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1 Introduction
In popular physics books one often �nds the statement that the basic physical theories,
which describe our universe, are known. These are the theories of gravitation, of the
electroweak and of the strong interaction. This might give a wrong impression, since it
is true that this theories are known, but for example quantum chromodynamics (QCD),
the theory of the strong force and subject of this thesis, is far from being solved. Indeed,
this theory is older than 30 years, but it still puzzles physicists. The theory of the
electromagnetic interaction, quantum electrodynamics (QED), is quite well understood.
Like QCD it is a gauge theory. The di�erence lies in the non-Abelian nature of QCD,
which does not only allow interaction between quarks and gluons, the elementary particles
of it, but also among gluons themselves. This complicates the theory enough to occupy
physicists for decades now.

To understand QCD lots of frameworks have been devised, which work more or less well.
A successful approach is perturbation theory which can only access the high energy region
of QCD. At lower energies, i.e. large distances, phenomena like con�nement and chiral
symmetry breaking occur. For these scales perturbation theory is not valid, because it
employs an expansion in the coupling, which is not possible here as the strength of the
interaction becomes too large. Therefore a need arises for other possibilities to describe the
phenomenology of QCD such as con�nement, which means the fact that nature does not
allow single quarks or gluons in physical states. They are only observed in objects called
hadrons, which have the property to be colorless in contrast to quarks and gluons. In
fact the name quantum chromodynamics derives from attributing the �ctitious property
of color to quarks and gluons.

Another method are Monte-Carlo simulations on a discretized space-time. They su�er
from limitations due to �nite size e�ects, but they provide an important possibility for
comparison, because they include all non-perturbative e�ects of Yang-Mills theory, which
can be extracted in the in�nite volume limit. A complementary approach are Dyson-
Schwinger equations (DSEs), which are used in this thesis. They have the advantage to
be valid for all energies. Unfortunately their structure is very intricate. Nevertheless they
have become an indispensable tool during the last decade.

Con�nement has long been known to be a basic property of QCD. However, a satisfying
explanation is still lacking. Current e�orts try to describe con�nement for pure gluody-
namics, or also known as Yang-Mills sector of QCD. Thereby the quarks are considered
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1 Introduction

static and only the dynamics of the gluons is investigated. Depending on the chosen gauge
also another type of particles occurs, called ghosts. These are no physical particles in the
proper sense: They appear in calculations but never in results for observable quantities.
Including quarks is the next step to complete the picture of con�nement. Before doing
that veri�cations of the scenario for the Yang-Mills sector are indispensable, i.e. di�er-
ent approaches like DSEs, renormalization group or Monte-Carlo simulations should be
compared.
Neglecting quarks simpli�es the calculations with Dyson-Schwinger equations and starting
from the solutions for the propagators of ghosts and gluons [1] further investigations
were made in the infrared region, i.e. at low momenta below a few hundred MeV. The
systematic treatment of vertex functions was pioneered by Alkofer, Fischer and Llanes-
Estrada [2], who showed that a power counting procedure is enough to determine the
behavior of vertices in the infrared. Their results supported the assumption that the ghosts
play a crucial role for the con�nement of gluons. However, a comparison to Monte-Carlo
simulations is not possible yet: For the propagators this works out comparatively well,
not at last because the behavior as predicted by infrared Dyson-Schwinger investigations
already starts at a few hundred MeV, but for example for the three-gluon vertex data
is still inconclusive. For the time being calculations on the lattice are done in lower
dimensions, e.g. [3], and a direct comparison with the results of Alkofer et al. is not
possible, since they were calculated in four dimensions.
The main object of this thesis is to check if the qualitative behavior of vertex functions
according to [2] is also valid in two and three dimensions. If so, Monte-Carlo simulations
for two and three dimensions can provide relevant information about Yang-Mills theory
in four dimensions. As the infrared region will �rst be accessed on such lower dimensional
lattices, a comparison to qualitative statements in these dimensions is necessary. In
addition to the power counting scheme also a complete analytic calculation of the ghost
triangle is done, which is the dominant part in the infrared in the �rst order of the skeleton
expansion of the three-gluon vertex.
The outline of this thesis is as follows: Starting in Chapter 2, I will summarize shortly the
basic physics which is necessary for the subsequent chapters. Afterwards mathematical
tools such as hypergeometric functions and the Negative Dimensions Integration Method
are introduced. The results are presented in Chapter 4, which is divided in two sections:
In the �rst one I derive the infrared exponents of vertex functions in d dimensions via
a naive power counting procedure, which is supported by analytic results for the three-
gluon vertex in the second section. A detailed derivation of the formula for the three-
point integral, which is employed for the analytic calculations, is included there. The
last chapter consists of the conclusions. Details on conventions and notations are written
down in Appendix A, where also a useful collection of formulas for Gamma functions
and Pochhammer symbols can be found. The analytic continuation necessary for the
three-point integral in Euclidean space-time is derived in Appendix B.
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2 Underlying Physical Concepts
In this chapter I explain the basic physics forming the foundations of this thesis, which are
the infrared region of QCD and the Dyson-Schwinger approach to it. Special attention is
given to con�nement and to the behavior of propagators and vertices at low momenta. In
the Dyson-Schwinger part I sketch the derivation of Dyson-Schwinger equations and how
they can be simpli�ed via a skeleton expansion.

For conventions and notations see Appendix A.

2.1 The Infrared Region of QCD

The high-energy sector of QCD is accessible via perturbation theory which employs a
special property of QCD called asymptotic freedom and allows for an expansion in the
coupling. At low momenta, i.e. below a few hundred MeV, this approach does not work
any longer and phenomena as con�nement and chiral symmetry breaking need other
methods to be dealt with.

Such alternative non-perturbative approaches are the exact renormalization group, Dyson-
Schwinger equations or lattice Monte-Carlo simulations. The latter discretize the contin-
uum and have the advantage that - at least in principle - all quantum e�ects of the theory
are included. However, due to �nite computer power lattices are restricted in size. Thus
calculations are only possible for certain regions of momenta and �nite size e�ects occur.
One way out are lattices in lower dimensions which have been proven especially useful in
the infrared. In regions that are accessible to lattice Monte-Carlo simulations they provide
a good possibility for comparison with other methods. In this work the Dyson-Schwinger
approach will be employed whose advantages and problems are described in section 2.2.

2.1.1 Con�nement

The expression con�nement means the fact, that nature does not allow colored particles,
i.e. quarks and gluons, to be observed directly. Evidence that particles like protons and
neutrons consist of point-like particles is provided by deep inelastic scattering. Con�ne-
ment is still not understood and has been object of investigations for decades now. Many
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2 Underlying Physical Concepts

believe that the reason for con�nement lies in pure gluodynamics, but it was long not clear
if one has "con�ning" or "con�ned" gluons [4]. The former means an infrared divergent
gluon propagator and the latter an infrared �nite or even vanishing one. Whereas earlier
an infrared slavery scenario, i.e. con�ning gluons, was favored, there has been a change
of mind nowadays and there are many hints for an infrared vanishing gluon propagator.
Especially studies of Dyson-Schwinger equations and the renormalization group caused
the change in that direction. For more details see refs. [4, 5] and references therein.

One scenario that describes con�nement is the so-called Gribov-Zwanziger scenario. Be-
fore explaining what it is, I will shortly summarize facts about the Gribov horizon. In the
naive de�nition of the generating functional of a gauge �eld theory one integrates over
all gauge �eld con�gurations. Thereby, con�gurations which describe the same physical
states are encountered due to the gauge symmetry of the theory. These states, that are
connected via gauge transformations, form a so-called gauge orbit [A]. Thus, the integral
should only take into account distinct gauge �eld con�gurations, i.e. every gauge orbit
should only occur once in the integration process. One can do so with the Faddeev-Popov
method (or so one thought) [6, 7, 8] which �xes the gauge via a gauge-�xing condition, e.g.
∂µAµ = 0 for linear covariant gauges. In the space of �eld con�gurations this condition
de�nes a hyperplane. A sketch of con�guration space is depicted in �g. 2.1. The gauge-
�xing process leads to the appearance of ghosts (in most gauges) via the Faddeev-Popov
determinant.

