence of a transverse field, the

quantum states of topological defects in the Ising model can be identified explicitly

and exact counting operators can be constructed to established the defect density.

Secondly, the Ising model is integrable in simple dynamical scenarios described by

the KZM where it is equivalent to a set of independent Landau-Zener transitions,

allowing for analytic results [13]. Due to these properties, the Ising model and

other quantum spin systems have been a focal point of much research into the KZM

43
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during QPTs with a number of di↵erent quantities being found to scale universally

in various models [43, 44, 11]. However, in general systems direct confirmation of the

scaling of topological defects can be subtle and quite independent of other quantities

which may also show universal scaling [16].

In quantum field theory, the confirmation of the KZM predictions for topo-

logical defect formation during QPTs can be challenging and comparatively fewer

results have been obtained. For instance, the �4 theory has been studied during the

KZM scenario and the expected universal scaling of the correlation length confirmed

[2]. However, this does not give direct information about the defect density in the

system. Additionally, since explicit counting of defects is highly ultraviolet (UV)

sensitive, it cannot be used to extract information about the defect density in a QFT

and confirm the KZM prediction (1.1). Instead, a method by which the KZM can be

confirmed in a QFT is given by studying the (non-equilibrium) equal time two-point

function G2(k). This observable both provides a well behaved estimate of the defect

density and displays a clear signature of the presence of topological defects, making

it an ideal candidate with which to confirm topological defect formation in a system

[45]. However, any confirmation of the KZM still requires the computation of a non-

equilibrium observable, in this case G2(k), and otherwise successful non-equilibrium

techniques such as those based on the two-particle irreducible (2PI) representation

are known to fail to capture the presence of defects during symmetry breaking sce-

narios [3], though more sophisticated methods have been more successful [18].

In this chapter, we will first introduce the Kibble Zurek mechanism in Sec-

tion 3.2 and discuss various aspects of it such as the adiabatic-impulse-adiabatic

assumption (AIA), the prediction of universal scaling and the formation of topolog-

ical defects. Second, we will discuss the KZM applied to the �4 QFT and give the

predicted scalings in this case before outlining the expected form of G2(k), which

we will call the “defect ansatz” Gdef(k), specialising to the QPT case.

3.2 The Kibble Zurek Mechanism

3.2.1 AIA Assumption

The essential description of the dynamics captured by the KZM is summarised

by the “adiabatic impulse adiabatic” (AIA) assumption [11]. The basic structure of

this assumption was first put forward by Kibble [9] who considered a situation where

a system was initially in equilibrium within the symmetric phase and approaches
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the critical point of a continuous phase transition.

More concretely, consider a system parametrised by a reduced dimensionless

coupling ✏ that is in the symmetric phase and being driven towards a phase transition

by some external process. This corresponds to ✏ ! 0 and ✏ can be considered to

have some time dependence ✏(t) dictated by the environment driving the change.

In this scenario, the correlation length ⇠ associated to the order parameter of

the equilibrium state diverges in the vicinity of the critical point such that

⇠ ⇡ ⇠0|✏|�⌫ , ✏ > 0 . (3.1)

However, if the state is initially in equilibrium at some ✏ > 0, then Kibble argued that

it will not be possible for any physical state of the system to remain in equilibrium

all the way up to the critical point since no physical state can have a correlation

length that is increasing faster than the speed of light. Therefore, while a state can

initially evolve adiabatically, any realistic, finite rate continuous phase transition

must ultimately be a non-equilibrium process where the physical correlation length

remains finite into the symmetry broken phase.

Zurek later expanded the above argument by considering the relevant time

scales in play during the transition that dictate whether the state can remain in

equilibrium [10]. For a state to evolve adiabatically, it must be able to adapt to

externally driven changes in the system. Denoting the characteristic relaxation

timescale of a state as ⌧ and the timescale characterising the external change as

⌧ext, then the adiabatic condition, where the state will remain in equilibrium, can

be summarised as

⌧ ⌧ ⌧ext . (3.2)

Conversely, the diabatic (impulse) condition, where the state does not react at all

to external changes, can be summarised as

⌧ � ⌧ext . (3.3)

In a continuous phase transition, Kibble’s argument can then be restated in

terms of timescales.The critical point of a continuous phase transition is associated

to a diverging timescale, characterising relaxation in the equilibrium state, which

scales universally

⌧ ⇡ ⌧0|✏|�µ , ✏ > 0 , (3.4)
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near the critical point. As such, for any finite ⌧ext, the adiabatic condition (3.2) will

always be violated by the equilibrium state near the critical point. Additionally, the

impulse condition (3.3) will always be satisfied by the equilibrium state in the vicin-

ity of the critical point. The adiabatic-impulse-adiabatic (AIA) assumption then

states that, in the process of a continuous phase transition, a state will first evolve

adiabatically before equilibrium is lost. At that point, the evolution is assumed to

be impulsive up until the point when evolution can again proceed adiabatically with

the external change.

3.2.2 Non-Equilibrium Universal Scaling

While the AIA assumption gives a generic description of a continuous phase

transition, Zurek further argued that when ⌧ext is su�ciently large, the state will

remain in equilibrium all the way into the critical region. In this case universality

arguments can be applied leading to the universal scaling of various quantities, in

particular the correlation length ⇠.

Estimating the point at which equilibrium is lost by the condition

⌧ext ⇡ ⌧ , (3.5)

then for su�ciently large ⌧ext the behaviour of ⌧ can be further estimated by its

universal scaling (3.4) so that the previous condition reads

⌧ext ⇡ ⌧0|✏|�µ . (3.6)

Assuming that the behaviour of ✏(t) can be linearised in the vicinity of the

critical point so that

✏(t) = �t/⌧Q , (3.7)

where ⌧Q is the “quench rate”, the timescale ⌧ext is given by the relative rate of

change of ✏ i.e. |✏̇/✏|. In the linear quench case |✏̇/✏| = t�1 so that the associated

external timescale is simply the time distance from the critical point ⌧ext = t. Using

this expression for ⌧ext then

t̂ ⇡ �
�
⌧0⌧

µ
Q

� 1
1+µ (3.8)

is the estimated time at which equilibrium will be lost. Since the state at time t̂

is still approximated by the equilibrium state of the system, the expression (3.8)
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allows for the calculation of other quantities at the point when equilibrium is lost.

In particular, the correlation length ⇠(t̂) = ⇠̂ can be calculated using its universal

scaling (3.1) to give

⇠̂ ⇡ ⇠0
�
⌧�1
0 ⌧Q

� ⌫
1+µ . (3.9)

Therefore, the KZM predicts that the physical length scale at the point equilib-

rium is lost will scale with the equilibrium universal critical exponents, along with

the dynamical scale ⌧Q. Combining this with the AIA assumption, the length scale

⇠̂ is then assumed to equal the correlation length ⇠ of the state when entering the

symmetry broken phase. While in practice the state will not freeze out exactly, the

universal scaling is still expected to hold with only the non-universal coe�cients

being modified.

3.2.3 Topological Defects and Their Relevance

With the AIA assumption, the KZM provides information about the post tran-

sition state which encodes details of the phase transition in universal quantities e.g.

the finite correlation length and the quasiparticle excitation density. As a system

evolves following the phase transition it will equilibrate. In this way, details of the

phase transition encoded in the state will be lost and the universal scale ⇠̂ will be-

come irrelevant for future evolution. However, Kibble argued that in the case where

topological defects can exist in a system, they should necessarily be formed randomly

during a continuous phase transition. This can again be seen as a consequence of

causality. A topological defect corresponds to an excitation which interpolates be-

tween di↵erent symmetry broken vacua. Therefore, in order to have a state with no

defects, spontaneous symmetry breaking must occur in a spatially uniform manner.

In general, this cannot happen since perturbations in causally separated regions

must act independently and so defects must be formed.

Since the correlation length ⇠̂ sets the scale of correlated domains in the post

transition state and defects exist at the boundaries between such domains, the defect

density can be related to ⇠̂ as

n ⇠ ⇠̂�Dco . (3.10)

Therefore, the universal length scale ⇠̂ is encoded in the density of defects n follow-

ing the phase transition, as it will be in a number of other quantities such as the

distribution of quasi-particles. However, following the transition the initially highly
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exited state will begin to equilibrate and non-defect excitations can be expected to

thermalise relatively quickly thus wiping out any memory of the universal scale en-

coded in them. The system should then be well described by a random distribution

of topological defects with density n. In this case, the evolution of the correlation

length ⇠(t) is essentially determined by the distribution of defects and the universal

scale ⇠̂ will remain relevant for the subsequent evolution.

As the topological defects carry details of the phase transition for long periods

of time, they are sometimes described as “fossilised evidence” of the dynamics of the

transition. This is essential in fields such as cosmology where the system cannot be

probed near the time of the phase transition. Additionally, the random distribution

of defects tends to provide a relatively clean environment for study, once other noise

from the transition has thermalised. It is for these reasons that the universal scaling

of the defect density can be considered the key testable prediction of the KZM.

3.3 The Kibble Zurek Mechanism in �4 Quantum

Field Theory

3.3.1 Universal Scaling in the �4 theory

The KZM can easily be specialised to the �4 scalar field theory in D = (1 + 1)

undergoing a QPT. Assuming a linear quench of the reduced coupling, the external

time scale ⌧ext is given simply by the absolute time t while the internal time scale ⌧

is given by the inverse of the scalar mass mS (equal to the gap �) which determines

the asymptotic decay of the ground state two-point function in time,

G2(t) = h⌦|�(t, x)�(0, x)|⌦i ⇠ e�mSt as t ! 1 . (3.11)

Furthermore, Lorentz invariance implies that the gap not only sets the temporal

correlation length but also the spatial correlation length such that ⌧ = ⇠ = m�1
S .

The critical exponents µ and ⌫ are then equal and the expression for the correlation

length ⇠̂ simplifies to

⇠̂ ⇡ ⇠0 (�0⌧Q)
⌫

1+⌫ , (3.12)
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where �0 is the coe�cient determined by the vanishing gap on approach to the

critical point

� = mS ⇡ �0|✏|µ. (3.13)

With the classical D = 2 Ising model universality class exponent ⌫ = 1 (see

Table 2.1) the state at time t̂ is approximately the equilibrium state |⌦(✏̂)i and

characterised by the quantities

t̂ ⇡ ��� 1
2

0 ⌧
1
2
Q , (3.14)

✏̂ ⇡ ��� 1
2

0 ⌧
� 1

2
Q , (3.15)

⇠̂ ⇡ ⇠0�
1
2
0 ⌧

1
2
Q , (3.16)

which can be contrasted with those obtained using mean field theory which incor-

rectly predicts ⌫MF = 1/2 to give t̂ ⇠ ⌧ 1/3
Q , ✏̂ ⇠ ⌧�1/3

Q and ⇠̂ ⇠ ⌧ 1/3
Q .

With the post transition correlation length estimated by ⇠̂, the kink defect

density of the state scales as

n ⇠ ⌧
� 1

2
Q . (3.17)

While the scaling (3.17) should hold for su�ciently slow quenches, if ⌧Q is too small

the system will lose equilibrium before ever reaching the critical region and the

scaling given by the (quantum) critical exponents will be irrelevant. In this case,

mean field theory can be applied and the defect density scales as

n ⇠ ⌧
� 1

3
Q : ⌧Q  ⌧X

Q , (3.18)

where ⌧X
Q , the size of ⌧Q at which this quantum-classical crossover takes place, can

be estimated from the equilibrium data [2].

3.3.2 Defect Ansatz for Quantum Phase Transitions

The KZM predicts that the post transition state for the �4 theory should be

described by a random distribution of kinks. In the classical theory, the form of

G2(k) for a system of random kinks can be constructed explicitly and the defect

density n can be found from the long distance k ! 0 behaviour of G2(k), indicating

it is a promising observable with which to estimate defect density in the quantum

theory [3, 45]. The central idea to this construction is that in a system of random
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kinks there only two relevant scales in the system: n the defect density and dK the

kink width. When these scales are well separated (and typically dK ⌧ n�1 in KZM

scenarios) the two-point function factorises in momentum space into a contribution

coming only from the distribution of kinks Gcorr(k/n) and a contribution coming

from the kink profile Gkink(kdK). The classical two-point function for a system of

random kinks can then be written as

GRK(k) =
v2

n
Gcorr(k/n)Gkink(kdK) . (3.19)

In the classical theory the kink profile contribution Gkink(kdK) = k2

4v2 |�K(k)|2

can be calculated exactly via the Fourier transform of the kink solution 'K(x) (2.8)

which gives

�K(k) =
2iv

k

1
2⇡kdK

sinh 1
2⇡kdK

(3.20)

such that

Gkink(kdK) =

✓ 1
2⇡kdK

sinh 1
2⇡kdK

◆2

. (3.21)

Additionally, the form of Gcorr(k/n) can also be calculated explicitly in the case of

uniformly random kinks to give an exponential decay in real space [3]. However, a

better form can be found phenomenologically [45] using classical simulations to give

Gcorr(k/n) = ↵1e
�↵2(k/n)2 +

�1

[1 + �2(k/n)2]
(3.22)

which in real space is just the sum of a Gaussian part and the exponential part

coming from uniform randomness, i.e.,

Gcorr(nr) = a1e
�a2(nr)2 + b1e

�b2nr . (3.23)

The above picture can be confirmed in a classical field theory by considering the

dynamics of an (ensemble) of scalar fields that are driven through a (classical) phase

transition before relaxing under some damping term such that the expectation value

of the two-point function G2(k) = h�(�k)�(k)i can be calculated and compared to

the ansatz for random kinks (3.19). The ansatz can then be used by first establishing

the form of Gcorr(k/n). This is achieved by taking a subset of data, explicitly

counting the number of defects n and using this to scale the two-point function.
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The assumption G2(k) = GRK(k) can then be checked by rearranging it to give

n

v2

G2(k)

Gkink(kdK)
= Gcorr(k/n) . (3.24)

If this holds, then the left-hand side of (3.24) should be a universal function of n only

and the functional form of Gcorr(k/n) can be fit to establish the universal parameters

↵1,↵2, �1, �2. The ansatz (3.19) can then be used as a one-parameter fit to measure

the defect density n in the remaining data, which can be checked against the values

obtained by explicit counting.

When topological defects are formed in a quantum field theory via the KZM,

we can again assume that the only two relevant scales in the system are n and dK

such that the general factorisation of G2(k) follows as in a classical theory. However,

we can also expect additional contributions to G2(k) in the quantum theory coming

from the ground state and the excitations generated during the phase transition.

While in a classical theory a damping term can be added to the action to remove

energy from the system so that the contribution of excitations can be neglected, in a

quantum theory with unitary evolution energy is conserved and we can expect these

contributions to be important.

These additional contributions can be included to provide a suitable defect

ansatz for the case of defects generated by unitary time evolution through a quantum

phase transition. Writing the ground state two-point function as G⌦
2 (k) and the two-

point function of the excitations (matter) as Gmat(k), the defect ansatz Gdef(k) for

a quantum theory can then be written as

Gdef(k) =
v2

n
Gcorr(k/n)Gkink(kdK) + G⌦

2 (k) + Gmat(k) , (3.25)

where the various quantities now take on their full quantum corrections. In particu-

lar, the ground state |⌦i determines the two-point function G⌦
2 (k) = h⌦|�(�k)�(k)|⌦i

and the vacuum expectation value. Similarly, the one-kink particle state |Ki deter-

mines the kink profile term Gkink(kdK).

To confirm topological defect formation in the QFT case, we would like to

calculate the full non-equilibrium two-point function G2(k) and check the assump-

tion that G2(k) = Gdef(k) by independently calculating n, G⌦
2 (k), Gkink(kdK) and

Gmat(k). Similarly to the classical case, this assumption can then be rewritten as

n

v2

G2(k) � G⌦
2 (k) � Gmat(k)

Gkink(kdK)
= Gcorr(k) , (3.26)
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which should be a universal function of the defect density as before. Of course,

in the quantum theory the forms of v2, Gkink(kdK), G⌦
2 (k) and Gmat(k) are not

known exactly and approximations must be used. More problematically, unlike in

the classical theory, n cannot be estimated through explicit counting to allow the

form of Gcorr(k) to be established by scaling a subset of data.

To gain an estimate of the defect density without reference to the unknown

quantity Gcorr(k/n) in a QFT, we can use the assumption that G2(k = 0) = Gdef(k =

0). At k = 0 the contribution from the kink profile drops out of Gdef(k) while the

matter contributions should be negligible such that Gdef(k = 0) ⇡ v2/n+G⌦
2 (k = 0).

Therefore, the defect density can be estimated as

nest =
⇥
G2(k = 0) � G⌦

2 (k = 0)
⇤
/v2 , (3.27)

which requires only the knowledge of the non-equilibrium state and the ground-state

at k = 0, which can be calculated relatively easily by e.g. Monte Carlo techniques.

With the defect density estimated, in principle the form of Gcorr(k/n) can then

be established as in the classical case by rescaling the non-equilibrium data with

nest and fitting to a subset of the data. The KZM can then be confirmed by the

agreement of the fixed form of Gcorr(k) with the remaining data and its universal

scaling with k/n. However, in practice more assumptions will be required in order

to calculate the remaining quantities Gkink(kdK) and Gmat(k). As such, to confirm

the KZM is it better to proceed in a few more stages that allow one to check the

approximations being made more carefully. The specific approximations used and

the corresponding stages for confirming the KZM via the defect ansatz are discussed

further in Chapter 9, once the approximation method to be used has been introduced

in Chapters 4 and 5.



Chapter 4

Hamiltonian Lattice

Regularisation

4.1 Introduction

For non-perturbative calculations it is common to use lattice methods which

provide a non-perturbative UV regularisation [46]. An appropriate lattice theory

can be obtained corresponding to a particular QFT by discretising the continuum

action and there are a number of di↵erent options for this that di↵er only by irrele-

vant terms. When the physical length scales of the lattice theory, e.g. the correlation

length ⇠, are larger than the lattice spacing a, the infrared lattice observables can be

approximated by a continuum QFT (and vice versa). These become equivalent in

the continuum limit when ⇠/a ! 1 i.e. in the vicinity of a continuous phase tran-

sition. Usually, the construction of a lattice theory takes place in the Lagrangian

lattice framework with both time and space being discretised and Euclidean space-

time being used to e↵ectively transform the problem of quantum field theory into

statistical mechanics. This enables the use of Monte Carlo sampling of the path in-

tegral to evaluate the observables of interest. However, since analytically continuing

back to real time requires further assumptions and tends to dramatically increase

statistical errors, this method is essentially restricted to equilibrium physics.

To instead study the time evolution of quantum states, in particular the non-

equilibrium physics of defect formation, it is natural to use a Hamiltonian lattice

theory where only the spatial dimension is discretised leaving the time dimension

continuous. One advantage of the Hamiltonian lattice framework is that the lattice

theory is a valid quantum many body theory in its own right and techniques from

this field can be applied to calculate the observables of interest.
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In this chapter, we will first introduce the lattice Hamiltonian for the �4 theory

before discussing how observables of the continuum theory can be approximated by

tuning the parameters of the lattice theory. We will then introduce additional cuto↵s

that allow standard quantum many body techniques to be applied and discuss how

the various observables of interest can be approximated in the lattice framework,

focussing on the equal time ground state and kink expectation values along with the

scalar mass. Finally, we will review the use of a real space Fock basis for the theory

along with boson number truncations which allow for the use of numerically stable

quantum many body physics methods to be applied to the lattice theory.

4.2 Hamiltonian Lattice Theory for �4

4.2.1 The Lattice Hamiltonian and E↵ective Theory

The lattice provides an intuitive regularisation scheme, decoupling high mo-

mentums from low momentums via a hard cuto↵ ⇤ = ⇡/a such that the momentum

modes are restricted to �⇤  p  ⇤. This regularisation framework can be readily

adapted to a given QFT by discretising the spatial derivatives in the continuum

Hamiltonian by finite di↵erence approximations @x� ! �a�. The simplest choice for

this is the use of first order finite di↵erences �a� = 1
a [�(x + a) � �(x)] which lead

to a lattice �4 theory with Hamiltonian

H[�] = a
X

x

h
1
2(⇡x)

2 + 1
2a2 (�x+a � �x)

2 + µ2
0
2 �

2
x + �0

4! �
4
x

i
. (4.1)

Since the discretisation has introduced an additional dimensionful parameter a, the

lattice spacing with dimension [a] = �1, there will be two dimensionless parameter

ratios to consider. Working in lattice units removes this redundancy and e↵ectively

sets a = 1 so that x = {1, 2, 3, ...}. In lattice units the Hamiltonian can be written

as

H̃[�] =
X

x

h
1
2(⇡̃x)

2 + 1
2(�x+1 � �x)

2 + µ̃2
0
2 �

2
x + �̃0

4! �
4
x

i
, (4.2)

where the now dimensionless H̃ = aH, ⇡̃ = a⇡ and the two dimensionless parameters

are µ̃2
0 = a2µ2

0 and �̃0 = a2�0. The discrete canonical commutation relation is given
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in lattice units by

[�x, ⇡̃y] = i�x,y . (4.3)

To use the lattice theory as an e↵ective theory, lattice observables are associated

to physical (measurable) quantities. For instance, a measured particle mass mphys

can be equated to the energy gap of the theory, i.e. the lattice scalar mass mS.

