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1. Introduction

The calculation techniques that come under the path integral

approach have proven to be a powerful and effective tools iIn a

quantum mechanical applications. Thirty years ago Stratonovich [1]
and Hubbard {2] 1laid the basis for a widely used method of
Calculating the partition function I( B) of a many-particle system
With two-body interactions, by expressing Z(f) as a Gaussian
average over partition functions for systems interacting with
"time~dependent“ external fluctuating classical £fields, These
fIUCtuating fields are fictitious and therefore the Stratonovich-
Hubbarg (S-H) functional integrals should be distinguished from
Feynman path integrals. Unfortunately, the structure of the
Partition function in the S-H representation for realistic
Hamiltonians is very complicated: one must carry out averaging of
the exponents of non-commuting time-dependent operators. A general
and universal method is not known for elimination of the operators,
in contrast to the Feynman path integral method. While “Gaussian
functional average" methods for statistical [3], solid state ([4,5]
and nuclear [6,7] physics, are of considerable importance, but the
Eethods are at present incomplete.

In this paper we give a new functional averaging procedure
for a many-fermion system. It is based oh a Grassmanlan wversion of
the S-H transformation (plus the usual one) and on a disentang-
11ng of the evolution operator utilizing properties of the
Felevant super-Weyl group SW{(N}, and fermionic coherent state
hethods for computation of the trace.
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2. Fermionic Hamltonians and Double S-H Trick

Consider the Hamiltonian H for a system of fermions interacting
via a two-body potential V

.y 1 nete o
- = < ’ \' » ’
H 2 €.cc v 3 E .y v]x CiCy €0,
i i3kl
Where {Ck#} are the usual fermionic operators; the index k includes
- -
both momentum and spin indlces k B (x, O sk = { K 2/2mo-p,)

is the one-~particle energy ., mois the mass of the fermion and M -
the chemical potential.

Usually, the methods of determination of some values connected
with such Hamiltonians involve the linearization scheme based on a
mean-fleld approximation:

AB . A<B> + B<A> ,
where A and é are an appropriate quadratic in éi' &; operators,
and <A> , <B> are the expectation values in some ground state. The
resulting approximate (mean-field) Hamiltonian Hm—f is diagonaliz-
able because it becomes linear in the generators of any compact
Lie algebra (Dynamical Algebra of the mean-field Hamiltonian). More-
over, the partition function and the many-fermion Green functions of
the reduced problem can be built up £from the factors completely
determined by a Dynamical Algebra [8]. A convenient approach
suggestion for the calculation of the mean-field theory corrections
is the main purpose of this paper.

For simplicity we now restrict attention to a generic model
with H an operator-valued function of the generators iab({? ) of a
Lie algebra
n=)e (KHK_(K) 3 Z-’Vab TS SRTUEE SRS TS

k k,k’

{sum over all repeated indices)

Having applications in solid state physics 1in mind, we make

e o] -
explicit use of a quasimomentum label ¥ and write X ab(k 1=
e > n = R
E;(k )fb(k }. The notation {fg}permits us to distinguish wvarious

o - -y
quasimomenta (*k , ktQ , etc.) and, e.g. in the BCS case permits
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& correspondence with familiar creation/annihilation operators
(gl{g’)’ %2{}?})5(&; , {;:‘};W Jete. An SU(8) model along these
lines unifying, superconductivity and charge and spin density waves
discussed elsewhere [9].

Here the operators )?ab(}:) cbey the commutation relations
A -y A -5 ] - S .
[ X k) X k) =80 (8 X k) =8 X e (2)
b, .....= 1, N {the number N

.'
€(k ) is the
the king "a“

of the Lie algebra gi(N,R), if a,
depends upon the model considered) in formula (1),

excitation energy of the fermionic oscillation of
which may differ in sign from the corresponding one-particle energy.