[A]

∂µAµ = 0

Gribov Horizon Ω

Al

Atr

Atr

FMR Λ

Figure 2.1: A sketch of the space of all gauge con�gurations. ∂µAµ = 0 is the gauge
condition for linear covariant gauges and de�nes a hyperplane, Ω is the (�rst)
Gribov horizon and Λ the fundamental modular region (FMR). [A] is a gauge
orbit that intersects the total hyperplane several times, but the FMR only
once.

Gribov, however, showed in 1978 [9], that this method does not restrict the integration to
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2.1 The Infrared Region of QCD

only one representative of a gauge orbit and a gauge orbit can intersect the hyperplane
de�ned by the gauge-�xing condition several times. These con�gurations are called Gribov
copies. If one wants to restrict the integration to only one representative per gauge orbit,
only the gauge �eld con�gurations that lie inside the (�rst) Gribov horizon, often denoted
by Ω, should be considered. The Gribov horizon is de�ned such, that it contains only
those con�gurations along the gauge orbit that are locally minimal with respect to gauge
transformations. Unfortunately this does not su�ce either, as van Baal explained with
More (Thoughts on) Gribov Copies [10]. For really having only one single copy of a gauge
one needs the fundamental modular region (FMR), which is the region that contains only
the global minima of the gauge orbits.

In perturbation theory one has the fortunate situation that one does not really have to
care about the Gribov horizon or the FMR, because the origin of the space of gauge �eld
con�gurations lies within them. And as perturbation theory is an expansion around the
origin (and therefore only valid in its "neighborhood") it has no problems with gauge
copies.

The Gribov-Zwanziger scenario can be summarized by the following two statements [5]:

• The dressed gluon propagator vanishes in the infrared [11].
• The dressed ghost propagator is more singular in the infrared than a simple pole

[12]. This is a consequence of the Gribov horizon.

The idea behind this is that gauge �eld con�gurations near the Gribov horizon, or more
precisely near the common boundary of the Gribov horizon and the FMR, ∂Ω ∩ ∂Λ, are
responsible for the infrared behavior of Yang-Mills theory.

Another con�nement scenario, the Kugo-Ojima scenario [13], has the same property for
the ghost propagator and a less strict one for the gluon propagator: There it only has to
be less singular than a simple pole.

For more details on the propagators see section 2.1.3.

2.1.2 The Ghost-Gluon Vertex

An important issue is the fact that in Landau gauge the ghost-gluon vertex remains
bare for vanishing incoming momentum and stays bare in the ultraviolet due to its non-
renormalization [14, 15], i.e. its renormalization constant Z̃1 is �nite and can even be
chosen as one. This justi�es the use of a bare vertex instead of a dressed one and simpli�es
DSEs containing a dressed ghost-gluon vertex immensely. It is used in both numerical
solutions of the coupled system of integral equations of gluon and ghost DSEs [1] and in
analytic investigations as done in this work. I will shortly outline the idea behind the
non-renormalization of the ghost-gluon vertex.
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2 Underlying Physical Concepts

= +
q

p

q-p

Figure 2.2: The ghost-gluon vertex DSE.

The essential ingredient is the transversality of the gluon propagator in Landau gauge.
The transversality can directly be seen from looking at the contraction of the gluon
propagator, eq. (A.1), with a momentum vector:

kµDµν(k) = kµ
Z(k)

k2

[
δµν − kµkν

k2

]
= 0. (2.1)

From this follows (q − p)µDµν(q − p) = 0 and therefore qµDµν(q − p) = pµDµν(q − p). So
when the momentum p goes to zero, qµDµν(q − p) vanishes . Now we have a look at the
ghost-gluon DSE which is depicted in �g. 2.2. In the second Feynman diagram on the
right hand side we have a loop momentum q and an external momentum p. The bare
ghost-gluon vertex is proportional to q, as q is its outgoing ghost momentum, and the
gluon propagator gives the contribution Dµν(q−p). So we have the expression from above,
qµDµν(q − p), which is 0 for vanishing p. As a consequence the whole second diagram
vanishes for zero external momentum. If in addition the renormalization constant of the
ghost-gluon vertex is de�ned at µ2 = 0,

Gabc
µ (q, p)|k2=q2=p2=0 = Z̃1G

(bare)abc
µ (q, p), (2.2)

the renormalization constant Z̃1 is 1.

The bare ghost-gluon vertex is supported also by DSE investigations [16] and lattice
simulations [17, 18]. Lattice results exist also for three [3] and two dimensions. With
both methods one sees that only in the mid-momentum region there are minor deviations
from the bare vertex.

2.1.3 Gluon and Ghost Propagator

As mentioned above there exist two possibilities for the infrared behavior of gluons: in-
frared enhanced (con�ning) gluons and infrared �nite or vanishing (con�ned) gluons. The

10



2.1 The Infrared Region of QCD

former were long favored, but nowadays evidence grows that the gluon propagator is in-
deed vanishing in the infrared. From the viewpoint of DSEs this development might seem
better understandable when one compares earlier and recent DSE studies.

When trying to solve the coupled system of equations of the in�nite DSE tower one natu-
rally has to resort to truncations and approximations. An early suggestion for calculating
the gluon propagator came from Mandelstam [19] who proposed to neglect ghosts. This
was justi�ed by small numerical ghost contributions in perturbation theory. The four-
gluon vertex was also neglected, which is understandable from the viewpoint of perturba-
tion theory as it only occurs at two-loop order. He furthermore alleviated the calculation
by an approximation for the dressed three-gluon vertex such that it compensated together
with one gluon dressing function to a bare vertex. What was left is the DSE depicted in
�g. 2.3 which only contains bare quantities and the dressed gluon propagator. Mandel-
stam himself recognized that a solution to this equation required the gluon propagator to
be divergent for vanishing momenta. The Mandelstam approximation was investigated
subsequently for example by Brown and Pennington [20], who also reasoned for negli-
gible ghosts with the small numerical contributions of the ghost loop at one-loop order
in perturbation theory. They even referred to another work [21], where the bare ghost
propagator had been taken into account but only small di�erences had occured. A more
recent calculation can be found in [22] which a�rmed the earlier results: The Mandelstam
approximation yields a divergent gluon in the infrared and also the running coupling is
singular for low momenta.

-1 = -1 +

Figure 2.3: The gluon DSE in the Mandelstam approximation.

The situation changed with the work by von Smekal, Hauck and Alkofer [1]. They solved
the coupled DSEs for gluon and ghost propagator in Landau gauge. Of course, they also
had to make approximations, namely neglect four-point correlation functions (four-gluon
vertex function and irreducible scattering kernels). The three-point vertex functions, how-
ever, were taken into account by constructing them from their Slavnov-Taylor identities
which impose certain restrictions on the vertices but do not fully constrain them. The
result showed a completely di�erent behavior than previous ones: The ghosts turned out
to give the dominant contribution in the infrared, whereas the gluon propagator vanished.
The running coupling, singular in the Mandelstam approximation, had now an infrared
�xed point.

The evidence for this new picture is growing and further investigations were done as well
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2 Underlying Physical Concepts

in the DSE approach, for instance in [23], as with other methods (stochastic quantization,
functional renormalization group). Also data from lattice Monte-Carlo simulations exists
which indicates a divergent ghost propagator, e.g. in [3, 24]. The gluon propagator, how-
ever, shows a behavior that is di�erent from the continuum, namely it seems to be �nite
which contradicts the Gribov-Zwanziger scenario. Of course, this could be lattice arti-
facts and bigger lattices should approach the continuum limit. This issue was addressed
in [25, 26] where DSEs were calculated on a compact manifold. The results showed good
agreement with lattice data, but the in�nite volume limit was approached very slowly
so that one cannot expect lattice Monte-Carlo simulations to yield directly the correct
results in the near future.

To describe the behavior of ghost and gluon propagators in the infrared in the present
picture one needs only one constant, usually denoted by κ. The infrared exponents of the
propagators, which determine the momentum dependence of the dressing functions at low
momenta, both depend only on this constant κ. The ghost and gluon dressing functions
G and Z are expected to behave as

G(p2) ∝ (p2)−κ Z(p2) ∝ (p2)2κ (2.3)

in the infrared. This result will be derived in section 4.1.2 for arbitrary dimension d. The
value of κ depends on the number of dimensions. In four dimensions we have [27, 28]

κ =
93−√1201

98
≈ 0.595. (2.4)

The value for other dimensions can be found in [29, 28]. For two and three dimensions
there exist two possible solutions each: approximately 0.4 and exact 0.5 in three and 0.2
and 0 in two dimensions. Which are correct still has to be determined.

