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A detailed study of the self-modulation of a relativistic electron beam in an ondulator in the single-pass regime is
carried out. Beam-parameter conditions are obtained under which the radiative instability in question occurs. The
possibility of constructing a source of coherent radiation based on this principle is discussed. The radiation spec­
ifications of such a source are analyzed. Control the mass of longitudinal motion with the help of an additional
longitudinal magnetic field introduced in the ondulator is discussed. Numerical examples are given for sources of
submillimeter and infrared-range radiation.

1. INTRODUCTION

In recent years there has been a move toward
construction of sources of coherent radiation in
which the electrons moving along a periodically
curved trajectory are used. The so-called free­
electron laser (FEL) belongs to this class of de­
vice. The relativistic electron beam in this laser
passes through an ondulator (a periodic trans­
verse magnetic field) located in an o.pen optic
resonator.

In this work we study a simpler situation in
which the electron beam passes through an on­
dulator and unlike FEL, there is no resonator.
We study the problem of radiative instability of
the beam in an ondulator. With certain restric­
tions on the beam parameters, the harmonics of
density whose wavelength at a given energy res­
onate with the ondulator period become unstable.
Generally speaking, for the instability to be ev­
ident, some initial level of density (or of current)
oscillations is required at the entrance of the on­
dulator. Statistical density fluctuations can play
this role of initial excitation. For sufficient length
of the ondulator, the resonant harmonics of den­
sity fluctuations become large enough during a
pass that the modulated beam radiates from a
definite section of the ondulator. Such a scheme
may be used as an independent source of coher­
ent radiation or as an amplifier.

The effects of relativistic-beam self-modula-

* See also Preprint INP 79-48, Novosibirsk, 1979.
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tion in the Single-pass regime were studied in
Refs. 2-5. The case of an infinitely wide electron
beam was analyzed in Refs. 2-4. The authors em­
ployed either the methods of plasma physics,2 or
those of high-frequency device theory. 3,4 The re­
sults of a comprehensive study of the effect of
relativistic electron-beam self-modulation in an
ondulator are presented in Ref. 5 . It should be
noted that the authors of that paper made use of
the methods usually applicable in a study of co­
herent beam instabilities in storage rings. The
existence of the important, from the practical
point of view, case of the so-called "narrow"
beam, when the parametric dependence of the
basic quantities seems to be different from the
case of a "wide" beam, was shown. The results
of those papers show that the creation of high­
power coherent sources in the infrared and sub­
millimeter ranges of the wavelengths where they
are do not now exist is a valuable application of
the effect of beam self-modulation. Even at com­
paratively low beam currents, the amplitude of
density modulation increases by a few times al­
ready in a time of the order of tens of ondulator
periods in this range, which makes it possible to
circumvent the use of resonator systems. The aim
of the present paper is to draw conclusions basing
upon the results of the paper of Ref.. 5 and also
to analyze a number of new problems. Most im­
portant is a study of the possibility of controlling
the effective mass of longitudinal motion of the
electrons in an o'ndulator with the help of an ad­
ditional external longitudinal magnetic field. It is
shown that this permits one to increase the frac-
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tion of the electron beam energy converted into
radiation and also to shorten the ondulator
length. Problems concerning the practical reali­
zation of a coherent source are also considered.

2. DESCRIPTION OF THE EFFECT OF
ELECTRON-BEAM SELF­
MODULATION IN AN ONDULATOR

Let us present a theory of the growth of longi­
tudinal electron-beam modulation in an ondula­
tor. Let all the electrons move with the same
velocity v. Let us send such a beam through the
ondulator, whose field repeats periodically in a
period Ao: H(y) = H(y +Ao), where y is the coor­
dinate along the axis of the ondulator coinciding
with the direction of beam motion. Transverse
to the axis, the field H 1- in the ondulator depends
only on the longitudinal coordinate y. In partic­
ular, for a helical ondulator H 1- = H x + iHy

= H o exp (-iKy), where K = l/X o = 2'Tr/A oand
H° is a constant. Upon deflection from the on­
dulator axis, the longitudinal magnetic field in the
transverse direction (rot H = 0) is: IH 11°I---IIH 1-1
cr/X o, where cr is the transverse beam dimension).
This field results in the beam focusing in the
transverse direction.

