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We study a spherically symmetric setup consisting of a Schwarzschild metric as the background geometry in the framework of
classical polymerization. This process is an extension of the polymeric representation of quantum mechanics in such a way that
a transformation maps classical variables to their polymeric counterpart. We show that the usual Schwarzschild metric can be
extracted from a Hamiltonian function which in turn gets modifications due to the classical polymerization. Then, the polymer
corrected Schwarzschildmetricmaybe obtainedby solving the polymer-Hamiltonian equations ofmotion. It is shown thatwhile the
conventional Schwarzschild space-time is a vacuum solution of the Einstein equations, its polymer-corrected version corresponds
to an energy-momentum tensor that exhibits the features of dark energy. We also use the resulting metric to investigate some
thermodynamical quantities associated with the Schwarzschild black hole, and in comparison with the standard Schwarzschild
metric the similarities and differences are discussed.

1. Introduction

One of the most important arenas that show the power of
general relativity in describing the gravitational phenomena
is the classical theory of black hole physics. However, when
we introduce the quantum considerations to study of a
gravitational systems, general relativity does not provide a
satisfactory description of the physics of the system. The
phenomena such as black hole radiation and all kinds of
cosmological singularities are among the phenomena in
which the use of quantum mechanics in their description is
inevitable. This means that although general relativity is a
classical theory, in itsmost important applications, the system
under consideration originally obeys the rules of quantum
mechanics. Therefore, any hope in the accurate description
of gravitational systems in high energies depends on the
development of a complete theory of quantum gravity. That
is why the quantum gravity is one of the most important
challenges in theoretical physics which from its DeWitt’s
traditional canonical formulation [1] to the more modern
viewpoints of string theory and loop quantum gravity (LQG)
[2–4] has gone a long way. One of the main features of
the space-time proposed in LQG is its granular structure

which in turn, supports the idea of existence of a minimal
measurable length. In the absence of a full theory of quantum
gravity, effective theories which somehow exhibit quantum
effects in gravitational systems play a significant role. These
are theories which show some phenomenological aspects
of quantum gravity and usually use a certain deformation
in their formalism. For example, theories like generalized
uncertainty principles and noncommutative geometry are in
this category [5–13].

Among the effective theories that also use a minimal
length scale in their formalism, we can mention the polymer
quantization [14], which uses the methods very similar to the
effective theories of LQG [15]. In polymer quantum approach
a polymer length scale, 𝜆, which shows the scale of the
segments of the granular space, enters into the Hamiltonian
of the system to deform its functional form into a so-called
polymeric Hamiltonian. This means that, in a polymeric
quantized system in addition of a quantum parameter ℏ,
which is responsible to canonical quantization of the system,
there is also another quantum parameter 𝜆 that labels the
granular properties of the underlying space. This approach
then opened new windows for the theories which are dealing
with the quantum gravitational effects in physical systems
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such as quantum cosmology and black hole physics; see, for
instance [16–31] and the references therein.

To polymerize a dynamical system one usually begins
with a classical system described by Hamiltonian 𝐻. The
canonical quantization of such a system transforms itsHamil-
tonian to an Hermitian operator, which now contains the
parameter ℏ, in such a way that in the limit ℏ 󳨀→ 0, the quan-
tum Hamiltonian 𝐻ℏ returns to its classical counterpart. By
polymerization, the Hamiltonian gets an additional quantum
parameter𝜆, which is rooted in the ideas of granular structure
of the space-time. Therefore, by taking the classical limit of
the resulting Hamiltonian 𝐻ℏ,𝜆, we arrive at a semiclassical
theory in which the parameter 𝜆 is still present. To achieve
the initial classical theory, one should once again take the
limit 𝜆 󳨀→ 0 from this intermediate theory. It is believed that
such effective classical theories𝐻𝜆 have enough rich structure
to exhibit some important features of the system related
to the quantum effects without quantization of the system.
The process by which the theory 𝐻𝜆 is obtained from the
classical theory is called classical polymerization. A detailed
explanation of this process with some of its cosmological
applications can be found in [32].

In this paper, we are going to study how the metric
of the Schwarzschild black hole gets modifications due
to the classical polymerization. Since the thermodynami-
cal properties of the black hole come from its geometrical
structure, the corrections to the black hole’s geometry yield
naturally modifications to its thermodynamics. To do this,
we begin with a general form of a spherically symmetric
space-time and then construct a Hamiltonian in such a
way that the Schwarzschild metric is resulted from the
corresponding Hamiltonian equations of motion. We then
follow the procedure described above and by applying it to
the mentioned Hamiltonian we get the classical polymer-
ized Hamiltonian, by means of which we expect to obtain
the polymer-corrected Schwarzschild metric. The paper is
organized as follows. In Section 2 we have presented a brief
review of the polymer representation and classical polymer-
ization. Section 3 is devoted to the Hamiltonian formalism
of a general spherically symmetric space time. We show
in this section that the resulting Hamiltonian equations of
motion yield the Schwarzschild solution. In Section 4, we will
apply the classical polymerization on the Hamiltonian of the
spherically symmetric space-time given in Section 3 to get the
polymerized Hamiltonian. We then construct the deformed
Hamiltonian equations of motion and solve them to arrive
the polymer corrected Schwarzschild metric. The energy-
momentum tensor of the matter field corresponding to this
metric as well as some of its thermodynamical properties
are also presented in this section. The radial geodesics of the
light and particles are obtained in Section 5 and, finally, we
summarize the results in Section 6.