2.1.4 The Three-Gluon Vertex

The next step after solving the DSEs for the propagators is concerned with the vertices of
Yang-Mills theory (except the ghost-gluon vertex, see section 2.1.2). The �rst who treated
the infrared behavior of all vertices systematically in a DSE approach were Alkofer, Fischer
and Llanes-Estrada in [2] where they calculated the infrared exponents of arbitrary Green
functions. An outline of their approach is given in section 4.1.1. They showed that the
three-gluon vertex diverges as (p2)−3κ. For arbitrary n-point functions with n ghost-anti-
ghost-pairs and m gluons they found the momentum dependence to be (p2)(n−m)κ, so that
all Green functions can be described by the same κ and the inclusion of vertices does not
lead to an additional constant. Unfortunately calculations for the three-gluon vertex are
hardly feasible on the lattice in four dimensions, but there exists data in two and three [3].
A comparison between three and four dimensions can be found in [18]. The data raises
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Figure 2.4: Lattice results for the three-gluon vertex in two [30], three [3] and four dimen-
sions [18]. Clearly the situation is better in two and three dimensions.

new questions, as the three-gluon vertex does not seem to diverge for zero momentum, see
�g. 2.4. The fact, however, that the calculated tensor component changes sign indicates
that we do not see the infrared behavior of the three-gluon vertex, as the expected scaling
behavior does not allow a change of sign. This is in contrast to ghosts and gluons, where
one can see the infrared scaling behavior already at a few hundred MeV.

2.2 Dyson-Schwinger Equations (DSEs)

Dyson-Schwinger equations - or sometimes called Schwinger-Dyson equations - are named
after F. J. Dyson [31] and J. S. Schwinger [32, 33] who were the �rst to derive them in 1949
and 1951 respectively. A DSE is the equation of motion of a Green function in form of
an integral equation. DSEs can be derived for every Green function in a �eld theory, but
unfortunately one DSE cannot stand alone because it is embedded into a stack of in�nitely
many DSEs. The reason for this is that every DSE for an n-point function contains higher
n-point functions and a closed system is thus not possible. So when trying to solve a
DSE the tricky part are the necessary truncations and approximations. How involved
the choice of a suitable approximation is one can see for example when considering the
Mandelstam approximation, which was shortly outlined in section 2.1.3. The results from
this approximation (neglecting ghosts) were contradicted by later investigations which
also took into account ghosts. This is only one example that the validity of a truncation
needs to be veri�ed.

2.2.1 Derivation of Dyson-Schwinger Equations

The derivation of DSEs is not described in many books. As a matter of fact the only
books known to me that treat DSEs are the books of Itzykson and Zuber [34] and Rivers
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2 Underlying Physical Concepts

[35]. In the papers by Alkofer and von Smekal [4] and Roberts and Williams [36] one can
�nd details about the DSEs of QED and QCD. Derivations of some DSEs can be found
in the following references:

• photon: p. 476�. in [4], [34]

• electron: p. 477�. in [34]

• quark: [4]

• ghost propagator: [4]

• ghost-gluon vertex: [16]

The papers of Eichten and Feinberg [37] and Baker and Lee [38] can also provide additional
information on the derivations.

In general there exist two possible ways to derive a DSE. One is described in [35] and uses
Heisenberg's equation of motion and the equal time commutation relations. The second
one is more common and employs the fact that the integral of a total derivative vanishes.
I will only give a short description of how the second method works. Starting point is the
generating functional Z[J, σ̄, σ] of the full Green functions, where J , σ̄ and σ are gluon,
ghost and anti-ghost sources (the normalization factor is omitted):

Z[J, σ̄, σ] =

∫
D[Ac c̄] exp(−SY M +

∫
ddx(AJ + c σ̄ + c̄ σ)). (2.5)

When di�erentiating with respect to a �eld φ, which can be a gluon (A), a ghost (c) or
an anti-ghost (c̄) �eld, the integral vanishes:

0 =

∫
D[Ac c̄](−δSY M

δφ
+ j) exp(−SY M +

∫
ddx(AJ + c σ̄ + c̄ σ)). (2.6)

Here j denotes the corresponding source to φ. To get the DSE for an n-point function one
has to make further derivatives and to set the sources to zero afterwards. For the DSEs of
connected or one-particle irreducible Green functions one can apply the same procedure
to the generating functionals of them, which are de�ned as

W [J, σ̄, σ] = ln(Z[J, σ̄, σ]) (2.7)

and
Γ[A, c, c̄] = −W [J, σ̄, σ] + φ j (2.8)

respectively. Γ is also known as e�ective action. The derivation above is quite formal and
real calculations prove to be quite tedious.
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2.2 Dyson-Schwinger Equations (DSEs)

2.2.2 Dyson-Schwinger Equations of Yang-Mills Theory

Without quarks we have the following primitively divergent n-point functions in Yang
Mills theory: gluon and ghost propagator, ghost-gluon, three-gluon and four-gluon vertex.
As an example of what a DSE looks like we consider the easiest DSE of QCD, the DSE
for the ghost propagator which is depicted in �g. 2.5.

Its graphical representation allows an intuitive interpretation: The left hand side includes
all possibilities for a ghost to propagate. The �rst diagram on the right hand side shows
a ghost that propagates without any interaction, which can of course happen. But in the
second diagram we see what he can do alternatively on his way, namely he can split up
into another ghost and a gluon in the bare ghost-gluon vertex. These two new particles
propagate themselves in all possible ways, therefore the dressed propagators. At the end
they have to join again, but of course also in all possible ways, hence the dressed vertex.
The additional dressed quantities lead to the in�nite tower of integral equations, because
they have their own DSEs. The bare and proper propagators occur in inverse form here,
because they are also inverse in the Lagrangian and in the e�ective action Γ.

-1 = -1 -

Figure 2.5: The DSE for the ghost propagator.

The structure of the DSE for the ghost propagator seems rather simple. The reason
is that a ghost does not have so many possibilities to interact, namely only one via a
ghost-gluon vertex. The gluon on the other hand has additional possibilities because of
its self-interaction and its DSE contains four more terms. The ghost-gluon vertex DSE
appeared already in section 2.1.2, �g. 2.2. The three-gluon vertex DSE is depicted in
�g. 2.6 in section 2.2.3, where a part of its skeleton expansion is treated. From now
on all internal propagators are drawn without the full blob but are considered dressed
nonetheless, so that the �gures get not too overloaded.

2.2.3 Skeleton Expansion

A simple statement what the skeleton expansion is can be found in [5]: a loop expansion
using dressed propagators and vertices. Although this might tell the advanced reader
everything he or she needs, I will try to give a more detailed description of it in the
following.

The skeleton expansion decomposes a diagram of a DSE into several diagrams containing
only primitively divergent dressed vertices, i.e. ghost-gluon, three-gluon and four-gluon
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2 Underlying Physical Concepts

vertices, and dressed propagators, whereas the order of the expansion is determined by
the number of loops added in this procedure. The basic idea what a skeleton is can be
found in [39] on which the following outline is based.

= - +1/2 +

+1/6 +1/2 +1/2

Figure 2.6: The DSE for three-gluon vertex.

At �rst we have to distinguish between three di�erent sorts of n-point functions: We
have the full n-point functions that contain all possible graphs, even not connected ones,
connected n-point functions, that as their name already says only have contributions
from connected diagrams, and proper or one-particle-irreducible n-point functions, which
contain only connected graphs that cannot be separated into two by cutting one internal
propagator line. Every n-point function gets contributions from all possible combinations
of propagators and vertices that do not violate its intrinsic properties, i.e. a connected
diagram still has to be connected. The expression skeleton now refers to a graph in which
all propagators and vertices are bare. By adding the "�esh", that means inserting full,
connected or proper n-points functions instead of the bare ones, one can reconstruct all
graphs that lead to this skeleton graph. In this sense skeleton graphs are unique for each
diagram.

= + + + + ...