Other lattice quantities can then be computed in terms of mS, such as the lattice

kink mass MK , providing a prediction for the corresponding physical quantities

to be measured in terms of mphys. Since the lattice is artificial, the finite lattice

spacing will introduce systematic errors into predictions. For a lattice observable

characterised by the distance r = ar̃, the contributions from the finite lattice spacing

can be expected to scale as some inverse power e.g. r̃�1. For long distance/infrared

(IR) lattice observables with r̃ � 1, the error due to finite lattice spacing should

then be small and the corresponding physical predictions should match experiment

closely. In order to reduce discretisation errors, additional operators can be included

in the Hamiltonian [26] but we will use the form (4.2) that keeps only the leading

order terms that are relevant as r̃ ! 1. Lattice units can be kept throughout

calculations with di↵erent lattice observables being related to one another in lattice

units. Physical units can be chosen at the end of calculations when equating the

lattice observable in lattice units to a measured quantity in physical units. This

determines the lattice spacing a in terms of the physical units used in experiments,

allowing other lattice observables to to be expressed in these units as well [47].

The key length scale on the lattice is given by the correlation length, associated

to a physical particle by equating mS = mphys. As such, we will be interested in

observables on the scale r̃ ⇠ ⇠̃. When ⇠̃ � 1, errors due to finite a will be small and

the lattice will provide a useful e↵ective theory. Since the lattice spacing provides

only small corrections to the IR lattice observables in this regime, such observables

can be approximated by a continuum theory (a QFT) and vice versa. In practice, it

may even be possible to use a continuum approximation for the IR lattice observables

with only very modest ⇠̃ so that we refer to the entire region with ⇠̃ > 1 as the

“continuum region” of the lattice theory.

4.2.2 Continuum Limit

By tuning the parameters µ̃2
0, �̃0 of the Hamiltonian (4.2) such that ⇠̃ ! 1 (or

equivalently m̃S ! 0), the lattice theory approaches a continuous phase transition.
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In the vicinity of the critical line where ⇠̃ ! 1, IR lattice observables become

insensitive to the lattice spacing and equivalent to the observables of a (continuum)

quantum field theory. Since the physics of critical points is universal, the same QFT

will describe the IR observables of a large class of lattice theories whose Hamiltonians

di↵er only by irrelevant terms.

The phase diagram for the theory (4.2) can be illustrated using perturbation

theory. When the e↵ective coupling g = �0/m2
S = g̃ = �̃0/m̃2

S is small, the scalar

mass m̃S = ⇠̃�1 can be estimated in the symmetric phase using renormalised per-

turbation theory about the trivial vacuum [26]. The resulting m̃2
S can be expressed

in terms of the bare parameters as

µ̃2
0 = m̃2

S � 1

8⇡
log

✓
64

m̃2
S

◆
�̃0 + O(�2

0) . (4.4)

Keeping only the m̃2
S independent terms of order �̃0 and rearranging the expression

(4.4) gives

�̃0 =
(m̃2

S � µ̃2
0)8⇡

log(64)
, (4.5)

which can be used to estimate lines of constant mS in the phase diagram. Lines of

constant g can also be estimated by substituting in g = �0/m2
S to (4.5) which gives

�̃0 =
g

1 � g log(64)/(8⇡)
µ̃2

0 . (4.6)

The critical line can then roughly be estimated by taking mS ! 0 in (4.5) or g ! 1
in (4.6) so that

�̃0 = � 8⇡µ̃2
0

log(64)
when mS ! 0 . (4.7)

The phase diagram can then be visualised in the (µ̃2
0, �̃0) plane by plotting lines of

constant m̃2
S and g as shown in Figure 4.1.

The phase diagram shown in Figure 4.1 illustrates the two possibilities for

taking the continuum limit m̃S ! 0 in this lattice theory. In the first case, cor-

responding to the standard perturbative renormalisation procedure, g is kept fixed

and the critical line is approached by tuning µ̃2
0 and �̃0 such that m̃S ! 0. In this

case, the only possibility is that µ̃2
0 ! 0 and �̃0 ! 0. At the critical point, the

corresponding continuum theory is the massless Gaussian QFT and the vicinity is

described by the �4 QFT. This allows for the application of standard perturbative
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Figure 4.1: The phase diagram for the lattice Hamiltonian �4 theory (4.2) estimated
using perturbation theory. Lines of constant mS (solid black) and of constant g
(dashed red) map out the diagram in the symmetric phase. The broken symmetry
phase is indicated by the blue shaded region in the lower-left corner and is separated
from the symmetric region by the critical line where mS = 0 (thick solid black line).
The region where mS > 1 is also shaded and corresponds to the “lattice region”
where finite lattice spacing e↵ects will be important. If the continuum limit mS ! 0
is taken along a line of fixed g, then both µ̃2

0 ! 0 and �̃0 ! 0. Any other way of
approaching the critical line (e.g. for fixed �̃0) passes through lines of higher and
higher e↵ective coupling g which diverges in the vicinity of the critical line.

techniques when g  1 and the critical exponents can be derived such that the

mean-field critical exponents given in Table 2.1 give the correct behaviour in this

instance.

In the second case, which cannot be studied using standard perturbation theory,
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the critical line is approached away from the point at �̃0 ! 0 e.g. by keeping �̃0

fixed and lowering µ̃2
0 ! m̃2

C(�̃0). In this case, g is not fixed and in fact diverges as

the critical line is approached. Along the critical line, the continuum critical theory

is one of massless Majorana fermions which determines the critical exponents in this

case. Since the critical theory is not the massless Gaussian theory, we will refer to

this scenario as a “strong coupling” transition. In the vicinity of the critical line,

the IR observables are given by a theory of massive Majorana fermions. This is the

same continuum limit as the Ising model so that it can be used to compute quantities

such as the universal amplitude ratio and Kramers-Wannier duality which are not

properties of the critical massless theory directly.

4.2.3 Infrared Cuto↵

In order to study topological defects non-perturbatively in a lattice setting, it

is typical to consider imposing twisted-periodic boundary conditions (TPBC) in the

spatial directions and study the corresponding finite size theory where the twist has

some definite (but arbitrary) location on a lattice [48]. This method of studying

topological defects is quite general and has been applied to both kinks in the �4

theory [49] and to gauge theories e.g. in the study of monopoles [50, 51]

The most standard infrared cuto↵ technique is to impose periodic boundary

conditions (PBC) on the lattice theory over a length L = aL̃ = aN such that

�x+N = �x. The corresponding finite size theory is given by the Hamiltonian

H̃[�](PBC) =
NX

x=1

h
1
2(⇡̃x)

2 + 1
2(�x+1 � �x)

2 + µ̃2
0
2 �

2
x + �̃0

4! �
4
x

i
, (4.8)

where the field operators in (4.8) are related to the originals in the obvious manner

�x = �x+nN for n 2 Z , (4.9)

so that we do not distinguish them with di↵erent symbols. The choice of PBC is con-

sistent with the requirements of the vacuum sector in that states where  [�(+L)] =

 [�(0)] are energetically favoured, corresponding to the infinite size limit where

 [�(x)] is only non-zero when  [�(+1)] =  [�(�1)].

To study topological defects, one can instead impose TPBC as �x+N = ��x in

order to energetically favour states where  [�(+L)] = � [�(0)], corresponding to

the requirement for states lying outside the vacuum sector that  [�(x)] is non-zero

only if  [�(+1)] = � [�(�1)]. The finite size Hamiltonian corresponding to the
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choice of TPBC is given as

H̃[�](TPBC) =
NX

x=1

h
1
2(⇡̃x)

2 + 1
2(�̄x+1 � �̄x)

2 + µ̃2
0
2 �̄

2
x + �̃0

4! �̄
4
x

i
+ 2�̄N �̄1 , (4.10)

where the field operators �̄ in (4.10) are related to the originals by

�̄x =

8
<

:
�x+2nN for n 2 Z

��x+(2n+1)N for n 2 Z

and the location of the twist is chosen arbitrarily to be at the site N on the lattice.

With the addition of the infrared cuto↵, the momentum modes are discretised

and accurate approximation of the full theory now requires a hierarchy of scales

a ⌧ ⇠ ⌧ L or equivalently ⇡/L ⌧ k ⌧ ⇡/a so that the strict continuum limit can

only be taken once L ! 1.

4.3 Lattice Approximation of Observables for �4

4.3.1 The Ground State and One-Kink State

For the study of topological defects and the Kibble Zurek Mechanism, we will be

particularly interested in the equal-time observables of the ground state h⌦|O[�]|⌦i
and one kink state hK|O[�]|Ki. These are approximated in the lattice theory by the

corresponding lattice observables h⌦(a, L)|O[�]|⌦(a, L)i and hK(a, L)|O[�]|K(a, L)i
where the state |⌦(a, L)i is simply the minimum energy state of the lattice theory

with PBC (4.8) i.e.

|⌦(a, L)i = arg min
| i

⇣
h |H̃(PBC)| i � � [h | i � 1]

⌘
(4.11)

and |K(a, L)i is the minimum energy state of the twisted theory (4.10)

|K(a, L)i = arg min
| i

⇣
h |H̃(TPBC)| i � � [h | i � 1]

⌘
. (4.12)

By phrasing both the ground state and one kink state observables as energy

minimisation problems, standard techniques developed for the ground state can be

applied to the study of the one kink state as well.
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4.3.2 The Scalar Mass and Long-Distance Behaviour of G2(r)

Lattice methods are typically used to evaluate equilibrium or ground state

expectation values. As such, it is useful to have a method which can be used to

extract the scalar mass mS from observables of the ground state. In particular, the

two-point function G2(r) can be used at long distances to extract mS by comparison

with the two-point function of the non-interacting theory.

To see how the scalar mass can be extracted in a quantum field theory, we can

consider the Källén-Lehmann spectral representation of the time ordered ground

state two-point function which can be constructed quite generally for a Lorentz in-

variant theory [52]. This representation relates the full two-point function to the

two-point function of the non-interacting theory, specifically the Feynman propaga-

tor DF (x � y; M2) via

h⌦|T�(x)�(y)|⌦i =

Z 1

0

dM2

2⇡ ⇢(M
2)DF (x � y; M2) , (4.13)

where x and y are space-time coordinates, ⇢(M2) is the spectral density given by

⇢(M2) =
X

�

(2⇡)�(M2 � m2
�)| h⌦|�(0)|�0i |2 (4.14)

=
X

�

(2⇡)�(M2 � m2
�)Z (4.15)

and |�0i is a zero-momentum energy eigenstate. We can evaluate the Feynman

propagator easily in D = (1 + 1) at equal times to give

DF (r; M2) = 1
2⇡K0(Mr) , (4.16)

where K0(z) is a modified Bessel function of the second kind. The equal time two-

point function can then be written as

G2(r) =

Z 1

0

dM2

4⇡ ⇢(M
2)K0(Mr) . (4.17)

If the spectrum contains an isolated pole, then we can extract this contribution and

write schematically

G2(r) = Z
(2⇡)2K0(mSr) +

Z 1

4m2
S

dM2

4⇡ ⇢(M
2)K0(Mr) . (4.18)
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This suggests that at su�ciently long distances, the non-interacting form of the

two-point function will be dominant and depend on the dimensionless combination

mSr.

The above arguments motivate the use of the ansatz

G2(r) = AK0(mSr) (4.19)

to estimate the scalar mass using a lattice approximation to G2(r). This can be

achieved by taking the appropriate ratios (finite di↵erences) to cancel overall factors

as

G2(r + 1)

G2(r)
=

K0(ms(r + 1))

K0(msr)
. (4.20)

This equation can then be solved numerically to extract mS(r) which depends on

r due the fact that G2(r) is not a pure Bessel function. Following the previous

arguments, we can expect for some initial r . ⇠ the value of mS(r) will vary due

to lattice e↵ects and higher M2 eigenstate contributions, before becoming uniform

such that mS can be extracted (in practice, the uniform region must be selected by

some criteria e.g. the gradient of mS(r) falling below some specified tolerance, with

mS then estimated by averaging over the selected region).

If there is an additional infrared scale, e.g. L, then the behaviour of G2(r)

will be modified at long-distances r ⇠ L. An estimate of mS will then have to be

made from an intermediate distance where mS(r) is uniform so that an accurate

estimate requires ⇠ ⌧ L such that the scales in the theory have the clear hierarchy

a ⌧ ⇠ ⌧ L.

4.3.3 Extracting mS at Strong Couplings

When su�ciently close to the critical point within the symmetry broken phase,

the lightest excitations will become kink-antikink pairs. This motivates the use of

a Bessel-squared function ansatz for the two-point function

G2(r) = AK0(mSr)2 , (4.21)

corresponding to the form for two non-interacting excitations. The behaviour of

G2(r) can be established more rigorously in the critical region by considering the

critical behaviour of the classical D = 2 Ising model as described by the field theory

of Majorana fermions [27].
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At strong couplings, the Bessel-squared ansatz can then be used in a similar

way to the Bessel function form. In fact, both K0(z) and K0(z)2 have similar

exponentially decaying asymptotic forms

K0(z) ! e�z

r
1

z
, (4.22)

[K0(z)]2 ! e�2z 1

2z
. (4.23)

As such, in principle either form can be used to estimate mS. However, unlike K0(z),

we can expect [K0(z)]2 to be valid outside the asymptotic regime which is useful

since then shorter distances of G2(r) will need to be approximated.

4.4 Real-Space Fock Basis

4.4.1 Creation and Annihilation Operators

The momentum-space field eigenbasis is a natural choice for mean field theory

and semi-classical approximations. However, to go beyond these it is better to pick

a numerically stable basis of real space harmonic oscillators [53]. Real space creation

and annihilation operators for the �4 lattice theory can be introduced as

�x = 1p
2

�
a†

x + ax

�
,

⇡̃x = ip
2

�
a†

x � ax

�
, (4.24)

such that the canonical commutation relation (4.3) becomes

[ax, a
†
y] = �x,y . (4.25)

In this parametrisation, a natural basis set is given by the tensor products |ni =

|n1i ⌦ |n2i ⌦ ... ⌦ |nNi where |nxi are the eigenstates of the number operator Nx =

a†
xax at each site. In terms of the creation and annihilation operators, the number

eigenstate of site x is given by

|nxi =
1

p
nx

(â†)nx |0xi , (4.26)

ax |0xi = 0 . (4.27)
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For a finite size system, states are now labelled by a N -tuple n = (n1, n2, n3, ..., nN)

with nx 2 Z and a general state | i can be expanded as

| i =
1X

n1=0

...
1X

nN=0

hn1n2...nN | i |n1n2...nNi

=
X

n

 n |ni , (4.28)

where the state coe�cient  n (wavefunction) now specifies the state in this basis.

The action of the creation and annihilation operators a†
x, ax on the element |nxi

is

ax |nxi =
p

nx |nx � 1i ,

a†
x |nxi =

p
nx + 1 |nx + 1i , (4.29)

and can be applied recursively to calculate the action of any product of field opera-

tors on basis states, from which one can easily calculate the matrix elements. The

matrix elements of the field operators in this basis are given by

hmx|�x|nxi =

p
nx + 1p

2
hmx|nx + 1i +

p
nxp
2

hmx|nx � 1i , (4.30)

hmx|⇡x|nxi = i

p
nx + 1p

2
hmx|nx + 1i � i

p
nxp
2

hmx|nx � 1i , (4.31)

with other operators in the Hamiltonian (4.2) being found in a similar manner.

4.4.2 Boson Number Truncation

So far, the �4 lattice theory has been written as a set of coupled harmonic

oscillators. To proceed with numerics, it is helpful to introduce an additional cuto↵

d that, like the IR cuto↵ L, truncates the theory down to a smaller Hilbert space. In

this case, the cuto↵ limits the maximum number of bosons at any site to the value

d�1 so that the total Hilbert-space dimension is finite when including the IR cuto↵

L and equal to dN = dL/a.

In the field eigenbasis, the associated error in the use a similar of basis trun-

cation can be bound rigorously [26]. In that case, the state | i is approximated by

another state | trunci where | trunci has no support on the basis elements that are
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to be removed by the truncation. In the field eigenbasis

| i =

Z
D[�x] (�1,�2, ...,�N) |�1,�2, ...,�Ni , (4.32)

| trunci =

Z
D[�x] trunc(�1,�2, ...,�N) |�1,�2, ...,�Ni , (4.33)

where  trunc(�1,�2, ...,�N) = 0 if any �x /2 [��max,�max : ��]. Equivalently, the

integral can be written as a finite sum so that

| trunci =
X

{�}

 trunc(�1,�2, ...,�N) |�1,�2, ...,�Ni (4.34)

and the state can be considered as an element of the restricted Hilbert space CdN

where d is the number of elements in the local basis set �x /2 [��max,�max : ��].

The error associated with this approximation can then be quantified as ✏ =

1 � h | trunci and this may be bound by the values of h |�2
x| i and h |⇡2

x| i or

alternatively the energy expectation value E = h |H| i. This shows that this

truncation corresponds to an additional UV cuto↵ in the expected way and that

lower energy states will require fewer basis states (i.e. a lower value of d) for an

accurate approximation.

Since we will not be working in the field eigenbasis and in practice the rigorous

bounds provided tend to be far more restrictive than necessary, we will only use

these results to provide intuition concerning the e↵ect of basis truncation in the

real space Fock basis. In particular, these results suggest that computing the field

expectation values such as h |�2
x| i and h |⇡2

x| i can provide a useful measure of

the accuracy of approximations and in practice we will simply look for convergence

in these and other observables of interest to indicate that enough basis states have

been kept for a reasonable approximation.

A simple Fock-space basis truncation is achieved by keeping the first d basis

states at each site. A state can then be expressed as

| i =
d�1X

n1=0

...
d�1X

nN=0

hn1n2...nN | i |n1n2...nNi , (4.35)

and this state can be considered either as one in the larger Hilbert space with zero

overlap with elements outside the basis set, or as the state of a valid quantum theory

with some smaller Hilbert space of dimension dN .
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4.5 Calculations in the Hamiltonian Lattice Frame-

work

In the Hamiltonian lattice framework, we can approximate the low energy,

low momentum observables of a QFT using standard quantum many body physics

techniques. In principle, with the two UV cuto↵s a, d and the IR cuto↵ L making

the dimension of the Hilbert space finite, the theory can be studied numerically-

exactly. Picking a basis and using a matrix-vector representation for the operators

and states, then one can e.g. solve the energy minimisation problems for the ground

state and one-kink state or exactly diagonalise the Hamiltonian for access to the

full spectrum of the lattice theory. However, this approach is severely limited as

the dimension of the lattice Hilbert space increases exponentially in the number of

lattice sites. This means that firstly it will not even be possible to store a state

or Hamiltonian with a large number of sites on a computer. More important in

practice, the algorithms used to extract the physics from this representation (i.e. the

diagonalisation or minimisation techniques) have a time-cost scaling with the size

of the vectors/matrices so these will provide an even worse bottleneck. Therefore,

such computational methods require very severe truncations to the �4 theory via

the cuto↵ L and so are highly restrictive.

If one is not interested in the full spectrum e.g. for equilibrium ground-state

calculations, it is possible to improve on this computational limitation somewhat.

For example, one can target just the ground-state using sparse methods or exploit

certain symmetries, though these methods are still fairly limited.

Alternatively, since one is often only interested in certain low energy observ-

ables, one can make additional truncations to reduce computational costs further

while also being structured so as to capture the physics of interest. This is the

typical approach in quantum-many-body theory and can be applied quite directly

to quantum field theory through the Hamiltonian lattice regularisation framework

outlined in this chapter.
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Tensor Network Representations

5.1 Introduction

Tensor network techniques provide a strategy for the approximation of lattice

theories by first representing states, operators and observables as tensor networks,

i.e. as sets of tensors contracted in a specified pattern, rather than as vectors and

matrices as usual. The advantage of this is that the tensor network representations

(TNR) are associated to a natural truncation, corresponding to limiting the size of

the tensors in the network, that can be used to make computations feasible while

still capturing desired physics. In fact, in some cases TNR can be constructed so

that it is possible to truncate a theory e�ciently, ensuring computational costs rise

only polynomially in the number of lattice sites N , while still capturing the low

energy physics of the theory numerically-exactly.

The key example of this is given by the matrix product state (MPS) TNR

that can be used to numerically-exactly represent the ground states of gapped,

local lattice Hamiltonians in one-dimension with a number of parameters rising

only polynomially in N [54, 55]. Similar rigorous results hold in a few other cases

and, for example, higher-dimensional ground-states can sometimes be represented

by projected-entangled-pairs-states (PEPS) while thermal states can be e�ciently

represented by the matrix product operator (MPO) TNR assuming an additional

bound in the density of states in both cases [56, 57]. The MPO can also be used

to represent operators e�ciently, such as the lattice Hamiltonian, so long as the

operators are su�ciently “local” in the sense of the range of interaction terms present

in them [58].

