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We review motivations and properties of low-scale string models and phenomenological appli-
cations to brane world scenarios with large extra dimensions.

1 Introduction

String theory is probably the best candidate for a fundamental quantum theory of all interac-
tions, including the Einstein gravity. The theory contains only one free parameter, the string
scale M,. The four-dimensional (4d) gauge group and the matter content depend on geometric
properties of the compact space. The Standard Model is supposed to correspond to a particular
compact space or vacuum configuration. There is therefore in principle the hope to understand
the empirically observed pattern of the parameters in the Standard Model.

It was conjectured ® that in Type I strings the string scale can be lowered all the way down
to the TeV range. Similar ideas for lowering the fundamental Planck scale in theories with
(sub)millimeter gravitational dimensions * appeared, as an alternative solution to the gauge
hierarchy problem, and, simultaneously, a new way for lowering the GUT scale in theories with
large (TeV) dimensions®. The new emerging picture found a simple realization in a perturbative
Type I setting® with low (in the TeV range) string scale and became subject of an intense activity,
(mostly) on the phenomenological side and on the theoretical side. Recently, a toy-model for
localizing gravity was also proposed '3, in which extra dimensions can be infinitely large !

Our goal is to review some of the ideas which emerged from this new picture: milimeter and
TeV extra dimensions, gauge coupling unification, neutrino masses and localized gravity.
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2 Millimeter and TeV~! large extra dimensions

The presence of branes! in Type I, Type I strings and M-theory open new perspectives for
particle physics phenomenology. Indeed, in Type I strings the string scale is not necessarily tied
to the Planck scale. In view of the new D-brane picture which emerged, let us take a closer look
to the simplest example of compactified Type I string with only D9 branes present. Let us split
the compact volume into two parts, V = VV(2) where V(1) of dimension 6 — 7, is of order
one in string units and V(2), of dimension n, is very small. The Kaluza-Klein states of the brane
fields along V(?) are much heavier than the string scale and therefore difficult to excite. The
physics is then better captured in this case by performing T-dualities along V(?), which read
)"1 = A;/V(z)M}", V.= l/V(z)M}’". In the T-dual picture we get, neglecting numerical factors
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(1)

where we redefined for simplicity of notation V(1) = V|- After the n T-dualities, the D9 brane
becomes a D(9-n) brane, since the T-dual winding modes of the bulk (orthogonal) compact
space are very heavy and therefore the brane fields cannot propagate in the bulk. As seen from
(1), for a very large value of the bulk volume the string scale can be very low M; << Mp. The
geometric picture here is that we have a D-brane with some compact radii parallel to it, of the
order M,'], and some very large, orthogonal compact radii. In particular, if the full compact
space is orthogonal to the brane (n = 6), then from (1) the T-dual string coupling is fixed by
the unified coupling /\’, ~ agyTt and therefore we find &

M} ~ Vi MP™ (2)

a relation similar to that proposed in the field-theoretical scenario of4.

Le us now imagine a “world-brane” picture in which the Standard Model gauge group and
charged fields are confined to the D-brane under consideration. Wecan then ask a very important
question: what are the present experimental limits on parallel Ry and perpendicular R, type
radii ? The Standard Model fields have light KK states in the parallel directions R). Their
possible effects in accelerators were studied in detail ® and the present limits are R.‘ll >4-5
TeV. On the other hand, Standard Model excitations with respect to R, are very heavy and are
basically irrelevant. The main constraints on R, come from the presence of very light winding
(KK after T-dualities) gravitational excitations, which can therefore generate deviations of the
gravitational attraction from the Newton law. The actual experimental limits on such deviations
are in the cm range and experiments in the near future are planned to improve them '°. For
Mj ~ TeV in (2), the case of only one extra dimension is clearly excluded, since it asks for
Rll ~ 108 Km. However, already for two extra dimensions, we find RII ~ lmm, which is not
yet excluded by the present experimental data.