The matrix element of the interaction operator V can be
eéxpanded in a serles
1 - - (e}, *, o (e) ™
= . - v . k. 3
2Vaba'b'(k'k) Zav () Yarp! ! *
Consider the simplest case of a separable potentlal (e ®1) and

o -y
represent the right side of eqn. (3) as v, (k )v . .(k"). (This
restriction is not required for the following, but 1in the general

case the calculations are more unwieldy).
Then, our Hamiltonian has the structure

v (4)

m-£
where H = € (k ))? (k)
£ ., aa
: -5
g - & -¥ - - & -
and v= () v (x )X _(k)) () v . (k)X _ . (k")) B AB.
2}? ab ab ): a’'b a’'b

{Here we consider a case when the mean-field Hamiltonlan has a

diagonal form in the Dynamical Algebra dgenerators; we have to
Combine our approach with a Bogoliubov-like diagonalization
Procedure in more general cases).
The Grand Partition Function for the Hamiltonian of (4) can be
written
]

Z(B) = 1c exp(—ﬁé) = Tr {exp(—ﬁﬁm_f) Ty exp{-g V(T )aT)
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where Tq - the time ordering operator, and €I( T) 2 exp( "L’ﬁm
exp (- 'CHm_f) is V in the interaction representation.

We now follow a familiar procedure : in egn. (5} divide the
interval [ O, ﬂ] into m equal segments as [0, ﬁl]... [ﬁm_l. 51{1:5}
ﬁ1= (Pi/m); use the S-H transformation for each factor iIn the
product.

-

2l

exp(- (B/mV(T,)) = exp(~(B/m) ACT ) B(T,)) =
J anre z(T;) a1Imz(T,) (Tn/ B exp(-( B /m) 2T ) 2(T)))
x exp[ SB/m) 2T AT« (B/m) BT éml)] (6)

{valid to terms of order ( ﬁ/m)z); then using {6) and recalling
that operators labelled by different l? commute, we obtain

m

. -1

Z(ﬁ):p lim Tr[ de'...fl"l dRe z(T,)d Imz(T N Wn/f) " x
k m=® 1=1

x exp(~( B/m)z( T DZM 1)) expl -(B/m)€ (K ) X (K )) *

x eXp[( B/mIE(T DV (K ) - 20T v (K )) X, “?"“'1’3 ] (1)

¢ -y

Notc in the product (/) the "tine depondent” operators xab(k . b 1)
are some linear combinations of the "tlme-independent" operators
ab()4: ) which preserve the Lie algebraic structure (2) for the

simple case of (4) (k 'L' (k }exp['l? ( € (k - € (k ))]
Below, we shall omit the explicit 1? dependence where 1t can cause

no confusion., Taking the formal limits m =0, and interchanging
integration and trace, we get

2(B)=[1 J Dz, z) exp(-f 2(T)z(T) afT) Tr[exp( ﬁeaxaa)
-y
K

T4 exp[ -f(z( i )vab - z( % )vab)exp( T 83—8b)) xab]] =
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- G, -
r], <X B Peagss (8)
K

m -
Where D(z, z) = 1im [] d Re z(T,) d Im 2( ) (Tm/P) o

m=0 1=l

and XGIS the character of the (reducible) representation of Lie
group G =GL(N,R), or of some particular subgroup depending on
Specific form of H. These methods are well known [3-7). Unfortu-
Nately we cannot obtain the characters xG explicitly since the z(T)
and z( T ) are general fluctuating functions of T. Often a ‘“static"
Path approximation 1s used: z{ T ) =const, which Is equivalent to
mean-field theory.

To overcome this
introduce the Grassmanian version of the $-H transformation. Namely,

1 FJ, and E‘2 are anticommuting operators {E’l, Fz} = 0, then

limitation we return to eqn. (7} and

.. . N . . -
oaxp(b‘l F,) :Jr af at exp(-E§ +F1€ +§ £,

Here f am:?far are Grassmanian anticommiting variables:

* _ 2 - *2 _ » - * hd
t€. 8 =0 E*=f =0 t€.F p=4f . F 3=0
To apply this transformation in our case, WwWe use an assymmetric
definition of operators F, and F, :

N, +

1 14 B/m (z¢( 'cl)anc - 20T ) v, ) exp € ) £, .

N

2 k4 B/m exp(-'ﬂeb) fb .