The physical reason that TNR can be used to e�ciently capture the low energy

physics of such lattice theories is that the low energy states of local theories are

66
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extremely atypical. Such states manifest this locality in a number of ways and

one familiar property is short range correlations. In one-dimension this corresponds

exactly to another manifestation of locality: the entanglement area law [59].

Tensor network representations are constructed to mimic the entanglement

structure of low energy states and are specifically designed so that when truncated

they obey certain low entanglement laws e.g. the entanglement area law. While

this does allow the exact representation of certain states, in practice the use of TNR

goes well beyond this and more generally they provide a natural way to perform

computationally e�cient low entanglement approximations. These approximations

are controlled by a cuto↵ parameter �, that determines the computational e�ciency

by limiting the sizes of tensors in the TNR, corresponding to some physical limi-

tation in the amount of entanglement being kept. The cuto↵ can be removed by

allowing it to scale exponentially with the number of lattice sites � ⇠ dN (which

we sometimes denote as � ! 1) allowing comparison with other methods when N

is su�ciently small. Thus, the use of a TNR and an “entanglement cuto↵” � con-

stitutes the implementation a low entanglement, low energy e↵ective theory and we

can expect that the low entanglement physics - which is often the relevant physics

at low energies - will be well approximated while the high entanglement physics -

hopefully irrelevant in the situations of interest - is lost.

To put tensor network methods in context as a quantum field theory technique,

we can compare this approach to that of numerical evaluation of the lattice path

integral i.e. the Lagrangian lattice regularisation. In the path integral case, observ-

ables of the field theory are represented by a multi-dimensional integral. A finite

size spacetime lattice then provides a UV regularisation and truncation of the in-

tegral, which reduces the degrees of freedom to a computationally feasible number.

This truncation can be removed to recover the full theory by adjusting the lattice

size and spacing. Additionally, the truncation is physically well motivated since its

impact on the energy-momentum modes of the theory is well understood and the

lattice theory provides a low energy e↵ective theory. Finally, observables can be

evaluated using a Monte Carlo approximation. Since the errors coming from this

approximation are purely statistical, they are well controlled and the procedure as

a whole leads to a clear and powerful computation scheme, albeit one limited to

certain equilibrium observables.

As a comparison, tensor networks provide an alternative representation for ob-

servables of the quantum field theory. In this case, in addition to the spatial lattice

which provides the regularisation, there is the truncation parameter � associated

with the size of the tensors. The truncation can be removed by adjusting � and is
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physically well motivated since it can be linked to the level of entanglement entropy

in the system. Thus, these techniques can be understood as providing a low en-

tanglement e↵ective theory. Observables can then be calculated by contracting the

relevant tensor network and in some cases (such as low dimensions) it is possible to

calculate observables directly, while in others Monte Carlo sampling can sometimes

be used. More generally, since the TNR already constitutes a low entanglement ap-

proximation, it is conceptually consistent to introduce additional low entanglement

approximations in order to evaluate observables and this is a typical approach e.g.

in spatial dimensions greater than one.

In this chapter, we will introduce the tensor network representations that we

will use later: the MPS and MPO. These representations allow for the e�cient

expression of a number of states, operators and observables of interest. While in this

chapter we will focus on exact examples that are later used or provide some intuition

for the representation, the primary use of tensor networks is as an approximation

scheme and we will introduce some algorithms to achieve this in Chapter 6.

5.2 Representation of The Lattice Hamiltonian as

a Matrix Product Operator

5.2.1 Matrix Product Operators

To introduce the concept of tensor network representations, it is helpful to start

by representing the lattice Hamiltonians (4.8) and (4.10) in the matrix product

operator TNR. In addition to being of practical importance for the e�ciency of

algorithms, this provides some intuition for the relationship between locality of the

object, in this case the range of interaction of the operator, and the e�ciency of the

TNR for that object.

An MPO consists of expressing the operator of interest as the product of matri-

ces Wx, one per lattice site, where the entries of the matrix consist only of operators

that act as identity on all sites but x. Explicitly, the (one-dimensional) MPO rep-

resentation of an operator Ô is given by

Ô = tr

 
NY

x=1

Wx

!
, (5.1)
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where the matrices Wx are of size (�W ,�W ) and have components

(Wx)↵x,�x = Ô(↵x,�x)
x . (5.2)

In other words, each matrix is formed of �2
W operators that act only on site x. The

non-local (multi-site) interaction terms of the operator Ô are then encoded in the

one-dimensional nearest-neighbour structure of the matrix product operator. When

this nearest-neighbour structure correctly corresponds to the interaction structure

of the operator being represented, only small matrices will be required. However, in

the general case where the interactions are not short range at all e.g. if Ô was a two-

dimensional lattice Hamiltonian being represented in one-dimension, then the size of

�W will grow exponentially with the number of lattice sites. This corresponds to the

fact that the MPO structure completely fails to capture the real-space interaction

structure of the operator in this case and MPO defined as in (5.1) are best suited

to the representation of one-dimensional operators with short range interactions.

5.2.2 MPO Representation of H̃

To represent the lattice Hamiltonian H̃[�] (4.2) as an MPO it is helpful to first

simplify the expression by collecting all one site terms into a single operator hx. The

Hamiltonian, ignoring the boundary conditions for the moment, then takes the form

H̃[�] =
X

x

��x�x+1 + hx , (5.3)

with

hx =
1

2
⇡̃2

x + 2+µ̃2
0

2 �2
x + �̃0

4! �
4
x

=
1

2
⇡̃2

x + �2
x + V (�x)x . (5.4)

Since this has the same nearest neighbour structure as the Ising model Hamiltonian

we can use the same MPO construction methods as in that case [60]. To see how a

correct MPO representation can be found, we can consider building the Hamiltonian

up iteratively from the rightmost site to the left. The correct choice of matrix for
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the bulk of the Hamiltonian is given by

Wx =

0

B@
1 0 0

��x 0 0

hx �x 1

1

CA . (5.5)

This matrix is tri-diagonal so that WxWx+1 is given by

WxWx+1 =

0

B@
1 0 0

��x 0 0

hx + hx+1 � �x�x+1 �x+1 1

1

CA (5.6)

and the general structure of the matrices remains the same while the Hamiltonian is

built up iteratively in the bottom-left corner. It then only remains to pick a single

boundary term (e.g. at site x = 1) to correctly select out the bottom-left corner,

where the bulk of the Hamiltonian has been built up, and encode any remaining

boundaries using the trace appearing in the MPO definition (5.1). For PBC a

consistent choice is

W1 =

0

B@
0 �1 1

0 0 ��1

0 0 h1

1

CA , (5.7)

while for TPBC we can choose

W1 =

0

B@
0 ��̄1 1

0 0 ��̄1

0 0 h1

1

CA (5.8)

and open boundary conditions (OBC) can be encoded by setting W1 and WN to

be vectors W1 = wT
1 ,WN = wN e.g. by the choice

wT
1 =

⇣
h1 �1 1

⌘
, (5.9)

wN =

0

B@
1

��N

hN

1

CA . (5.10)

The above construction demonstrates that indeed the lattice Hamiltonian can

be written e�ciently as an MPO. The fact that only small matrices with size �W = 3

were required reflects the fact that the real-space structure of the interactions in the
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Hamiltonian are captured by the one dimensional nearest-neighbour structure of the

MPO.

5.2.3 MPO as Tensor Networks

Considering now a general MPO defined by the MPO structure (5.1) and a

choice of �2
W local operators for each site as the components of Wx, the operator Ô

can be specified in a chosen basis by the matrix elements

hm|Ô|ni = On,m

= hm| tr
 

NY

x=1

Wx

!
|ni

= tr

 
NY

x=1

hmx|Wx |nxi
!

= tr

 
NY

x=1

Wmx,nx
x

!
, (5.11)

where the components of the matrix Wmx,nx
x are given by the corresponding local

operator matrix element

(Wmx,nx
x )↵x,�x = hmx|Ô(↵x,�x)

x |nxi

= (Wx)
mx,nx

↵x,�x
. (5.12)

In a given basis, at each site an operator Ô is therefore specified by a four index

object of size (d, d,�W ,�W ) i.e. a rank-4 tensor. Thus, the MPO representation can

be thought of as a tensor network. For finite dimensional systems this representation

is complete and all operators can be represented as MPO, though in general this

will require an exponential cost �W ⇠ dN and so cannot be done e�ciently or in

practice.

The idea of a TNR is made particularly intuitive by introducing a diagrammatic

representation for tensor networks. To represent a TN diagrammatically, a rank-R

tensor is drawn as a shape with R legs. For example, a rank-3 tensor M i
↵,� (where

the vertical position of indices is arbitrary) is drawn as

M i
↵,� = . (5.13)
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The contraction of two tensors over a particular index can then be indicated by

simply connecting the corresponding legs of the two shapes. For example, the OBC

MPO representation of an operator can be drawn as a set of rank-4 tensors connected

in nearest-neighbour fashion with two rank-3 boundary tensors,

On,m = , (5.14)

where the OBC mean that the first and last tensors have only three legs. Often,

we will be more interested in PBC MPO but may still draw OBC diagrams for

convenience.

In the rank-4 tensor Wx of size (d, d,�W ,�W ), the first two indices provide the

physical indices corresponding to the local basis state ket |nxi = |0i , |1i , ..., |d � 1i
and bra hmx|. These physical indices are drawn vertically in the TN diagrams and

we have chosen the convention that downwards legs corresponding to the ket and

upwards legs corresponding to the bra. The latter two indices provide the internal

or virtual degrees of freedom and are drawn horizontally. All the internal indices

are contracted over while the physical indices remain uncontracted.

While the ideas of locality were used quite intuitively in the construction of the

MPO representations, this idea can be made precise in the corresponding matrix

product state (MPS) representation of states which clarifies the link between an

e�cient TNR for an object and its locality in the sense of obeying a low entanglement

law.

5.3 Matrix Product State Representations

5.3.1 Definition of MPS

Similar to the definition of the MPO, the matrix product state representation

for a state | i is given by the form

| i = tr

 
Y

x

Mx

!
, (5.15)
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where the components of the (�,�) matrices Mx are states in the local Hilbert space

corresponding to that site i.e.

(Mx)↵x,�x = | (↵x,�x)
x i . (5.16)

Taking the matrix product of Mx at di↵erent sites in (5.15) now generates super-

positions of states over larger numbers of sites, with the understanding that the

components should be combined via a tensor product as in the MPO case. In a

given basis, the MPS representation of the wavefunction is given by

 n = tr

 
Y

x

Mnx
x

!
, (5.17)

where the components of Mnx
x are

(Mnx
x )↵x,�x = hnx| (↵x,�x)

x i (5.18)

= (Mx)
nx
↵x,�x

, (5.19)

so that the MPS can be considered a tensor network of rank-3 tensors with size

(d,�,�) where � is often referred to as the “bond-dimension”.

The MPS diagrams follow simply as for the MPO. For example, the PBC lattice

MPS with N = 7 sites is represented by

 n = , (5.20)

while an MPS with OBC can be used by considering the first and last tensors as

rank-2 tensors so that

 n = (mn1
L )T

 
N�1Y

x=2

Mnx
x

!
mnN

R , (5.21)

where mn1
L , mnN

R are of size (d,�) and the trace is no longer needed. As for the MPO,

the diagrams for OBC MPS are somewhat simpler than their PBC counterparts e.g.

for N = 5

 n = , (5.22)

so that we will use OBC in MPS diagrams for convenience, though calculations will
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tend to involve PBC. Once again, the first index of the MPS is the physical local

basis index (drawn downwards in this convention) and the virtual indices are fully

contracted over.

5.3.2 Entanglement in an MPS

On a lattice of size N , the number of parameters required to specify an MPS

is O(Nd�2). As such, the truncation parameter � controls the cost of the repre-

sentation and must be kept small (must not rise exponentially with N) to ensure

computational e�ciency. This truncation parameter can be linked directly to the

maximum allowed entanglement of a state represented by an MPS, thus providing

a clear physical understanding of the truncation.

The entanglement entropy SA of a subsystem A under a bipartition of the full

system is given by the von Neumann entropy of the reduced density matrix for the

subsystem:

SA = � tr [⇢A log2 ⇢A] . (5.23)

For a generic state, the entanglement entropy grows as the volume of the region

under consideration SA ⇠ VA while for states obeying an entanglement area law it

grows with the boundary of the region i.e. SA ⇠ @VA. In one-dimension, area law

states are then particularly simple and have SA ⇠ const.

The investigation of the entanglement in physically interesting quantum many

body states has been of significant interest with area laws being found for a number

of important cases [61, 62]. There has also been interest within the context of

quantum field theory. For example, the entanglement entropy of ground-states in

perturbed/massive conformal field theories has been calculated in D = (1 + 1) on

the lattice [63]. In that case, the entanglement entropy diverges logarithmically with

size of the subregion in lattice units

SA ⇠ c

3
log2

✓
VA

a

◆
, (5.24)

where c is the central charge and ⇠ � VA. However, when VA � ⇠ then

SA ⇠ c

6
log2

✓
⇠

a

◆
, (5.25)

which is a one-dimensional area law giving an example of the connection between

correlation length and entanglement in one-dimension. The ground-state of the �4
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QFT has also been studied [64]. In the non-interacting case the entanglement area

law has both UV divergent and finite pieces

SA ⇠ @VA

aDS�1
+ �DS

@VA

⇠DS�1
, for DS even , (5.26)

SA ⇠ @VA

aDS�1
+ �d

@VA

⇠d�1
log2 (⇠/a) , for DS odd , (5.27)

where �d is a constant given in [64]. The divergent piece, which is independent of the

physical features (e.g. particle mass), can be cancelled by considering di↵erences in

the entanglement entropy and it is therefore such di↵erences which can be considered

the physical observable associated with the entanglement entropy in QFT [65]. The

e↵ect of interactions has also been studied at weak-coupling. Using perturbation

theory, the free-field formulas (5.27) were found to hold with mass renormalisation

[66] while in [67] entanglement was found to decrease monotonically with coupling

in D = (1 + 1) and D = (2 + 1) using variational Gaussian states.

For an MPS, the entanglement can be evaluated by making use of a Schmidt

decomposition and manipulating the MPS form [68]. For a block of contiguous

lattice sites, the maximum entanglement entropy of an MPS is bound logarithmically

in its bond-dimension

SA  C log� , (5.28)

where C is some constant. In other words, matrix product states obey a one-

dimensional entanglement area law. Thus, to represent a general state in one

spatial dimension an MPS requires � ⇠ eN and so is computationally ine�cient.

However, as one might expect from the scaling (5.28), MPS can in fact represent

one-dimensional area law states e�ciently. Naively, this simply requires the highly

e�cient scaling � ⇠ const, i.e. independently of the number of sites. More rigor-

ously, it can be shown that � ⇠ Poly(N) is su�cient to represent all area law states

[69] and, as a special case, ground-states of gapped systems can be represented with

a bond-dimension that scales sub-linearly [55].

5.3.3 MPS Representation of Fixed Boson Number States

and MPS-MPO products

To illustrate the MPS representation, states of fixed boson number NTot =
P

x Nx =
P

x a†
xax can be built up explicitly. Since it is a unentangled, i.e. a

product state, the zero-boson number state |0i =
N

x |0xi (4.27) can be trivially
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represented as an MPS with � = 1 by setting

(M)↵,� = |0xi (5.29)

for all sites (for � = 1 PBC and OBC MPS are identical). An MPS representation

for translationally invariant states with one boson, given by (up to normalisation)

|1pi = a†
p |0i

=
X

x

eipxa†
x |0i

=
X

x

eipx |...0x�1, 1x, 0x+1, ...i , (5.30)

can be constructed with � = 2. An explicit form can be found in a similar manner

as for the MPO representation of H̃ using bulk matrices

Mx =

 
|0xi 0

eipx |1xi |0xi

!
, (5.31)

which multiply as

MxMx+1 =

 
|0x0x+1i 0

eipx |1x0x+1i + eip(x+1) |0x1x+1i |0x0x+1i

!
, (5.32)

so that again the state is built up in the lower-left corner and a suitable boundary

matrix can be chosen to complete the � = 2 MPS representation.

In order to build up m-boson representations, it is helpful to note that the

creation operator a†
p can itself be expressed as an MPO with �W = 2 where the bulk

matrices are

Wx =

 
1 0

eipxa†
x 1

!
. (5.33)

and the boundary matrix can be chosen as

W1 =

 
1 0

eipa†
1 0

!
, (5.34)

picking x = 1 as the arbitrary boundary site.

Writing the one-boson state as |1pi = a†
p |0i shows that the � = 2 MPS

representation of |1pi is equivalent to a two-layer MPS-MPO tensor network with
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� = 1,�W = 2, which can be represented diagrammatically as

|1pi = a†
p |0i = . (5.35)

This equivalence between the � = 2 MPS representation and a two-layer repre-

sentation can be seen explicitly by contracting the two-layer TNR vertically i.e. by

applying the operator a†
p to the state |0i in the MPO/MPS representation. Gener-

ally, the application of an MPO to an MPS can be written as

Ô | i = tr
Y

x

Wx tr
Y

x

Mx

= tr
Y

x

Wx ⌦
Y

x

Mx

= tr
Y

x

Wx ⌦ Mx

= tr
Y

x

M̃x , (5.36)

demonstrating that an MPO-MPS product is in general equivalent to an MPS with

a higher bond-dimension �0 = �W� and parametrised by matrices M̃x with compo-

nents

(M̃x)↵1↵2,�1�2 = (Wx)↵1,�1(Mx)↵2,�2

= Ô(↵1,�1) | (↵2,�2)i . (5.37)

In this sense, MPO with �W > 1 can increase the entanglement of the state they

are applied to (though note that there might be some redundancy in the description

of the MPS so that �0 really only provides an upper bound on the bond-dimension

necessary to represent the state in question).

States with m-bosons can then be built up in a similar manner and represented

either as a m + 1 layer TN or as an MPS with � = 2m. For example, the two-boson

states can be represented as

a†
p1a

†
p2 |0i = .

(5.38)
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The high bond-dimension of the MPS representation of m-boson states suggests that

these states are in fact highly entangled from the perspective of a one-dimensional

area law. However, this does not mean that the states cannot be represented ef-

ficiently by a TNR. Indeed, the representation of the m-boson states as an m + 1

layer network requires only a polynomial number of parameters. It is then how

highly entangled a state is relative to a one-dimensional representation that will be

of crucial importance for the computational e�ciency of algorithms and it will be in

this sense of low entanglement that we will focus, particularly since this coincides

with the physical spatial dimension of the theories of interest here.

5.3.4 Uniform Matrix Product States

When dealing with translationally invariant states, translation symmetry can

be enforced and exploited by using a uniform matrix product representation (uMPS).

This MPS is constructed by simply requiring all tensors to be identical i.e. Mnx(x) =

Anx for all x = (1, ..., N). Since there is no spatial variation the uMPS can be

defined in the infinite size limit N ! 1, which we will assume unless otherwise

specified. This is particularly useful since in this case the boundaries are irrelevant

and OBC can be used which o↵er a number of computational advantages. The

uMPS representation for states can be defined as

| [A]i =
X

n

v†
L

 
+1Y

x=�1
Anx

!
vR |ni , (5.39)

where the notation | [A]i indicates the state is a uMPS and emphasises the fact that

it is defined by d�2 parameters encoded in the single tensor An
↵,�. The boundary

tensors vL, vR are of size (d,�) and act as vectors in the matrix product, encoding

the (irrelevant) OBC.

5.4 Representation of Observables as Tensor Net-

works and Their Evaluation

5.4.1 Construction of Representation Using MPS and MPO

Using the MPO and MPS forms, it is possible to represent observables as TN in

a simple way. Due to the completeness of both the MPS and MPO representations,
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it will always be possible to construct a TN corresponding to some observable and

the e�ciency of its representation will depend on the e�ciency of the component

MPS and MPO pieces.

The simplest example of the representation of an observable is that of the

overlap between two states h ̃| i. This can be found explicitly from the MPS

representation of the states as

h ̃| i =
X

n

 ̃⇤
n n

=
X

n

tr

 
Y

x

(M̃
nx

)⇤
x

!
tr

 
Y

x

Mnx
x

!

=
X

n

tr

 
Y

x

(M̃
nx

)⇤
x ⌦ Mnx

x

!

= tr

 
Y

x

"
X

nx

(M̃
nx

)⇤
x ⌦ Mnx

x

#!
. (5.40)

As usual, this expression is clearer in the diagrammatic representation and can be

written by introducing the convention that the conjugation of a tensor is represented

by flipping the vertical, physical index such that

(M i
↵,�)

⇤ = (5.41)

so that the overlap can then be represented as

h ̃| i = . (5.42)

In words, one simply contracts the physical indices of the states together site-by-site.

This tensor network representation for the overlap contains no uncontracted indices

so that contracting it fully will produce a single number i.e. the value of the overlap.

To represent more general operator matrix elements h ̃|Ô| i, the MPO form

of Ô can first be established, either though explicit construction (as for the lattice

Hamiltonian) or using more generic methods [70]. The MPO can then be explicitly

applied to the MPS and the overlap taken. Alternatively, and in practice a better

idea, is to simply represent the matrix element by sandwiching the MPO between
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two MPS as

h ̃|Ô| i = (5.43)

so that the observable is calculated by fully contracting the corresponding tensor

network.