Besides the ondulator field introduce also an
external longitudinal magnetic field, allowing ad­
ditionally the control of the instability develop­
ment. In such fields the forced velocity of elec­
tron motion may be written in the form

v s = Vy(~,y)ey + v 1-(~,y),

where the velocity components v y and v 1- are
functions of the electron energy ~ and are peri­
odic functions of y with period Ao• Here we as­
sume that 1 - v y ~ 1 and therefore we take v y

= 1 everywhere possible. In particular, in the
field of the helical ondulator

V 1- = V x + iv z = u exp ( - iKY),

u = K/('Y - K II), V y = const,

where

K = eXolHollm, K II = eHIIXoim

== 'YOO IIIK, 'Y = (1 - V 2) - 1/2

Let us study the dynamics of beam modulation

in the radiation field without the action of a Cou­
lomb field taken into account. The transverse
rotation of electrons is assumed to be given by
the ondulator fields. In this case, radiation can
result in changing the longitudinal motion only.

As the reaction of radiation on beam modula­
tion is important only over lengths greatly ex­
ceeding the ondulator period, it is reasonable to
carry out averaging of the equations of motion
over times of the order of Ao•

If one proceeds to the canonically conjugate
variables s = y - ftVy(~o,y)dt and P = ~ ­
~ 0, where ~ - ~ ° stands for the energy devia­
tion, and expand over small deviation P, one gets
the Hamiltonian 71e(P, s, y)V describing the rela­
tive motion of electrons with radiation. It is con­
venient to use the longitudinal coordinate as a
time. The Hamiltonian can be derived with the
help of the canonical transformation [(P - eA)2
+ m 2]l/2.

71e = P2/2~M - e(v 1-A),

where A is the vector potential of the radiation
field and ~M the mass of the longitudinal motion,
which relates the longitudinal velocity variation
to energy change

M -I = ~ ( dS~dY) = ~ ( ~ )

= ~2 - ~(v~ a;;), (2.1)

where the braces (...) denote averaging over y.
In particular, for a helical ondulator, the expres­
sion for M is

1. = 1. + Klul
2

(2.2)
M 'Y 2 (K - 0011)'

The vector potential of the radiation field A(r,t)
is connected with the periodic variation in the
electron velocity in the ondulator by

a2A a2A a2A a2A-+-+---ax 2 aZ 2 ay2 at 2

= - 4'Trev 1-(~ o,y)p(S1-'S ,y), (2.3)

where the particle density is expressed in the
variables S 1- = r 1- - Jv1-dy and s, coordinates
characteriZing the relative positions of the elec­
trons in the transverse and longitudinal direc-



COHERENT RADIATION IN AN ONDULATOR 209

(2.6)

tions. The dependence of the density p on y thus
characterizes a slow variation in the modulation
amplitude, which takes place over wavelengths
greatly exceeding the ondulator period.

Using Eq. (2.3), we obtain the Hamiltonian

~ = 2~~ - e 2
( VLLL dy' Jds L ' ?L~;~I

P(SL',S + y' - Y + Vir - rll,y'»)' (2.4)

where L is the length of the ondulator, Ir - r'l
~ [(y - y')2 + (S.L - S.L')2]l/2, V = (vy(~o,Y».

The part of the total integral ~f~ dy' propor­
tional to fb dy' describes the "forward" action
of radiation along the direction of beam motion,
while the remaining part f; dy' is the "back­
ward" action. As can be seen from Eq. (2.4), the
forward radiation resonates with harmonics of
density that are modulated in the longitudinal
direction at frequencies K n = n [K o(1 - V)]-t
::::::: 2n'Ytt2/KO' where n = ± 1, ±2, ... , n/K o = K n

are the spectral frequencies of v 1-(y), and 'Y t t

= (1 - V 2
)-V2. The backward radiation reso­

nates atlower frequencies K n = n[K o(1 + V)]-t.
A larger increment at rate of instability is asso­
ciated with the forward radiation and therefore
the backward radiation is neglected below.