In this case the anticommutator {E‘l, F,

Neglected in the timit m=®.
Consider the eqn. (7) and represent the last exponent, as a

Product, and for each factor,use the Grassmanian S-H trick to obtalin:

3
3]

]
it

} © { P/m) and can be

WPy=0 1im Tr exp{~68a;€; :;ari‘df...f[d Rez("tl)d Imz("El)x
}? m 0
*(%m/ﬁ;"lnde*b(f;lmeab(m‘l)(ﬁ/m)‘lexp(-(ﬁ/m)i('cl)z('cl))x
ap 2

* - ~ -
Sxp(~(P/m) € (T K (T Nexp(~(Brmice { (T - 'cl)fa))]] (9)
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{ Under the time-ordering operation Td all operators commute, )
In egn. {(9) we introduced notation

L0 = exp(T € ) 3 (2T vy - 20T 00,008 :
b *

(T =exp(-T, 8,0 3 £ (T,

b
Hence, in the limit m=®, Z(ﬂ ) has been represented as a double
Gaussian average over the fluctatlions af the complex fields z( T),
z{ T) and the Grassmanian fields E;b( T ) and Eab( T :

g
2Py =T mc| exp(-Be ¢ ) f p(z,z: €7, €) exp[~f (zz +
-y

K g 0
. ) . ..
*Esabgab’dT] Ta exp[zf (faca‘caf‘a)dx]}, (10)
ao

ab

ptz.z: £, €) = D(Z, z) 1im ['l Ma€ (Taf (T (B /m)” L.
m=® 1zl ab

3, Super-Wevl Group and Novel Path Inteqgral Structure

The Dyson-Exponent in the right side of (10} satisfies the
Schrodinger-like equation

-9 IO B H(D T gS*¥pPl.. .1 (11)
ant

here the Hamiltonian H(T) is a linear combination of the opera-

-

tors £;, Ea with time-~dependent Grassmanian coefficients. (This
Dyson-exponent violates hermicity, but it 1is restored after
integration over both Grassmanian and complex variables,) In order
to present a factorized form of exponent in eqn.(1ll) we seek a "dis-

entangled" solution of egn.{(1ll) as:

. _ - . - .
Ty exp[...] zexp( A (T )1) [;I exp(£ N (7)) D.e"p‘ﬂa" TrE_ L) (12)

» - -

Observe that the set f;, fa(azl,...,N) plus the unit operator I
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generate the super-Weyl Group SW(N) which is the dynamical group of

the intermcdiatc Hamiltonian 7565) of eqn.{11), Now substituting
(12) into (11) we get a system of equations for the coefficients A,

na and M, . These can be solved to glve

T . T
Mty =L (T )aT", et =-fLl(trat
0 0

T ] )
M'H:Z_U Bt =Tl (Tl (T aT at
00

Where 9( T ) is the usual step-function with the boundary condition
9¢0) = 0.

In order to simplify the expression for Z( ﬁ), let us intro-
duce the system of fermionic coherent states (FCS) ([10] :

e S+
= - - 0,...,0°
1o By = expl 8 £]). . expl GNEN)I o

| ©

{here I 0,...,0> is the Fock-vacuum vector) with the scalar product

- - * . * -
0 Ier.“ﬁu>::am(3161+.“ + 8,8 a3y

<Bl,..., N

Note that our definition of the FCS 1s slightly different from
Ref,10 . For the trace of any operator R(£*, £) we have :

3 . . .

8,1 RIBl“.”GN>emﬂ9191+”.+9§N)d61061”,
*

deNGGN (14)

Tr l;t:f<61““'

Moreover, as in the case of Glauber coherent states It is easy to

Prove that
N s s
o - ].e Ne
= e reees € > .
a':'l exp( Safafa)l el"”'eN> I 1 N (15)
Using the trace formula (14}, computing the matrix element of the
“evolution” operator between FCS, and taking into account the

formulas {13) and {15), we can calculate the trace exactly, because
*

the integrals over the external Grassmanian variables alf 8......

*
N’ GN are (Gaussian, and get the following path integral representa-
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tion for the partition function:

P
2(B) =Mzt B.x ) [ D(z.z: £, &) exp[—-j' (§z+2€;éab> dT]x
k ab

¢
pp .
x exp[z_ff (8(T-T)-n T (THL (T at a'r], (16)
a 00

- d
where 2 .( B.xk ) =[] (L + exp(-Pe 5(k 1)) 1s the partition function
of the system of a noninteracting fermionic oscillators; and n=

{1+expt—ﬁsa(£’)}}_lis the average number of noninteracting fermions

of kind "a". Examining eqn.{(16) we may first Integrate over all
the complex fields z(T), z{T). This integrals have the structure
pp B
Jo(z, z)expl- [J 2(T)18(T-T )z(T )aTa® '« [(Iz+3z)aT1,
00 0

- R
where “the currents” J(k ., %) and J{(k , T ) are bilinear comblna-
*
tions of ‘Eab and &ab

£ (K H(T-T.)