5.4.2 Exact Contractions of Quasi-One-Dimensional TNR

In the case that the TN is quasi-one-dimensional, it is possible to e�ciently

contract the tensor-network numerically-exactly. This can be achieved by choosing

a contraction ordering that proceeds horizontally from the left or right boundary.

A useful way to express this is in terms of transfer matrices, which can be done

by defining the object EA
B [O] =

P
i,j A

i ⌦ Oi,j ⌦ (B⇤)j, or EA
B =

P
i A

i ⌦ (B⇤)i if

no “operator” tensor is included, where A and B label the rank-3 tensors placed

in the upper and lower positions respectively while O labels the rank-4 tensor.

Diagrammatically we have

EA
B = (5.44)

and

EA
B [O] = . (5.45)

In this notation, the matrix element h ̃|Ô| i is given by

h ̃|Ô| i = tr
�
EA1

B1
[O1]E

A2
B2

[O2]...E
AN
BN

[ON ]
�

= tr (E1E2...EN)

= tr

 
Y

x

Ex

!
. (5.46)

Viewing Ex as matrix of size (�2�W ,�2�W ) the cost of this matrix multiplication

would naively be O (�6�3
W ), though this can be lowered by exploiting the tensor

network structure of the transfer matrices, see e.g. [68] for details.
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5.4.3 Expectation Values with uMPS

Computations with uMPS are performed in a similar manner to the finite size

MPS, though care has to be taken to remove the infrared divergences associated

to the thermodynamic limit, see [71, 72] for details. The evaluation of expectation

values can be illustrated using the transfer matrix notation (5.46). For example, the

norm of a uMPS can be written as

h [A]| [A]i = tr
�
...EA

AEA
AEA

A ...
�

, (5.47)

where the ellipses represent an infinite product of transfer matrices, one per site. If

the matrix EA
A has a single dominant eigenvector !0 = 1 then one can write

h [A]| [A]i = tr (|R)(L|)

= 1 , (5.48)

where |R) and (L| are the right and transposed left dominant eigenvectors of the

matrix EA
A , normalised such that (L|R) = 1. If the dominant eigenvector !0 6= 1

then normalisation can be achieved by scaling A ! A/
p
!0. The expectation value

of any local operator on some set of m-sites can then be evaluated in a similar

manner taking the infinite product of transfer matrices EA
A that occur on either

side of the region on which Ô has support. If we represent the operator Ô with

support on m-sites as an MPO and again assume that the transfer matrix has a

single dominate eigenvector !0 = 1, then we can write that

h [A]|Ô| [Ai = tr
�
...EA

AEA
A [O1]E

A
A [O2]...E

A
A [Om]EA

A ...
�

= (L|EA
A [O1]E

A
A [O2]...E

A
A [Om]|R) . (5.49)

More generally, local expectation values of uMPS can be defined in this way so

long as the transfer matrix has a single dominant eigenvector and its left and right

dominant eigenvectors have full rank when written as matrices [71]. We will always

assume this is the case and that the uMPS has been normalised unless specified

otherwise. In this case, once the dominate eigenvectors of the transfer matrix have

been determined, local expectation values such as (5.49) can be evaluated using the

contraction strategies available for finite-size OBC MPS.
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5.4.4 Gauge Freedom of MPS and Boundary Conditions

Matrix product states, and tensor networks more generally, are associated to a

simple gauge redundancy under the insertion of matrices at the point of contraction

between two tensors. This freedom can be seen easily for MPS since any MPS can

be equivalently rewritten by inserting identity matrices 1 of size (�,�) between any

of the rank-3 tensors. Decomposing the identities as 1 = G(x)�1G(x) then leads to

a di↵erent MPS representation of the same state as

 n = tr

 
Y

x

G(x)Mnx(x)G�1(x + 1)

!

= tr

 
Y

x

M̃
nx

(x)

!
. (5.50)

Equivalently, and more common in practice, one can think of performing a matrix

decomposition on the tensors which will leave the matrix product unchanged. This

gauge freedom can be exploited to give desirable properties to the MPS matrices

which can simplify calculations and associated algorithms. The most common choice

is that of left/right orthonormality where G is chosen such that Mn has the property

(1|EM
M = (1| , (left-orthonormal) , (5.51)

EM
M |1) = |1) , (right-orthonormal) , (5.52)

where the “identity vector” |1) simply contracts the two indices of the transfer

matrix together when expressed in tensor form:

EA
B |1) =

X

i

Ai(B†)i . (5.53)

We will refer to an MPS for which all matrices are left/right orthonormal as being

in the left/right gauge and this gauge can be fixed by using e.g. singular value

decompositions on the Mn matrices. For OBC MPS this gauge choice simplifies

calculations considerably as the boundary transfer matrices act like identity vectors

on the adjacent matrices

EvL
vL

= (1| , if left-orthonormal , (5.54)

EvR
vR

= |1) , if right-orthonormal , (5.55)
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and products of transfer matrices in the same gauge simply reduce to the identity.

Another standard gauge choice is the mixed/canonical gauge where to the left of a

chosen site k (the centre site) all matrices are left-orthonormal while to the right

all matrices and right-orthonormal. This choice simplifies the calculations of local

expectation values where the operator of interest acts only on the centre site. All

other sites surrounding the centre site can then be contracted trivially and the

expectation value reduces to

h |Ôk| i = tr
⇣
EvL

vL
EM1

M1
...EMk

Mk
[Ok]...E

MN�2

MN�2
EvR

vR

⌘

= (1|EMk
Mk

[Ok]|1) , (5.56)

so that only the tensor at site k contributes to the expectation value.

While we will mainly use PBC in finite size calculations where such simplifica-

tions cannot be made, similar gauge choices can improve the stability of algorithms

even in the PBC case and so are still of significant interest. In the infinite size case,

such gauge choices will be particularly powerful since OBC can be used without the

strong boundary e↵ects found in the finite size case. In the mixed gauge with centre

site x, the uMPS can be written as

| [A]i =
X

n

...Anx�2

L Anx�1

L Anx
C Anx+1

R Anx
R ... |ni , (5.57)

where all tensors to the left of site x has been left-orthonormalised A ! AL while

to the right they have been right-orthonormalised A ! AR which together result in

A ! AC on the centre site at x. Now denoting the transfer matrices corresponding

to AL and AR (without operators inserted) as TL and TR, then the associated gauge

conditions mean that for a normalised state these matrices have dominant left/right

eigenvectors that act as the identity vector and in this case we can define

(1|TL = (1|

TR|1) = |1)

TL|R) = |R)

(L|TR = (L| . (5.58)

Therefore, the simplification of local expectation values found in the finite size mixed

gauge case follows over to the infinite-size case with the boundaries acting as identity

vectors only.
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5.4.5 Low Entanglement Approximation of Higher Dimen-

sion Observables

As we have seen, it is often possible to represent interesting observables e�-

ciently as two-dimensional tensor networks. In principle, these TN can be contracted

vertically corresponding to the application of the MPO layers onto the MPS. How-

ever, this is generally ine�cient since the MPS bond-dimension grows exponentially

with the number of layers in the network. To evaluate such an observable repre-

sented in this manner, more truncations must be used. When applied sensibly, these

truncations should correspond to extracting a “low entanglement approximation”

for the observable. For example, one clear strategy is to repeatedly apply the MPO

layers to the MPS but at each step truncate the MPS so that the computation is

feasible and the entanglement remains limited. Similar strategies can be applied in

D = (2 + 1) and there are a number of related relevant methods, see [73, 74] for

reviews and examples. Alternatively, one can try more complicated schemes to ex-

tract a low entanglement approximation and recently this idea has been formalised

by constructing renormalisation group transformations on tensor networks. These

methods systematically simplify tensor networks, removing the high-entanglement

degrees of freedom and producing a low-entanglement approximation to the observ-

able in question [75, 76, 77].



Chapter 6

Low Entanglement

Approximations with Tensor

Networks

6.1 Introduction

While some observables can be represented and calculated exactly in an e�cient

manner using tensor networks, more generally they are used to provide powerful

low-entanglement approximation schemes. This is primarily achieved by treating

the tensor networks as variational ansatz for quantum states. The chosen form of

the tensor network then restricts one to a subset of states (the variational manifold)

and the entries of the tensors are treated as free parameters which specify a state

in the manifold. To approximate a particular observable, the parameters are then

chosen so that the corresponding state is approximated as well as possible by the

ansatz. Equal-time observables can then be evaluated using the state approximation

leading to an approximation for the observable O(�). Since the TNR are complete,

when the truncation is removed � ! 1 the approximation will agree with its true

value. We can then consider some threshold �⇤ for which the di↵erence between

the true value and approximation |O(1) � O(�)| is su�ciently small. The required

�⇤ will depend on the observable/system in question with “higher entanglement”

observables requiring higher �⇤ to approximate.

For example, to approximate the entanglement entropy of a state with corre-

lation length ⇠ that is described by a conformal field theory (CFT), we can expect

from the CFT result for the entanglement entropy (5.25) and corresponding MPS

result (5.28) that �⇤ ⇠ ⇠̃p where p is some positive number. Another example is

85
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given by the equal time ground-state two-point function

G2(r) = h⌦|�(x)�(x + r)|⌦i . (6.1)

Using an MPS, this can be approximated by first approximating the ground-state

|⌦(�)i and then calculating

G2(r;�) = h⌦(�)|�(x)�(x + r)|⌦(�)i . (6.2)

In this case, the limitation of entanglement has a clear consequence in the ap-

proximation of G2(r) with G2(r;�). For an MPS, the two-point function G2(r;�)

necessarily decays asymptotically as an exponential, with the maximum correlation

length of this decay ⇠� being set by the truncation parameter �

G2(r;�) ! e�r/⇠� as r ! 1 . (6.3)

Therefore, we can associate the finite entanglement e↵ects for such MPS approxi-

mations with the infrared scale ⇠� which functions as an infrared cuto↵ like e.g. the

finite lattice size N . For distances r ⌧ ⇠� we can expect that G2(r;�) will approxi-

mate G2(r) accurately. However, at longer distances the behaviour of G2(r;�) will

be modified significantly and to reproduce the two-point function at this scale higher

� will be needed. Since the typical physical length scale in problems of interest is

the correlation length ⇠, we will want to reproduce G2(r) with G2(r;�) up to the

scale r ⇠ ⇠ i.e. we require the hierarchy ⇠ ⌧ ⇠�.

When MPS are applied to the Hamiltonian lattice regularisation for the �4

theory, there will then be a number of di↵erent cuto↵s to account for. Firstly, there

are the UV cuto↵s given by the lattice spacing a and boson number truncation d.

Additionally, there is the entanglement cuto↵ �, which we can associate to an IR

cuto↵ parametrised by ⇠�. Finally, for finite size systems there is the IR cuto↵ L.

Depending on the observable in question, the e↵ects of these cuto↵s will be more

or less relevant. Assuming that d and L are set su�ciently high we can expect that

when ⇠ ⌧ ⇠� the physics of interest will be well reproduced by the use of MPS.

Combined with the lattice spacing, this means that we will be interested in having

the hierarchy of scales a ⌧ ⇠ ⌧ ⇠�, where both discretisation e↵ects and finite

entanglement e↵ects should be small. Of course, this also requires ⇠� ⌧ L and the

strict continuum limit ⇠ ! 1 will require that the entanglement e↵ects be removed

via � ! 1 along with any other IR cuto↵ e.g. L ! 1.

In this chapter, we provide an outline of some of the approximation methods
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for the ground-state and one-kink state that will be applied in Chapters 7 and 9, fo-

cussing on the “variational” algorithms that are specialised to tensor networks. We

will also make use of more standard methods in Chapter 7, in particular the conju-

gate gradient method for uMPS, and details for this can be found in [1, 78]. Details

for the finite-size variational-matrix-product-state (vMPS) algorithms discussed in

Section 6.3 can be found in [68, 79, 80] while the variational-uniform-matrix-product-

state (vuMPS) algorithm discussed in Section 6.4 is described in [81]. In Chapters

7 and 9 we also make use of algorithms to approximate the scalar mass using uMPS

which we do not discuss in this Chapter and details can be found in [72].

6.2 Matrix Product States as a Variational Ansatz

To approximate observables using MPS, it is typical to find an approximation

to the state of interest by solving an associated minimisation/optimisation problem

restricted to the subset of states described by an MPS representation. For example,

the energy minimisation problems that define the ground-state (4.11) and one-kink

state (4.12) can also be used to define MPS approximations as :

|⌦(�)i = arg min
| i2MPS(�)

⇣
h |H̃| i � � [h | i � 1]

⌘
(6.4)

for the ground state and

|K(�)i = arg min
| i2MPS(�)

⇣
h |H̃(TPBC)| i � � [h | i � 1]

⌘
(6.5)

for the one-kink state, where MPS(�) denotes the set of MPS with bond-dimension

� and other truncation parameters are not included explicitly for notational con-

venience. Approximations to equal-time observables can then be constructed as

O(�) = h⌦(�)|Ô|⌦(�)i or O(�) = hK(�)|Ô|K(�)i and the corresponding one-

dimensional tensor network can be contracted numerically-exactly. For instance,

the equal-time n-point functions

Gn(x1, x2, ..., xn;�) = h⌦(�)|�(x1)�(x2)...�(xn)|⌦(�)i , (6.6)

G(K)
n (x1, x2, ..., xn;�) = hK(�)|�(x1)�(x2)...�(xn)|K(�)i , (6.7)
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provide approximations to the true n-point functions and can be calculated easily

for MPS. The ground-state energy for finite size systems,

E⌦(�) = h⌦(�)|H̃|⌦(�)i , (6.8)

can be calculated using the MPO representation of H̃. Similarly, the kink mass can

be approximated using the MPO representation of H̃(TPBC) as

MK(�) = hK(�)|H̃(TPBC)|K(�)i � E⌦(�) . (6.9)

Note that, while this approximation coincides with that typically used in lattice QFT

[48], one can also use the PBC Hamiltonian H̃(PBC) instead of H̃(TPBC) to estimate

the kink energy, with the two estimates di↵ering only by a boundary term that is

irrelevant as N ! 1. Of course, such variational estimates require the solution

of the minimisation problems (6.4) and (6.5) which in general requires additional

approximations.

6.3 Energy Minimisation Algorithm for MPS: vMPS

Standard optimisation strategies such as conjugate gradient have been applied

successfully to the minimisation problems with MPS, see e.g. [82]. However, tensor

networks are also associated to a more specific set of minimisation algorithms that

take advantage of their natural structure. In the case of MPS, variational matrix

product state energy minimisation (vMPS) is now a standard procedure for approx-

imating ground states with MPS and has been highly successful in a variety of cases,

see [68] for a detailed guide to implementation. The tensor network structure of the

MPS provides a natural way to proceed with minimisation: rather than treat all

degrees of freedom at once, one can instead minimise the energy with respect to just

a single tensor (i.e. at a single site) while keeping all other tensors fixed. One then

proceeds tensor by tensor minimising the energy iteratively. This is most e�ciently

performed in a sweeping pattern moving from site to site in a given direction until

some convergence criteria are met.

To minimise the energy while changing only a tensor at a particular site, one

must solve a generalised eigenvalue problem. To see this, consider the OBC tensor

network representation of the energy expectation value with H̃ in MPO form and
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N = 5

h |H̃| i = . (6.10)

If we are only interested in varying a single tensor at a particular site, e.g. the site

x = 3, all other tensors can be contracted together, giving

h |H̃| i = (6.11)

for OBC, while in PBC the boundary tensors would include additional indices to

be traced over. This expression can then be thought of as the action of an e↵ective

Hamiltonian on the tensor at the uncontracted site. In terms of the tensor network,

the e↵ective Hamiltonian then takes the form

He↵ = ,

(6.12)

which is a linear operator on the space of rank-3 tensors. As such, it can be con-

sidered a matrix of size (d�2, d�2) that acts on vectors of size (d�2) (i.e. the rank-3

tensors). In a similar way, an e↵ective normalisation matrix can be constructed

by replacing the MPO representing the Hamiltonian by the identity operator via

h | i = h |1| i where 1 = 11 ⌦ 12 ⌦ ... ⌦ 1N . To emphasise this structure, we can

use the notation vM = Mnx
↵x,↵x+1

and write the two e↵ective operators as matrices on

this space, He↵ and Ne↵. In this notation the (ground state) minimisation problem

at this site can be written as

ṽM = arg min
vM2Cd�2

⇣
v†

MHe↵vM � �
h
v†

MNe↵vM � 1
i⌘

, (6.13)

which can be solved by finding the minimum eigenvector of the generalised eigenvalue

problem

He↵vM = �Ne↵vM . (6.14)

To find an approximation to the ground state one then initiates a (random) MPS,

chooses a site i, forms the e↵ective operators He↵,Ne↵, finds the minimum eigen-

vector ṽM of the generalised eigenvalue problem Equation (6.14) and updates the
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current MPS by replacing the rank-3 tensor at the site i with the rank-3 tensor

corresponding to the minimum eigenvector ṽM . The updated MPS will have a

lower energy and so by proceeding to the next site the energy can be lowered itera-

tively until convergence is achieved. This constitutes the general idea of the vMPS

procedure.

To improve the stability and e�ciency of the vMPS procedure, the gauge free-

dom in the MPS definition can be exploited. With OBC MPS, when optimising

the site i, if the mixed gauge is chosen then expectation values of local observables

depend only on the tensor at that site as in Equation (5.56). This is particularly

important since the norm is then simply given by

h |1| i = (1|EMk
Mk

|1) , (6.15)

which means the e↵ective normalisation matrix is trivial Ne↵ = 1. This reduces the

generalised eigenvalue problem (6.14) to an ordinary eigenvalue problem which is

considerably more stable and can be solved very e�ciently. Unfortunately, for PBC,

this gauge cannot be chosen and and other stabilisation strategies must be found,

e.g. see [79, 80].

6.4 Energy Minimisation Algorithm for uMPS:

vuMPS

A variational algorithm can also be found in the case of infinite-size uMPS, see

[81] for details. In this case, OBC can be used and the mixed gauge can be chosen

to improve stability and performance without the associated boundary e↵ects. Of

course, in the infinite size case, the ground-state energy is infrared divergent. This

can be seen by calculating the energy expectation value of a uMPS | [A]i, assumed

to provide an approximation to the ground-state, in the left or right gauge. A

convenient parametrisation for the nearest-neighbour Hamiltonian in the infinite-

size case is as a sum over product operators

H̃ =
X

x

X

s

H(s)
x ⌦ H(s)

x+1 +
X

x

✏1x ⌦ 1x+1 , (6.16)
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where the constant ✏ is chosen to regulate the infrared divergence. In the left gauge,

the approximation to the ground-state energy expectation value is then

h [A]|H̃| [A]i = ✏|Z| +
1X

x=�1

X

s

(1|TL[H(s)
1 ]TL[H(s)

2 ]|R)

= ✏|Z| + |Z|
X

s

(1|TL[H(s)
1 ]TL[H(s)

2 ]|R) (6.17)

= ✏|Z| + ✏0|Z| , (6.18)

where |Z| indicates the divergent contribution coming from the sum over all sites.

The choice ✏ = �✏0, i.e. subtracting the current best estimate of the ground-state

energy density, then regulates the infrared divergence as expected.

The e↵ective Hamiltonian representing the variation of the energy expectation

value with AC is then constructed by finding the explicit dependence of hH̃i on AC

and removing the tensor AC from the corresponding network, as in the finite-size

MPS case. In the mixed gauge form, the energy expectation value can be written

as

h [A]|H̃| [A]i =
X

x

X

s

h [A]|H(s)
x H(s)

x+1| [A]i � ✏0
X

x

h [A]| [A]i

= (HL|EAC
AC

|1) + (1|EAC
AC

|HR) � |Z|✏0(1|EAC
AC

|1)+

+
X

s

h
(1|EAC

AC
[H(s)

1 ]TR[H(s)
2 ]|1) + (1|TL[H(s)

1 ]EAC
AC

[H(s)
2 ]|1)

i
,

(6.19)

where (HL| and |HR) contain infinite sums over products of the transfer matrices

(HL| =
X

s

"
(1|TL[H(s)

1 ]TL[H(s)
2 ]

 1X

k=0

(TL)k

!#
, (6.20)

|HR) =
X

s

" 1X

k=0

(TR)k

!
TR[H(s)

1 ]TR[H(s)
2 ]|1)

#
. (6.21)

The infrared divergences are now encoded in the infinite sums over products of TL

and TR which are divergent since they have dominant eigenvalue equal to one. This

divergence can be extracted by decomposing the transfer matrix into a sum of its

dominant eigenspace projector and complementary part, e.g., TL = |R)(1| + T̃L.
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Then

1X

k=0

[TL]k =
1X

k=0

[T̃L]k +
1X

k=0

[|R)(1|]k

=
1X

k=0

[T̃L]k +
1

2
|Z||R)(1| , (6.22)

and similarly for the sum involving TR, see [72] for more details. The first sum in

(6.22) is now convergent and can be summed as a standard geometric series. When

inserted back into the expression (6.21), the second divergent term just provides a

constant contribution equal to half the energy

(HL| =
X

s

(1|TL[H(s)
1 ]TL[H(s)

2 ]

" 1X

k=0

(T̃L)k

#
+

1

2
|Z|
X

s

(1|TL[H(s)
1 ]TL[H(s)

2 ]|R)(1|

=
X

s

(1|TL[H(s)
1 ]TL[H(s)

2 ]

" 1X

k=0

(T̃L)k

#
+

1

2
|Z|✏0(1| . (6.23)

The divergent piece is then cancelled in the expression (6.19) by the term propor-

tional to ✏ as desired.