An equation that describes the variation of par­
ticle densities p(s ,y) (s1- = const) in the ondulator
may be derived from the kinetic equation for the
particle distribution f(P ,S ,Y), aj7ay + (P/~M)(af/

as) - (a7Jelas)(af/ap) = O. Hence

~2p = _1_ i. [a~ P + _1_!.- JP2jdP] , (2.5)
ay 2 ~M as as ~M as

where p = f fdP. The second term in the right­
hand side of Eq. (2.5) is proportional to the
square of the density modulation amplitude.
Therefore, in the linear amplitude-modulated ap­
proximation this term is neglected and we get the
simple result

a2p __1_ a2~
ay 2 - CfbM as 2 po,

where Po (S1-' s) is the beam density at the en­
trance of the ondulator.

Let us expand v 1- in a Fourier series and ex­
press the density in the form where the strong

dependence of p and s is obvious

v 1- = :L Un exp (iKny), p
n

= po + :L an(S.L,s,y)exp(-iKns).
n=O

After simple calculations with the help of Eqs.
(2.6), (2.4), and [Ir - r'l ::::::: (y - y') + Is.L ~ S.L'12
12 (y - y')] one can derive equations for the
modulation amplitudes ,an. For a narrow beam
(<1 ~ 0) the equation has the form*

a2
a n = Nr e I 12K 2ay 2 2'YM Un n

y

Jan(SL' S + (l - v)(y' - y), y ') d' (2.7)
o y - y' + iK nu

2 y ,

where VN = V f pds.L is the beam current and
re = e 2/m . For a wide beam, the equation for an
is transformed into (<1 ~ 00)

+ (1 - V)(y - y '), y ') dy ,. (2.8)

The characteristic quantity <1 ~ that distinguishes
the naqow and wide beam is

2 1 ~'YIMI
u cr = K

n
21ul Ny

e
• (2.9)

It is seen from Eq. (2.8) that for a wide beam the
increment for a particle at the beam center is
higher than that for the particles at a distance
IS.LI =1= 0 from the center.

All of the harmonics of modulation a n increase
independently at the initial stage, and we now
omit the index n, assuming it to correspond to
a maximum increment.

Let us solve Eqs. (2.7) and (2.8) for the case
of a continuous beam. For the resonant harmonic
of density (K = 2'YffK), the amplitude a is inde-

* Eq. (2.7) is derived for a Gaussian distribution in the
transverse dimension, P.l = (211'(12) -1 exp ( - S .12/2(12). Due
to the logarithmic dependence on the transverse beam di­
mensions, the increment is slightly sensitive to the specific
form of the distribution P.l(S.l).
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(2.11)

* Formulas (2.10) and (2.11) hold for a bunch length much
longer than l/'Yff.

= 2[3/ln PO/pJI/Z ~o IKI.

These results can also be obtained from qual­
itative considerations which give another repre­
sentation of the process of modulation develop­
ment. Let us evaluate the radiation fields acting
on the particles in the beam. Consider a contin­
uous electron beam completely modulated in the
longitudinal direction and passing through the
ondulator of length Yo. The beam in the ondulator
is a set of periodic radiators that oscillate in such
a way that the radiation fields add coherently at
zero angle in the direction of beam motion. It
follows from simple. geometric considerations
that the angle at which such coherence still oc­
curs (the angle of diffraction) is of the order of
(~/YO)1/2 for a small area and ~/(J' for a large area.
The characteristic quantity distinguishing these
limiting cases is the area of the radiation flux
cross section in the ondulator in the narrow
beam, i.e., of the order of ~Yo.

To estimate the radiation field E, energy bal­
ance can be used, which enables one to estimate
also the coherent radiation power W of the com­
pletely modulated beam. On the one hand, the
power W is determined by the flux of radiating

1 f A A A A

energy W = = 411' £2ds ~ £zS, where S is the

characteristic radiation flux cross section in the
ondulator. On the other hand, the field inside the
beam Edoes work on the electrons that must be
equal to W per unit time: W = eN fbo Ev 1-dy. In
resonance, when the period of beam modulation
resonates with the onqulator period (A = .~o(l

- '0), the quantity (Ev 1-) is maximum «Ev..l)
= Itul ) an~ !V = eNIEuIYo. Thus we obtain W
= E 2S = eNEuyo and we can now estimate the
field value and radiation power. For a narrow

"Y ~, formulas (2.11) and (2.12) coincide with the
corresponding formulas of Ref. 5.