" — -+ a 1 *
K, T)—;Zabf[e('c"ml)_na(k e ¢ TIE (T AT
Q
B -
) € (K )(T-T,)
he d ~ - . _ -y a 1 *
(K, W)-;Zzabf[ﬂ(w T - (K e L TIE (T aT .

0
Calculating those integral, we obtain a path integral over Grassma-
nian variables only, namely:

. B8 .
2By =Mz B, o0&, ErexorfJE (TH8(T-THE (T )aTaT']
¢ Bp 00 * i

expl 3K, TIB(T-T HHK . T ) dT dT "] (17)
00

It 1s essential to stress that in the derivation of this formula we
do not make any approximation, once we were given H. Since the path
integral (17) is not Gaussian we cannot compute it exactly, but it
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is useful for perturbation treatments. For this purpose we can
utilize a power series expansion of the last exponent in (17) and,
permute the..path and "time " integrations, and thus obtain these
integrals (for each term in series) using the generating function
method. It is natural to formulate this calculations using diagram-
matic techniques, and these calculations will be reported elsewhere,

Alternatively consider integration over the Grassmanlan fields

in the functional integral (16). This Is a more difficult problenm in

the general case. The integral which involves only the Grassman

fileld integrations we may write as

. B . o = ,
Joc 8" Erexpi-Jf (E (T K(T,.THE(T)at® a1 (18)
- 00

Nz— dimensional column with the compo-
components Eaband K is the Nzx N2 functional matrix whose matrix

elements depends on zand z. It is easy to show that the K nhas a

structure K=I+M, where I is unity matrix, the matrix elements
of which are equal O -functions 83(7T-7") on the main diagonal, and
M is a matrix with zero trace. Calculation of the integral (18)
leads us to the following formal relation

where £ is(in general) the

2 f)= nf D(E,z}zo( ﬁ,f}detx(z.é:; )exp{—ffﬁés.zd'!:d'i g (19)
'E" 00

Comparing expression
minant of the matrix K multiplied by Z,
of the group G. In the simple cases {small number N)
computed exactly because the members of the power series
gn[(-l)n/n} trMn may vanish for n > Npax {some finite number). It

is convenient to use the partition function representation in the
last form {19} for the derivation of the 1/N expansion £or the
study of the thermodynamic behaviour of the system in the limit N-®

{19) with egn. (8), we observe that the deter-
is equal to the character
detK can be
detK =

(the saddle-point calculations}).

4, Simple example and conclusions

As a brief illustration of an applications of our method,

consider a simple (but non-trivial) “Lipkin-like" model
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oo}
1l

. 2
2€ J,- M-Jx (20)

where Jx' Jy: 1[3x, &y]’ 32 generate SU(2) group.This model can
describe a system of N types of fermions occupying two different
states [6]. If N >> 1 there are two significant regimes in parameter
space: 1) A <&/2N, ana 2) ;\'>€/2N, as described in ref. [6]. The
mean-field Hamiltonian in 1) is: H . = -2&€J,, while in 2) H;_f =

-28Jz + 8A <Jx>Jx‘ Here <Jx> #0 is the order parameter which can
be calculated vla a variational procedure. To use our approach,

*
introduce two types of Grassmanian varilables E Ea(a:l,z) and

al
applying eqn.(17), we find in region 1):

2(B) = (2(1+cn € )1N[1+AB /(1+cnEB) + ...] (21)

and for the full system energy E = —(d/dﬁ) in Z¢( ﬂ ). E = —N?\./z -
Nezﬁ/z + 0Of ﬂz) (f*0; N *®). This coincides with the usual
pertubative result.

The application of our approach to computing the cortections
to the mean-field theory for this model and for several model
Hamiltonians - BCS SU(2) model, the SU(8) unified superconductivity
and density wave model, and the Anderson model will be discussed
elsewhere [1l1].

Summarizing: using the double S-H trick and disentangling
method for the dynamical super-Weyl group SW(N)} developed here we
obtained a new factorized path integral form of the Grand Partition
Function 2 of many-fermion systems which offers the possibility of
alternate and systematic corrections to the mean-field theory. We
believe such approach 1is effective at 1least for certain model
four-fermion Hamilltonians.

This work was supported in part by a grant from IREX Board
(toe AVG) and PSC-BGE-FRAP-CUNY Fund.
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