Figure 2.7: Skeleton expansion of the ghost triangle.
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2.2 Dyson-Schwinger Equations (DSEs)

What do we need this for? Consider for example the DSE for the three-gluon vertex, �g.
2.6, which contains the two-ghost-two-gluon scattering kernel in the third diagram. The
problem of this diagram is that we do not know what to do with the scattering kernel
as its own DSE contains even higher n-point functions. A possible way is to consider all
distinct diagrams that contribute to it. A few of these diagrams are depicted in �g. 2.7.
The good thing about this expansion is, that higher orders do not have a di�erent infrared
exponent as will be demonstrated in section 4.1.2. At the same time this is the problem
of the skeleton expansion: One does not know how much each single diagram contributes
but all diagrams contribute with the same infrared exponent and there are no infrared
suppressed ones.
To construct the skeleton expansion of a diagram one can use the insertions given in
�g. 2.8. Starting from the simplest diagram that is possible to construct with primitively
divergent n-point functions one inserts these additional dressed vertex functions and prop-
agators. Thereby the number of loops increases. The complete skeleton expansion of the
three-gluon vertex DSE in �rst order can be found in �g. 4.3.

A B C D

Figure 2.8: Insertions that lead to higher orders in the skeleton expansion.
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3 Mathematical Prerequisites
In the analytic calculation of the ghost triangle an approach for the integral called Negative
Dimensions Integration Method (NDIM) will be used. Therefore I give a brief overview of
NDIM in the third section of this chapter. As the results of NDIM in the general case turn
out to consist of (Gaussian) hypergeometric series, an introduction to them can be found
in the �rst section. In the case of the massless three-point integral we need Appell's series
F4 which is explained in some more detail in the second section. Although much is known
about this series the direct result obtained with NDIM is not usable when calculating
with Euclidean metric, because it does not converge in the Euclidean momentum region.
The way out is also explained in the section about Appell's series F4.

3.1 Hypergeometric Series

3.1.1 Pochhammer Symbol

When dealing with hypergeometric series some knowledge about the Pochhammer symbol
is necessary. The Pochhammer symbol is named after L. A. Pochhammer (1841-1920).
It is especially useful when handling hypergeometric series. For the reader, who is not
familiar with it, I summarize a few important relations which are used in this work. The
most extensive summary about the Pochhammer symbol I found in [40], but its de�nition
can also be found for example in [41].
Various notations are used:

(a, m) ≡ (a)m ≡ (a|m). (3.1)
I will stick to the �rst one. Sometimes the Pochhammer symbol is also referred to as the
factorial function, since (1, n) = n!. The initial de�nition for integer values of the second
argument is

(a, n) =

{
1 n = 0
a(a + 1) . . . (a + n− 1) n = 1, 2, 3, . . . .

(3.2)

This can also be expressed in terms of gamma functions, whereby a generalization to
non-integer values is possible:

(a, n) =
Γ(a + n)

Γ(a)
. (3.3)
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3 Mathematical Prerequisites

Simply by applying the above de�nition, one can show the validity of the next equation:

(a,m + n) = (a,m)(a + m,n). (3.4)

Now I will proof an important formula for the Pochhammer symbol, the formula for the
analytic continuation. Consider the binomial coe�cient, given for real a and non-negative
integer n by (

a

n

)
=

a(a− 1) . . . (a− n + 1)

n!
. (3.5)

With the above de�nition for the Pochhammer symbol, eq. (3.2), we can write this as
(

a

n

)
=

(−1)n(−a, n)

n!
(3.6)

or with gamma functions as (
a

n

)
=

Γ(a + 1)

n!Γ(a− n + 1)
. (3.7)

Therefore we have with a = b− 1

Γ(b)

n!Γ(b− n)
=

(−1)n(1− b, n)

n!
. (3.8)

This we can use as a de�nition for the Pochhammer symbol, when the second argument
is negative:

(a,−n) =
(−1)−n

(1− a, n)
. (3.9)

So we expanded the original de�nition to all integer values of n. In principle the Pochham-
mer symbol can also be given for non-integer values n by eq. (3.3), but the formula for
the analytic continuation, eq. (3.9), is then no longer valid (as can be directly seen by
considering (−1)n). However, with an integer n eq. (3.9) will prove quite useful.

With Legendre's duplication formula,

Γ(2a) =
Γ(a)Γ(a + 1/2)

21−2a
√

π
, (3.10)

one can derive an equivalent equation for the Pochhammer symbol:

(a, 2b) = 22b(a/2, b)(1/2 + a/2, b). (3.11)

Using NDIM one often ends up with gamma functions that have to be transformed into
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3.1 Hypergeometric Series

Pochhammer symbols. This is easily achieved by using

Γ(a + n) = Γ(a)(a, n). (3.12)

For convenience one can derive a set of such transformation formulas which turn out to
be quite useful when using NDIM. In Appendix A one �nds a list of important equations
for Pochhammer symbols and Gamma functions.

3.1.2 Gaussian Hypergeometric Series of One Variable

The de�nition of the Gaussian hypergeometric series is [41] (Z−0 is de�ned as the set of
non-positive integer numbers)

F (a, b; c; z) =
∞∑

n=0

(a, n)(b, n)

(c, n)

zn

n!
, c /∈Z−0 . (3.13)

It can be regarded as a generalization of the geometric series
∞∑

n=0

zn = 1 + z + z2 + . . . ; (3.14)

thus the name hypergeometric series. It was introduced 1812 by C. F. Gauss (1777-1855)
and is named after him Gaussian hypergeometric series. He also introduced the F-notation
for it. A good overview of (Gaussian) hypergeometric series can be found for example in
[40].

The use of the expression hypergeometric deserves some caution. Sometimes, especially
in [40], the term hypergeometric series is used in the sense of Gaussian hypergeometric
series. In general the expression hypergeometric series is used in a wider sense, denoting
series whose coe�cients are rational functions of the summation index/indices, see section
3.1.5. A further comment on labeling expressions: When talking about parameters, the
expressions in the Pochhammer symbols are meant, e.g. a, b or c in eq. (3.13), whereas
variables refer to the expression(s) which are exponentiated, e.g. x in eq. (3.13).

Applying d'Alembert's ratio test [42] yields an absolute convergence within the unit circle,
|z| < 1. When |z| = 1 the convergence depends on the parameters [41]:

• Absolutely convergent if Re(c− a− b) > 0.
• Conditionally convergent if −1 < Re(c− a− b) ≤ 0, z 6= 1.
• Divergent if Re(c− a− b) ≤ −1.

Note two cases of special parameters:
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3 Mathematical Prerequisites

• c = m ∈ Z−0 : The series is unde�ned, except a or b = n ∈ Z−0 with n > m.
• a, b or both ∈ Z−0 : The hypergeometric series terminates and there is no question

of convergence because for a �nite argument we have a �nite result.

More on the Gaussian hypergeometric series one can �nd in [41] in Chapter 15 or in [43],
p. 412-417 and p. 430-434.

3.1.3 Generalized Hypergeometric Series of One Variable

Introducing an arbitrary number of parameters, one can de�ne a generalized hypergeo-
metric series [40]:

pFq(a1, . . . , ap; b1, . . . , bq; z) ≡

≡ pFq

(
a1, . . . , ap;
b1, . . . , bq;

z

)
=

∞∑
n=0

(a1, n) . . . (ap, n)

(b1, n) . . . (bq, n)

zn

n!
, p, q ∈ N0. (3.15)

With generalized hypergeometric series one can express many functions. Just to pro-
vide an impression I give here three elementary examples [40], where ∗ stands for zero
arguments:

ez = 0F0(∗; ∗; z), (3.16)
ln(1 + z) = z 2F1(1, 1; 2;−z), (3.17)

cos z = 0F1(∗; 1

2
;−1

4
z2). (3.18)

The original Gaussian hypergeometric series F can now be written as 2F1. In general we
can make the following statements about convergence of these generalized hypergeometric
series [40]:

• Convergence for |z| < ∞ if p ≤ q.
• Convergence for |z| < 1 if p = q + 1.
• Divergence for all z 6= 0, if p > q + 1.

This is valid except for the cases when

• one of the parameters in the denominator, bi = m, is 0 or a negative integer: The
series is divergent. Exception: One of the parameters in the numerator, ai, is n ∈ Z−0
with n > m.

• one of the parameters in the numerator, ai, is 0 or a negative integer: The series
terminates and we have a �nite result.
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3.1 Hypergeometric Series

More material about generalized hypergeometric series one can �nd in [43], p417-426, p.
437-448 and p. 453-615.