The characteristic width of the spectrum of
density harmonics !.::::.K c (the amplitude of the har­
monic a at K = 2')'~K + !.::::.K c is e times less than
the amplitude at K = 2')'~K), which can be un­
stable for the narrow beam at M > 0, In
(J'~,J(J'2 ~ 1 and the wide, correspondingly, is

(2.10)

~o(l - V). In the case when M =

1= _2_.. = ~.J 'VIMI
\131/\1 \/3 TrNr eP1-luI 2K'

(P-l = ~, f p-ldS-l = 1).

where

1\, = 11\1 exp ( -i~), I\z =

-11\1 exp (i ~) ,1\3 = ill\l = i[~I;it lulZK] 1/3

pendent of s. The initial conditions for a will be
(aa/ay)y=o = 0, ay=O = a;(s 1-). In the case of a
wide beam, the solution of Eq. (2.8) is

I\Z = NY e lulzKzL'" exp ( -I\y) dy =
2')'M 0 y + iK(J'2

--- Nr e 112 2 ./\. 2-1- 2'V
M

u K [In (I Krr) - c + ...J,

Hence the amplitude of modulation grows ex­
ponentially. The characteristic length in which
the amplitude becomes e times larger (at I/\Iy
~ 1), as one can see from Eq. (3.12), is

where c = 0.58 is the Euler constant. In partic­
ular, for a narrow beam and positive longitudinal
mass, if In «(J'~,J(J'2) ~ 1, we get from Eq. (2.11)

where ~

In the case when M = ')'~, the expression (2.10)
coincides with the corresponding formulas of
Refs. 2-4. For a narrow beam, the corresponding
expression for 1 == ReA -1 satisfies the relation*
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3. LIMITS OF APPLICABILITY OF THE
RESULTS

It is seen that the fraction of the beam energy
IMIK/I converting into radiation can also be varied
byM.

We have taken into account that in the initial sec­
tion of the ondulator the distribution of longitu­
dinal velocities is a 8-function, which is true when
particles shifts from the spreads of longitudinal
velocities can be neglected. Hence the energy
and angular spreads of the particles should not
exceed (6.VI ~ K)

6.~/~ ~ IMIKI/, (6.6)2 = (6.v .l).2 ~ 'All. (3.2)

(2.16)W = )'mN(IMIKIl).

with Eqs. (2.10) and (2.12) up to numerical fac­
tors.

Thus, having traversed the length L = I·ln (pol
Pi) (pJpo is the initial degree of beam modulation)
in the ondulator, the beam's modulation ampli­
tude becomes as large as possible. The charac­
teristic length on which the modulation is close
to the maximum is determined by the spread of
longitudinal velocities that appears under the ra­
diation. As seen from relations (2.15), the char­
acretistic length in which the radiation power is
maximum, is of the order of the growth length
I. It is not difficult to estimate the total coherent
radiation power W. Using formulas (2.13) and
(2.14), we get*

The limitations due to the finite number of the
particles in the beam are most obvious; in a co­
herent volume whose size is the order of a wave­
length in the longitudinal direction and the order
of-a diffraction length (Kl) 1/2) in the transverse
direction, the number of particles should be very
large. Correspondingly, for the narrow and wide
beams the following conditions constrain the
lower limit of the current.

It is easy from this relation to derive expressions
for the characteristic growth length that agree

beam «(J'2 ~ Kyo) the transverse radiation flux
cross section is approximately Kyo and*

Emax = eNlul/K, W = e 2JV 21ul2y o/K (2.13)

For a wide beam (8 = (J'2), we have

Emax = eNuYo/(J'2, W = e 2JV 2Iul2y o2/(J'2. (2.14)

Taking into account the reaction of the radia­
tion field on the beam leads to instability of the
resonant harmonics of density because of the
dissipative part of radiation field. In order to in­
crease the amplitude of initial modulation P by
a few times, the particles must shift in the lon­
gitudinal direction under the influence of radia­
tion field E= EmaxP/Po by an amount of the order
of 6.s = Kp/po. In the resonance region we have