2. Classical Polymerization: A Brief Review

As is well known, in Schrödinger picture of quantum
mechanics, the coordinates and momentum representations
are equivalent and may be easily converted to each other

by a Fourier transformation. However, in the presence of
the quantum gravitational effects the space-time may take a
discrete structure so that such well-defined representations
are no longer applicable. As an alternative, polymer quan-
tization provides a suitable framework for studying these
situations [14, 15]. The Hilbert space of this representation
of quantum mechanics is Hpoly = 𝐿2(𝑅𝑑, 𝑑𝜇𝑑), where 𝑑𝜇𝑑 is
the Haar measure and 𝑅𝑑 denotes the real discrete line whose
segments are labeled by an extra dimension-full parameter 𝜆
such that the standard Schrödinger picture will be recovered
in the continuum limit 𝜆 󳨀→ 0. This means that, by a
classical limit ℏ 󳨀→ 0, the polymer quantum mechanics
tends to an effective 𝜆-dependent classical theory which is
somehow different from the classical theory from which we
have started. Such an effective theory may also be obtained
directly from the standard classical theory, without referring
to the polymer quantization, by using of the Weyl operator
[32]. The process is known as polymerization with which we
will deal with in the rest of this paper.

According to the mentioned above form of the Hilbert
space of the polymer representation of quantum mechan-
ics, the position space (with coordinate 𝑞) has a discrete
structure with discreteness parameter 𝜆. Therefore, the asso-
ciated momentum operator 𝑝, which is the generator of
the displacement, does not exist [15]. However, the Weyl
exponential operator (shift operator) corresponding to the
discrete translation along 𝑞 is well defined and effectively
plays the role of momentum associated to 𝑞 [14]. This allows
us to utilize theWeyl operator to find an effective momentum
in the semiclassical regime. So, considering a state 𝑓(𝑞), its
derivative with respect to the discrete position 𝑞 may be
approximated by means of the Weyl operator as [32]

𝜕𝑞𝑓 (𝑞) ≈ 12𝜆 [𝑓 (𝑞 + 𝜆) − 𝑓 (𝑞 − 𝜆)]
= 12𝜆 (𝑒𝑖𝑝𝜆 − 𝑒−𝑖𝑝𝜆)𝑓 (𝑞) = 𝑖𝜆 ̂sin (𝜆𝑝)𝑓 (𝑞) ,

(1)

and similarly the second derivative approximation will be

𝜕2𝑞𝑓 (𝑞) ≈ 1𝜆2 [𝑓 (𝑞 + 𝜆) − 2𝑓 (𝑞) + 𝑓 (𝑞 − 𝜆)]
= 2𝜆2 ( ̂cos (𝜆𝑝) − 1)𝑓 (𝑞) .

(2)

Having the above approximations at hand, we define the
polymerization process for the finite values of the parameter𝜆 as

𝑝 󳨀→ 1𝜆 ̂sin (𝜆𝑝),
𝑝2 󳨀→ 2𝜆2 (1 − ̂cos (𝜆𝑝)) .

(3)

This replacement suggests the idea that a classical theory may
be obtained via this process, but now without any attribution
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to theWeyl operator.This iswhat is dubbed usually as classical
Polymerization in literature [14, 32]:

𝑞 󳨀→ 𝑞,
𝑝 󳨀→ sin (𝜆𝑝)

𝜆 ,
𝑝2 󳨀→ 2𝜆2 [1 − cos (𝜆𝑝)] ,

(4)

where now (𝑞, 𝑝) are a pair of classical phase space variables.
Hence, by applying the transformation (4) to theHamiltonian
of a classical system we get its classical polymerized counter-
part. A glance at (4) shows that the momentum is periodic
and varies in a bounded interval as 𝑝 ∈ [−𝜋/𝜆, +𝜋/𝜆). In the
limit 𝜆 󳨀→ 0, one recovers the usual range for the canonical
momentum 𝑝 ∈ (−∞,+∞). Therefore, the polymerized
momentum is compactified and topology of the momentum
sector of the phase space is 𝑆1 rather than the usual 𝑅
[33]. Our set-up to explain the classical polymerization of
a dynamical system is now complete. In Section 4, we will
return to this issue by somemore explanations and apply it to
the Hamiltonian dynamics of a spherically symmetric space-
time.

3. Hamiltonian Model of the Spherically
Symmetric Space-Time

We start with the general spherically symmetric line element
as (it can be shown that, by introducing of new radial and
time coordinates as 𝑏(𝑟) 󳨀→ 𝑟󸀠 and 𝐼(𝑟)[𝑎(𝑟)𝑑𝑡 −𝐵(𝑟)𝑑𝑟] 󳨀→𝑑𝑡󸀠, this metric takes the standard form of static spherically
symmetric line elements: 𝑑𝑠2 = −𝐴(𝑟)𝑑𝑡2+𝐶(𝑟)𝑑𝑟2+𝑟2(𝑑𝜗2+
sin2𝜗𝑑𝜑2)) [34, 35]

𝑑𝑠2 = −𝑎 (𝑟) 𝑑𝑡2 + 𝑁 (𝑟) 𝑑𝑟2 + 2𝐵 (𝑟) 𝑑𝑡 𝑑𝑟
+ 𝑏2 (𝑟) (𝑑𝜗2 + sin2𝜗𝑑𝜑2) , (5)

where 𝑎(𝑟),𝐵(𝑟),𝑁(𝑟), and 𝑏(𝑟) are some functions of 𝑟. Upon
substitution this metric into the Einstein-Hilbert action

