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i. Introduction 

The calculation technlques that come under the path integral 

approach have proven to be a powerful and effective tools In a 

quantum mechanical applications. Thirty years ago Stratonovlch [I] 

and Hubbard [2] lald the Dasls for a wldely used method of 

calculating the partition function Z( ~ ) of a many-particle system 

With two-body interactions, by expressing Z( ~ ) as a Gaussian 

average over partition functions for systems interacting with 

"tlme-dependent" external fluctuating classical fields. These 

fluctuating flelds are fictitious and therefore the Stratonovlch- 

HUbbard (S-H) functional integrals should be distinguished from 

Feynman path Integrals. Unfortunately, the structure of the 

Partition functlon in the S-H representation for realistic 

Hamlltonlans is very complicated: one must carry out averaging of 

the exponents of non-commuting time-dependent operators. A general 

and universal method is not known for elimination of the operators, 

in contrast to the Feynman path integral method. While "Gausslan 

functional average" methods for statistical [3], solid state [~,5] 

and nuclear [6,7] physics, are of considerable importance, but the 

aethods are at present incomplete. 

In thls paper we glve a new functional averaging procedure 

for a many-fermlon system. It is based on a Grassmanlan version of 

the S-H transformation (plus the usual one) and on a disentang- 

ling of the evolution operator utilizing properties of the 

relevant super-Weyl group SW(N), and fermlonlc coherent state 

methods for computation of the trace. 
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2. Fermlonlc Hamltonians and Double S-H Trick 
, , , , , ,  , , 

Consider the Hamlltonlan H for a system of fermlons interacting 

via a two-body potential V 

. : 61cicl ÷ ~ <i,~Ivlk. l> clc j eke I , 
i lJkl 

Where {Ck#}- are the usual fermlonlc operators; the Index k includes 

2/2mo - both momentum and spin indlces k R (k, a ); 8 k : ( q ~ ) 

Is the one-partlcle energy , molS the mass of the fermion and ~ - 

the chemical potential. 

Usually, the methods of determination of some values connected 

with such Hamiltonlans involve the llnearlzation scheme based on a 

mean-field approxlmatlon: 

AB _ A<B> + B<A> , 

where A and B are an appropriate quadratic in 6 i, Cj operators, 

and <A> , <B> are the expectation values In some ground state. The 

resulting approximate (mean-fleld) Hamiltonlan Hm_ f Is diagonallz- 

able because it becomes linear in the generators of any compact 

Lle algebra (Dynamlcal Algebra of the mean-fleld Hamlltonlan). More- 

over, the partition function and the many-fermlon Green functions of 

the reduced problem can be built up from the factors completely 

determined by a Dynamical Algebra [8]. A convenient approach 

suggestion for the calculation of the mean-fleld theory corrections 

Is the main purpose of thls paper. 

For simplicity we now restrict attention to a generic model 

wlth H an operator-valued function of the generators X ab(~ ) of a 

Lie algebra 

v ab a'b ab ( )Xab ( l ,  
k k , ~  

(sum over all repeated Indlces) 

Havlng appltcatlons In solid state physics In mind, we make 

explicit use of a quaslmomentum label k and write ab(k ) : 

fa(~ )fb(~ 1. The notation {flIpermits us to distinguish various 

quasimomenta ( ± k , k ~ Q , etc.) and, e.g. in the BCS case permits 
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a correspondence wlth familiar creatlon/annlhllation operators 
t ~ (£i(k). (2(k~),(cC+.~, c_{{)etc. A~ su(8~ model along these 

lines unifying, superconductivity and charge and spln density waves 

discussed elsewhere [9]. 

Here the operators Rab(k) obey the commutation relations 

[ Rab(~ ) . Ra.b(~")] ={)~'t (~iba. Rab(k'* )-~ ab. X a,b(k )) (2) 

of the Lle algebra gI(N,R), if a, b ...... : I, N (the number N 

depends upon the model considered) in formula (I), ~ (k) is the 

excitation energy of the fermlonlc oscillation of the kind "a" 

Which may differ in sign from the corresponding one-partlcle energy. 

The matrix element of the Interaction operator V can be 

expanded i n  a series 

2 a b a ' b "  a b  " " 
e 

Consider the simplest case of a separable potentlal (e m I) and 

represent the right slde of eqn. (3) as Vab(~ )Va,b.(~'). (This 

restriction is not required for the following, but in the general 

case the calculations are more unwieldy). 