With hH̃i regulated and written with the dependence of AC made explicit,

the e↵ective Hamiltonian can be derived from (6.19) by removing the tensor AC .

The vuMPS algorithm then proceeds similarly to vMPS with the corresponding

eigenvalue problem being solved to update AC and iteratively minimise the energy.

While the above discussion captures the spirit of the algorithm, there are in fact

more subtleties since the whole state must be updated in a way that preserves

translational invariance, for details see [81].

6.5 Low Entanglement Approximations for the �4

Theory

Within the Hamiltonian lattice regularised setting, matrix product states can

be applied to the �4 scalar field theory in D = (1 + 1) allowing the equilibrium

physics of the theory to be studied e�ciently, see e.g. [1]. The ground-state can be

approximated in the infinite-size limit by uMPS using minimisation algorithms such

as the conjugate gradient method or vuMPS. With the approximation of the ground-

state obtained observables such as the ground-state equal-time n-point functions and
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energy (density) can be studied. The scalar mass can also be approximated from the

equal-time two-point function or by direct approximation of the one-particle excited

state.

When the correlation length of the ground-state is small, only small bond-

dimensions � should be required to approximate the observables of interest. There-

fore, deep in the symmetric or symmetry broken phases when the correlation length

becomes small, we can expect that only small � will be required to approximate

observables, consistent with the fact that semi-classical methods/mean-field theory

is applicable in these regions. Near the critical point, when the correlation length

is very large, we can expect high values of � to be needed and ultimately at the

critical point other methods will be required. By contrast, we can expect that the

maximum required local boson occupation number d will grow as one heads into the

symmetry broken phase and the field expectation values become large.

The one-kink state and associated observables can be studied using a finite-

size MPS along with the vMPS minimisation algorithm. While this method can be

applied equally to the one-kink state and the finite-size ground-state, in the former

case we can expect more di�culties. In particular, the finite-size matrix product

state techniques described here are naturally inhomogeneous and during the min-

imisation procedure translational invariance will be broken numerically leading to

spatial dependence of the tensors Mnx
x . As such, the true translational invariance of

observables is only approximated. In the case of the ground state, this is no problem

since the MPO representation of the lattice Hamiltonian is reasonably homogeneous

and translational invariance can be easily approximated with a low � MPS. How-

ever, for the one kink state, the Hamiltonian appears quite inhomogeneous with

a particular location being selected for the twist. This makes it much harder to

approximate translational invariance and the kink must be “delocalised” by using a

su�ciently high �.

In practice, the approximation of translational invariance tends to happen

quickly so that one can think of a threshold �̃(d, N) after which the spatial variance

of local observables drops dramatically. The value of �̃(d, N) will depend on the

observable in question as well as the values of d and N with higher d and larger

N leading to an increased �̃(d, N). The dependence on d is particularly important

since it means that in regions of parameter space requiring high d it will become im-

possible to approximate translational invariance for the kink state with this method.

Therefore, it is the semi-classical region µ̃2
0 � �̃0 that will be hard to approximate

in this sense, while the strong coupling region will be less problematic. Of course,

as with the ground-state, this is not too much of an issue since the semi-classical
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region can be treated perturbatively. Furthermore, observables that include contri-

butions from the entire lattice, e.g. the kink mass, do not depend strongly on the

translational invariance of the state. We note that, if desired, the kink mass can

also be approximated in a similar manner to the scalar mass using specific ansatz

for the kink excitations which can include translational invariance explicitly, see [83]

for details.



Chapter 7

Studying the Kink in Equilibrium

with MPS

7.1 Introduction

In this chapter, following the work by the author published in [84], we turn

to the study of the ground-state and one-kink state using matrix product states.

From a physics perspective, the approximation of ground-state and one-kink state

observables is desirable in its own right, particularly when done in a manner that can

generalised to other theories and defects. Additionally, such equilibrium quantities

are required for the confirmation of topological defect formation via the KZM, and

so are also helpful in the non-equilibrium case. From a more technical point of view,

the study of equilibrium physics provides an opportunity to understand the e↵ect

of the various truncations on approximations, in addition to confirming that the

method used can capture the physics of kink defects at all.

We study the �4 QFT in the lattice Hamiltonian setting as described in Chapter

4. An approximation to the ground-state is obtained by using uMPS and conjugate

gradient energy minimisation applied to the lattice Hamiltonian (4.2). We will

work in lattice units throughout and so drop the tildes for notational convenience.

The one-kink state is approximated using PBC MPS and the vMPS algorithm, see

Section 6.3, applied to the lattice Hamiltonian with TPBC (4.10). When using

the vMPS algorithm to approximate the one-kink state, a strategy must be chosen

to stabilise the vMPS algorithm. In this chapter, we have followed the method

outlined in [79]. Unfortunately, in the case of TPBC this was not su�cient to be

able to solve the generalised eigenvalue problem with sparse methods and we have

used dense methods at a cost of O(�6). Despite the relative expense, we find that
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Figure 7.1: The field expectation value for various e↵ective couplings using a uMPS
approximation to the ground state. In the left-hand plot, weak-couplings are dis-
played with �0 = 0.1 and (d,�) = (40, 32) (blue triangles). These can be compared
to low � = 4 approximations (hollow red circles) which look almost identical on
this scale. This contrasts the low d = 12 approximations (hollow black squares) for
which the expectation value appears truncated agreeing with the higher d approx-
imations only when the field expectation value is relatively low. The insets show
the convergence for the selected inverse coupling g�1

0 = �1.5 (the best estimate has
been subtracted so that the plots tend to zero) and the di↵erence in scales between
the two indicate that d is the relevant parameter to achieve a good approximation
in the weak coupling regime. The semi-classical result is also shown in the main
figure and lower-left inset (solid red line) with v =

p
�6µ2/�0 where µ2 = µ2

0 � m2
C

and m2
C = �0.019 is determined by fitting to the data. The stronger coupling data

(right-hand plot) with (d,�) = (18, 32) and �0 = 2 (blue diamonds) shows the usual
symmetry breaking pattern. Here, the relevant parameter to achieve a good approx-
imation is � as shown by the scale di↵erence between the insets and also by the fact
that the low d approximation agrees well with the data on the main plot while the
low � data fails to agree near the critical point.

the reachable � ⇡ 20 are su�cient for studying the kink mass at strong couplings

though for studying other observables e.g. the two-point function in the presence of

the kink, higher � would be needed and an alternative stabilisation strategy would

be useful such as the one in [80] which was applied to a spin system with TPBC.

To fix the value of d in the TPBC case, we start with a low � and increase d until

convergence is reached in the observable in question. The final value of d is then

used when performing the higher � calculations.
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We study both weak and strong coupling behaviour by fixing the value of

�0 = 0.1 or 2 while using a range of µ2
0. When the e↵ective coupling is small we

compare the MPS approximation to the analytic results from the classical contin-

uum, see Section 2.2. This comparison can be made in the continuum region where

⇠ � 1 with the lowest order mass renormalisation included numerically by fitting the

classical forms to the MPS data, replacing the bare mass with µ2 = µ2
0 � m2

C where

m2
C is treated as a free parameter. In the strong coupling region, the TN approxi-

mations can be compared with universal results and we will focus on a comparison

of the mass ratio mS/MK to the universal result mS/MK ⇡ 2 corresponding to the

universal amplitude ratio (2.33). In both the strong-coupling and weak-coupling

cases, we assess the e↵ects of the truncation parameters d and � to check that the

approximation of observables behave as expected.

7.2 Field Expectation Values, Basis Truncation

and Finite Entanglement E↵ects

In order to accurately approximate an observable with the lattice theory and

MPS, both the local basis truncation parameter d and the entanglement cuto↵

(bond-dimension) � must be su�ciently high. Depending on the observable in ques-

tion, the e↵ect of the cuto↵s, controlled by the d and �, will be more or less impor-

tant. As discussed in Section 4.4.2, the boson occupation number truncation via d

can be understood somewhat simply in the full lattice theory (i.e. when � ! 1)

in terms of its e↵ect on the approximation of local quantities such as h�2i. This

should also be the case when using MPS for local observables e.g. h⌦|�2|⌦i since

the approximation of local quantities should require relatively small values of � that

will be reachable with the algorithms used here. Depending on the e↵ective cou-

pling, the value of � required will change somewhat from a smaller value for weak

couplings (where mean-field theory is accuracy and quantum corrections are small)

to larger values when the e↵ective coupling is strong. Conversely, as the expectation

value of h⌦|�|⌦i increases into the symmetry broken phase, the value of d required

will increase.

This e↵ects of finite d and � are illustrated in Figure 7.1 where the uMPS

approximation of the vacuum expectation value h⌦|�|⌦i is shown for perturbative

and non-perturbative bare e↵ective couplings g0 = �0/µ2
0. In the first case, the

results (blue triangles) can be compared with the classical continuum result (red line)
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v =
p

�6µ2/�0. In the stronger coupling case, there is no analytic comparison but

the expected symmetry breaking pattern can be seen. In principle, such plots can be

used to determine the location of the critical point e.g. by using the critical exponent

associated with the vanishing field expectation value. However, as discussed in [1],

such fits are highly sensitive and it is much better to use observables with a simpler

scaling, e.g. the kink mass, to determine the location of the critical point.

Figure 7.2: The field expectation value of the finite size lattice MPS approximation
to the one kink state for weak coupling g0 ⇡ �0.33 (left-hand plot) and stronger
coupling g0 ⇡ �2.58 (right-hand plot) with lattice sizes N = 32, 64 and 28 
d  32, 14  d  18 respectively. These can be compared with the corresponding
field expectation values of a uMPS approximation to the ground state ±v (solid
black lines) with (d,�) = (40, 32) and (18, 32) for the weak coupling and stronger
coupling respectively. For the low � = 6 runs (solid red line) a classical kink-like
profile is visible for both couplings which interpolates between ±v such that the
correct h�iK = 0 is not found. Increasing � de-localises the kink and translational
invariance can be approximated in the stronger coupling case such that h�iK ⇡ 0 .

For observables other than the local ground state expectation values, there are

additional factors that determine the accuracy of the approximations obtained by the

MPS. Essentially, the important features are the observation distance and to what

degree the observable represents an average over the system. In the first case, only

the truncation parameter � is important and increasing � will allow longer distances

to be better approximated. This can be seen clearly in ground state connected two-

point function G2(r) where larger � are required to approximate the observable

at larger distances r. In the second case, one can think of a particular threshold

� ⇡ �̃(d, N) being required before the translational invariance of observables is well

approximated. This will depend strongly on the observable/state in question and

on the truncation parameters d and N .

The issues surrounding the approximation of translational invariance can be
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seen clearly when calculating the field expectation values h⌦|�|⌦i and hK|�|Ki.
Since both observables are local, they will converge quickly in � so long as the

threshold � ⇡ �̃(d, N) is met. In the ground state case, �̃(d, N) is essentially

negligible and the approximation of h⌦|�|⌦i converges rapidly. However, in the

one kink state �̃(d, N) is important and, for su�ciently large values of d or N ,

local expectation values such as hK|�|Ki will show significant spatial variations and

cannot be accurately approximated. We note that, in the finite-size case, the field

expectation value is in principle zero, respecting the Z2 symmetry but is broken

numerically during the approximation and must be enforced explicitly if desired

[85].

The problematic behaviour of hK|�|Ki is shown in Figure 7.2. In the semi-

classical case with bare e↵ective coupling g0 ⇡ �0.33, the high field expectation

value requires a relatively high value of d to converge and the threshold �̃(d, L) is

higher than the shown � = 6, 10, 16. This means that a classical-like kink profile

can be seen and increasing � achieves only very slight changes to the width such

that the correct h�iK = 0 value is not obtained. Moreover, the zero-mode means

that the point at which h�(x)iK crosses zero is independent of the energy making

convergence in � or d di�cult to quantify. However, at stronger couplings the field

expectation value is much lower, corresponding to a lower d, which makes it easy

to approximate translational invariance and obtain h�iK ⇡ 0 even for the modest

values of � shown.

Observables that average over the whole system can be much less sensitive to

spatial variations in the MPS representation than observables evaluated at a partic-

ular point. For example, the behaviour of hK|�2
x|Ki = h�2iK displays similar spatial

variations at weak coupling as for the case of hK|�x|Ki, see Figure 7.3 . However, the

spatial average of this expectation value hh�2iiK has a much weaker dependence on

�. This is shown in Figure 7.4 where the spatial variation of the expectation values

of both hh�iiK and hh�2iiK are shown by error bars corresponding to their standard

deviation with x. Despite the strong spatial variation in h�2iK , the spatial average

changes only very weakly with � in both cases indicating that this observable can

be well approximated even in the weak coupling case. This behaviour can be com-

pared with that of h�iK : while the spatial average does not display much variation

in the weak coupling case, since the operator is Z2 anti-symmetric, it still gives the

incorrect non-zero value and is only correctly approximated in the stronger coupling

region where translational invariance is approximated. In general, observables cor-

responding to Z2 anti-symmetric operators cannot be reliably approximated outside

the translational invariant region, while the spatial average of those corresponding
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Figure 7.3: The �2 expectation value corresponding to the one kink approximations
in Figure 7.2. As with h�iK , translational invariance can only be approximated in
the stronger coupling case. Nevertheless, since the operator is Z2 invariant, the
spatial average is well behaved and its convergence can be studied as shown in the
insets.

to Z2 symmetric operators can be.

7.3 Particle Masses at Weak Coupling

An estimate of the scalar mass mS can be extracted from the lattice regularised

theory by the method outlined in Section 4.3.2. When using MPS, the finite bond-

dimension will modify the long-distance behaviour of the observable G2(r) ultimately

leading to a pure exponential decay. The distance where this occurs is determined

by the truncation parameter � and we denote the length scale associated to this as

⇠�. Recalling that an estimate of the scalar mass is obtained via a constant region

of mS(r) (4.20), we now expect this region to occur at some intermediate distance

above the scale of higher mass contributions to G2(r) and below the scale of finite

entanglement corrections which artificially force the decay of G2(r).

The kink mass MK is calculated from the di↵erence of the one kink energy

expectation value hK|H̃(TPBC)|Ki, obtained from the finite size lattice MPS, and

the ground state energy density, obtained from the uMPS. The latter converges

quickly in � and the only potential issue is the approximation of hK|H̃(TPBC)|Ki.
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Figure 7.4: The spatial average (red dots) of the � and �2 expectation values for
the finite size lattice MPS approximation to the one kink state at weak coupling
g0 ⇡ �0.33 (left-hand plots) and stronger coupling g0 ⇡ �2.58 (right-hand plots)
with the same parameters as in Figure 7.2. The spatial standard deviation of the
expectation values, shown as error bars, changes strongly with � and becomes small
only for strong couplings. However, the spatial averages changes only weakly and
the value of hh�2iiK can be reliably approximated in both regions. Note that, due
to its anti-symmetry, the value of hh�iiK is only correct and approximately equal to
zero (indicated by the black line) in the stronger coupling case.

However, since the kink mass includes contributions from the whole system, is fairly

local and Z2 symmetric, we can expect a reasonable convergence with � even in the

weak coupling case. In the case of the scalar mass, since it is estimated from the

ground state observable G2(r), approximating translational invariance should not be

an issue and we can focus on the need to increase � so that the region up to r ⇡ ⇠

is well approximated. At weak couplings, ⇠ is relatively small so that the required

� should not be too high allowing for an estimate of mS to be extracted relatively

easily. The kink mass and scalar mass are shown for a variety of weak couplings in

Figure 7.5 along with the classical continuum results for comparison.

7.4 Strong Coupling: Universal Amplitude Ratio

and Particle Masses

At stronger couplings the correlation length ⇠ increases so that to estimate mS

longer distances of G2(r) need to be approximated requiring larger �. Ultimately,

this means that this method cannot be used with MPS arbitrarily close to the

critical point where the scalar mass vanishes. This is reflected in the fact that at
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Figure 7.5: The kink mass MK (left-hand plot) and scalar mass mS (right-hand plot)
for various weak couplings (data in blue triangles). The kink mass is calculated from
the energy expectation value of the finite size lattice MPS approximation of the one
kink state with � = 14 and the approximation of the ground state energy density
obtained from a uMPS approximation with � = 32. The scalar mass is extracted
from the uMPS approximation to the ground state connected equal time two-point
function G2(r) via a Bessel function ansatz (4.19). Both are compared with the semi-
classical continuum results (solid red lines) MK = 4

p
2µ3/�0 and mS =

p
2µ where

µ2 = µ2
0 � m2

C and m2
C is determined by fitting to the data to give �0.025, �0.037

respectively. The convergence of the approximations with d and � is shown in the
insets.

the critical point the correlation length diverges leading to algebraically decaying

correlations which correspond to a logarithmic violation of the entanglement area

law i.e. SA ⇠ log(VA)@A. While an MPS can still be used to approximate short

distance observables in the critical region [86] an alternative tensor network, e.g.

the multi-scale entanglement renormalisation ansatz (MERA) [87], that obeys the

correct low entanglement law will also allow the approximation of the long range

physics. Of course, this means that MPS are not especially suited to the study of

universal physics and we can expect di�culty when trying to reproduce the strong

coupling behaviour e.g. the universal mass ratio.

The scalar mass at strong couplings is plotted along with the kink mass in

Figure 7.6. As discussed in Section 2.3, at strong couplings in the broken symmetry

phase, the universal amplitude ratio relates the kink and scalar mass as 2MK = mS

and a qualitative change in the scaling can been seen in the left-hand plot of Figure

7.6 at the point when 2MK ⇡ mS as expected. However, the estimate of mS with
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Figure 7.6: Estimate of the scalar mass mS extracted from the uMPS approximation
to the ground state connected equal time two-point function G2(r) via a Bessel
function ansatz (4.19) (� = 32 red dots, � = 64 red diamonds). This can be
compared with the estimate extracted from the excitation ansatz mA

S (dashed red
line) and twice the kink mass 2MK (blue triangles) calculated from the N = 64 finite
size lattice MPS approximation to the one kink state. The left-hand plot shows a
larger range of bare coupling 2.5 . g0 . 5 while the right-hand plot focuses on
the strong coupling region with 2.95 . g0 . 3.39. A qualitative change can be seen
when entering the strong coupling region at mS ⇡ 2MK but the � = 32 Bessel ansatz
(4.19) does not provide a good quantitative agreement with the expected behaviour
mS ⇡ 2MK in the strong coupling region. The higher � = 64 Bessel ansatz does
improve the estimate but the � = 64 Bessel-squared ansatz (4.21) (black squares,
only in right-hand plot) improves the estimate further in agreement with the � = 32
excitation ansatz estimate (dashed red line). As mentioned in Section 4.3.2, the
scalar mass is estimated from averaging over a “uniform” region of mS(r) chosen
here by a single tolerance for all values of g�1

0 . While this has the advantage of being
“blind” using a single tolerance can lead to somewhat anomalous points (e.g. see
the point at g�1

0 ⇡ �0.331) and instead one can choose the tolerance adaptively for
each g�1

0 which eliminates such points, improving the estimates of mS.

� = 32 in the critical region extracted from the Bessel function tends to be somewhat

higher than the value of 2MK suggesting that, as might be expected, it is inaccurate

in this region. The scalar mass extracted from the excitation ansatz described in [72]

with � = 32 is also plotted for comparison (red dashed line) and is somewhat closer

to the value of 2MK suggesting that it can provide a more e�cient and accurate

method to extract the scalar mass in the critical region. To increase the accuracy of

the uMPS method one can simply increase the value of � but it is also possible to use

the Bessel-squared ansatz Equation (4.21). A comparison of these methods is shown

for the strong coupling region in the right-hand plot. The estimate of the scalar mass

is closer to the expected behaviour when � is increased (red dots and diamonds) but

the use of the Bessel-squared ansatz improves the estimate again (black squares)
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agreeing fairly well with the excitation ansatz. The significant improvement of the

Bessel-squared method over the single Bessel method suggests that the uMPS is

able to capture the contributions coming from the kink-antikink excitations in this

observable.

7.5 Conclusion

In this chapter, we have seen that TN can be used to successfully approximate

the equilibrium observables of the kink defect in the �4 theory. The generality

of the TPBC method used means that other defects could also be approximated

in this way, assuming an appropriate choice of tensor network is made. We have

also shown how the scalar mass can be extracted from the ground-state two-point

functions, once again in a general way that can be applied easily to other theories,

and discussed various practical issues with using TNs for the study of QFT.

To achieve higher accuracies than obtained here, larger � can be used by follow-

ing more recently developed algorithms than the conjugate gradient minimisation

used here, such as the vuMPS algorithm [72]. Alternatively, one can also turn to

better suited tensor networks such as MERA and both the methods to obtain the

kink mass and scalar mass should be readily adaptable to this case.