/:::"S = /:::,.V·l =~ 1

=~ elEYo~lllul = Xp/Po. (2.15)

* Strictly speaking, this method allows estimation of the
dissipative fraction of a radiation field whose phase coincides
with the phase density of modulation. There is also the non­
dissipative part of the radiation field for a narrow beam,
whose work over the beam is on the average equal to zero.
This part of the field leads to the energy distribution inside
the beam. It can be interpreted as a retarding action of the
radiation fields of particles placed behind the test particle at
distances much longer than a wavelength (unlike the dissi­
pative part of the field whose influence is most strong at dis­
tances of the order of a wavelength). As the radiation field
falls with distance as r- I, for a narrow beam the nondissi­
pative part of the field with respect to the amplitude is ap­
proximately In ('Ayol(J'2) times higher as compared with the
dissipative one «(J'2/'A is the shortest distance at which the
fields can add coherently). For a narrow beam, when the on­
dulator is helical, an exact calculation yields

" eNu [1T (y ). ]E = 2X iCOS Ks + In K(J'2 sIn Ks exp (-;Ky),

and for a wide beam, with a Gaussian electron distribution
in cross section, we have

" eNuy ( r .i 2 .) e2N 2
2 2

E = 2(J'2 (cos Ks) exp - 2(J'2 - IKy ,W = 16(J'2 lui Yo .

Let us find the limitation on feasible gradient
of the longitudinal velocities laVlar.l1 in the trans-

* To derive formula (2.16) in the case of a narrow beam,
it is supposed that In «(J'2/(J'~r) =1.
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(3.4)

verse beam cross section at the entrance of the
ondulator. The gradient can be negligible if the
relative change in velocity over a coherence
length [(X-l)1/2] in the transverse direction is small.
For the narrow and wide beams respectively, we
get

(JlaVlar -1-1 ~ X-Il, laVlar -1-1 ViJ ~ X-/l. (3.3)

When the last condition is fulfilled, the variation
in velocity V in the transverse direction may be
regarded as an adiabatic one.

Besides the collective radiation fields consid­
ered above, the Coulomb field acts on the beam
particles. Let us define the range of parameters
when the Coulomb field can be neglected. To
calculate the Coulomb field E C' it is convenient
to proceed to the particle reference system. In
this system the beam density is modulated with
period ~IIA. In the case when (J2 ~ 'Y~X- 2 the pe­
riodic part of the Coulomb field inside the beam
is equal to

E 2eN 1 (2'Y IIX-) . K
c = -2- n -- sin s

'YIIX- (J

If the radial dimension is large (J 2 ~ 'Y 112X- 2), the
Coulomb field on the beam axis will be deter­
mined by the charge density.

2eNX- .
E c = --.2-- sin Ks. (3.5)

(J

The radiation fields will play the main role in
the dynamics of density modulation if the peri­
odic part of the Coulomb-field projection on the
particle velocities is much less than t"he proj~c­

tion of radiation field: IEc·vl = E c ~ IE·vl = IEul
. Hence, with the help of formulas (2.13), (2.14),
and (3.4) and (3.5) we get as the conditions that
must be satisfied.

It follows from condition (3.6) that I ~ X- o in the
region of application for our study. Existence of
a range of parameters in which the main inter­
action between the particles is carried out through
the radiation fields is due to the fact that the Cou­
lomb interaction becomes sensitive to the ge­
ometry of a beam larger than 'YIIX- in size, while
the radiation fields begin to change when to the

beam is of diffraction size, (X-l)1/2 = ~IIX- (IIX- O)1/2.
With increase of the beam cross section, the Cou­
lomb field decreases by lIX- o times before the ra­
diation field starts to decrease.

The results obtained are valid under the as­
sumption of relatively small spreads both in en­
ergy and longitudinal mass of the particles in the
beam. The spread in energies, and consequently
in mass is maximum at the ondulator section
where the beam modulation is close to com­
plete.* Here

8-y = IMI ~ ~ 1, 8M = &-y aM ~ 1 (3.7)
'Y I M Ma~

Hence the upper limit of the longitudinal mo­
tion mass M is determined by the conditions (3.7).
The lower limit is due to the fact that near the
resonance Iw 11 - KI ~ Konly in the region in
which M can be decreased; the growth length I

must be longer than x-o/ll -~I = X-JIMuI2
•

K

Thus the limits to variation in M for the helical
ondulator are determined by the conditions

(3.8)

The constraints on the value ofM can be obtained
by substituting I from formulas (2.10), or (2.12).