Then, our Hamlltonlan has the structure 

M = ~m-f  * ~ ' '  (4) 

wh, re = 8 a C ) R aa 
k 

and V: ( Vab(~ )Xab(~ )) (~ Ga,b(~')R a*b (2")) ~ A B . 

k 

(Here we consider a case when the mean-fleld Hamlltonlan has a 

diagonal form in the Dynamical Algebra generators; we have to 

comblne our approach with a Bogollubov-llke dlagonallzatlon 

Procedure In more general cases). 

The Grand Partition Function for the Hamlltonlan of (d) can be 

wrltten 

0 
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where T d - the time ordering operator, and V( ~ ) m exp( ~Hm_f)V 

exp (- ~Hm_f) £s V in the interaction representation. 

We now follow a familiar procedure : In eqn. (5) divide the 

interval [ O, ~] into m equal segments as [0, ~ i]...[ ~ m-l' ~m: ~] 

l: ( ~ l/m); use the S-H transformation for each factor in the 

product. 

exp(- ( ~/m)V(¢1)) z exp(-(~/m) A( ¢ i) B( ~i )) = 

d Re z( ~i ) d Im z( ~i ) ( %m/~ )-1 exp(-(~/m) z( ~i ) z( ~i )) x 

(6) 

(valid to terms of order ( ~/m)2); then using (6) and recalling 

t h a t  o p e r a t o r s  l a b e l l e d  by  d i f f e r e n t  k c o m m u t e ,  we o b t a i n  

[Td m Z( ~ ):N llm Tr ~...~r~ d Re z( 
k m "~ i:I 

l)d Im z( ~l)(~m/~ ) -Ix 

x exp(-( ~/m)z(~i)~-~i)) exp( -( ~/m)Sa(~ ) Xaa(~ )) x 

x exp[( ~/m)(~( ~l)~ab(~ ) z( ~l)Vab(~ ))Xab(~, q;l)] ] . (7) 

Note in the product (7) the "time dependent" operators £ab(~, % 1 ) 
are some linear combinations of the "tlme-lndependent" operators 

£ab (~) which preserve the Lle algebraic structure (2) for the 

simple case of (4) £ab (~ '~ 1 ): Xab(k )exp 1 ( 8a (~)-8 b (k)) . 

Below, we shall omit the explicit k dependence where It can cause 

no confusion. Taking the formal limits m -"~, and interchanging 

integration and trace, we get 

z( ~ )= FI j" D,(~., . )  exp(-J" ~.( '~ ) . (  ~ ) d'C ) Tr [ e x p ( - ~ 8  £aa)" 
k 
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" g < Xac{.  # >aAuss 
k 

m 

Where D(z, z) = llm ~ d Re z( 9;1 ) d Im z(gl) (gm/~)-i 
m-~ I=i 

and ~Gls the character of the (reduclble) representation o£ Lie 

group G mGL(N, Rj, or of some particular subgroup depending on 

specific form of H. These methods are well known [3-7]. Unfortu- 

nately we cannot obtain the characters ~G explicitly since the z( 9; ) 

and z( % ) are general fluctuating functlons of g. Often a "static" 

Path approximation is used: z( ~ ) []const, which is equlvalent to 

mean-fleld theory. 

To overcome this limitation we return to eqn. (7) and 

introduce the Grassmanlan version of the S-H transformation. Namely, 

If Fl and F2 are antlcommuting operators {F I, F2 } = 0, then 

Here ~ and { * are Grassmanlan antlcommlting variables: 
* 

• = 0, {~, ~i,z} = {~ , ~i,2 } = o. 

To apply this transformation in our case, we use an assymmetrlc 

definition of operators F1 and F2 : 

Fl = ~ (~( 9;l)Vac - z( gl )vac) exp( 9;~a ) f+ a " 

In this case the antlcommutator {F I, F 2} " ( ~/m) and can De 

neglected in the limit m~. 

Consider the eqn. ( 7 )  and r e p r e s e n t  t h e  l a s t  e x p o n e n t ,  a s  a 

Product, and got each factor, use the Grassmanian S-H trick to obtain: 

Z( ~ ) = r~ l i r a  T r  e x p ( - ~ e a  a a ) d "" 

' ( ~m/# 1-I ~ d { ab ( 9; I )d ~ ab { 9; 1 1( ~/m)-lexp( -( ~ /m)~( 9; 1 )z( • 1 ) ) ' 
ab 

exp(_(~/m) ~ab( ~i~ ab( ~lllexp(-( ~/m)(£;~a( 9;l)-~'a (9;l)fa) (9) 
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( Under the time-orderlng operation T d all operators commute. ) 