Chapter 8

Time Evolution with Tensor

Networks

8.1 Introduction

In non-equilibrium quantum field theory, one is typically interested in calcu-

lating n-point functions of field operators in situations where the state is far from

an equilibrium state. Typical scenarios of study are evolution from some chosen

non-equilibrium initial condition or the inclusion of explicit time-dependence in the

Hamiltonian. When non-equilibrium dynamics are expressed in the Heisenberg pic-

ture, equations of motion for the field operators can be derived that determine the

generally infinite hierarchy of equations required to specify the dynamics of observ-

ables such as the n-point functions. For example, the equation of motions for the

field operators of the �4 theory in the Hamiltonian lattice regularisation (4.2) are

�̇x = ⇡̃x ,

˙̃⇡x = (�x+1 � 2�x + �x�1) � µ̃2
0�x � �̃0

3!
�3

x . (8.1)

These can be combined to give the equations of motion in the desired n-point func-

tions which depend on all others, unless they are zero by some symmetry. For

example, the two-point function G2(x, y) = h�x�yi is linked to the four-point func-

105
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tion G4(x, y, z, w) = h�x�y�z�wi by

d

dt
G2(x, y) = h�̇x�yi + h�x�̇yi

= h⇡̃x�yi + h�x⇡̃yi , (8.2)

d

dt
h⇡̃x�yi = h ˙̃⇡x�yi + h⇡̃x⇡̃yi

= h�x+1�yi � 2 h�x�yi + h�x�1�yi � µ̃2
0 h�x�yi � �̃0

3!
h�3

x�yi + h⇡̃x⇡̃yi

= G2(x + 1, y) � 2G2(x, y) + G2(x � 1, y) � µ̃2
0G2(x, y) + h⇡̃x⇡̃yi +

� �̃0

3!
G4(x, x, x, y) ,

d

dt
G4(x, x, x, y) = ... (8.3)

Standard perturbation theory can be applied to non-equilibrium problems but,

due to the appearance of secular terms, such approaches become invalid at late times

[88]. Instead, a better approach is to first approximate observables of interest by a

closed set of equations of motion. These equations can then be solved independently

and, when they retain properties of the full theory such as the conservation of energy

and other symmetries, can provide an approximation scheme that remains consistent

and stable over long periods of time. A simple example of this kind of approximation

is mean-field theory, in particular Hartree-Fock type approximations. In the �4 case,

such an approximation can be made by replacing �4
x ! �3 h�2i2+6 h�2i�2 [89]. The

Heisenberg equations of motion (8.1) then read

�̇x = ⇡̃x ,

˙̃⇡x = (�x+1 � 2�x + �x�1) � µ̃2
0�x � �̃0

2
h�2

xi�x . (8.4)

These are simply free-field equations so that this method essentially approximates

the true quantum dynamics by classical dynamics. In terms of the n-point functions,

the equations of motion (8.4) form a closed set of equations and energy is conserved

leading to a stable approximation scheme. For instance, the two-point function is

now determined by the equations

d

dt
G2(x, y) = h⇡x�yi + h�x⇡yi , (8.5)

d

dt
h⇡x�yi = h�x+1�yi � 2 h�x�yi + h�x�1�yi � µ̃2

0 h�x�yi � �̃0

2
h�2

xi h�x�yi + h⇡x⇡yi ,

(8.6)
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so that the dependence on the four-point function factorises into the contribution

of two two-point functions. Unfortunately, while such methods can be accurate

for short times, they will fail when quantum corrections to the dynamics becomes

important e.g. during thermalisation. These methods can be enhanced somewhat

by including statistical fluctuations, as in e.g. the inhomogeneous Hartree approx-

imation [90]. The quantum dynamics is then approximated by classical-statistical

dynamics which show better thermalisation over intermediate times for weak e↵ec-

tive couplings but ultimately struggle at long times.

To incorporate quantum corrections into dynamics in a consistent way, the n-

particle-irreducible (nPI) e↵ective action �n can be evaluated with a loop or 1/N

(large number of field components) expansion [91]. In terms of the nPI e↵ective

action, m-point functions, with m  n, are given by the stationarity conditions:

��n

� h�xi
= 0 , (8.7)

��n

� h�x�yi
= 0 , (8.8)

��n

� h�x�y�zi
= 0 , (8.9)

and so on. When evaluated in a loop-expansion or similar, certain higher-n nPI

e↵ective actions become equivalent which allows for the derivation of closed equa-

tions of motion. For example, at two-loop order all �n with n � 2 are equivalent

and the 2PI e↵ective action can be used to derive closed equations of motion [88].

The resulting equations, which conserve energy and other symmetries, take the

form of non-linear integro-di↵erential equations which can be solved using standard

numerical techniques. These methods lead to better long-time behaviour and the

approximation of thermalisation, particularly in the case of scalar field theory [92].

However, as they are essentially semi-classical, when dealing with non-perturbative

physics such as defect formation such methods have struggled [3] though they can

also be adapted to have more success in specific cases [18].

8.2 Non-Perturbative Methods for Non-Equilibrium

QFT

While in equilibrium Monte Carlo evaluation of the path integral provides as a

well-developed non-perturbative method to tackle a number of di↵erent problems,
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with finite fermion densities being a notable exception, there is no similar well-

developed non-perturbative method for non-equilibrium QFT.

One approach that stands outs as a first principles attempt at non-perturbative

non-equilibrium QFT is that of the complex Langevin [93, 94]. In these techniques,

an additional time dimension is introduced along with a stochastic complex Langevin

field equation. For real scalar field theory, the Langevin equation can be written in

terms of a complex field �C = �+ i�I as

@�C

@⌫
= i
�
�2�C � µ2

0 � �0�
3
C

�
+ ⌘(x, ⌫) , (8.10)

where ⌫ is the Langevin time parameter, 2 is the d’Alembert operator and ⌘(x, ⌫) is

a noise term. Averages of observables O(�) over the noise terms, hO(�)i⌘, can then

be associated to an e↵ective probability distribution for the real field, Pe↵(�, ⌫), by

equating them to a path-integral expectation value over the real-field � as

hOi⌘ =

R
D[�]O(�)Pe↵(�; ⌫)R

D[�]Pe↵(�; ⌫)
. (8.11)

The complex pseudo-distribution Pe↵(�, ⌫) is then governed by a Fokker-Plank equa-

tion that admits a stationary solution

lim
⌫!1

Pe↵(�, ⌫) ⇠ eiS[�] . (8.12)

Therefore, by evaluating noise averaged observables over long Langevin times, ⌫ �
1, one should be able to approximate the true quantum observables in a systematic

way and this method has seen some success in the case of scalar field theories [93].

However, a number of mathematical barriers to proving the overall validity of the

method still exist [94]. Additionally, there are potentially serious unresolved practi-

cal issues such as stability [95], lack of ergodicity [94] and high computational costs

in the application to gauge theories [96] all of which currently limit the applicability

of the approach.

Apart from the complex Langevin, there are a number of other strategies to

approximated time-evolution non-perturbatively in development. For example, in

Hamiltonian truncation methods, the full Hamiltonian is represented as a matrix

using a restricted basis of Gaussian states up to some energy E [97, 98]. Since the

size of the Hamiltonian matrix is su�ciently restricted, matrix multiplications can

be employed and the truncated Hamiltonian can be diagonalised to estimate the

ground-state and low energy states in the restricted basis. Time-evolution can then

be studied by expanding the time-evolution operator in terms of the Hamiltonian
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matrix and acting on the approximation of the ground-state encoded as a vector

using standard matrix-vector multiplication [99]. Other methods include deforming

the contour of the path integral onto regions of constant phase that can be sampled

[100] and canonical (operator) approaches to truncating the infinite hierarchy of field

equations of motion [101].

8.3 Variational Methods for Time Evolution

Another non-perturbative approach to time-evolution, more typically applied

within a condensed matter/quantum many body context, is the use of a variational

ansatz. Just like in equilibrium, a specific choice of ansatz with some (complex)

parameters z = (z1, z2, ...zK) leads to the description of a subset of quantum states.

For instance, a common (unnormalised) choice in D = (0 + 1) is the ansatz [102]

 n(z) = e
P

i ziOi(n) hn| ̃i , (8.13)

where Oi(n) are a chosen set of matrix elements given by operators diagonal in this

basis and | ̃i is some fixed reference state. The set of all states achieved by varying

the parameters {zi} then forms a variational manifold for this ansatz.

Time-evolution can be approximated within a variational manifold by making

the parameters time-dependent zi ! zi(t). The time-dependent ansatz from the

previous example then reads

 n(t) = e
P

i zi(t)Oi(n) | ̃i , (8.14)

and the parameters zi(t) can be determined so that the evolution of the ansatz

though the variational manifold approximates the true time-evolution as closely as

possible. Since the ansatz can be made quite independently from any semi-classical

approximation, this method can provide a fully non-perturbative approach to time-

evolution.

To derive closed equations of motion in the variational case, meaning here that

the equations of motion are written directly in terms of the parameters zi(t), the

time-dependent-variational-principle (TDVP) can be applied [103]. The TDVP gives

an action formulation of the Schrödinger equation and, by restricting attention to a

specific variational manifold, can be used to derive equations of motion as desired.

Treating the states | i and h | as independent degrees of freedom, variation of the
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action

S =

Z
dtL =

Z
dt


� i

2
h ̇| i +

i

2
h | ̇i � h |H(t)| i

�
, (8.15)

yields the time-dependent Schrödinger equation, assuming the states are normalised

for all t. One can then restrict the states in (8.15) via an ansatz to a variational

manifold parametrised by a set of K real numbers x1, x2, ..., xK . The Lagrangian

in (8.15) can then be written in terms of the parameters xi(t), energy expectation

values and overlaps as

L =
KX

k=1

iẋk h | @ 
@xk

i � h |H(t)| i , (8.16)

which again assumes that the state is normalised.

Variation of the action corresponding to (8.16) then leads to equations of motion

for the parameters :

ẋi =
X

j

⌘ij @ h |H(t)| i
@xj

, (8.17)

where ⌘ij is inverse of

⌘ij =
h |@ /@xii

@xj
� @ h |@ /@xji

@xi
, (8.18)

which can be interpreted as a metric on the variational manifold. The equations

of motion (8.17) are a closed set of coupled first-order partial di↵erential equations

of the parameters xi(t) that typically, due to the dependence on state expectation

values, will be highly non-linear.

More generally, rather than use the Lagrangian (8.15), a di↵erent Lagrangian

can be used such that normalisation need not be assumed. Additionally, while any

complex parametrisation of the ansatz can be written in terms of real parameters by

splitting into real an imaginary parts, it is often convenient to make use of a complex

parametrisation explicitly since this simplifies geometric analysis of the variational

manifold, see [103] for details.

The TDVP has been applied to a wide variety of ansatz and is often combined

with Monte Carlo evaluation of observables in the time-dependent variational Monte

Carlo method [104, 105]. The TDVP can also be applied to the e↵ective action which

allows for the construction of variational e↵ective action approximations, providing

a link with other non-equilibrium QFT methods [106].
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8.4 Applying Matrix Product States to the Kib-

ble Zurek Mechanism

To study the KZM scenario in the �4 scalar field theory using uMPS, we would

like to approximate the equal time two-point function

G2(k, t) = h⌦|�(�k, t)�(k, t)|⌦i

= h (t)|�(�k)�(k)| (t)i , (8.19)

where the time-dependence is generated by the lattice Hamiltonian

H̃[�, t] =
X

x

"
1
2(⇡̃x)

2 +
1

2
(@x�)2 +

µ̃2
0(t)

2
�2

x +
�̃0

4!
�4

x

#
,

µ̃2
0(t) = � t

⌧Q
+ µ̃2

0(t = 0) , t < tF ,

µ̃2
0(t) = µ̃2

0(t = tF ) , t � tF . (8.20)

The state is initially in the ground-state | (t = 0)i = |⌦(µ̃2
0(t = 0))i and the explicit

time-dependence of the Hamiltonian drives the system from the symmetric phase

into the symmetry broken phase stopping at µ̃2
0(tF ) where the state is allowed to

“relax” by evolving under the final time-independent Hamiltonian.

The initial state can be approximated using the vuMPS algorithm to produce

|⌦[A]i, a uMPS approximation to the ground-state at t = 0. In principle, the time

dependent state | (t)i can then be approximated by evolving the initial ground-state

uMPS approximation |⌦[A]i according to the Schrödinger equation

d

dt
| (t)i = �iH̃(t) | (t)i ,

| (t = 0)i = |⌦[A]i . (8.21)

Unsurprisingly, this equation cannot be solved e�ciently in general and there are a

number of di↵erent strategies to approximate it using MPS.

In the case of finite-size, OBC MPS, a common approximation of time evolution

is achieved by first breaking up the unitary time-evolution operator into small time-

steps and applying one operator at a time. Such an application will lead to increased

bond-dimension in the MPS representation. This is to be expected on physical

grounds as time evolution tends to increase the entanglement in a state, as found

e.g. when studying the time evolution of states under sudden “quenches” of the
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Hamiltonian [107, 108]. In the sudden quench case, the entropy of entanglement can

increase linearly with time SA ⇠ t which would require a bond-dimension log(�) ⇠ t

to represent exactly i.e. one that is increasing exponentially with time. To control

this increasing bond-dimension the standard strategy, which is given in its most

established form by the “time evolving block decimation” (TEBD) algorithm [109],

is to allow the bond-dimension to grow � ! �0 at each step before before truncating

the MPS back down �0 ! � in some way that approximates the higher bond-

dimension state accurately. A number of methods related to this exist, see e.g.

[60, 110], and one can view this as a subset of methods in which the time-evolution

of a D = (1+1) system is expressed as a two-dimensional tensor network which can

then be contracted by some approximation scheme [111].

8.5 Time Dependent Variational Principle for uMPS

Rather than attempt to solve the Schrödinger equation (8.21) by direct ap-

proximation, the time-dependent variational principle can instead be applied to the

MPS/uMPS ansatz in order to derive closed equations of motion within the vari-

ational manifold [71]. For uMPS, which we will use in Chapter 9, the variational

parameters xi are encoded in the rank-3 parameter tensor An. The TDVP equations

of motion for the parameters (8.17) can then be written as first-order di↵erential

equations in the parameter tensor as

Ȧn = �iB̃n[A] , (8.22)

where B̃n[A] is some rank-3 tensor that can be constructed from A [112]. The

dependence of B̃n[A] on A is such that the various components of A are coupled

in a highly non-linear way, though it can still be constructed relatively easily and

e�ciently. The TDVP equation of motion (8.22) can be solved with standard tech-

niques such as Runge-Kutta and conserves energy along with other symmetries of

the theory. This means it should remain stable over relatively long periods of time

and there has been some success in studying thermalisation with this method [113].

To gain some intuition for the equation of motion (8.22) and the definition

of the tensor B̃n[A], the equations can be derived from an equivalent geometric

picture that we outline in this Section, see [112, 114] for details. The subset of

states defined by the infinite size uMPS forms a smooth manifold MuMPS [115]. As

such, in order for a time evolved state to stay within the subset of uMPS states with
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fixed bond-dimension, only tangent vectors |�i 2 T| (A)iMMPS to the current state

| [A]i can be used to update the state. Thus, the full time-evolution of the state

can be approximated by projecting the right-hand-side of the Schrödinger equation

(8.21) down to the tangent space of the state. The projector to the tangent state

at this point can be written as P̂T| (A)iMMPS such that the desired evolution is given

by the equation

d

dt
| (t)i = �iP̂T| (A)iMMPS

h
Ĥ | (t)i

i
. (8.23)

Such a projection is equivalent to finding the tangent vector |�̃i 2 T| (A)iMMPS

which satisfies the minimisation problem

|�̃i = arg min
|�i

|| |�i + iH̃ | (t)i ||2. (8.24)

This problem can be solved explicitly by finding representations for the tangent

vectors |�i as a tensor network. Since the tangent space is spanned by the set of

d�2 partial derivatives @
@An

↵,�
| i = |@i i, a tangent state can be written as a sum of

these basis elements

|�[B]i = Bi |@i i , (8.25)

and is therefore specified by the rank-3 coe�cient tensor Bi = Bn
↵,� of size (d,�,�).

Since | i = | [A]i is defined by a uMPS the partial derivatives can further be

evaluated and represented as tensor networks via the product rule. This produces

a sum of states |⌅(m)i which can be by represented as uMPS but with a tensor at

the site m removed. The tangent state |�[B]i can then be written as a sum of such

states with the coe�cient tensor Bn
↵,� inserted at site m such that

⌅nx(m) =

 
m�1Y

x=�1
Anx

!
Bnm

 1Y

x=m+1

Anx

!
, (8.26)

and

|�[B]i =
X

m

|⌅(m)i . (8.27)

This expression can then be used to determine the tangent space projector, or equiv-

alently inserted into the minimisation problem (8.24). This equation can then be

solved to determine |�̃[B̃]i and the coe�cient tensor B̃[A], which provides the right-
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hand-side in the equations of motion (8.22). This procedure, which initially seems

quite di↵erent to the standard MPS time-evolution procedures, is actually closely

related, see [116] for more details and an overview of the general method.



Chapter 9

Studying the KZM with MPS

9.1 Introduction

In this chapter, which follows the work of the author published in [117], we

apply TN techniques to the KZM. On the one hand, we would like to confirm the

KZM description of the �4 theory driven through a quantum phase transition. On

the other, we want to check that TN methods are indeed able to capture the physics

of topological defect formation in a QFT. This, in addition to giving useful practical

information about how TN approximations should be applied to non-equilibrium

calculations, will allow us to benchmark them as a non-perturbative non-equilibrium

QFT method.

We will study the KZM scenario via the lattice regularised Hamiltonian (4.2)

with a time-dependent bare mass

µ2
0(t) = � t

⌧Q
+ µ2

0(t = 0) , t < tF ,

µ2
0(t) = µ2

0(tF ) , t � tF , (9.1)

where, as in Chapter 7, all quantities are in lattice units with tildes dropped for ease

of notation. The time-dependence (9.1) is used to drive a ground state |⌦(µ2
0(t = 0))i

from the symmetric phase µ2
0(t = 0) > m2

C into the broken symmetry phase µ2
0(tF ) <

m2
C where it relaxes under a time-independent Hamiltonian with bare mass µ2

0(tF ).

The initial ground-state is approximated by a uMPS using the vuMPS algorithm,

while the time-evolution is approximated by evolving the initial uMPS according

to the TDVP projected Schrödinger equation (8.23) using a 5th order Runge-Kutta

scheme.

As the physics of this non-equilibrium scenario is described by the Kibble-Zurek

115
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mechanism of topological defect formation, we will compare the uMPS approxima-

tion of the equal-time two-point function G2(k) = h (t)|�(�k)�(k)| (t)i, obtained

via a discrete cosine transform of G2(r), to the KZM expectations. In particular, we

assume that the post-transition non-equilibrium two-point function is approximated

by the defect ansatz (3.25) such that G2(k) ⇡ Gdef(k) and we check the consistency

of this assumption in several stages.

Firstly, we compare the initial evolution of G2(k = 0) within the symmetric

phase, which provides a measure of the correlation length ⇠, to its equilibrium value

G⌦
2 (k = 0). We confirm that equilibrium is lost at a distance ✏̂ = µ̂2

0 � m2
C from

the critical point and that ✏̂ scales as expected with the quench rate ⌧Q. Secondly,

we study the time averaged equal time two-point function Ḡ2(k = 0) in the broken

symmetry phase, confirming that it also scales as expected and provides a consistent

estimate of the defect density nest (3.27) under the assumption that Ḡ2(k = 0) =

Gdef(k = 0). Thirdly, we show that the observable Guni(k) (9.6) is a universal

function of n for low k and that it is described by the functional form of Gcorr(k/n)

(3.22). Furthermore, by including the contribution of the kink profile via a semi-

classical approximation of Gkink(kdK), the function Guni(k)/Gkink(kdK) is also a

universal function of n but now over a larger region of k. Finally, we show that

Ḡ2(k) ⇡ Gdef(k) for all k by including the matter contributions Gmat(k) (9.4) to the

defect ansatz via a two-parameter fit. This then demonstrates that the two-point

function of the post transition state is approximated by a form consistent with the

KZM and displays clear signatures of universal topological defect formation.

9.2 Picking the Parameters for Time Evolution

To justify the explicit setup used to study the KZM (i.e. the choices of

µ2
0(0), µ2

0(tF ) and ⌧Q) we can examine the equilibrium physics of the theory. The

important parameter regions can be identified by fixing the bare coupling and calcu-

lating mS and MK for various bare masses, here using the excitation ansatz method

for mS, and the TPBC method for MK . These approximations to the scalar mass

and kink mass are plotted in Figure 9.1 which demonstrates the various regions of

interest.