3.1.4 Gaussian Hypergeometric Series of Two Variables

A generalization from one to two and more variables is possible. A multiple Gaussian
hypergeometric series is then de�ned to be a series of several variables which reduces to
the Gaussian hypergeometric series in one variable when only one variable is non-zero.
This de�nition limits the number of possible series that are Gaussian hypergeometric
series: For two variables there exist 14 series, for three 205 [40]. Another form of series
are con�uent series, which I mention here for completeness. They reduce to the generalized
hypergeometric series 2F1, 1F1 or 0F1 when only one variable is non-zero, but not in all
cases to 2F1 [40].

The double Gaussian hypergeometric series were found in two steps: The �rst four were
written down by P. Appell (1855-1930) in 1880 in [44] and named after him Appell's
series F1, F2, F3 and F4. F4 will become important in calculating the ghost triangle of
the three-gluon vertex in section 4.2. The remaining ten Gaussian hypergeometric series
are known as Horn series after J. Horn who de�ned in 1931 G1, G2, G3, H1, H2, H3,
H4, H5, H6 and H7 in [45]. This should not give the impression that these 14 functions
were only known since 1880 and 1931 respectively, but Appell and Horn were the �rst to
make some systematic studies. A common property of the double Gaussian and con�uent
hypergeometric series is, that they are the 34 double hypergeometric series of order two.
The order of a hypergeometric series is only a descriptive term [40] and its de�nition can
be found below in section 3.1.5.

As pFq is a generalization of the Gaussian hypergeometric series with one variable, there
exist also generalizations of double Gaussian hypergeometric series. For example Kampé
de Fériet generalized the four Appell series to an arbitrary number of parameters in
the numerator and denominator [46]. There exist also Gaussian hypergeometric series
for three or more variables, e.g. the Lauricella series, which are generalizations of the
Appell's series to more than two variables [47]. Sometimes one refers to the number of
variables as dimension.

Applications of multiple Gaussian hypergeometric series are abundant. Just to give an
impression, I quote the following examples: Perturbation theory, Schrödinger equation,
heat conduction, mechanics of deformable media, Lie algebras and Lie groups, statistical
distributions, genetics; for a more exhaustive list see [40].
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3.1.5 Convergence of Double Hypergeometric Series

The determination of the region of convergence for double hypergeometric series is not
as easy as for hypergeometric series in one variable (d'Alembert's ratio test). What we
need, is the theorem of Horn on the convergence of double hypergeometric series.
Generally speaking about the region of convergence makes only sense for values of the
parameters for which the series is not unde�ned, does not terminate (then we always have
a �nite result for �nite arguments) and does not reduce to a sum of hypergeometric series
of lower dimension. Appell's series F2 is de�ned as

F2(a, b, c; d, e, f ; x, y) =
∞∑

m,n=0

(a,m + n)(b,m)(c, n)

(e, m)(f, n)

xm

m!

yn

n!
. (3.19)

Examples for such cases, where there is no need to discuss convergence, for it are:
• a ∈ Z−0 : The series in m and n terminate.
• b or c ∈ Z−0 : The series in m or n respectively terminates and we get the one-

dimensional Gaussian hypergeometric function F .
• e or f = j ∈ Z−0 : The series is not de�ned, except a, b or c = i ∈ Z−0 and i > j.

A very useful property is the fact, that the region of convergence for a hypergeometric
series does not depend on the parameters, if one excludes the exceptional parameters. A
proof of this can be found in [40]. As the region of convergence is independent of the
parameters, we can omit them below. In the following I will outline Horn's theorem as it
can be found in [40, 48, 49]. The original work is reference [50].
Let us assume we have a double power series

F (x, y) =
∞∑

m,n=0

C(m,n) xmyn. (3.20)

We de�ne now the two quotients

f(m,n) =
C(m + 1, n)

C(m,n)
, (3.21)

g(m,n) =
C(m,n + 1)

C(m,n)
. (3.22)

F is called a hypergeometric series, if f and g are rational functions of m and n, i.e. we
can write them as

f(m,n) =
F (m,n)

F ′(m,n)
, (3.23)
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3.1 Hypergeometric Series

g(m,n) =
G(m,n)

G′(m,n)
, (3.24)

where F , F ′, G and G′ are polynomials in m and n. This expressions also allows the
de�nition of the order of a hypergeometric series as the number of the largest degree of
F , F ′, G or G′. From f and g we de�ne

ρ(m,n) =
∣∣∣ lim
t→∞

f(mt, n t)
∣∣∣
−1

, (3.25)

σ(m,n) =
∣∣∣ lim
t→∞

g(mt, n t)
∣∣∣
−1

, (3.26)

R = ρ(1, 0), (3.27)
S = σ(0, 1). (3.28)

Now we can derive the region of convergence of an arbitrary double hypergeometric series
with variables x and y. Let us start with considering only one sum and neglecting the
second one. That means we keep one summation index at zero and consequently only
have to deal with a single sum. With d'Alembert's ratio test we can calculate its region
of convergence. Doing this we see, that we get R and S respectively. Thereby we have
found the maximum values of the so-called associated radii of convergence r and s of x
and y. This becomes clear when one considers the second summation index now. The
associated radius of convergence can only become smaller as we get further contributions
from the second sum. So the region of convergence lies somewhere within the rectangle
{(0, 0), (R, S)}. r and s are the parametric representation of the curve C which divides
the rectangle in two parts. Horn showed that

r = ρ(m,n), (3.29)
s = σ(m,n). (3.30)

The region of convergence is the part of the rectangle where x < r and y < s for all m and
n plus the projection of this part onto the coordinate axes. As an example consider the G
series that is de�ned in Appendix B, eq. (B.4). For it we have R = 4, S = 1, r = (2µ+ν)2

(µ+ν)2

and s = ν(2µ+ν)
(µ+ν)2

. This curve is depicted on the left in �g. 3.1. For the complete region of
convergence we have to add the part that lies between the curve and the y-axis, see the
right picture in �g. 3.1.

The calculation up to now can be done quite easily by hand or even be automated with
Mathematica. The tricky part comes now: What we want is an inequality that rep-
resents the region of convergence. Therefore one has to build one from the parametric
representation of C.

Another method for determining the region of convergence of a hypergeometric function
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Figure 3.1: The left picture shows the curve de�ned by r and s for the G series. On the
right the complete region of convergence is shown, consisting of the region
where x < r and y < s and the part between it and the coordinate axes.

exists. Thereby one makes use of the fact, that the region of convergence does not depend
on the parameters. So one can formally choose parameters in such a way, that some
Pochhammer symbols cancel each other. This clearly does not work always, but it can
shorten calculations. As an example for this technique confer the calculation of the region
of convergence of the K series in Appendix B.

3.2 Appell's Series F4

Appell's series F4 enters in the calculation of a scalar three-point one-loop diagram without
masses. As the ghost triangle is such a diagram and is explicitly calculated in section 4.2,
this part treats the de�nition of Appell's series F4, its region of convergence and - very
important as will be seen soon - its analytic continuation.

3.2.1 De�nition and Convergence

The de�nition of Appell's series F4 is

F4(a, b; c, d; x, y) =
∞∑

m,n=0

(a,m + n)(b,m + n)

(c,m)(d, n)

xm

m!

yn

n!
. (3.31)

From eq. (3.31) it can be seen that F4 is symmetric in the parameters a and b. It is not
symmetric in c and d. Only a simultaneous exchange of c and d together with x and y
yields the original form again.

F4 is convergent for √
|x|+

√
|y| < 1. (3.32)

This follows from Horns's theorem in section 3.1.5. We can calculate ρ = m2

(m+n)2
,

σ = n2

(m+n)2
, R = 1 and S = 1. From r and s one gets the inequality above. Unfor-

tunately it will turn out that this condition cannot be ful�lled by the result for the ghost
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3.2 Appell's Series F4

triangle in Euclidean space-time and an analytic continuation to other values of x and y
is necessary.

In our considerations of convergence we have to exclude the following exceptional param-
eters:

• a or b ∈ Z−0 : The series in m and n terminates.
• c or d = j ∈ Z−0 : The series is not de�ned, except a or b = i ∈ Z−0 with i > j.

3.2.2 Analytic Continuation

Although the original Appell's series F4 is only convergent for
√
|x| +

√
|y| < 1 analytic

continuation makes it possible to consider other regions of the variables. The basic idea
behind such a continuation is that there exists a more general quantity that coincides with
the series itself in its region of convergence. In the case of Appell's series F4 this is called
Appell's function F4. The di�erence is that the series is only de�ned for certain values
of the variables, but the function is more general and also de�ned for other values. From
complex analysis we know that a meromorphic function has series representations that
cover the whole complex plane except at the poles. The respective regions of convergence
can thereby only extend until the boundary reaches a pole. In a space with two complex
variables this is similar. There are, however, a few di�erences, see e.g. [51].