In eqn. (9) we introduced notation 

~a ( ~i ) = exp( ~lSa ) ~ (Z(~l)Vab - z(~l)Vab) ~ab( ~ I) , 
b , 

C a ( ~ i )  : exp ( -~ lSa  ) ~ ~ba( ~ i  ) 
b 

Hence, In the l imi t  m-K~, Z( ~ ) has been represented as a double 
Gaussian average over the fluctations af the complex f ields z( ~ ), 
Z( q; ) and the Grassmanlan fields ~ ab ( ~ ) and ~ ab ( I[ ) : 

r 

Tr / exp(-~8 f+f ),~ D(Z.Z; ~ *  ~ )exp [ - f  (ZZ + Z( .~ )  = n 
L a a a ' k o] 

o o,o ] + ~ abt~ab ) dl; exp ~ ( f  + ~ - C "1; a a , (lO) 

ab a 0 

where 

D(Z,Z; ~ *, ~ ) : D(Z, Z) lim 
m-~ 

m 

n R d{ab( 
I : I  ab 

-I 

3. Super-Well Group and Novel,Path Integral Structure 

The Dyson-Exponent in the right side of (I0) satisfies the 

Schrodinger-llke equation 

d ~ dexp[,., ] = ~{ ~ T dexp[...] 
d~ 

(11) 

here the Hamiltonian ~ ( ~ ) is a linear combination of the opera- 

tors fa" fa with tlme-dependent Grassmanlan coefficients, (Thls 

Dyson-exponent violates hermlcity, but it is restored after 

integration over both Grassmanian and complex variables.) In order 

to present a factorized form of exponent in eqn.(ll) we seek a "dis- 

entangled" solution of eqn.(ll) as: 

el. a a"  

Observe that the set fa' fa (a=l ..... N) plus the unit operator 

SaB 



generate the super-Weyl Group SW(N) wnlch is the dynamical group of 

the intermediate Hanlltonlan ~ ) of eqn.(ll). Now substituting 

(12) into (ll) we get a system of equatlons for the coefflclents ~, 

a and ~a " These can be solved to glve 

~a( ~ ) =I Ca c ~ ')  d~"  . ~a(  ~ ,  = - f  Ca( ~ ", d ~" , 
0 0 

X(~) = ~ I I  e C ~ ' - ~ " ) ¢ a ( ~ ' l C a  C~'') d~ 'd~"  , 
00 

Where e ( ~ ) i s  the usual step-function with the boundary condition 

e(0) = o .  

In order to simplify the expression for Z( p ), let us intro- 

duce the system of fermlonlc coherent states (FCS) [iO] : 

• . " +  . . " +  O .  el,. ,eN > = expC-e ifi). exp(-eNfN ) ~ 0 ..... 

(here ~ 0 ..... O> is the ForM-vacuum vector) wlth the scalar product 

<e  1 . . . . .  eN [ e l  . . . . .  e N > = exp( e [ e  1 + . . .  + e N e  ). (13)  

Note that our definltlon of the FCS Is sllghtly different from 

Ref. lO . For the trace of any operator R(f+, f) we have : 

Tr ~ = I < e i  . . . . .  eN i  ~ le  x . . . . .  e N > e ~ p c e l e i . . . . ÷ e # N ) d e i d e i . . .  

deNd8 N (II) 

Moreover, as in the case of Glauber coherent states It Is easy to 

Prove that 

s I s N N .+. 

N exp( Safaf  a)l e l  . . . . .  eN > = I e e 1 . . . . .  e eN > 
a=l  

( i S ]  

Using the trace formula (14), computing the matrix element of the 

"evolutlon" operator between FCS, and taming into account the 

formulas (13) and (15), we can calculate the trace exactly, because 

the Integrals over the external Grassmanlan variables e e 
I, 1 ..... 

8N, * e N are Gausslan, and get the following path Integral representa- 
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tlon for the partition function: 

k 0 ab 

O0 

a O0 

where ZO( ~.~ ) = ~ [l + exp(-~Sa(k ))] is the partition function 

of the system of a nonlnteractlng fermlonlc oscillators; and na= 

[l+exp(- ~Sa(~))]-lls the average number of nonlnteractlng fermlons 

Of kind "a". Examining eqn.(16) we may first integrate over all 

the complex fields z( ~ ), z( • ). This integrals have the structure 

;D(z,z)exp[- £f z( ~ )~ (  %-% ")z( % ")d'~d ~; "+~(Jz+J~-)d'~ ]. 
O0 0 

-p 

where "the currents" J(k , • ) 

tlons of ~ ab and ~ ab 

o(k, ~)= ab [8(~-~ 
0 

:-G ~[ ( 
c ab 

0 

and J(k , '~ ) are blllnear combina- 

l)-na(k )]e ab ( ca ( ~l)d~ i, 

8a(k )( ~-~i ) . 
l)-na(~ )]e ~ ab ( ~ ) ~ ca ( ~l)d~ i" 