S = 116𝜋𝐺 ∫𝑑4𝑥√−𝑔R, (6)

the action taking the form

S = ∫𝑑𝑡 ∫𝑑𝑟𝐿 (𝑎, 𝑏, 𝑛) , (7)

where [34, 35]

𝐿 = 2√𝑛(𝑎󸀠𝑏󸀠𝑏𝑛 + 𝑎𝑏󸀠2𝑛 + 1) (8)

is an effective Lagrangian in which the primes denote differ-
entiation with respect to 𝑟 and the Lagrange multiplier 𝑛 is
given by

𝑛 (𝑟) = 𝑎 (𝑟)𝑁 (𝑟) + 𝐵2 (𝑟) . (9)

In metric (5) the function 𝑁(𝑟) plays the role of a lapse
function with respect to the 𝑟-slicing in the ADM termi-
nology; see [34–36]. On the other hand, according to the
relation (9), the functions𝑁 and 𝐵 are related to the Lagrange
multiplier 𝑛whichmeans thatwe can arbitrarily choose them.
This is a reflection of this fact that we have freedom in the
definition of the coordinates 𝑟 and 𝑡 in the metric (5). Hence,
the only independent variables that can be determined by
the Einstein field equations are the functions 𝑎(𝑟) and 𝑏(𝑟).
In order to write the Hamiltonian the momenta conjugate to
these variables should be evaluated, that is,

𝑝𝑎 = 𝜕𝐿𝜕𝑎󸀠 = 2𝑏𝑏󸀠√𝑛 ,

𝑝𝑏 = 𝜕𝐿𝜕𝑏󸀠 = 2(2𝑎𝑏󸀠 + 𝑎󸀠𝑏)
√𝑛 .

(10)

Also, the momentum associated with 𝑛 vanishes which gives
the primary constraint

𝑝𝑛 = 𝜕𝐿𝜕𝑛󸀠 = 0. (11)

In terms of these conjugate momenta the canonical Hamilto-
nian is given by its standard definition 𝐻 = ∑𝑞=𝑎,𝑏,𝑛 𝑞󸀠𝑝𝑞 − 𝐿,
leading to

𝐻 = √𝑛(𝑝𝑎𝑝𝑏2𝑏 − 𝑎2𝑏2𝑝2𝑎 − 2) + Λ𝑝𝑛, (12)

in which due to existence of the constraint (11) we have added
the last term that is the primary constraints multiplied by
an arbitrary functions Λ(𝑟). The Hamiltonian equation for 𝑛
then reads

𝑛󸀠 = {𝑛,𝐻} = Λ. (13)

Now, let us restrict ourselves to a certain class of gauges,
namely, 𝑛 = const., which is equivalent to the choice Λ = 0.
With a constant 𝑛 we assume 𝑛 = 1 without losing general
character of the solutions. By this choice, the Hamiltonian
equations of motion for the other variables are as

𝑎󸀠 = {𝑎,𝐻} = 𝑝𝑏2𝑏 − 𝑎𝑏2𝑝𝑎,
𝑝󸀠𝑎 = {𝑝𝑎, 𝐻} = 𝑝2𝑎2𝑏2 ,
𝑏󸀠 = {𝑏,𝐻} = 𝑝𝑎2𝑏 ,
𝑝󸀠𝑏 = {𝑝𝑏, 𝐻} = 𝑝𝑎𝑝𝑏2𝑏2 − 𝑎𝑏3𝑝2𝑎.

(14)

From the second and third equations of (14) we obtain

𝑝𝑎 = 𝑘1𝑏, (15)

from which one gets

𝑏 (𝑟) = 𝑘12 𝑟 + 𝑘2,
𝑝𝑎 (𝑟) = 𝑘212 𝑟 + 𝑘1𝑘2,

(16)
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where 𝑘1 and 𝑘2 are integration constants. Upon substituting
these results into the first and fourth equations of the system
(14), we arrive at the following system:

𝑎󸀠 = 1𝑘1𝑟 + 2𝑘2𝑝𝑏 −
2𝑘1𝑘1𝑟 + 2𝑘2 𝑎,

𝑝󸀠𝑏 = 𝑘1𝑘1𝑟 + 2𝑘2𝑝𝑏 −
2𝑘21𝑘1𝑟 + 2𝑘2 𝑎,

(17)

which results 𝑝󸀠𝑏 = 𝑘1𝑎󸀠 and then 𝑝𝑏 = 𝑘1𝑎 + 𝑘3. Therefore,

𝑎󸀠 (𝑟) = − 𝑘1𝑎 + 𝑘3𝑘1𝑟 + 2𝑘2 , (18)

In which after integration we obtain

𝑎 (𝑟) = 𝑘3𝑘1 +
𝑘1𝑘4𝑘1𝑟 + 2𝑘2 , (19)

and

𝑝𝑏 (𝑟) = 2𝑘3 + 𝑘21𝑘4𝑘1𝑟 + 2𝑘2 , (20)

with 𝑘3 and 𝑘4 being integration constants. Now, all of the
above results should satisfy the constraint equation 𝐻 = 0.
Thus, with the help of (12) we get 𝑘1𝑘3 = 4, where we fix them
as 𝑘1 = 𝑘3 = 2. Also, 𝑘2 and 𝑘4 remain arbitrary where we
take their values as 𝑘2 = 0 and 𝑘4 = −2𝑀 with 𝑀 being a
constant. Therefore, the metric functions take the form

𝑎 (𝑟) = 1 − 2𝑀𝑟 ,
𝑏 (𝑟) = 𝑟,

(21)

and their conjugate momenta are

𝑝𝑎 (𝑟) = 2𝑟,
𝑝𝑏 (𝑟) = 4 − 4𝑀𝑟 . (22)

Finally, with using these relations in (5) and (9), the metric is
obtained as

𝑑𝑠2 = −(1 − 2𝑀𝑟 )𝑑𝑡2 + 𝑁 (𝑟) 𝑑𝑟2

+ 2 [1 − (1 − 2𝑀𝑟 )𝑁 (𝑟)]1/2 𝑑𝑡 𝑑𝑟
+ 𝑟2 (𝑑𝜗2 + sin2 𝜗𝑑𝜑2) .