One method of getting results for Appell's function F4 outside the region determined by
eq. (3.32) would be transformations of the system of partial di�erential equations, which
Appell's function F4 ful�lls, and of its integral solutions. According to Exton in [49], F4

is the most intractable of Appell's function, and as a consequence many investigations of
the other Appell functions in this approach have been done but hardly of F4. Therefore
a more straightforwarded method is applied in [49], which I will follow here. It directly
transforms the series representation and is more intuitive, but it can be quite tedious.

I will describe now the basic idea of analytic continuation by means of the simplest example
existing for F4, which extends the series beyond the pole at (0, 1); other poles of Appell's
function F4 are at (1, 0) and (∞,∞). This procedure will change the parameters x and
y to x/y and 1/y. The result can be found e. g. in [48, 52], where there is a misprint at
least in some editions in the exponent of the second (−1): A minus sign is missing there.
The correct version can be found in [40, 49, 53]. The �rst step is to rewrite Appell's series
F4 using eq. (3.4) in such a way, that it contains the Gaussian hypergeometric series in
one variable:

F4(a, b; c, d; x, y) =
∞∑

m=0

(a,m)(b,m)

(c,m)

xm

m!
2F1(a + m, b + m; d; y). (3.33)
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Figure 3.2: Regions of convergence for eqs. (3.31) (blue), (3.35) (green) and (3.37) (yel-
low).

Now one replaces the Gaussian hypergeometric function 2F1 by its analytic continuation,

2F1(a, b; c; y) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−y)−a

2F1(a, a− c + 1; a− b + 1; 1/y)+

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−y)−b

2F1(b, b− c + 1; b− a + 1; 1/y), (3.34)

which can be found for instance in [41, 43], and rewrites everything into a form that
contains Appell's series F4 again:

F4(a, b; c, d; x, y) =
Γ(d)Γ(b− a)

Γ(d− a)Γ(b)
(−y)−aF4(a, a− d + 1; c, a + 1− b; x/y, 1/y)+

+
Γ(d)Γ(a− b)

Γ(d− b)Γ(a)
(−y)−bF4(b, b− d + 1; c, b + 1− a; x/y, 1/y). (3.35)

What have we obtained by this? From eq. (3.32) we know, where F4 is convergent;
now, however, the variables have changed from x and y to x/y and 1/y and the region of
convergence becomes √

|x/y|+
√
|1/y| < 1. (3.36)

We can plot the two regions for comparison, see �g. 3.2, where a third region was added,
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3.3 Negative Dimensions Integration Method

derived via the same procedure as above, but with reversed roles of x, m and y, n:

F4(a, b; c, d; x, y) =
Γ(c)Γ(b− a)

Γ(c− a)Γ(b)
(−x)−aF4(a, a− c + 1; d, a + 1− b; y/x, 1/x)+

+
Γ(c)Γ(a− b)

Γ(c− b)Γ(a)
(−x)−bF4(b, b− c + 1; d, b + 1− a; y/x, 1/x). (3.37)

Alternatively one can make use of a symmetry of F4 and exchange (x, c) and (y, d) directly.
As can be seen in �g. 3.2, a great part of the x-y-plane is still empty. Therefore we need
another analytic continuation which is derived in Appendix B. The basic steps, however,
are the same as above: We start directly with eq. (3.33) and analytically continue it
again, but this time with another formula for 2F1. Unfortunately we cannot rewrite the
result into Appell's functions F4 again and have to de�ne two new series (eqs. (B.4) and
(B.10)). The �nal result, eq. (B.12), is quite lengthy and consists of �ve single series.

3.3 Negative Dimensions Integration Method

Integration in negative dimensions sounds very abstract and naturally one asks what a
negative dimension could mean. The short answer is: Physically it means nothing. The
use of negative dimensions is merely a mathematical tool for calculating integrals. The
method makes use of the mathematical concept of analytic continuation, which is applied
on the number of dimensions. To ful�ll certain constraints arising in this approach, the
number of dimensions has to be negative in part, thus its name. In a wider sense NDIM
can be compared to the method of dimensional regularization [54, 55]: Changing the value
of the dimension away from four and permitting (intermediately) even non-integer values
is nowadays commonly used. Continuing to negative values of the dimension goes just one
step further. Nonetheless one should not confuse those two: Dimensional regularization
is a tool for regularizing divergent integrals, whereas with NDIM one actually calculates
integrals.

Originally NDIM was proposed by Halliday, Ricotta and Dunne [56, 57, 58, 59] who came
up with the idea of using an analytic continuation of the dimension to negative values.
A big advantage of NDIM is that the calculation is valid for arbitrary exponents in the
integral. This is essential for this work, as the infrared exponents are non-integer numbers.
In the literature, however, NDIM is not used very widely. Suzuki and Schmidt published
several papers where they use NDIM, e.g. [60, 61, 62, 63, 64, 65], and there exists a
detailed article by Anastasiou, Glover and Oleari [53], where they treat scalar one-loop
Feynman integrals.

In this section I will demonstrate how NDIM is employed to calculate general one-loop
Feynman diagrams. The calculation of tensor integrals can be done by standard methods,
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where one reduces the integrals to scalar ones. Alternatively one can use one of the two
approaches given in [63]. I consider only massless integrals here. For the massive case I
refer the reader to ref. [53]. The methods can be expanded to multi-loop calculations as
well, confer for example ref. [66].
We want to calculate the following general scalar, one-loop n-point integral:

In({νi}; {p2
i }) ≡

∫
ddq

1

Aν1
1 . . . Aνn

n

(3.38)

with the propagators Ai given by

A1 = q2,

Ai =

(
q +

i−1∑
j=1

pj

)2

, i 6= 1, (3.39)

where q is the loop momentum and the pi are external momenta which are all de�ned as
incoming, see �g. 3.3. When comparing di�erent references one has to be careful because
the de�nition of the loop integral can di�er with respect to the sign of the exponents νi.

ν1

ν2

ν3 ν4

ν5

q

q+p1

q+p1+p2
q+p1+...

q+p1+p2+p3+p4

pn

p1

p2

p3

p4

p5

Figure 3.3: A general one-loop Feynman diagram with n legs. The external momenta
are p1 to pn and q is the loop momentum. The νi denote the powers of the
propagators.

First of all we employ a Schwinger parameter representation for the propagators,

1

Aν
=

1

Γ(ν)

∫ ∞

0

dx xν−1e−x A, (3.40)
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3.3 Negative Dimensions Integration Method

which leads to
In({νi}; {p2

i }) =

∫
Dx

∫
ddk e−

Pn
i=1 xi Ai , (3.41)

where
∫

Dx is de�ned as
∫

Dx ≡
n∏

i=1

1

Γ(νi)

∫ ∞

0

dxi x
νi−1
i , (3.42)

but we will see shortly that it drops out of our calculation. The idea is now to proceed in
two ways and compare the results at the end.

First we calculate the Gaussian integral directly after quadratic expansion of the exponent
via ∫

ddq e−a q2

=
(π

a

) d
2
. (3.43)

This gives in the general case

In({νi}; {p2
i }) =

∫
Dx

1

X d
2

exp(Q/X ) (3.44)

with

X =
n∑

i=1

xi, (3.45)

Q =
n−1∑
i=1

n∑
j=i+1

xixj

(
j−1∑

k=i

pk

)2

=
r∑

i=1

Qi. (3.46)

X and Q can be derived from the quadratic expansion of the exponent in the integral.
The calculation is mainly shifting the limits of sums and is very lengthy. As X and Q
are used only for a general explanation in this chapter and not explicitly later on, the
derivation is not given here. For now it is only important that the quantity Q can be
written as a sum of r terms denoted by Qi. The number r is derived from the number of
possible combinations of xi in eq. (3.46).

Alternatively we can do a Taylor expansion of eq. (3.41) which yields

In({νi}; {p2
i }) =

∫
Dx

∫
ddq

∞∑
n1...nn=0

n∏
i=1

1

ni!
(−xi Ai)

ni =

=

∫
Dx

∞∑
n1...nn=0

n∏
i=1

(−1)ni(xi)
ni

ni!