There are clearly a lot of other challanging questions that such a scenario must answer
in order to be seriously considered as an alternative to the conventional “desert picture” of
supersymmetric unification at energies of the order of 10'® GeV. Serious questions concern
gauge coupling unification, which in this case, if exists, must be completely different from the
conventional MSSM one and also supersymmetry breaking 2. Also, there is more and more
convincing evidence for neutrino masses and mixings, and the conventional picture provides an
elegant explanation via the seesaw mechanism with a mass scale of the order of the 10'? —
10'5 GeV, surprisingly close to the usual GUT scale. The new scenario described above must
therefore provide at least a qualitative picture for neutrino masses and mixings. There are also
cosmological, astrophysical and accelerator physics tests* which puts strong constraints, too, on
the low-scale string scenario.
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3 Gauge coupling unification

At the same time as brane-world models with low-string scale as an alternative to supersymmetry
to the gauge hierarchy problem, models with gauge-coupling unification at low energy triggered
by Kaluza-Klein states were independently proposed % It was soon realized that low-scale
string models were the natural framework for this fast-driven unification. We separate here the
discussion into two steps: the field-theoretic picture originally proposed in® and then the Type
I string approach developped in 7 which brings some new, interesting features.

The essential ingredient in the field theory approach are the KK excitations of the Standard
Model gauge bosons and matter multiplets and their contribution to the energy evolution of the
physical gauge couplings. The KK excitations give power-law corrections to be interpreted at
low energy as threshold corrections. If the energy is higher than the KK compactification scale
1/ R, these corrections are really to be interpreted as a power-law accelerated evolution of gauge
couplings which, under some reasonable assumptions, can bring the couplings together ag low
energies.

Let us start, for reasons to be explained later on, with the MSSM in 4d and try to extend
it in 5d, where the fifth dimension is a circle of radius R/, with the notations introduced in the
previous section. Consider for concreteness gauge couplings of a D9 brane and consider ¢ large
compact dimensions R M >> 1 parallel to D9 and orthogonal to D5. Then 99 states will have
associated KK states, but 95 states do not. By evaluating the gauge couplings at one-loop, we
find

1 _ 1 be um —E/l/#gﬂ 5 _15__)
TG(p) | aa(Mz) 2r "Mz In  £03 oy
1 ba g b b, s
w3 " 3 My T o (kRN — SR~ 1) 3

The coefficients b, in (3) denote usual MSSM beta function coefficients and b, denote one-
loop beta-function coefficients of massive KK modes, to be computed in a specific model. The
important term contained in (3) is the power-like term (/J.R”)‘s >> 1, which takes over the
logarithmic terms in higher-dimensional regime and govern the eventual unification pattern.
Notice that compactifying on a circle a supersymmetric theory in 5d gives a 4d theory with at
least M = 2 supersymmetries. The simplest way to avoid this is to compactify on an orbifold.
We consider as example the case of a Z; orbifold which breaks supersymmetry down to N =
1. Interestingly enough, in the simplest extension of MSSM in higher dimensions, the gauge
couplings unify with a surprisingly good precision, for any compact radius 10° GeV < Rﬁl <108
GeV, at a energy scale roughly a factor of 20 above the compactification scale R;!. This fast
unification with KK states is another numerical miracle, similar to the MSSM unification and
up to now is the only hint pointing into the possible relevance of extra dimensions in our world.

In a superstring model, the one-loop threshold corrections have contributions from N = 4,
N =2 and NV = 1 sectors, respectively. The N = 4 sectors, containing the full compactification
lattice, have a 10d origin and give no contribution to threshold corrections. The V' = 2 sectors
contain the lattice of one compact torus. In these sectors only BPS KK states contribute to
threshold corrections and string oscillators decouple . Their contribution to the evolution of
gauge couplings does not stop therefore at the string scale My, but rather, as we will see, at
a heavy KK scale. The /' = 1 sectors have no KK excitations and give a moduli-independent
contribution to threshold-corrections, interpreted as the M = 1 contribution to gauge couplings,
running up to Mj.

The string one-loop threshold corrections coming from A = 2 sectors were computed in a
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generic model in 8. The complete one-loop gauge couplings reads

2 2 3
i” =1, S sarmy + Lpv=ny, Ai; _1 S (VG (U ImUs) . (4)
g2() ! : 4 i 4o
where for a rectangular torus of radii Ry, Ry, we have /G; = RiR, and Iml/ = R,/I2,. In
(4) b‘(j:/:n denote beta function coefficients from A = 2 sectors having KK excitations in the
compact torus T* and my are twisted closed string moduli.

Let us consider now the field-theory limit of the corrections given by an /' = 2 sector,
depending on a torus of radii Rj,2. In the limit R; -+ oo and Rj fixed, the corrections are
linearly divergent A; ~ Ri/R3. These power-law corrections can be used for the purpose of
lowering the unification scale in models with a low value of the string scale M;. Notice that
in all the above computations, # denoted an infrared energy scale, smaller than any KK mass
scales, Actually, for energies p >> Rl", relevant for the Ry — oo limit, it can be seen that the
previous factor Ry/R; really becomes R;u, reproducing therefore the field-theory derivation (3)
with 6 = 1. In this case, to get unification we need 103 GeV < R{" < 10%5 GeV.