(23)

In the final stage we have to eliminate the function𝑁(𝑟).This
function should be interpreted as a Lagrange-multiplier and,
thus, cannot be considered as a real dynamical variable. As
we mentioned before, one may freely choose it. From the
physical point of view the function 𝑁(𝑟) corresponds to a
gauge freedom in choice of coordinates 𝑟 and 𝑡 in the above

metric. If we choose the lapse function as𝑁(𝑟) = (1−2𝑀/𝑟)−1
this metric takes its canonical form

𝑑𝑠2 = −(1 − 2𝑀𝑟 )𝑑𝑡2 + (1 − 2𝑀𝑟 )−1 𝑑𝑟2
+ 𝑟2 (𝑑𝜗2 + sin2 𝜗𝑑𝜑2) ,

(24)

which is nothing but the familiar form for the metric of the
Schwarzschild black hole. However, we may identify the line
element (23) with the Eddington-Finkelstein metric

𝑑𝑠2 = −(1 − 2𝑀𝑟 )𝑑𝑡2 + 4𝑀𝑟 𝑑𝑡 𝑑𝑟 + (1 + 2𝑀𝑟 )𝑑𝑟2
+ 𝑟2 (𝑑𝜗2 + sin2 𝜗𝑑𝜑2) ,

(25)

for𝑁(𝑟) = 1 + 2𝑀/𝑟, or with some other kinds of spherically
symmetric metrics for 𝑁 = 1; see [37]. In summary, from
physical viewpoint choosing different gauge functions𝑁(𝑟) is
actually looking at a space-time from a different perspective.
For example, the metric (25) can be obtained from (24) by
introducing a new time coordinate 𝑡 = 𝑡 + 2𝑀 ln(𝑟 − 2𝑀)
in which the radial null geodesics (see Section 5) become
straight lines. In this sense, the two metrics may differ from
some aspects. While the Schwarzschild metric is singular at𝑟 = 2𝑀 the Eddington-Finkelstein metric is regular not only
at 𝑟 = 2𝑀 but also for the whole range 0 < 𝑟 < 2𝑀. Indeed,
the coordinate range is extended from 2𝑀 < 𝑟 < ∞ to0 < 𝑟 < ∞.

From now on we focus on Schwarzschild black hole
metric and to justify the meaning of the constant 𝑀, noting
that the Newtonian gravitational potential of a point mass 𝑚
situated at the origin is given by the relation 𝜙 = −𝐺𝑚/𝑟. On
the other hand in the weak-field limit the 𝑔00 component of
the metric takes the form 𝑔00 = −(1 + 2𝜙/𝑐2) [38]. Therefore,
comparing this with (24) we see that𝑀 = 𝐺𝑚/𝑐2.Thismeans
that wemay interpret the constant𝑀 as due to themass of the
above mentioned point particle in relativistic units.

4. Polymerization of the Model

As explained in the second section the method of polymer-
ization is based on the modification of the Hamiltonian to
get a deformed Hamiltonian 𝐻𝜆, where 𝜆 is the deforma-
tion parameter. Quantum polymerization of the spherically
symmetric space-time is studied in [39, 40] in which the
interior of the Schwarzschild black hole as described by a
Kantowski-Sachs cosmological model is quantized by loop
quantization method. For our system this method will be
done by applying the transformation (4) on the Hamiltonian
(12). However, since all of the thermodynamical properties
of the black hole are encoded in the function 𝑎(𝑟), we will
polymerize only the 𝑎(𝑟)-sector of the Hamiltonian. So, by
means of the transformation

𝑝𝑎 󳨀→ 1𝜆 sin (𝜆𝑝𝑎) , 𝑎 󳨀→ 𝑎,
𝑝𝑏 󳨀→ 𝑝𝑏, 𝑏 󳨀→ 𝑏

(26)
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the Hamiltonian takes the form

𝐻𝜆 = − 𝑎2𝑏2
sin2 (𝜆𝑝𝑎)𝜆2 + 𝑝𝑏2𝑏

sin (𝜆𝑝𝑎)𝜆 − 2. (27)

As we mentioned earlier, by this one-parameter 𝜆-dependent
classical theory, we expect to address the quantum features
of the system without a direct reference to the quantum
mechanics. Indeed, here instead of first dealing with the
quantum pictures based on the quantum Hamiltonian oper-
ator, one modifies the classical Hamiltonian according to the
transformation (4) and then deals with classical dynamics of
the system with this deformed Hamiltonian. In the resulting
classical system the discreteness parameter 𝜆 plays an essen-
tial role since its supports the idea that the 𝜆-correction to
the classical theory is a signal from quantum gravity. Under
these conditions the Hamiltonian equations of motion for the
above Hamiltonian are