∫
ddq Ani

i =
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=

∫
Dx

∞∑
n1...nn=0

n∏
i=1

(−1)ni(xi)
ni

ni!
In({−ni}; {p2

i }). (3.47)

Eqs. (3.44) and (3.47) can be equated. Now we could expand eq. (3.44) in a Taylor series,
but as we can see from a simple example, this leads to divergent integrals. The Taylor
expansion of eq. (3.43) is

∫
ddq e−a q2

=

∫
ddq

∞∑
n=0

an

n!
(q2)n =

∞∑
n=0

an

n!

∫
ddq(q2)n. (3.48)

As the solution nonetheless has to be (π/a)
d
2 , we can "de�ne"

∫
ddq (q2)n = π

d
2 n!δn,− d

2
(3.49)

to get the correct result. Because n has to be positive here, as it is a summation index,
we "choose" d to be negative (and even) so this condition can be ful�lled. Assuming a
negative d we can perform the Taylor expansion of eq. (3.44):

In({νi}; {p2
i }) =

∫
Dx

1

X d
2

∞∑
m=0

(Q/X )m

m!
=

∫
Dx

∞∑
m=0

X−m− d
2Qm

m!
. (3.50)

The last step, before a comparison of the two results is possible, is a multinomial expansion
of the expressions X and Q in eq. (3.50). It is given by

(x1 + . . . + xm)n =
∞∑

k1,...,km=0

(
n

k1, . . . , km

)
xk1

1 . . . xkm
m m ∈ N, n ∈ N0 (3.51)

(
n

k1, . . . , km

)
=

n!

k1! . . . km!
(3.52)

with the constraint
m∑

i=1

ki = n. (3.53)

It leads to

In({νi}; {p2
i }) =

∫
Dx

∞∑
r1,...,rr=0

∞∑
s1,...,sn=0

Qr1
1

r1!
. . .

Qrr
r

rr!

xs1
1

s1!
. . .

xss
n

sn!
(s1 + . . . + sn)! (3.54)
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3.3 Negative Dimensions Integration Method

where the summation indices have to ful�ll

r1 + . . . + rr = m, (3.55)

s1 + . . . + sn = −m− d

2
. (3.56)

Finally we equate the two results. Because the Schwinger parameters xi are independent
we directly can compare the integrands of eqs. (3.47) and (3.54):

∞∑
n1...nn=0

n∏
i=1

(−1)ni(xi)
ni

ni!
In({−ni}; {p2

i }) =

=
∞∑

r1,...,rr=0

∞∑
s1,...,sn=0

Qr1
1

r1!
. . .

Qrr
r

rr!

xs1
1

s1!
. . .

xpn
n

pn!
(p1 + . . . + pn)!. (3.57)

When de�ning νi = −ni the quantity to be calculated, In({νi}; {p2
i }), is part of this

equation and we have to match the powers of the xi to get the �nal result. Doing so we
get another set of constraints. Together with eqs. (3.55) and (3.56), which we combine
to a single constraint,

r1 + . . . + rr + s1 + . . . + sn = −d

2
, (3.58)

we have a system of equations that has to be ful�lled by the summation indices. Note
that d has to be negative here. This system of equations and

In({νi}; {p2
i }) =

= (−1)−ν1−...−νn

∞∑
r1,...,rr=0

∞∑
s1,...,sn=0

Qr1
1

r1!
. . .

Qrr
r

rr!

(−ν1)! . . . (−νn)!

s1! . . . ps!
(s1 + . . . + sn)! =

= (−1)−ν1−...−νn

∞∑
r1,...,rr=0

∞∑
s1,...,sn=0

Qr1
1

r1!
. . .

Qrr
r

rr!

Γ(1− ν1) . . . Γ(1− νn)

Γ(1 + s1) . . . Γ(1 + sn)
Γ(1 + s1 + . . . + sn)

(3.59)

form the solution of our integral. It turns out that in the general case this system is
under-determined and one or more summations are left. Before solving the system of
equations we had r + n summation indices, where r was de�ned below eq. (3.46) and n
is the number of legs, and n + 1 constraints, so that we end up with a series with r − 1
summation indices. Depending on what indices we choose to remain in the series we get
di�erent solutions. A few choices of indices, however, do not provide solutions. For each
single solution we combine the Gamma functions to Pochhammer symbols and apply eq.
(3.9) until we end up with hypergeometric functions. For these we determine their regions
of convergence, which correspond to certain kinematic regions. For a result we have to
sum up all series, which belong to the same region. As an alternative to calculating all
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3 Mathematical Prerequisites

series we can do so in one region and then analytically continue them to the other ones.
The explanation of NDIM in this section was quite formal. The direct application for
the calculation of the massless three-point integral in section 4.2.2 will show how NDIM
works in practice.
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4 Results
In [2] the infrared behavior of vertex functions in Landau gauge Yang-Mills theory was
investigated in four dimensions. The goal of this chapter is a calculation in d dimensions.
In the �rst section the infrared exponents of vertices are calculated via a naive power
counting procedure and in the second one the ghost triangle, which is the �rst order
of the skeleton expansion of the infrared dominant part of the three-gluon vertex, is
calculated analytically using the full three-point integral in Euclidean space-time. Results
for tensor components at special kinematic points are presented there. The d-dimensional
calculation is supposed to determine whether the qualitative behavior of Green functions
can be expected to be the same in two, three and four dimensions.

4.1 Naive Power Counting

4.1.1 The Infrared Behavior in Four Dimensions

I will shortly summarize the results from Alkofer, Fischer and Llanes-Estrada in [2]:
Starting from the ghost-gluon vertex DSE the authors explain why the ghost-gluon vertex
is bare in the infrared in Landau gauge (see section 2.1.2). Using this in the ghost
DSE they get a relation between the infrared exponents of ghost and gluon propagator,
expressed via one parameter κ. The value of κ is calculated in [23, 28] to be (93 −√

1201)/98 ≈ 0.595 in four dimensions, so the ghost propagator is divergent and the gluon
propagator vanishing. They show that naive power counting is su�cient to determine the
infrared behavior of vertex functions. In �rst order of the skeleton expansion of the
three-gluon vertex they �nd the ghost-triangle to be the dominant part.
At the symmetric point (all squares of external momenta equal) they calculate the tensor
components of the ghost triangle in the tensor basis of Celmaster and Gonsalves [67] by
using an approximation that enables them to use the two-point integral [68].
They perform the power counting also for the four-gluon vertex and furthermore show that
all higher orders of skeleton expansions yield the same infrared behavior. Thus, already
the �rst term in the expansion yields the correct infrared exponent in the presence of
only one external scale. The infrared exponent of a 2n-ghost-m-gluon amputated and
connected Green function they determine to be (n−m)κ. At the end they demonstrate
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4 Results

that the running couplings from the ghost-gluon vertex, the three-gluon vertex and the
four-gluon vertex have an infrared �xed point. All calculations were done in Landau gauge
and Euclidean metric.

4.1.2 The Infrared Behavior in d Dimensions

In this section I will perform a naive power counting to get the infrared behavior of the
propagators and the vertices in d dimensions. It will be shown that higher orders of the
skeleton expansion also in dimensions other than four yield the same infrared exponent
as the �rst order.

-1 = -1 -

Figure 4.1: The DSE for the ghost propagator.