Calculating those integral, we obtain a path integral over Grassma- 

nlan variables only, namely: 

Z( ~ ) : D Zo( ~ ,~ );D( ~ *, ~ )exp[~ ab ( ~ )~ ( ~- ~ ")~ ab ( ~ ')d~d~ "] 
O0 

O0 

It is essential to stress that in the derivation of this formula we 

do not make any approximation, once we were glven H. Since the path 

integral (17) Is not Gaussian we cannot compute it exactly, but it 
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Is useful for perturbation treatments. For this purpose we can 

Utilize a power series expansion of the last exponent in (17) and, 

permute the-.path and "tlme " integrations, and thus obtain these 

integrals (for each term In series) using the generating function 

method. It is natural to formulate this calculations using diagram- 

matic techniques, and these calculations will De reported elsewhere. 

Alternatively consider integration over the Grassmanlan fields 

In the functional integral (16). Thls is a more difficult problem in 

the general case. The integral which involves only the Grassman 

field integrations we may write as 

O0 
where ~ is(in general) the N 2- dimensional column with the compo- 

components ~aband K is the N 2 x N 2 functional matrix whose matrix 

elements depends on zand z. It Is easy to show that the K has a 

structure ~:I +M, where I Is unity matrix, the matrix elements 

of which are equal ~-functlons ~ ( ~- ~ ') on the maln diagonal, and 

M is a matrix with zero trace. Calculation of the integral (18) 

leads us to the following formal relation 

Z( ~ )= N I  D(~,Z)Zo( ~ , ~ ) d e t ~ ( z . z ; k  )exp[-2 z ~ z d ~ d ~  "1 (19) 
O0 k 

Comparing expression (19) wlth eqn. (8), we observe that the deter- 

mlnant of the matrix ~ multiplied by Z 0 is equal to the character 

of the group G. In the simple cases (small number N) detK can be 

Computed exactly because the members of the power series det~ = 

n[(-l)n/n] trMn may vanish for n > nma x (some finite number). It 

Is convenient to use the partition function representation in the 

last form (19) for the derivation of the 1iN expansion for the 

study of the thermodynamic behavlour of the system In the llmlt N "~ 

(the saddle-polnt calculations). 

4. Slmple example and c oncluslons 

As a brief illustration o£ an applications of our 

consider a simple (but non-trlvlal) "Lipkln-llke" model 

method, 
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"2 
H = 2~ Jz- 4%Jx (20) 

where Jx' Jy= i [Jx ,  Jy] '  Jz generate SU(2) group, This model can 
describe a system of N types o£ fermlons occupying two different 

states [6]. If N >> 1 there are two significant regimes In parameter 

space: I) ~b <8/2N, and 2) ~>8/2N, as described in ref. [6]. The 

mean[fleld Hamiltonlan In I) is: Hm_ f -- -2eJ z, while in 2) Hm_ f = 

-2 8J z + 8~ <Jx>Jx. Here <Jx > ~ O is the order parameter which can 

be calculated via a variational procedure. To use our approach, 

introduce two types of Grassmanian variables ~ a' ~ a(a:l,2) and 

applying eqn.(17), we flnd In region I): 

z( 13 ) = [ 2 ( 1 , c h S p  ) l ~ [ ~ + ~ . 1 3 / ( t , c h S [ 3  ] , . . . ] N  (21) 

and for the full system energy E = -(d/d ~ ) In Z( ~ ), E = -Nk/2 - 

N8 2 ~/2 + O( ~ 2) ( ~ O; N -~). Thls coincides with the usual 

pertubatlve result. 

The application of our approach to computing the corrections 

to the mean-fleld theory for this model and for several model 

Hamiltonlans - BCS SU(2) model, the SU(8) unified superconductivity 

and density wave model, and the Anderson model wlll be discussed 

elsewhere [ll]. 

Summarizing: using the double S-H trick and disentangling 

method for the dynamical super-Weyl group SW(N) developed here we 

obtained a new factorized path integral form of the Grand Partition 

Function Z of many-fermlon systems which offers the possibility of 

alternate and systematic corrections to the mean-fleld theory. We 

believe such approach Is effective at least for certain model 

four-fermlon Hamiltonlans. 

This work was supported In part by a grant from IREX 

(to AVG) and PSC-BGE-FRAP-CUNY Fund. 
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