𝑎󸀠 = {𝑎,𝐻𝜆}
= 𝑝𝑏2𝑏cos (𝜆𝑝𝑎) − 𝑎𝜆𝑏2 sin (𝜆𝑝𝑎) cos (𝜆𝑝𝑎) ,

𝑝󸀠𝑎 = {𝑝𝑎, 𝐻𝜆} = sin2 (𝜆𝑝𝑎)2𝜆2𝑏2 ,
𝑏󸀠 = {𝑏,𝐻𝜆} = sin (𝜆𝑝𝑎)2𝜆𝑏 ,
𝑝󸀠𝑏 = {𝑝𝑏, 𝐻𝜆} = 𝑝𝑏2𝜆𝑏2 sin (𝜆𝑝𝑎) − 𝑎𝜆2𝑏3 sin2 (𝜆𝑝𝑎) .

(28)

The second and the third equations of this system give𝑑𝑝𝑎/𝑑𝑏 = sin(𝜆𝑝𝑎)/𝜆𝑏, integration of which results in 𝑏 =𝐶1 tan((1/2)𝜆𝑝𝑎), where 𝐶1 is an integration constant. We
note that, in the limit 𝜆 󳨀→ 0, this relation should back to𝑏 = (1/2)𝑝𝑎, obtained in the previous section. So, taking this
limit fixes the integration constant as 𝐶1 = 1/𝜆. Therefore,

𝑏 = 1𝜆 tan (12𝜆𝑝𝑎) . (29)

Now, we may use this result in the second equation of (28) to
arrive at

𝑝󸀠𝑎 = 2 cos4 (12𝜆𝑝𝑎) , (30)

whose integral is

23
tan ((1/2) 𝜆𝑝𝑎)𝜆 + 13

tan ((1/2) 𝜆𝑝𝑎)𝜆 cos2 ((1/2) 𝜆𝑝𝑎) = 𝑟. (31)

From (29) we get cos2((1/2)𝜆𝑝𝑎) = (1 + 𝜆2𝑏2)−1. With the
help of these relations (31) takes the following algebraic form
for the function 𝑏(𝑟):

𝜆2𝑏3 + 3𝑏 − 3𝑟 = 0, (32)

which admits the exact solution

𝑏 (𝑟) = [3𝜆𝑟 + √4 + 9𝜆2𝑟2]2/3 − 22/3
21/3𝜆 [3𝜆𝑟 + √4 + 9𝜆2𝑟2]1/3 . (33)

Up to second order of 𝜆, we have
𝑏 (𝑟) = 𝑟 − 13𝜆2𝑟3 + O (𝜆3) . (34)

Now, let us go back to the first and the fourth equations of the
system (28). Using (29), they take the form

𝑎󸀠 = 𝑝𝑏2𝑏 1 − 𝜆2𝑏21 + 𝜆2𝑏2 − 2𝑎𝑏 1 − 𝜆2𝑏2
(1 + 𝜆2𝑏2)2 , (35)

and

𝑝󸀠𝑏 = 𝑝𝑏𝑏 11 + 𝜆2𝑏2 − 4𝑎𝑏 1
(1 + 𝜆2𝑏2)2 , (36)

inwhichwe have used the trigonometric relations: sin(𝜆𝑝𝑎) =2𝜆𝑏/(1 + 𝜆2𝑏2) and cos2(𝜆𝑝𝑎) = (1 − 𝜆2𝑏2)/(1 + 𝜆2𝑏2). From
these two equations we get

𝑝󸀠𝑏 = 21 − 𝜆2𝑏2 𝑎󸀠, (37)

where up to second order of 𝜆, using (34) is
𝑝󸀠𝑏 = 2 [1 + 𝜆2𝑟2 + O (𝜆3)] 𝑎󸀠, (38)

and thus

𝑝𝑏 = 2∫ (1 + 𝜆2𝑟2) 𝑎󸀠𝑑𝑟. (39)

We may use this relation in (35) to get a differential equation
for 𝑎(𝑟). However, since the resulting equation seems to be
too complicated to have an exact solution, we rely on an
approximation according to which we ignore all powers of 𝜆
in the r.h.s. of (35) and so obtain

𝑎󸀠 (𝑟) = 1𝑟 ∫ (1 + 𝜆2𝑟2) 𝑎󸀠𝑑𝑟 − 2𝑟 𝑎, (40)

or after differentiation of both sides

𝑟𝑎󸀠󸀠 (𝑟) = (𝜆2𝑟2 − 2) 𝑎󸀠, (41)

with solution

𝑎 (𝑟) = 𝐶2 + 𝐶3 [−1𝑟 𝑒𝜆
2𝑟2/2 + 𝜆√𝜋2 erfi( 𝜆𝑟√2)] , (42)

where 𝐶2 and 𝐶3 are two integration constant and erfi(𝑧) is
the imaginary error function. Up to second order of 𝜆 this
expression has the form

𝑎 (𝑟) = 𝐶2 − 𝐶3𝑟 + 12𝐶3𝜆2𝑟, (43)
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comparison of which with (21) suggests that the integration
constants should fix as 𝐶2 = 1 and 𝐶3 = 2𝑀. So,

𝑎 (𝑟) = 1 + 2𝑀[−1𝑟 𝑒𝜆
2𝑟2/2 + 𝜆√𝜋2 erfi( 𝜆𝑟√2)] . (44)

Therefore, by choosing the lapse function in the form𝑁(𝑟) =𝑎−1(𝑟) (see the discussion after (23)), the polymerized metric
takes the form