On theother hand, in the limit Ry, R; -+ oo with R;/R; fixed, Ay ~ In(R,Rap?), instead of
the quadratic divergence (6 = 2 in (3)) expected in the field theory approach. The same result
holds in the Ry, Rz — 0 limit. This result can be understood by the following argument . After
T-duality, the two directions are very large and perpendicular tc the brane under consideration.
One-loop threshold’ corrections can also be understood as tree-level coupling of gauge fields to
closed sector fields, which have a bulk variation reproducing the threshold dependence on the
compact space. The bulk variation can be computed in a supergravity approximation, solving
classical field equations for closed fields coupled to various sources subject to global neutrality
(or global tadpole cancellation) in the compact space. As the Green function in two-dimensions
has a Jogarithmic behaviour, this explain the logarithmic term In (R R;:?). The same argumnent .
in one compact dimension explains also the linearly divergent term previously discussed.

4 Bulk physics: Neutrino masses with large extra dimensions

The most elegant mechanism for explaining the smallness of neutrino masses postulate the
existence of right-handed neutrinos with very large associated Ma jorana masses 101'!GeV < M <
10'5GeV. Via the seesaw mechanism very small neutrino masses, of the order of m, ~ v?/M,
are generated, where v ~ 246GeV is the vev of the Higgs fleld. This suggests the presence
of a large (intermediate or GUT) scale in the theory, presumbly related to new physics. On
the other hand, low-scale string models do not have such a large scale and superficially have
therefore problems to accomodate neutrino masses. It will be argued here that actually there
is a natural way to find very small neutrino masses. The scenario is based on the observation
that right-handed neutrinos can be put in the bulk space of a very large (mm size) compact
space 12, perpendicular to the brane where we live. We consider for simplicity the case of one
family of neutrinos. The model consists of our brane with the left-handed neutrino »;, and Higgs
field stuck on it and one bulk Dirac neutrino ¥ = (1/)1,1/;2)T in Weyl notations in one (again
for simplicity) compact perpendicular direction y. The compact direction is taken here to be
an orbifold S!/Z,, since as is well known circle compactifications are not phenomenologically
realistic. The Z, orbifold acts on the spinors as Z2¥(y) = +vs¥(—y), such that one of the
two-component Weyl spinors, e.g. ¥, will be even under the Z; action y — —y, while the other
spinor ¥, will be odd. If the left-handed neutrino vy, is restricted to a brane located at the
orbifold fixed point y = 0, then %, vanishes at this point and so vy couples only to ;. This
then results in a Lagrangian of the form

L = %/d":rdyM,{z/]i’yMi)Mw-—aMzﬁi’yM?/J}
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+ /d4z {D[,i&“DuuL + (Mwrrly=0 + h.c.)} . (5)

Here M, is the mass scale of the higher-dimensional fundamental theory (e.g., a reduced Type I
string scale) and the M spacetime index runs over all five dimensions: ™ = (z#,y). The first
line represents the kinetic-energy term for the 5d ¥ field and the second line the kinetic energy
of the 4d two-component neutrino field v, as well as the coupling between v, and ;. Note that
in 5d, a bare Dirac mass term for ¥ would not have been invariant under the action of the Z,
orbifold, since ¥¥ ~ t;1,+ h.c.

Next, we compactify the Lagrangian (5) down to 4d by expanding the 5d ¥ field in Kaluza-
Klein modes. Imposing the orbifold relations v;,2(—y) = £1,2(y) implies that our Kaluza-Klein
decomposition takes the form

i (z,y) \/_ Zw (")(z) cos(ny/R) , ¥2(z,y) ﬂ Z ¢§”)(z sin(ny/R) . (6)

However, a more general possibility emerges naturally from the Scherk-Schwarz compactifi-
cation. Let us consider performing a local rotation in (4, %2) space of the form

(0) =7(5) v =
with w a real (for the moment) number. The effect of the matrix R in (7) is to twist the
fermions after a 2w R rotation on y. Such twisted boundary conditions are allowed in field
and string theory if the higher-dimensional (5d in this case) theory has an appropriate U(1)
symmetry. The 4d Lagrangian of the component fields coming from the 5d Lagrangian reads
from (5) by replacing everywhere ¥; — 1/3|. For convenience, we shall define in the following the
linear combinations N = (w(") + 1[1(") /v2 and M) = (¢§“’ - z/);(,"))/\/i forall n > 0.