To approximate the behaviour of the quantum field theory in the lattice regu-

larised setting, we will be interested in working in the “continuum region” such that

⇠ > 1 corresponding to mS < 1. In this region, the e↵ects of the lattice regularisation

will be small and we will only consider evolutions that take place within this region.
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Figure 9.1: The scalar mass mS (red circles) and twice the kink mass 2MK (blue
triangles) as estimated using the tensor network techniques described in [72] with
d = 18,� = 16 and [84] with d = 18,� = 14, N = 32 respectively. These quantities
map out the important parameter regions studied by sweeping µ2

0 for a fixed �0 = 3.
The leftmost shaded region corresponds to the “lattice region” where mS > 1 such
that lattice e↵ects are important and should be excluded to get a good comparison
with the KZM. Furthermore, the initial and final bare masses µ2

0(t = 0) and µ2
0(tF ),

indicated by the dashed vertical lines, should lie outside the shaded “strong-coupling
region” where, in the broken symmetry phase, mS ⇡ 2MK and the kink-antikink
excitations behave as standard scalar excitations.

Furthermore, we are interested in setting µ2
0(tF ) to lie outside the “strong coupling

” region in the broken symmetry phase where mS = 2MK and kink-antikink pairs

do not behave like classical extended objects but as standard particles. These two

considerations then both limit the potential choices of µ2
0(tF ) and we have indicated

the set of µ2
0(tF ) we use in Figure 9.1. The initial µ2

0(0) is also chosen to lie out-

side the strong-coupling region in the symmetric phase and a set of quench rates

⌧Q are chosen so that it is possible to maintain equilibrium into the strong-coupling

region such that the scaling arguments (3.3) from the KZM can be applied. While

increasing the bare coupling �0 enlarges the strong-coupling region so that lower ⌧Q

are required, it also shrinks the available continuum region in the broken symmetry

phase that lies outside the strong-coupling region, and we have found �0 = 3 to

provide a good balance.
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Figure 9.2: The evolution of G2(k = 0) is shown for ⌧Q = 32, 64 and 128. The left-
hand plot shows the approximation for ⌧Q = 64 with � = 16 (blue triangles), � = 32
(red circles) and an additional � = 8 (green squares) for comparison. The � = 8
approximation deviates significantly from the � = 16 and � = 32 approximations
following t ⇡ tC where tC is the time when µ2

0(t) = m2
C . Until the start of relaxation

at t = tF (vertical dashed line), the two higher � approximations are close on this
scale, but deviate visibly during the relaxation period. This is also the case for
other ⌧Q as shown in the right-hand plot where the maximum di↵erence between
the � = 16, 20, 24, 28 and � = 32 approximations is represented by errorbars. This
di↵erence as a percentage of the value of G2(k = 0) for � = 32 is shown in the
inset where, following tF , it can be seen that the di↵erence becomes significant and
the time-evolution has been extended up to t = 200 to illustrate the increase of
errors with time. During the relaxation period, the value of G2(k = 0) displays
large oscillations which can be removed by time averaging as shown in the left-hand
plot (solid black line). While the plots show the time-evolution up to a maximum
t = 100 for ⌧Q = 64 and t = 200 for ⌧Q = 32, 128, we will only be interested in
comparing di↵erent ⌧Q at the same “relaxation time” i.e. at the same time after tF .
The maximum time used for analysis is then di↵erent for each ⌧Q and the shaded
regions indicate the data used in subsequent analysis from t = tF to t = tF + 15.

9.3 Time Evolution, Calculation of G2(k) and Time-

Averaging

With the parameters for the evolutions fixed and an approximation of the initial

state obtained by a uMPS with bond-dimension �, the equal-time two-point function

can be approximated by numerically integrating the evolution equation (8.22). We

do this for a set of � = 16, 20, 24, 28, 32 using a 5th order Runge-Kutta scheme with

time step ⌧ = 10�2 and local basis truncation d = 18 up to total time T = 100

with the observable G2(k) being evaluated every 100 steps. The time evolution of

G2(k = 0) for the case of µ2
0(tF ) = �1.1 and ⌧Q = 32, 64, 128 is shown in Figure 9.2

which illustrates several features of the evolution and approximations used.
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Figure 9.3: The “Relative Error” of G2(k = 0), defined as the fractional di↵erence
between the value of G2(k = 0) for a given � or d and the maximum � = 32 or
d = 24, is shown for ⌧Q = 64, µ2

0(tF ) = �1.1 and four times t = 10, 26, 45, 60. In the
left-hand plot, the error decreases with � for a fixed time while later times tend to
have a higher overall error. However, the convergence is not smooth and, as can be
seen in the t = 45 and t = 60 plots at � = 24, for some values of � the error at earlier
times may appear greater than at some later times. This leads to a somewhat noisy
error estimate for � = 32 over time, defined as the maximum error for all � � 16,
as can be seen in the right-hand inset of Figure 9.2. For ⌧Q = 64 the latest time
used in subsequent analysis is t = 60. For all t  60 the fractional error remains less
than 10�1 for all � � 16. In the right-hand plot, the relative error is shown for the
truncation parameter d with fixed � = 16. At the times t � tF used for subsequent
analysis, the relative errors for d � 16 are all below 10�3 indicating that it is the
error due to � that is most relevant. As such, we simply fix d = 18 throughout and
use the error on � as our error estimate when performing fits.

In the left-hand plot of Figure 9.2, the value of G2(k = 0) is shown for ⌧Q = 64

and � = 16, 32. Initially, the di↵erence between the two is small, being almost

indistinguishable on this scale prior to the critical point (dotted vertical line) but

the di↵erence becomes significant during the “relaxation” portion of the evolution

at t > tF (dashed vertical line). Ideally, we would like to make a set of approxima-

tions for di↵erent � and extrapolate to the � ! 1 limit where the evolution of the

regularised theory is exact. While this is possible in some cases where the conver-

gence of observables is particularly smooth, it is di�cult in others especially at later

times when we no longer expect the state itself to be well described by uMPS with

limited bond-dimension, even if the observable of interest itself can be reasonably

approximated. As such, we instead make a simple estimate of the error by taking

the maximum absolute di↵erence between the � = 16, 20, 24, 28 and highest � = 32

approximations which we use as an input when fitting curves and display as error

bars in plots (see Figure 9.3 for more discussion of the errors due to � and d). The

right-hand plot of Figure 9.2 shows the evolution of the two ⌧Q = 32 and ⌧Q = 128
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quenches along with the error bars. Once again, the most significant errors occur at

later times t � tF as the system relaxes. In the ⌧Q = 32 cases, there are then sig-

nificant errors occurring at much earlier absolute time t than for the corresponding

⌧Q = 128, as shown in the inset which gives the error as a percentage of the value of

G2(k = 0). However, we will not be interested in comparing di↵erent ⌧Q quenches

at the same absolute time but rather at the same relaxation time tR = t � tF after

the quench ends. As such we will not be interested in the regions with the most

significant errors far from the point tF (the dashed black and red vertical lines) such

that the errors in di↵erent ⌧Q quenches will be much closer than if taken at the same

absolute time.

In addition to the errors, the plots in Figure 9.2 display temporal oscillations

in G2(k = 0), particularly during the relaxation period, that are characteristic of

the non-equilibrium dynamics of quenched systems, as often found when studying

instantaneous ⌧Q ! 0 quenches [89]. While there may be some physical damping of

these oscillations over time, the time-scale on which this occurs is longer than the

time-scales we have approximated. Because of this, rather than focus on the equal-

time two-point function directly, we will instead use the time-averaged two-point

function Ḡ2(k) given by averaging over the available data for G2(k) after the final

bare mass µ2
0(tF ) has been reached and relaxation begins such that

G2(k, tR) =
1

tR

Z tF +tR

tF

G2(k, T ) dT. (9.2)

This observable can then be used to provide a clean comparison with the expected

KZM behaviour and displays a similar error for di↵erent ⌧Q quenches given a fixed

relaxation time tR. The value of Ḡ2(k = 0) for the ⌧Q = 64 case with � = 32 is

shown in the left-hand plot of Figure 9.2 with the inset displaying some of the region

t > tF where the averaging can be clearly seen.

9.4 Loss of Equilibrium

To check the initial evolution of the system up to the critical point, we compare

the behaviour of G2(k = 0) to the equilibrium value G⌦
2 (k = 0). The KZM states

that initially the state should remain in equilibrium such that G2(k = 0) = G⌦
2 (k =

0) before becoming excited at some point ✏̂ = µ2
0 � m2

C before the critical point.

The KZM further provides an estimate for the scaling of ✏̂ with the quench rate ⌧Q

such that ✏̂ ⇠ ⌧�1/2
Q when ⌧Q is su�ciently large to probe the critical region. Figure
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Figure 9.4: Plots of the time evolution of G2(k = 0) up the critical point m2
C (vertical

solid black line). In the leftmost plot this is compared with the ground state value
(green triangles) with the increasing ⌧Q remaining close to this value for a larger
region of µ2

0. In the central plot, the ratio of G2(k = 0) to the ground-state value is
plotted using interpolating functions, showing the departure from equilibrium more
clearly. This also allows for a criterion for the loss of equilibrium to be established
and we used the condition G2(k = 0)/G⌦

2 (k = 0) = 0.9 to define ✏̂ = µ̂2
0 � m2

c as the
point where equilibrium is lost. The value of ✏̂ is shown in the rightmost plot where
the larger ⌧Q data (red circles) are fit to a power-law.

9.4 illustrates this behaviour through the evolution of G2(k = 0) (leftmost plot),

the ratio G2(k = 0)/G⌦
2 (k = 0) constructed using interpolating functions (centre

plot) and a comparison of ✏̂ with ⌧Q, where ✏̂ is estimated by the point at which

G2(k = 0)/G⌦
2 (k = 0) = 0.9 (rightmost plot). The scaling of ✏̂ is established using

a power-law fit to the points shown in red to give ✏̂ ⇠ ⌧�0.49±0.01
Q close to the ⌧�1/2

Q

predicted by the KZM.

9.5 Estimating the Defect Density

As the system enters the broken symmetry phase, the value of G2(k = 0)

continues to grow, but the scaling established at the point ✏̂ should be retained.

Furthermore, once in the symmetry broken phase and after su�cient relaxation

time, we can interpret the time-average Ḡ2(k = 0) via the defect ansatz Gdef(k = 0)

such that Ḡ2(k = 0) � G⌦
2 (k = 0) ⇡ v2/n, where the vacuum expectation value

v(µ2
0) is determined from the corresponding uMPS approximation of the ground-

state v = h⌦[A]|�|⌦[A]i. The value of Ḡ2(k = 0) � G⌦
2 (k = 0) is shown in Figure

9.5 (left-hand plot) for the µ2
0(tF ) = �1.1 case with tR = 0 and tR = 15. In the

first case, the oscillatory behaviour is clearly visible as di↵erent ⌧Q lie at di↵erent
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Figure 9.5: The value of Ḡ2(k = 0) with the vacuum subtracted is shown (left-hand
plot) for tR = 0 and tR = 15. In the former case, there are large oscillations present
in the data as di↵erent ⌧Q quenches lie in di↵erent phases of their evolution. These
oscillations are significantly damped at tR = 15 by the time-averaging and a power-
law fit has been taken. The defect density corresponding to this power-law fit nfit is
shown in the right-hand plot which can be compared to the estimates nest (3.27) for
µ2

0(tF ) = �1.05, �1.15 at tR = 10. The data lies fairly close to the fit though the
larger ⌧Q data still displays clear oscillations.

phases of their evolution. However, in the second case this behaviour is damped

significantly by the time-averaging. A power-law fit of the tR = 15 data scales as

⌧ 0.46±0.01
Q . This value is somewhere between the classical ⌧ 1/3

Q and quantum ⌧ 1/2
Q ,

though closer to the latter.

The estimate of the defect density nest (3.27) is shown in the right-hand plot

of Figure 9.5 for the cases µ2
0(tF ) = �1.15 and �1.05. The agreement between the

di↵erent µ2
0(tF ) and nest obtained from the power-law fit of Ḡ2(k = 0) � G⌦

2 (k = 0)

is reasonable, consistent with the interpretation that Ḡ2(k = 0) ⇡ v2/n, though the

large ⌧Q data still displays oscillations for this tR and the low ⌧Q data for µ2
0(tF ) =

�1.15 lies somewhat below nfit indicating that longer relaxation times and slower

quenches could improve the agreement further. Nevertheless, this data suggests that

Ḡ2(k = 0) can indeed provide a simple observable with which to estimate the defect

density in a quantum field theory.
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9.6 Using The Defect Ansatz with Tensor Net-

works

With the defect density estimated, we now want to compare the form of Ḡ2(k)

to that of Gdef(k) (3.25) as outlined in Section 3.3. In particular, we want to compare

the observable

nest

v2

Ḡ2(k) � G⌦
2 (k) � Gmat(k)

Gkink(kdK)
(9.3)

to Gcorr(k) (3.22) which should be equal and a function of k/n only if the KZM

holds and the TN methods are capturing the defect formation correctly. However,

as mentioned previously, we must make further approximations to calculate the

quantities in (9.3) and rather than comparing (9.3) directly to Gcorr(k) as might be

possible classically, it is better to break up the comparison to test the accuracy of

the approximations along the way.

The approximation of the kink-profile term Gkink(k) can in principle be done

using non-perturbative methods by calculating the one-kink two-point function

hK|�(�k)�(k)|Ki. However, this calculation is more di�cult than the corresponding

vacuum one and we will instead use a semi-classical approximation by combining the

classical kink profile term (3.21) with the semi-classical width dK =
p

2/mS. Impor-

tantly, this approximation is still unambiguous requiring no fitting and completely

independent of the other non-equilibrium calculations.

Unfortunately, the computation of the matter term Gmat(k) is somewhat more

complicated and more approximations are required. In this case we assume that,

given su�cient relaxation time, the matter excitations will “thermalise” in the sense

that the two-point function Gmat(k) can be approximated by the two-point function

of a thermal state with the vacuum subtracted i.e. Gmat(k) ⇡ �Gtherm(k) with

�Gtherm(k) = 1
Z tr [⇢�(�k)�(k)] � G⌦

2 (k) , ⇢ = 1
Z e��H and Z = tr [⇢]. Under this

assumption, the matter contributions Gmat(k) are then also given by an independent

equilibrium quantity and there exist non-perturbative methods to evaluate this.

However, in the present case we will again use a semi-classical approximation by

taking the non-interacting form such that

Gmat(k) ⇡ 1

!k (e�!k � 1)
, (9.4)
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where !k is the non-interacting lattice dispersion relation

!k =

r
µ2 + 4 sin

⇣p

2

⌘2

(9.5)

and the inverse temperature � and mass µ are treated as free parameters.

Since we do not calculate Gmat(k) a priori and we only know the form of

Gkink(kdK) approximately, we cannot simply determine the universal part of G2(k)

and compare it with Gcorr(k/n) as desired. Instead, we will first focus on the region

k/n ⌧ d�1
K /n where the contributions from the kink profile and matter should be

negligible. Defining the observable

Guni(k) =
nest

v2

⇥
Ḡ2(k) � G⌦

2 (k)
⇤

=
Ḡ2(k) � G⌦

2 (k)

Ḡ2(k = 0) � G⌦
2 (k = 0)

, (9.6)

we should then find that Guni(k) ⇡ Gcorr(k/n) under the assumption that Ḡ2(k) =

Gdef(k) such that the non-equilibrium observable Guni(k) should be a universal

function of n for low k and we can attempt to fit it to the functional form of

Gcorr(k/n) in this region. We can then compare this to the behaviour of the ob-

servable Guni(k)/Gkink(kdK) using the semi-classical approximation of Gkink(kdK).

If the assumption Ḡ2(k) = Gdef(k) holds and the semi-classical approximation for

Gkink(kdK) is accurate, then Guni(k)/Gkink(kdK) should be a universal function of

n over a larger region up to k ⇡ d�1
K where we can still neglect the matter term.

The fit Gcorr(k/n) should then also hold for this larger region and we can use this

to estimate the universal parameters ↵1,↵2, �1, �2.

The comparison between the two-point function Ḡ2(k) and the defect ansatz

can then be completed via a two parameter fit using the ansatz for the matter

contribution (9.4) and we should then find that Ḡ2(k) ⇡ Gdef(k) over the full range

of k and several orders of magnitude in the observable.

9.7 Universality of G2(k) with Defect Density

Following the above discussion, the comparison of Ḡ2(k) and Gdef(k) continues

by scaling the data using the estimated nest and examining the observables Guni(k)

(9.6) and Guni(k)/Gkink(kdK) using the semi-classical approximation for Gkink(kdK).

If indeed Ḡ2(k) = Gdef(k) then Guni(k) should be a universal function of n up
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Figure 9.6: Plots of Guni(k) (9.6) (left-hand plot) and Guni(k)/Gkink(kdK) (right-
hand plot) for ⌧Q = 32, 36, 40, ..., 128 along with fits to the form functional form
Gcorr(k) (3.24). In the left-hand plot, the data collapses up to k/nest ⇡ 5 in-
dicating a universal function of the defect density up to this point. With the
inclusion of kink profile Gkink(kdK) in the right-hand plot the universal region
is increased to k/nest ⇡ 10 indicating that the semi-classical approximation for
Gkink(kdK) is accurate and that the data is consistent with kink formation in the
system. The fitted form agrees well with the data in both cases within the uni-
versal regions giving ↵1,↵2, �1, �2 = 0.683, 0.120, 0.329, 0.176 and ↵1,↵2, �1, �2 =
0.723, 0.128, 0.290, 0.130 in the left-hand and right-hand plots respectively.

to a scale where the defect width dK is important and Guni(k) ⇡ Gcorr(k/n). If

additionally, the approximate form of Gkink(kdK) is accurate, then we can further

expect the observable Guni(k)/Gkink(kdK) to be a universal function of n up to a

somewhat higher scale where the matter contributions Gmat(k) become important

and Guni(k)/Gkink(kdK) ⇡ Gcorr(k/n) over this region.

Figure 9.6 shows the two observables Guni(k) (left-hand plot) and Guni(k)/Gkink(kdK)

(right-hand plot) for ⌧Q = 32, 36, 40, ..., 128 and µ2
0(tF ) = �1.05, �1.1, �1.15 along

with fits to the functional form of Gcorr(k). In the left-hand plot of Figure 9.6 the

observable Guni(k) collapses reasonably up to around k/nest ⇡ 5 and the functional

form of Gcorr(k) fits well in this region such that the approximation

Ḡ2(k) ⇡ v2

nest
Gcorr(k/nest) + G⌦

2 (k) (9.7)

holds for these low k/nest. However, for larger k/nest the data begins to spread out

indicating that Guni(k) is not a universal function of n in this region. Furthermore,
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the fit sits above the data indicating the need for an additional term to suppress it

and suggesting that there is another relevant scale missing.

According to the Kibble-Zurek mechanism and the physical picture provided

by the defect ansatz (3.25), this missing scale should be given by the width of

defects in the system dK . In the right-hand plot of Figure 9.6, the observable

Guni(k)/Gkink(kdK) collapses well up until k/nest ⇡ 10. At this point the data

spreads out and begins to increase due to the division of Gkink(kdK) which becomes

small in this region. Nevertheless, the fit still agrees at k/nest ⇡ 20 with a number

of curves for which the division by Gkink(kdK) has not yet dominated. Up to this

scale, we then have the approximation that

Ḡ2(k) ⇡ v2

nest
Gcorr(k/nest)Gkink(kdK) + G⌦

2 (k) , (9.8)

which is the defect ansatz (3.25) with the matter contribution Gmat(k) neglected.

9.8 Comparison of Ḡ2(k) and Gdef(k)

To further check the consistency of the approximation Ḡ2(k) ⇡ Gdef(k) we

would like to account for the matter contributions. Firstly, we can check the consis-

tency of their interpretation by comparing the data Ḡ2(k) to the vacuum explicitly

as shown in Figure 9.7. As expected, the equal time two-point function tends to the

vacuum at high k for all ⌧Q but has an additional positive contribution that is sup-

pressed with increasing ⌧Q, consistent with the generation of additional non-vacuum

excitations during the phase transition which provide the contribution Gmat(k) to

the equal time two-point function.

We can now account for the remaining contributions to Ḡ2(k) by using a semi-

classical ansatz for the matter contributions Gmat(k) (9.4). This constitutes a two

parameter fit and we find that, once performed, the approximation Ḡ2(k) ⇡ Gdef(k)

holds over several orders of magnitude, as shown in Figure 9.8.

Figure 9.8 displays the defect ansatz fit (3.25) (solid black line) with the vacuum

subtracted for the ⌧Q = 64, µ2
0(tF ) = �1.1 data (red circles) along with the various

components of the fit (left-hand plot). Firstly, the defect ansatz without the matter

component (9.8) (dashed black line) decays rapidly to zero following the scale set by

the kink width d�1
K ⇡ 0.61 (vertical dashed blue line). This is corrected by the matter

contribution shown (dotted-dashed line) which is initially irrelevant but dominates

at high k � d�1
K . The full defect ansatz (solid black line) then approximates the
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Figure 9.7: The value of Ḡ2(k) for ⌧Q = 32, 36, 40, ..., 128 (solid red lines) is plotted
along with G⌦

2 (k) (left-hand plot, solid black line) which agrees closely at large k as
illustrated by the di↵erence Ḡ2(k) � G⌦

2 (k) (dashed blue lines). At the maximum
momentum k = ⇡ the value of Ḡ2(k = ⇡) still lies above the vacuum value but this
positive contribution decreases with ⌧Q (right-hand plot, blue circles) consistent with
the existence of additional non-vacuum contributions to Ḡ2(k) that are suppressed
by slower quench rates.

data reasonably over the full range of k. The right-hand plot also shows the fits for

the case µ2
0 = �1.05 with lower ⌧Q = 40 and higher ⌧Q = 116 data (red circles and

green triangles respectively). In this case, the plots behave as expected with the

higher ⌧Q data starting at a larger value for low k , corresponding to a lower defect

density, but ending up at a lower value since there are fewer non-vacuum excitations

present.