It is possible from Eq. (3.6) to define maximum
permissible current (M = 'Y~ at a current close to
the maximum)

• 'Y(J 2 6 4
eN max = e --;z 'Ylilul . (3.9)

re/\.O

The maximum possible radiation power achieved
at a current eN = 104~3(J21X-02A, ~Iul = 1,
M = ~il can also be estimated.

We have listed all the principal important re­
strictions on the parameters of the problem. In
addition, it should be noted that the fulfilment of

* The condition for neglecting the effect of the ondulator
field on the transverse motion of electrons (In1.1 ~ 1£1(1 ­
V» follows from Eqs. (3.6) and (3.7). Furthermore, the small­
ness of the quantity, 18u/ul ~ 1, also follows from these equa­
tions,
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the condition (3.6) excludes any direct influence
of the Coulomb interaction on the dynamics of
developing the instability but this condition is in­
sufficient to neglect entirely the influence of Cou­
lomb fields. For instance, Coulomb interaction
of the beam particles can enlarge the beam cross
section adiabatically, with respect to the growth
length, thereby increasing this length under cer­
tain conditions. It is important to emphasize that,
in principle, such an adiabatic interaction may be
removed and, therefore, probably does not im­
pose any additional limitations. Several methods
can be suggested to get rid of this influence. In
particular, the Coulomb repulsion can be re~

moved by ion compensation of the beam charge
or by magnetization of the electrons in the on­
dulator by a longitudinal magnetic field.

There is a critical current above which the
Coulomb expansion (at (0" = 0) decreases the
power of coherent radiation*

(3.10)

where f1 i is the transverse beam dimension at the
ondulator entrance.

If the beam current exceeds the values deter­
mined by formula (3.10), it is sufficient to intro­
duce a longitudinal field for the narrow and wide
beams, correspondingly** -

( . )3~ ( )1~
IWIII~ Nr e 'Y1I

4

1u1
2 .J..,

~ IMI Ko

(

• ) 1/21 Nr
I(O,,~-- __e

~"f1i ~

Adiabatic expansion of the beam c,an be as-

* Besides the increase of the beam cross section, the an­
gular spread between the particle velocity and beam axis in­
creases as well, but the condition for a maximum possible
angle ec in the practical region where (J' i ~ ~ 01711 u 21- I In 2(p 01
Pi) is always fulfilled if Eq. (3.10) is satisfied.

** If the own focusing by ondulator fields is strong enough,
the introduction of the longitudinal field may appear not nec­
essary.

sociated with the initial angular spread of elec­
tron velocities. This is possible when many char­
acteristic lengths of growth (L/I = In Po/Pi' ~ 1)
are required for developing the instability. This
effect of expansion is also readily avoided by in­
troducing a longitudinal field. It is worthwhile to
note that, in practice, the deliberate introduction
of a longitudinal field (0 "I = 1 removes the effects
of beam expansion connected with the Coulomb
repulsion and the angular spread mentioned
above.

4. CONTROL OF THE MASS OF
LONGITUDINAL MOTION

The effects of a series of factors that limit the
power of the output radiation can be successfully
compensated by means of a longitudinal field.
When H" is large enough, the longitudinal field
ceases to be only a neutralizer of damaging fac­
tors and starts, together with the transverse field
of the ondulator H 0, to play a determining role
in the dynamics of instability. Qualitatively new
is the fact that the value of the longitudinal mass
M and the transverse velocity amplitude lui be­
come two independent parameters. For example,
we can always choose a value of H 0 such that
lui is constant when H" varies, and hence, the
wavelength of the resonant harmonic of density
is constant as well, while, according to Eq. (2.1),
we can control the quantity and sign of the lon-·
gitudinal mass M. Note that it is possible, if de­
sired, to change M (adiabatically) in some sec­
tions of the ondulator only. So, for example, in
the initial section of the ondulator, where the
difference in particle energy inside the beam is
only determined by the initial spread, we can
shorten the growth length I by decreasing M and,
therefore, make the whole ondulator shorter. Of
course, this is possible if the initial energy spread
of the, beam is small because, according to Eq.
(3.2), the decrease in M leads to a more rigid re­
quirement for !:1~/~. Otherwise, in the final sec­
tion of the ondulator, where the beam modulation
is close to complete, it is desirable to increase M
because, according to Eq. (2.16), in this case the
output power of coherent radiation W increases.
Let us find how large W can become when M
increases, within the limitations of(3.6) and (3.7).
Let us first consider a practically interesting case
when ~Iul ;5 1 (the ondulator is helical). We get
from Eqs. (3.6) and (3.8) that if the beam area (T2
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< IT 0
2 - (X, 2/luI2