Inserting (7) into (5) and integrating over the compactified dimension then yields

1l

(cos(wy/R) —sin(wy/R)> (7)
sin(wy/R)  cos(wy/R) !

/d“z {'DLi&“DpuL + iz 0,0 + 3 (N(")z'a“aﬂN(") + MMigry, M("))

n=1

1 n
+ {§M° SO0 4 Z [<M0+ )N(")N(")+ (Mo— ﬁ) M) )]

+m [W,wi"’sz (N(")+M("))] + h.c.}} , (8)

n=1

where the Majorana mass is My = w/R. Here the first line gives the four-dimensional kinetic-
energy terms, while the second line gives the Kaluza-Klein and Majorana mass terms. The
third line of (8) describes the coupling between the 4d neutrino vz, and the 5d field ¥. Note
that in obtaining this Lagrangian, it is necessary to rescale the individual ¢§0), N and M)
Kaluza-Klein modes so that their 4d kinetic-energy terms are canonically normalized. This
then results in a suppression of the Dirac neutrino mass 7 by the factor (27rM,R)1/2. In
the third line, we have therefore simply defined the effective Dirac neutrino mass couplings
m = 1m/v2+/TM,R. Given the Lagrangian (8), we see that the Standard-Model neutrino vy,
will mix with the entire tower of Kaluza-Klein states of the higher-dimensional ¥ field. Indeed,
if we restrict our attention to the case of only one extra dimension for simplicity and define
NT = (vy, 1/)(0) NW MM N@ M@ ) we see that the mass terms in the Lagrangian (8)
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take the form (]/2)(NTMN+ h.c.), where the mass matrix is symmetric and takes the form

/70 m m m m m \
m My 0 0 0 0
m 0 My+1/R 0 0 0
M= |m 0 0 Mo-1/R 0 0 (9)
m 0 0 0 Mo+ 2/R 0
m 0 0 0 0 My -2/R
\ : : : : : )

Let us start for simplicity by disregarding the possible bare Majorana mass term, setting
Mo = 0. In this case, the characteristic polynomial which determines the eigenvalues A of the
mass matrix (9) can be exactly worked out and takes the form

AR = w(mR)? cot(rAR) . (10)

All the eigenvalues can be determined from this equation, as functions of the product mR. This
equation can be analyzed graphically . In the limit mR — 0 (corresponding to m -3 0),
the eigenvalues are k/R, k € Z, with a double eigenvalue at k = 0. Conversely, in the limit
mR — oo, the eigenvalues with k& > 0 smoothly shift to (k + 1/2)/R, while those with k¥ < 0
shift to (k- 1/2)/R and the double zero eigenvalue splits towards the values £1/(2R). In order
to derive general analytical expressions valid in the limit mR <« 1, we can solve (10) iteratively
by power-expanding the cotangent function. To order O(m®R?®), this gives the solutions

2 2 p2 4 p4
= - Tm2p2 = 1 K[y E m R
Ar = Em (l g™ R +.,.> , Aip = :i:R <1+ 2 = + ., (11)

where A4 arethe two eigenvalues at each Kaluza-Klein level £ and A 1 are the “light” eigenvalues
at k =0.

Let us now come to the more general case of My # 0. It turns out to be useful to define
ko = [MoR], € = Mo—"%, where [v]denotes the integer nearest to z. Thus, € is the smallest
diagonal entry in the mass matrix (9), corresponding to the excited Kaluza-Klein state M (k). In
other words, we have ¢ = My (modulo R™!), satisfying —1/(2R) < ¢ < 1/(2R). The remaining
diagonal entries in the mass matrix can then be expressed as € + k'/R where k' € Z+. Unlike
My, we sce that |¢| ~ O(R™1). Thus, the heavy Majorana mass scale Mo completely decouples
from the physics. Indeed, the value of My enters the results only through its determinations of
ko and the precise value of €. Therefore, interestingly enough, the presence of the infinite tower
of regularly-spaced Kaluza-Klein states ensures that only the value of My modulo R~! plays a
role. v ]

The easiest way to solve for the eigenvalues A4 in this case is to integrate out the Kaluza-
Klein modes. It turns out that there are two cases to consider, depending on the value of €. If
le] > mn (which can arise when mR <« 1), then all of the Kaluza-Klein modes are extremely
massive relative to m, and we can integrate them out to obtain an effective vy v, mass term of
size

lel > m

B
!