𝑑𝑠2 = −𝑎 (𝑟) 𝑑𝑡2 + 𝑎−1 (𝑟) 𝑑𝑟2
+ 𝑏2 (𝑟) (𝑑𝜗2 + sin2𝜗𝑑𝜑2) , (45)

where 𝑎(𝑟) and 𝑏(𝑟) are given in (44) and (34), respectively. It
is seen that in the limit𝜆 󳨀→ 0 the line element (45) returns to
the usual Schwarzschild metric (24). However, its asymptotic
behavior, which comes from the expansion

𝑎 (𝑟) = 1 − 2𝑀𝑟
+𝑀𝜆2𝑟 [1 + 112 (𝜆𝑟)2 + 1120 (𝜆𝑟)4 + ⋅ ⋅ ⋅] ,

(46)

shows that, in spite of the Schwarzschild case, the metric
is not flat for large values of 𝑟. Later in this section, we
attribute such an asymptotic behavior to the matter field that
created this metric. In what follows, we will deal with the
physical properties, including thermodynamics, of the space-
time (45). Since such properties of a black hole can be derived
from its geometry, we expect that the deformed forms of these
properties return to their ordinary form in the limit 𝜆 󳨀→ 0.

At first, let us take a look at the horizon(s) radius of the
metric (45)whichmay be deduced from the roots of equation𝑎(𝑟) = 0. Up to the leading order of parameter 𝜆, the positive
root of this equation is

𝑟𝐻 ≃ √1 + 8𝑀2𝜆2 − 12𝑀𝜆2 . (47)

On the other hand since 𝑑𝑎(𝑟)/𝑑𝑟 = 2𝑀𝑒𝜆2𝑟2/2/𝑟2 > 0,
the function 𝑎(𝑟) is monotonically increasing and thus the
metric cannot have more than one horizon whose radius is
approximately given in (47). To see the behavior of the above
metric near the Schwarzschild essential singularity 𝑟 = 0, we
may evaluate some scalars associated with the metric such
as Ricci scalar 𝑅, 𝑅𝜇]𝑅𝜇], and the Kretschmann scalar 𝐾 =
𝑅𝜇]𝜎𝛿𝑅𝜇]𝜎𝛿. A straightforward calculation shows that

𝑅 = 2𝜆𝑀𝑟2 𝑒𝜆2𝑟2/2 [𝜆𝑟 + 2√2𝐹( 𝜆𝑟√2)] , (48)

where 𝐹(𝑥) = 𝑒−𝑥2 ∫𝑥
0
𝑒𝑦2𝑑𝑦 is the Dawson function. Near𝑟 = 0, the above relation behaves as 6𝑀𝜆2/𝑟, so given

that the value of the parameter 𝜆 is also very small we have
lim𝑟󳨀→0𝑅 ≃ O(𝜆). Computing of the scalar 𝑅𝜇]𝑅𝜇] shows the

similar behavior near 𝑟 = 0, while the Kretschmann scalar
takes the form

𝐾 = 4𝑀2𝑒𝜆2𝑟2𝑟6 [4𝜆2𝑟2 (2𝐹( 𝑟𝜆√2)
2 − 1)

− 8√2𝜆𝑟𝐹( 𝑟𝜆√2) + 𝜆4𝑟4 + 12] ,
(49)

which behaves as 𝐾 ≃ 48𝑀2/𝑟6 + 20𝑀2𝜆4/3𝑟2 + O(𝜆5).
Thus near 𝑟 = 0 we have 𝐾 ≃ 48𝑀2/𝑟6. This shows that
the space-time described by the metric (45) has an essential
singularity at 𝑟 = 0, which cannot be removed by a coordinate
transformation.

Now, let us investigate the properties of the matter
corresponding to the metric (45). Considering the Einstein
equations 𝐺𝜇] = 𝑅𝜇] − (1/2)𝑅𝛿𝜇] ∼ 𝑇𝜇] , the components of the
energy-momentum tensor become

𝑇𝜇] = diag (−𝜌, 𝑝𝑟, 𝑝⊥, 𝑝⊥)
= diag(−√2𝜋𝜆𝑀 erfi (𝜆𝑟/√2)

𝑟2 ,

− √2𝜋𝜆𝑀 erfi (𝜆𝑟/√2)
𝑟2 , −𝜆2𝑀𝑒𝜆2𝑟2/2𝑟 ,

− 𝜆2𝑀𝑒𝜆2𝑟2/2𝑟 ) .

(50)

Before going any further, a remark is in order. The usual
Schwarzschild metric is often considered a vacuum solution
since it solves 𝑅𝜇] = 0 which is equivalent to the Einstein
vacuum field equations 𝐺𝜇] = 0. However, as (50) explicitly
shows the polymer corrected metric (45) is not a vacuum
solution. Then, a question arises: what mechanism made it
possible starting froma vacuum solutionwe get a nonvacuum
solution? To deal with this question note that any vacuum
solution must be found in the absence of matter, strictly
speaking, only the Minkowski metric can be considered as a
vacuum solution. As shown in [41], in the Schwarzschild case
there is a source term (energy-momentum tensor) concen-
trated on the origin, the origin which usually excluded from
the space-time manifold. So we are faced with an unaccept-
able physical situation in which a curved metric is generated
by a zero energy-momentum tensor. In [41] with more
accurate calculations based on distributional techniques the
energy-momentum tensor of the Schwarzschild geometry
is obtained and it has been shown that its Ricci scalar
is equal to 8𝜋𝑀𝛿(𝑟) which yields an energy-momentum
tensor proportional to 𝑀𝛿(𝑟). Now, what is happening in
the effective theories such as noncommutative, see [42], and
polymeric counterparts of the Schwarzschild solution is that
the concentrated matter on the origin will spread throughout
space by the polymer parameter 𝜆 (or noncommutative
parameter 𝜃 in noncommutative theories).