)(~ 1I"Y2IuI 2/Nr e)2/3, then the maxi­
mum possible value of M is M max ~ ')'~(')'3IuI2/
Nr e) 1/3 • In the limiting case, the fraction of the
beam energy converted into radiation is

(I~IX)
max

where lois the growth length at M = "Y 11
2

•

In the case when IT
2 > IT02,

Thus, at currents much lower than the maxi­
mum permissible, the gain in power can be sig­
nificant.

5. ON THE LEVEL OF BEAM
MODULATION AT THE ENTRANCE OF
AN ONDULATOR

To reveal the effect of self-modulation, a knowl­
edge of the initial level of the harmonics of beam
density is necessary. In a realistic situation, if the
initial conditions are not prepared in a special
manner, there exists a continuous spectrum of
fluctuations of density harmonics that arise from
the fact that there is a finite number of particles
in the beam. Hence all the harmonics in a band
of width (6K/K) ~ X, 011 will become unstable and
grow by a few times in the length I. After passage
of a length L ~ I·ln (Po!Pi) all the harmonics
achieve a size of the order of Po.

The spectrum width 6K '"- KX,o!l corresponds
to a correlation length of the order of l/2')'~. Hence
the values of harmonics of density fluctuations
for the narrow and wide beams respectively are

P;/Po ~ (NI/2~ ff) -1/2, P/p 0

~ (Nl/2')' ff) - 1/2(IT 2/Kl) 1/2.

LIt IS taken into account for a wide beam that the
correlation length in the transverse direction is
of the order of (Kl)1/2.] For example, in the case
of a narrow beam at ')'Iul ~ 1, ')'2 ~ 10, Ko ~ 1
em, eN ~ 1 A, we get fJ/po ~ 10- 5

•

Any source of coherent radiation with wave­
length X- can be used for the preparation of the
initial modulation of a beam with the same pe­
riod. For this purpose, in the initial section of the
ondulator the beam is affected by an electro­
magnetic wave propagating in the direction of
particle motion. In this case, the beam is mod­
ulated with period X-. It is worthwhile to consider
the interaction between the particles and external
wave only in the length of the initial section of
the ondulator which is not longer than the char­
acteristic growth length I. One can estimate a
maximum value of the initial modulation of the
particles in the beam which can be obtained
through the use of external coherent radiation of
power Wext • Supposing that the external radiation
is focused in an optimal way,* we have p/Po ~

(Wex/W)1/2 in the resonance region (X- ~ X-oI2')'ft),
where W is the coherent radiation power emitted
from the ondulator length I upon the complete
beam modulation (i.e., the output power of the
source under study).

The spectrum of initial conditions determines
the width of the output radiation spectrum. If the
beam modulation is developed from the spectrum
of density fluctuations, the degree of monochro­
maticity is equal to 6w/w ~ Ko!l. In the case when
the initial state Pi is prepared with an external
monochromatic radiator, the output radiation is
also monochromatic (for a continuous beam).
Note that as a modulating radiator, the source
can be used based on the principle under consid­
eration where the necessary spectrum width is
cut off with a monochromator. There also exists
the possibility of creating a back-coupling source
where a small fraction of the output radiation
after monochromatization is supplied again to the
ondulator entrance. In such a scheme the whole
length of the ondulator is shortened as well.