9.9 Conclusion

In this chapter, we have shown that the KZM and Defect Ansatz provide a

description of the non-equilibrium process of symmetry breaking in the �4 theory,

consistent with the idea of topological defect formation during a quantum phase

transition. As the non-equilibrium calculations were performed using tensor net-

works, these results also demonstrate that tensor networks can be considered a

powerful non-perturbative non-equilibrium method for quantum field theory.

There are several areas in the previous study that can improved upon to achieve
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green triangles respectively). All three observables are fitted to Gdef(k) � G⌦

2 (k)
(3.25) via a two parameter fit with the values of �, µ indicated. The Gmat(k) (9.4)
component of Gdef(k)�G⌦

2 (k), which contains the free parameters, is shown in both
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In the universal part the e↵ect of finite width kinks is clearly seen with the form
being exponentially suppressed after the inverse kink width k ⇡ d�1

K (vertical blue
dashed line), such that the matter component dominates in the higher k region. In
the right-hand plot the curves behave as expected with the higher ⌧Q case having a
smaller matter component.

higher accuracies and a deeper understanding of the physical processes involved.

Firstly, while the defect ansatz provides a reasonable approximation with the form

of Gmat(k) given by (9.4), as (9.5) and the corresponding values of µ and � were

determined by fitting we cannot interpret these parameters as cleanly as we would

like since they display large variations with ⌧Q that mask any overall trend. This

also somewhat obscures the interpretation of the kink profile term since we cannot

assess the impact of the semi-classical approximation cleanly. To improve this, it

would be desirable in the future to have a non-perturbative approximation for the

matter contribution Gmat(k). This can be achieved by assuming, as done in this

chapter, that the matter contributions can be described by thermal e↵ects. The

thermal two-point function can then be estimated by a non-perturbative method

such as the minimally entangled typical thermal states (METTS) tensor network

method [118], which takes � as an input with a definite interpretation as the inverse

temperature and eliminates the need for the additional parameter µ. While it is
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still not clear exactly what value of � should be used since we do not know how

energy is partitioned in the system, this would still o↵er a more rigorous result and

we could, e.g. determine � by fitting to the data at large k where any e↵ect of the

kink profile should be irrelevant. If we are able to establish the form of Gmat(k)

in this manner, we can then “measure” Gkink(kdK) more directly. In principle, this

can then be compared with a non-perturbative approximation of Gkink(kdK) which

e.g. might be obtained through a TN approximation of the equal time two-point

function of the one kink state hK|�(�k)�(k)|Ki.



Chapter 10

Conclusion

We have studied the �4 quantum field theory in D = (1+1) spacetime dimensions in

the lattice Hamiltonian framework using the matrix product state tensor network.

We have focussed on the kink topological defects of the theory both in equilibrium

and the process of their formation as described by the Kibble Zurek mechanism.

We have found that in equilibrium the tensor network techniques can be used

to gain approximations of the one-kink state at both weak and strong couplings,

potentially allowing for the calculation of a wide variety of observables. Addition-

ally, the methods used are su�ciently general that they can be adapted to more

complicated theories.

We have also investigated the non-equilibrium process of a symmetry breaking

quantum phase transition in the theory and found that the resulting observables

are consistent with a description of topological defect formation via the Kibble

Zurek mechanism. On the one hand this provides evidence that the Kibble-Zurek

mechanism holds as expected for the case of a quantum field theory undergoing

a quantum phase transition. On the other, it demonstrates that tensor networks

can be considered a truly non-perturbative non-equilibrium quantum field theory

method.

It is now of considerable interest to see to what extent tensor networks can be

applied to more realistic quantum field theories, with the long term goal of appli-

cation as a non-perturbative non-equilibrium method for high energy physics and

cosmology being particularly exciting. Of course, this will require the development

of tensor networks into higher dimensions and to more sophisticated theories. In

equilibrium, this is already an active area of research with some success being re-

ported in D = (2 + 1) dimensions, though the situation is not yet clear. However,

there is also significant opportunity for further investigation in D = (1 + 1) quan-

tum field theories especially with regards to non-equilibrium and non-perturbative

130
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e↵ects. For example, studies of thermalisation, non-topological soliton formation

and curved spacetimes are all, as with topological defect formation, of physical in-

terest in their own right as they can be generalised easily to more realistic theories.

Additionally, they are of technical interest as other non-equilibrium methods can

prove inadequate for their treatment, allowing tensor networks to provide an im-

mediate advantage by comparison. The parallel development of such work with the

current push to higher dimensions and gauge theories should then provide a good

developmental path for tensor networks, hopefully towards the treatment of realistic

theories in the future.
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[16] M. Uhlmann, R. Schützhold, and U. R. Fischer, “o(n) symmetry breaking

quantum quench: Topological defects versus quasiparticles.,” Physical

Review D 81 no. 2, (Jan, 2010) 025017, arXiv:0905.0877.

[17] A. Rajantie and D. J. Weir, “Soliton form factors from lattice simulations,”

Physical Review D 82 no. 11, (Dec, 2010) 111502.

[18] J. Berges and S. Roth, “Topological defect formation from 2PI e↵ective

action techniques,” Nuclear Physics B 847 no. 1, (Jun, 2011) 197–219,

arXiv:1012.1212.

[19] R. Rajaraman, Solitons and Instantons. North Holland, 1987.

[20] T. Vachaspati, Kinks and Domain Walls. Cambridge University Press, 2006.

[21] M. Schwartz, Quantum Field Theory and the Standard Model. Cambridge

University Press, 2014.

[22] O. A. McBryan and J. Rosen, “Existence of the critical point in �4 field

theory,” Communications in Mathematical Physics 51 no. 2, (Jun, 1976)

97–105.



134 BIBLIOGRAPHY

[23] S. Weinberg, The Quantum Theory of Fields, Volume 2: Modern

Applications. Cambridge University Press, 1996.

[24] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena. Clarendon

Press, 2002.

[25] J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge

Lecture Notes in Physics). Cambridge University Press, 1996.

http://www.worldcat.org/isbn/0521499593.

[26] S. P. Jordan, K. S. M. Lee, and J. Preskill, “Quantum computation of

scattering in scalar quantum field theories,” Quantum Info. Comput. 14

no. 11-12, (Sept., 2014) 1014–1080.

[27] V. Yurov and A. B. Zamolodchikov, “Correlation Functions of Integrable 2D

Models of the Relativistic Field Theory: Ising Model,” International Journal

of Modern Physics A 06 no. 19, (Aug, 1991) 3419–3440.

[28] H. Kleinert and V. Schulte-Frohlinde, Critical properties of �4-theories.

World Scientific, River Edge, USA, 2001.

[29] D. Giulini, “Superselection rules,” in Compendium of Quantum Physics:

Concepts, Experiments, History and Philosophy, F. Weinert, K. Hentschel,

D. Greenberger, and B. Falkenburg, eds., pp. 771–778. Springer, 2009.

arXiv:0710.1516.

[30] S. Coleman, “Quantum sine-Gordon equation as the massive Thirring

model,” Physical Review D 11 no. 8, (Apr, 1975) 2088–2097.

[31] S. Mandelstam, “Xi. soliton operators for the quantized sine-gordon

equation,” Physics Reports 23 no. 3, (1976) 307 – 313.

[32] E. Weinberg, Classical solutions in quantum field theory : solitons and

instantons in high energy physics. Cambridge University Press, 2012.

[33] R. F. Dashen, B. Hasslacher, and A. Neveu, “Nonperturbative methods and

extended-hadron models in field theory. I. Semiclassical functional methods,”

Physical Review D 10 no. 12, (Dec, 1974) 4114–4129.

[34] R. F. Dashen, B. Hasslacher, and A. Neveu, “Nonperturbative methods and

extended-hadron models in field theory. II. Two-dimensional models and

extended hadrons,” Physical Review D 10 no. 12, (Dec, 1974) 4130–4138.



BIBLIOGRAPHY 135

[35] M. Pawellek, “Quantum mass correction for the twisted kink,” Journal of

Physics A: Mathematical and Theoretical 42 no. 4, (Jan, 2009) 045404,

arXiv:0802.0710 [hep-th].

[36] A. Rebhan, A. Schmitt, and P. van Nieuwenhuizen, “One-loop results for

kink and domain wall profiles at zero and finite temperature,” Physical

Review D 80 no. 4, (Aug, 2009) 045012, arXiv:0903.5242.

[37] N. H. Christ and T. D. Lee, “Quantum expansion of soliton solutions,”

Physical Review D 12 no. 6, (Sep, 1975) 1606–1627.

[38] J. L. Gervais, A. Jevicki, and B. Sakita, “Perturbation expansion around

extended-particle states in quantum field theory,” Physical Review D 12

no. 4, (Aug, 1975) 1038–1051.

[39] C. Papageorgakis and A. B. Royston, “Scalar soliton quantization with

generic moduli,” Journal of High Energy Physics 2014 no. 6, (Jun, 2014) 3,

arXiv:1403.5017.

[40] G. Delfino, “Universal amplitude ratios in the two-dimensional Ising model,”

Physics Letters B 419 no. 1-4, (Feb, 1998) 291–295, arXiv:hep-th/9710019

[hep-th].

[41] E. Fradkin, “Disorder Operators and Their Descendants,” Journal of

Statistical Physics 167 no. 3-4, (May, 2017) 427–461, arXiv:1610.05780.

[42] S. Sachdev, Quantum Phase Transitions. Cambridge University Press,

second edi ed., 2011. http:

//onlinelibrary.wiley.com/doi/10.1002/9780470022184.hmm108/full.

[43] A. Polkovnikov, “Universal adiabatic dynamics across a quantum critical

point,” Physical Review B - Condensed Matter and Materials Physics 72

no. 16, (Dec, 2003) 1–5, arXiv:cond-mat/0312144 [cond-mat].

[44] J. Dziarmaga, “Dynamics of a Quantum Phase Transition and Relaxation to

a Steady State,” Advances in Physics (Dec, 2009) 1063–1189,

arXiv:0912.4034.

[45] A. Rajantie and A. Tranberg, “Counting defects with the two-point

correlator,” Journal of High Energy Physics 2010 no. 8, (Aug, 2010) 86,

arXiv:1005.0269.



136 BIBLIOGRAPHY

[46] J. Smit, Introduction to Quantum Fields on a Lattice. Cambridge University

Press, Cambridge, 2002.

http://ebooks.cambridge.org/ref/id/CBO9780511583971.

[47] C. Davies, “Lattice qcd - a guide for people who want results,” Preprint.

Lectures at 58th Scottish Universities Summer School in Physics, Hadron

physics (10, 2005) , arXiv:hep-lat/0509046.

[48] J. Groeneveld, J. Jurkiewicz, and C. P. K. Altes, “Twist as a Probe for

Phase Structure,” Physica Scripta 23 no. 5B, (May, 1981) 1022–1031.

[49] J. C. Ciria and A. Tarancón, “Renormalization group study of the soliton

mass in the (1+1)-dimensional ��4 lattice model,” Physical Review D 49

no. 2, (Jan, 1994) 1020–1028, arXiv:hep-lat/9309019 [hep-lat].

[50] A. C. Davis, T. W. Kibble, A. Rajantie, and H. P. Shanahan, “Topological

defects in lattice gauge theories,” Journal of High Energy Physics 2000

no. 11, (Nov, 2000) 010–010, arXiv:hep-lat/0009037 [hep-lat].

[51] A. Rajantie and D. J. Weir, “Nonperturbative study of the ’t Hooft-Polyakov

monopole form factors,” Physical Review D 85 no. 2, (Jan, 2012) 025003,

arXiv:1109.0299.

[52] M. E. Peskin and D. V. Schroeder, An Introduction To Quantum Field

Theory. New York : Westview Press, 1995.

[53] S. D. Drell, M. Weinstein, and S. Yankielowicz, “Strong-coupling field

theory. I. Variational approach to '4 theory,” Physical Review D 14 no. 2,

(Jul, 1976) 487–516.

[54] M. B. Hastings, “An area law for one-dimensional quantum systems,”

Journal of Statistical Mechanics: Theory and Experiment 2007 no. 08, (Aug,

2007) P08024–P08024, arXiv:0705.2024.

[55] I. Arad, A. Kitaev, Z. Landau, and U. Vazirani, “An area law and

sub-exponential algorithm for 1D systems,” preprint (Jan, 2013) 1–18,

arXiv:1301.1162.

[56] M. B. Hastings, “Entropy and entanglement in quantum ground states,”

Physical Review B - Condensed Matter and Materials Physics 76 no. 3,

(2007) 035114, arXiv:cond-mat/0701055 [cond-mat].



BIBLIOGRAPHY 137

[57] M. B. Hastings, “Solving gapped hamiltonians locally,” Phys. Rev. B 73

(Feb, 2006) 085115.

[58] B. Pirvu, V. Murg, J. I. Cirac, and F. Verstraete, “Matrix product operator

representations,” New Journal of Physics 12 (2010) 025012,

arXiv:0804.3976.

[59] F. Brandão and M. Horodecki, “Exponential Decay of Correlations Implies

Area Law,” Communications in Mathematical Physics 333 no. 2, (Jan, 2015)

761–798, arXiv:1206.2947.

[60] M. L. Wall and L. D. Carr, “Out-of-equilibrium dynamics with matrix

product states,” New Journal of Physics 14 no. 12, (Dec, 2012) 125015.

[61] J. Eisert, M. Cramer, and M. B. Plenio, “Colloquium : Area laws for the

entanglement entropy,” Reviews of Modern Physics 82 no. 1, (Feb, 2010)

277–306, arXiv:0808.3773.

[62] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, “Entanglement in

many-body systems,” Reviews of Modern Physics 80 no. 2, (2008) 517–576,

arXiv:quant-ph/0703044 [quant-ph].

[63] P. Calabrese and J. Cardy, “Entanglement entropy and quantum field theory:

a non-technical introduction,” arXiv:quant-ph/0505193 [quant-ph].

[64] M. P. Hertzberg and F. Wilczek, “Some calculable contributions to

entanglement entropy,” Physical Review Letters 106 no. 5, (2011) 1–5,

arXiv:1007.0993.

[65] C. Holzhey, F. Larsen, and F. Wilczek, “Geometric and renormalized entropy

in conformal field theory,” Nuclear Physics, Section B 424 no. 3, (1994)

443–467, arXiv:hep-th/9403108 [hep-th].

[66] M. P. Hertzberg, “Entanglement entropy in scalar field theory,” Journal of

Physics A: Mathematical and Theoretical 46 no. 1, (Jan, 2013) 015402,

arXiv:1209.4646.

[67] J. S. Cotler and M. T. Mueller, “Entanglement entropy and variational

methods: Interacting scalar fields,” Annals of Physics 365 (2016) 91–117,

arXiv:1509.05685.



138 BIBLIOGRAPHY

[68] U. Schollwöck, “The density-matrix renormalization group in the age of

matrix product states,” Annals of Physics 326 no. 1, (Jan, 2011) 96–192,

arXiv:1008.3477.

[69] J. Eisert, “Entanglement and tensor network states,” Modeling and

Simulation 3 no. 520, (Aug, 2013) 39, arXiv:1308.3318.

[70] C. Hubig, I. P. McCulloch, and U. Schollwöck, “Generic construction of
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[76] M. Bal, M. Mariën, J. Haegeman, and F. Verstraete, “Renormalization

Group Flows of Hamiltonians Using Tensor Networks,” Physical Review

Letters 118 no. 25, (Jun, 2017) 250602, arXiv:1703.00365.

[77] S. Yang, Z. Gu, and X. Wen, “Loop Optimization for Tensor Network

Renormalization,” Physical Review Letters 118 no. 11, (Mar, 2017) 110504,

1512.04938.

[78] P. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix

Manifolds. Princeton University Press, Jan, 2008.



BIBLIOGRAPHY 139

[79] P. Pippan, S. R. White, and H. G. Evertz, “E�cient matrix-product state

method for periodic boundary conditions,” Physical Review B 81 no. 8, (Feb,

2010) 081103, arXiv:0801.1947.

[80] D. Rossini, V. Giovannetti, and R. Fazio, “Sti↵ness in 1D matrix product

states with periodic boundary conditions,” Journal of Statistical Mechanics:

Theory and Experiment 2011 no. 05, (May, 2011) P05021, arXiv:1102.3562.

[81] V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman, F. Verstraete, and

J. Haegeman, “Variational optimization algorithms for uniform matrix

product states,” Phys. Rev. B 97 (Jan, 2018) 045145.

[82] B. Pirvu, F. Verstraete, and G. Vidal, “Exploiting translational invariance in

matrix product state simulations of spin chains with periodic boundary

conditions,” Physical Review B 83 no. 12, (Mar, 2011) 125104,

arXiv:1005.5195.

[83] J. Haegeman, B. Pirvu, D. J. Weir, J. I. Cirac, T. J. Osborne, H. Verschelde,

and F. Verstraete, “Variational matrix product ansatz for dispersion

relations,” Physical Review B 85 no. 10, (Mar, 2012) 100408,

arXiv:1103.2286.

[84] E. Gillman and A. Rajantie, “Topological defects in quantum field theory

with matrix product states,” Phys. Rev. D. 96 (Nov, 2017) 094509,

arXiv:1705.09802.

[85] S. Singh and G. Vidal, “Global symmetries in tensor network states:

Symmetric tensors versus minimal bond dimension,” Physical Review B 88

no. 11, (Sep, 2013) 115147, arXiv:1307.1522.

[86] B. Pirvu, G. Vidal, F. Verstraete, and L. Tagliacozzo, “Matrix product

states for critical spin chains: Finite-size versus finite-entanglement scaling,”

Physical Review B 86 no. 7, (Aug, 2012) 075117, arXiv:1204.3934.

[87] G. Vidal, “Class of Quantum Many-Body States That Can Be E�ciently

Simulated,” Physical Review Letters 101 no. 11, (Sep, 2008) 110501,

arXiv:quant-ph/0610099 [quant-ph].

[88] J. Berges, “Introduction to Nonequilibrium Quantum Field Theory,” AIP

Conference Proceedings 739 no. 1, (2004) , arXiv:hep-ph/0409233

[hep-ph].



140 BIBLIOGRAPHY

[89] S. Sotiriadis and J. Cardy, “Quantum quench in interacting field theory: A

self-consistent approximation,” Physical Review B - Condensed Matter and

Materials Physics 81 no. 13, (2010) 134305, arXiv:1002.0167.

[90] M. Salle, J. Smit, and J. C. Vink, “Thermalization of inhomogeneous

quantum scalar fields in 1+1D,” in AIP Conference Proceedings, vol. 555,

pp. 429–432. AIP, 2001. arXiv:hep-ph/0010239 [hep-ph].

http://aip.scitation.org/doi/abs/10.1063/1.1363556.

[91] J. Berges, “N-particle irreducible e↵ective action techniques for gauge

theories,” Phys. Rev. D 70 (2004) 105010, arXiv:hep-ph/0401172

[hep-ph].

[92] J. Berges, “Controlled nonperturbative dynamics of quantum fields out of

equilibrium,” Nuclear Physics A 699 no. 3, (2002) 847 – 886.

[93] J. Berges and I. O. Stamatescu, “Simulating nonequilibrium quantum fields

with stochastic quantization techniques,” Physical Review Letters 95 no. 20,

(2005) 202003, arXiv:hep-lat/0508030 [hep-lat].

[94] E. Seiler, “Status of complex langevin,” preprint (2017) , arXiv:1708.08254

[hep-lat].

[95] G. Aarts, F. A. James, J. M. Pawlowski, E. Seiler, D. Sexty, and I. O.

Stamatescu, “Stability of complex Langevin dynamics in e↵ective models,”

Journal of High Energy Physics 1303 no. 3, (2013) 073, arXiv:1212.5231.

[96] J. Berges and D. Sexty, “Real-time gauge theory simulations from stochastic

quantization with optimized updating,” Nucl. Phys. B799 (2008) 306–329,

arXiv:0708.0779 [hep-lat].

[97] S. Rychkov and L. G. Vitale, “Hamiltonian truncation study of the �4 theory

in two dimensions,” Physical Review D 91 no. 8, (Apr, 2015) 085011,

arXiv:1412.3460.

[98] Z. Bajnok and M. Lajer, “Truncated Hilbert space approach to the 2d �4

theory,” Journal of High Energy Physics 2016 no. 10, (Oct, 2016) 50,

arXiv:1512.06901.

[99] T. Rakovszky, M. Mestyán, M. Collura, M. Kormos, and G. Takács,
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