The energy-momentum tensor (50) shows a fluid with
radial pressure 𝑝𝑟 = −𝜌 and tangential pressure 𝑝⊥ =−𝜌 − (𝑟/2)𝜕𝑟𝜌. In comparison with the conventional perfect
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Figure 1: Left: Temperature versus mass. The solid line shows the qualitative behavior of the relation (53) while the dashed line refers to the
conventional temperature of the Schwarzschild black hole. Right: the density of the matter distribution versus 𝑟. The figures are plotted for𝜆 = 0.1 and𝑀 = 1.

fluid with isotropic pressure the above energy-momentum
tensor shows an unusual behavior since its pressure exhibits
an anisotropic behavior. At short distances the difference
between 𝑝𝑟 and 𝑝⊥ is of order 𝜆2, which shows that the fluid
behaves approximately like a perfect fluid. However, when𝑟 grows the anisotropy between the pressure’s components
increases and the behavior of the fluid is far from the
perfect fluid behavior. The nonvanishing radial pressure of
the above anisotropic fluid may be interpreted as a result
of the quantum fluctuation of given space-time. The large
amount of this pressure near the origin prevents the matter
collapsing into this point. Such an unusual equation of state
for fluids also appeared in the noncommutative theories
of black holes [42]. In view of the validity of the energy
conditions, we see that

𝜌 + 𝑝𝑟 + 2𝑝⊥ = −2𝜆2𝑀𝑒𝜆2𝑟2/2𝑟 < 0, (51)

which shows the violation of the strong energy condition for
this exotic distribution of matter. On the other hand, in view
of the weak energy conditions, while the relation 𝜌 + 𝑝𝑟 ≥ 0
is always satisfied, the condition 𝜌+𝑝⊥ ≥ 0 is violated for 𝑟 >
O(1/𝜆).The violation of the energy conditions shows that the
classical description of this type of matter field is not credible
and thus the corresponding gravity should be described by
an effective quantum theory (here the polymerized theory)
rather than the usual general relativity.

Finally, let us take a quick look at thermodynamics of the
metric (45). According to the Hawking formulation the black
hole’s temperature is proportional to the surface gravity at the
black hole horizon. It can be shown that for a diagonal metric
such as (45) the surface gravity is [43]

𝜅 = √−14𝑔𝑡𝑡𝑔𝑟𝑟 (𝜕𝑔𝑡𝑡𝜕𝑟 )2 = 𝑀𝑟2 𝑒𝜆
2𝑟2/2. (52)

Evaluating this expression at the horizon radius (47) gives the
temperature as

𝑇 ∝ 4𝜆4𝑀3𝑒(√8𝜆2𝑀2+1−1)2/8𝜆2𝑀2

(√8𝜆2𝑀2 + 1 − 1)2 . (53)
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Figure 2: The entropy versus mass. The figure is plotted for 𝜆 = 0.1
and𝑀 = 1.

In Figure 1 we have plotted the qualitative behavior of the
above results. As this figure shows near the origin the matter
has a dense core like its conventional Schwarzschild counter-
part.Thus, the temperature changes like Schwarzschild in this
regime. However, in a global look, the exotic properties of
the matter cause different behavior for temperature. Unlike
the usual Schwarzschild case, by decreasing the mass, the
radiation temperature first decreases to a minimum value
and then exhibits the normal behavior; i.e., the temperature
increases while the mass is decreasing. The reason for this
abnormal behavior in the temperature of the radiation may
be found in the nature of the dark energy-like of the matter
field described by the energy-momentum tensor (50). Now,
by the second law of thermodynamics 𝑑𝑆 = 𝑑𝑀/𝑇, we may
compute the entropy as

𝑆 = ∫ 𝑒−(√8𝜆2𝑀2+1−1)2/8𝜆2𝑀2 (√8𝜆2𝑀2 + 1 − 1)2
4𝜆4𝑀3 𝑑𝑀. (54)

We see that this integral cannot be evaluated analytically.
In Figure 2, employing numerical methods, we have shown
the approximate behavior of the entropy for typical values of
the parameters. As the figure shows with decreasing mass,
the entropy grows from negative values up to a maximum
positive value and then behaves like the Schwarzschild case
and decreases to zero.
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5. Geodesics of the Polymerized Metric

In this section we are going to study how light and particles
will move in the geometrical background given by metric
(45). This is important because from the classical trajectories
of light or falling particles we understand that the corre-
sponding space-time behaves really like a black hole. First,

consider the radial null geodesics are defined by 𝑑𝑠 = 0 and𝑑𝜗 = 𝑑𝜑 = 0. Therefore, we have

−𝑎 (𝑟) 𝑑𝑡2 + 𝑎−1 (𝑟) 𝑑𝑟2 = 0 󳨐⇒
𝑑𝑡 = ± 𝑑𝑟𝑎 (𝑟) .