2 2 ko 1 1 )
e+ m* 3 (e+k’/R+c—k'/R

k=1
am?R cot (7 Re) . (12)

We shall discuss the special case € = 1/2R later on. Alternatively, if |¢| » m, then the lightest
Kaluza-Klein mode M9 should not. be integrated out, and we obtain an effective vp v mass
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Diagonalizing the final resulting 2 x 2 mass matrix between vz, and M (%) in the presence of this
niass term then yields the result

le] B m: Ar = %[(u—}—e) + \/(u—()2+4m2] . (13)

Thus, as Mg — 0 (or as My — n/R where n € Z), we see that ¢,u — 0, and we recover the
eigenvalues given in (11). We reiterate that our effective seesaw scale is Mg ~ O(R™1).

In string theory, however, there are additional topological constraints (coming from the
preservation of the form of the worldsheet supercurrent) that permit only discrete values of w.
In particular, in a compactification from five to four dimensions, this restriction limits us to
the only non-trivial possibility w = 1/2. Taking w = 1/2 then implies %;2(27R) = —%1,2(0),
which shows that lepton number is broken globally (although not locally) as the spinor is taken
around the compactified space. In order to obtain the corresponding neutrino mass, we note
that for ¢ = 1/2R, the assumption mR <« 1 translates into ¢ >> m, whereupon the result
(12) is valid. Thus, for € = 1/2R, we find the remarkable result that m, = 0! In obtaining
this result, one might worry that (12) is only approximate because it relies on the procedure of
integrating out the Kaluza-Klein states rather than a full diagonalization of the corresponding
mass matrix. However, it is straightforward to show that when ¢ = 1/2R, the characteristic
eigenvalue equation det(M — AI) = 0 has an exact trivial solution A = 0, corresponding to
an exactly massless neutrino. Thus, we conclude that m, = 0 for ¢ = 1/2R, regardless of the
relative sizes of m and R.

Note that the massless neutrino eigenstate is primarily composed of the neutrino gauge
eigenstate vy, (since mR < 1), as required phenomenologically. It should be stressed that this
combined neutrino mass eigenstate is exactly massless in the limit that the full, infinite tower
of Kaluza-Klein states participates in the mixing*. This result is valid regardless of the value of
neutrino Yukawa coupling m or of the scale R~! of the Kaluza-Klein states.

It is also interesting to notice that exactly the desired value of the Ma joranamass Mo = 1/2R
emerges naturally from a Scherk-Schwarz decomposition, for reasons that are topological and
hence do not require any fine-tuning.

The scenario(s) presented have also other interesting consequences. The neutrino eigenstate
can now oscillate into an infinite tower of right-handed KK neutrinos with a probability that
can be reliably estimated and experimentally tested. Moreover, even if in the last scenario
presented the physical neutrino is massless, its probability of oscillation into the tower of KK
states is nonvanishing. In particular, the neutrino mass difference Am ~ 1072eV/, which fit the
experimental data could well be explained by an oscillation of the massless neutrino into the
first KK state, for a radius R~! ~ 1072eV/, which is precisely in the mm region we are interested
in !

5 Conclusions

The last years changed a lot our current understanding of string physics and its possible implica-
tions for low energy physics. In particular, there is a real hope to experimentally test scenarios
with a low string scale, large compactification (TeV) radii and eventual (sub)millimeter grav-
itational dimensions. Some of the relevant issues (gauge coupling unification, supersymmetry
breaking, gauge hierarchy problem) were already analyzed at string level by using quasirealistic

?Actually, our field theory approach breaks down for KK masses of the order of the fundamental string scale
M;. If we cut our summation at kmar = RM,, the physical neutrino is not exactly massless anymore, but aquires
a small mass m, ~ m?/M,. For phenomenologically interesting values m ~ R™' ~ 10™2%eV and M, ~ TeV, this
mass is however negligibly small m. ~ 107'%eV.
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string models, other issues (flavor physics, for example) were mainly studied at field theory level
and more detailed string studies would be very useful.

It is however important to keep in mind that, despite the beautiful new ideas dealing with
large (or infinite) extra dimensions which appeared recently, the good old picture of the “desert”
between the weak scale and a large (of the order of 10'® GeV) unification scale is still a viable
possibility. Only new experimental results can provide a hint for the real value of the string
scale or, more generally, for the real picture of the physics beyond the Standard Model.
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