The angular divergence of output radiation is
also connected to the initial conditions for beam
modulation. ** If the beam modulatIon is devel­
oped from the spectrum of density fluctuations,

* In the case of a small beam cross section, the external
radiation is focused up to the diffraction limit (8 ~ Xl) and
in the case of a large beam cross section up to the beam di­
mensions (8 ~ cr 2)

** The angular divergence of radiation for a wide beam can
be connected with the widening of the beam because of Cou­
lomb repulsion: ec ~ 6 c ~ lVr eLI("fYITcr). In the case 6 c ~e, the angular di\~ergence of radiation can be decreased to the
diffraction limit 6 by a longitudinal field whose strength sat­
isfies the relatioll Iw~1 ;c; lVr e/('Y'YIT<T9).
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then the -angle of radiation divergence 9, taking
into account that the correlation length in the
transverse direction does not exceed the quantity
(K.1)II2, is approximately equal to 6 ~ (1.../1)1/2 for
both narrow and wide beams.

For a wide beam, the angle of divergence can
be decreased if the initial modulation is prepared
with constant phase over the transverse beam
cross section. In this case, the angle of radiation
divergence is determined by the diffraction angle
of a coherent radiator with dimension (1: 6~ X/
(1 ~ (X/1)1/2 •

This initial condition can be prepared if, as a
source which gives the initial modulation, radia­
tion is used that is generated by a narrow beam
widened to dimensions of the order of (1. This can
be done in the back-coupling scheme, too. Such
a scheme allows one not only to improve the
monochromaticity, but also to decrease the an­
gular divergence of radiation for a wide beam.

For some applications the polarization prop­
erties of the output radiation can be important.
The type of polarization is determined by the
structure of the ondulator field in the radiating
section. An additional possibility to control the
polarization arises when a strong magnetic field
is introduced into a linear ondulator. At small
field (100111 ~ K) the radiation has linear polari­
zation. With increase of the longitudinal field the
polarization becomes elliptic and in the limiting
case circular. Variation of the longitudinal field
direction makes it possible to change the sign of
the radiation helicity.

6. NUMERICAL EXAMPLES

It seems quite promising to apply the above-de­
scribed principle of beam self-modulation for cre­
ation of a source that operates in the submilli­
meter range, where high-power sources of
coherent radiation are now lacking.. Let us con­
sider the following example. Parameters of the
beam are: 'Y = 5.5, beam current 100 A, emit­
tance (1·~e = 5·10- 3cm. Parameters of the helical
ondulator are: period Ao = 2 cm, H o = 3 kG.
Then the period of free oscillations in transverse
plane is equal Ab = 25 cm, the radiation wave­
length is 0.045 cm. The growth length is calcu­
lated from the formula for the narrow beam and
is equal to 1 = 14 cm. The beam of electrons
radiates a power of order of 5.. 106 W in ondulator.

In the case when modulation develop,s from the
fluctuation speetrum, ~w/w ~ 10- 2

, 6~ 2.10- 2
•

Introduction of a 28 kG longitudinal field will
enables one to increase the limiting output power
of the source by a factor of 3.

To produce a beam of electrons with these pa­
rameters, one can use electrostatic acceleration.
At present, this type of source is being developed
for the problem of electron cooling of antiproton
beams in storage rings. 6 Electrostatic accelera­
tion is very convenient in that it allows one to
recuperate the energy of the used electron beam
in the simplest way, thereby increasing the
source efficiency up to the order of unity.

This method of producing the coherent radia­
tion enables one to use pulsed electron sources
as well. An increase of duty factor (with the same
power of the electron source) decreases the char­
acteristic growth length and increases the frac­
tion of the beam energy converting into radiation.
For example, the following parameters* are cho­
sen: 'Y = 20, the period of the helical ondulator
Ao = 6cm, eN = 3.104 A, emittance(1~e = 5.10- 3

cm, H o = 1 kG, A = 10- 2 cm, Ab = 350 cm. The
growth length is calculated from the formula for
the wide beam and is equal to l = 22 cm.

The beam will radiate at the angle 6~ 5·10- 2

and the degree of monochromatization is ~w/w

~ 2·10 - 2 if the modulation occurs from the spec­
trum of fluctuations and at the angle e~ 3·10- 3

when the modulation occurs from one harmonic
of density. Radiation power will be ~ 1010W.
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