(55)

In order to get an analytical solution we use the approximate𝑎(𝑟) ∼ 1 − 2𝑀/𝑟 +𝑀𝜆2𝑟, for which we obtain

𝑡 − 𝑡0 = ±2 󵄨󵄨󵄨󵄨󵄨tanh−1 ((2𝑀𝑟𝜆2 + 1) /√8𝑀2𝜆2 + 1)󵄨󵄨󵄨󵄨󵄨 /√8𝜆2𝑀2 + 1 + log 󵄨󵄨󵄨󵄨󵄨𝑀𝑟2𝜆2 − 2𝑀 + 𝑟󵄨󵄨󵄨󵄨󵄨2𝜆2𝑀 . (56)

For 𝑟 > 𝑟𝐻, the above expression with positive (negative)
sign shows that 𝑟 increases (decreases) as 𝑡 increases and
thus the corresponding curve is an outgoing (incoming) radial
null geodesics. For 𝑟 < 𝑟𝐻, the situation is reversed; i.e., the
positive and negative signs correspond to the incoming and
outgoing curves, respectively; see Figure 3. A glance at this
figure makes it clear that none of the null geodesics can pass
through the horizon which shows the black hole nature of
the underlying space-time. It is clear that in comparison with
region 𝑟 > 𝑟𝐻 the local light cones tip over in region 𝑟 < 𝑟𝐻.
This is because while the coordinates 𝑟 and 𝑡 are space-like
and time-like, respectively, in region 𝑟 > 𝑟𝐻 and in region𝑟 < 𝑟𝐻 they reverse their character. The orientation of the
light cones inside the horizon shows that nothing can stay at
rest in this region but will be forced tomove towards the black
hole center.

To complete our geodesics analysis, let us now consider
the radial trajectory of a falling free particle. It moves along
the time-like geodesics which results the following equations
of motion [38]:

𝑎 (𝑟) ̇𝑡 = 𝑘, (57)

𝑎 (𝑟) ̇𝑡2 − 𝑎−1 (𝑟) ̇𝑟2 = 1, (58)

where a dot denotes differentiation with respect to the proper
time 𝜏 and 𝑘 is a constant that depends on the initial

conditions. If we assume that the particle begins to fall with
zero initial velocity from a distance 𝑟0 for which 𝑎(𝑟0) = 1,
then 𝑘 = 1. Also, for the motion around this region we havė𝑡 ≃ 1 󳨐⇒ 𝑡 ≃ 𝜏. Therefore, we may analyse the path of the
particle in view of a comoving observer which uses the proper
time. Then, (57) and (58) give

𝑑𝜏𝑑𝑟 = − ( 𝑟2𝑀 −𝑀𝜆2𝑟2 )
1/2 , (59)

in which we have used the same previous approximation for𝑎(𝑟). Upon integration we get

𝜏 − 𝜏0 = −13𝑟√4 − 2𝜆2𝑟2 2𝐹1 (12 , 34 ; 74 ; 𝑟
2𝜆22 )

⋅ √ 𝑟2𝑀 − 𝜆2𝑀𝑟2 ,
(60)

where 𝜏0 is an integration constant and 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) is a
Hypergeometric function. The above equation shows that in
view of the proper observer no singular behavior occurs at
the horizon radius and the particle falls to the center of the
black hole; see Figure 4. If instead one describes the motion
in terms of the coordinate time 𝑡, the situation becomes like
the null geodesics; i.e., in view of a distance observer the
particle cannot pass through the horizon and it takes infinite
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Figure 4: The trajectory of an infalling particle in terms of the
proper time 𝜏.The particle falls continuously to the singularity 𝑟 = 0
in a finite proper time.The figure is plotted for 𝜆 = 0.1 and𝑀 = 1.

time for the falling particle to reach the horizon, so that 𝑟𝐻 is
approached but never passed. All of these results show that in
terms of light and particles motion the space-time given by
the metric (45) behaves like a black hole as its Schwarzschild
counterpart.

6. Summary

In this paper we have studied the classical polymerization
procedure applied on the Schwarzschild metric. This pro-
cedure is based on a classical transformation under which
the momenta are transformed like their polymer quantum
mechanical counterpart. After a brief review of the polymer
representation of quantum mechanics, we have introduced
the classical polymerization by means of which the Hamilto-
nian of the theory under consideration gets modification in
such a way that a parameter 𝜆, coming from polymer quan-
tization, plays the role of a deformation parameter. In order
to apply this mechanism on the Schwarzschild black hole, we
first presented a Hamiltonian function for a general spher-
ically symmetric space-time and showed that the resulting
Hamiltonian equations yield the conventional Schwarzschild
metric. Then, we have applied the polymerization on this
minisuperspacemodel and solved theHamiltonian equations
once again to achieve the polymer corrected Schwarzschild
metric. We saw that while the usual Schwarzschild metric
is a vacuum spherical symmetric solution of the Einstein
equations, this is not the case for its polymerized version
obtained by the above mentioned method. Interestingly, the
energy-momentum tensor of the matter field corresponding
to the polymerized metric has anisotropic negative pressure
sector with a dark energy-like equation of state. As expected,
the unusual behavior of such a matter field resulted in an
uncommon behavior for the thermodynamical quantities
like temperature and entropy in comparison with the tra-
ditional Schwarzschild solution. Finally, to clarify that the
polymerized metric has also the black hole nature, we have
investigated the null geodesics and verified that the outgoing
and incoming geodesics curves can never pass through the
horizon. Also, we proved that in view of a comoving observer
which uses the proper time an infalling particle continuously
falls to the center 𝑟 = 0, without experiencing something

passing through the horizon. All these indicate that the
underlying space-time in which the light and particles are
traveling is really a black hole.
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