The starting point is the DSE of the ghost-gluon vertex. As was shown in section 2.1.2
the vertex stays bare in the infrared and does not renormalize. This is independent of the
dimension and we use it in the DSE of the ghost propagator which is depicted in �g. 4.1.
We make a power law ansatz for the dressing functions of gluon and ghost propagators,

Z(p2) = A · (p2)α G(p2) = B · (p2)β, (4.1)

put these into the ghost DSE and compare the exponents of the external momentum
p from both sides. For the integral on the right hand side one can use the two-point
integral1,

∫
ddq(q2)ν1((q − p)2)ν2 = (p2)

d
2
+ν1+ν2π

d
2
Γ(d

2
+ ν1)Γ(d

2
+ ν2)Γ(−ν1 − ν2 − d

2
)

Γ(−ν1)Γ(−ν2)Γ(d + ν1 + ν2)
, (4.2)

but at this point it is not even necessary because when we have only one external mo-
mentum, all momenta under the integral have to transform into that. Note at this point
that A and B have dimension of ((momentum)2)−α and ((momentum)2)−β respectively
so that the dressing functions are dimensionless. The left hand side of the DSE, which
consists only of the inverse dressed ghost propagator, is proportional to (p2)−β+1. The 1
comes from the p2 in the de�nition of the ghost propagator, see eq. (A.3). On the right
hand side we have d

2
from the integral, α − 1 from the gluon propagator, β − 1 from the

ghost propagator, 1
2
from the bare ghost-gluon vertex and 1

2
from the dressed ghost-gluon

1One can calculate this formula with Feynman parameters or with NDIM. For two alternative derivations
see Appendix B of [23].
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4.1 Naive Power Counting

vertex which we count as bare and is therefore proportional to the loop momentum:

1− β =
d

2
+ α− 1 + β − 1 +

1

2
+

1

2

α = −2β + 2− d

2
. (4.3)

Now we set β = −κ. In four dimensions we recover the well-known result α = 2κ, but in
d dimensions we have α = 2κ + 2− d

2
. A comparison between di�erent dimensions via κ

is not possible directly, because κ has di�erent values for di�erent d [28, 29].
Now we have all the information we need for the next step, the calculation of the in-
frared exponent of the three-gluon vertex (ρ2n,m denotes the infrared exponent of a Green
function with n ghost-antighost pairs and m gluons.):

• All dressed ghost-gluon vertices are replaced by bare ones, so their infrared exponent
is

ρ2,1 = 0. (4.4)
They are proportional to pν , so we get 1

2
from each.

• Infrared exponent of the gluon propagator:

ρ0,2 = 2κ + 2− d

2
. (4.5)

We get 2κ + 1− d
2
from each.

• Infrared exponent of the ghost propagator:

ρ2,0 = −κ. (4.6)

We get −κ− 1 from each.
A note on the term infrared exponent seems appropriate to avoid confusion: The infrared
exponent is de�ned as the "additional" dependence on the external momentum. For ex-
ample the ghost propagator consists of the dressing function G(p2) and − 1

p2 . The infrared
exponent is part of G(p2). Nevertheless G(p2) is dimensionless via B and the propagator
has the dimension of (momentum)−2. The same is valid for the gluon propagator and
the ghost-gluon vertex has the dimension of momentum. The three-gluon vertex has also
dimension of momentum as can be seen from the bare vertex, eq. (A.10). So in addition
to the infrared exponent we always have to take into account the "normal" momentum
dependence of the n-point function considered.
The �rst order of the skeleton expansion of the DSE for the three-gluon vertex is depicted
in �g. 4.3. We start with the ghost triangle which is the infrared leading diagram. We
have d

2
from the integral, 3(−κ−1) from the three ghost propagators and 3

2
from the three
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= - +1/2 +

+1/6 +1/2 +1/2

Figure 4.2: The complete DSE for the three-gluon vertex.

ghost-gluon vertices. We subtract 1
2
to get the infrared exponent of the ghost triangle of

the three-gluon vertex, denoted by ρ0,3,gh−∆, where 0 stands for zero external ghosts, 3
for three external gluons and gh−∆ for ghost triangle:

ρ0,3,gh−∆ =
d

2
+ 3(−κ− 1) + 3

1

2
− 1

2
= −3κ +

d

2
− 2. (4.7)

Before calculating the infrared exponents of the other parts of the skeleton expansion we
derive a general formula for Green functions in d dimensions assuming that the ghost tri-
angle is the infrared dominant contribution. Therefore we de�ne the following expressions
(The bare four-gluon vertices are already included here as they appear in the �rst order
of the skeleton expansion. Dressed four-gluon vertices, however, do not appear in �rst
order and they are treated below.):

• l: number of loops
• mi: number of internal gluons
• ni: number of internal ghosts
• v0,3: number of dressed three-gluon vertices
• vb

0,3: number of bare three-gluon vertices
• v2,1: number of ghost-gluon vertices, dressed or bare
• vb

0,4: number of bare four-gluon vertices
• v: momentum dimension of the bare n-point function itself, for example 1

2
for the

three-gluon vertex
Now we are ready to set up the general formula. The task is straightforward as we only
have to consider the following contributions:
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+...

Figure 4.3: The �rst order of the skeleton expansion of the DSE for the three-gluon vertex.

• d
2
for every loop

• ρ0,2 − 1 = 2κ + 1− d
2
for every internal gluon propagator

• ρ2,0 − 1 = −κ− 1 for every internal ghost propagator
• ρ0,3 + 1

2
= −3κ + d

2
− 3

2
for every dressed three-gluon vertex

• 1
2
for every ghost-gluon or bare three-gluon vertex

• 0 for every bare four-gluon vertex
• v is 1

2
for the three-gluon and the ghost-gluon vertex, −1 for the propagators and 0

for the four-gluon vertex

Summing this up we get the infrared exponent of an arbitrary vertex v as

ρv = l
d

2
+ mi(2κ + 1− d

2
) + ni(−κ− 1) + v0,3(−3κ +

d

2
− 3

2
)+

+ vb
0,3

1

2
+ v2,1

1

2
+ vb

0,4 · 0− v =

= (l −mi + v0,3)
d

2
+ (2mi − ni − 3v0,3)κ +

1

2
(2mi − 2ni − 3v0,3 + vb

0,3 + v2,1 − 2v).

(4.8)

This formula we can process using some relations between the number of loops, the number
of vertices and the number of propagators which can be found for example in [8]. At each
vertex we have momentum conservation which leads to a delta function in the integral.
Furthermore we have total momentum conservation, the delta function in front of the
n-point function. So we add 1, for total momentum conservation, to the number of
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all internal momenta, in our case mi + ni, and subtract the number of vertices, here
vb

0,4 + v0,3 + vb
0,3 + v2,1, to get the number of loop momenta:

l = mi + ni + 1− (vb
0,4 + v0,3 + vb

0,3 + v2,1). (4.9)

A second relation we get from comparing the number of vertices with the number of
propagators. The task is simple: For every propagator type sum up the number of
the vertices where it can start or end. Here we have to consider internal as well as
external propagators, which are denoted by m and n for gluons and ghost-antighost-pairs
respectively. In the case of gluons we get contributions from all vertices. For the ghosts
only the ghost-gluon vertices contribute:

m + 2mi = 4vb
0,4 + 3(v0,3 + vb

0,3) + v2,1, (4.10)
n + ni = v2,1. (4.11)

Note the di�erent de�nition of m and n: The former denotes single gluons whereas the
latter is the number of ghost-antighost pairs.

The last relation we need connects v, the momentum dimension of an arbitrary Green
function, with m and n:

v =
4− (2n + m)

2
= 2− n− m

2
. (4.12)

This formula is only valid for 2n+m > 2, as the de�nition for bare and dressed propagators
di�ers from that of higher Green functions.

Putting eqs. (4.9), (4.10), (4.11) and eq. (4.12) into eq. (4.8) we get

ρ2n,m =
(
mi + ni + 1− (vb

0,4 + v0,3 + vb
0,3 + v2,1)−mi + v0,3

)d

2
+

+ (2mi − ni − 3v0,3)κ +
1

2

(
2mi − 2ni − 3v0,3 + vb

0,3 + v2,1 − (4− 2n−m)
)

=

= (v2,1 − n + 1− vb
0,4 − vb

0,3 − v2,1)
d

2
+

+
(
4vb

0,4 + 3(v0,3 + vb
0,3) + v2,1 −m− (v2,1 − n)− 3v0,3

)
κ+

+
1

2

(
4vb

0,4 + 3(v0,3 + vb
0,3) + v2,1 −m− 2(v2,1 − n)−

− 3v0,3 + vb
0,3 + v2,1 − 4 + 2n + m

)
=

= (−n + 1− vb
0,4 − vb

0,3)
d

2
+ (4vb

0,4 + 3vb
0,3 −m + n)κ+

+ (2vb
0,4 + 2vb

0,3 + 2n− 2). (4.13)
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This formula is still dependent on bare vertices. However, when considering di�erent terms
of the skeleton expansion of an n-point function, one easily sees that terms containing bare
three- and four-gluon vertices are not the infrared dominant ones because contributions
from these terms are

vb
0,3(3κ−

d

2
+ 2) (4.14)

vb
0,4(4κ−

d

2
+ 2) (4.15)

and thereby always positive. This means that diagrams that contain bare three- and
four-gluon vertices have greater infrared exponents than diagrams without and the latter
are the dominant ones in the infrared. So we can neglect the number of bare three- and
four gluon vertices in the �nal formula for the infrared exponent of an n-point function:

ρ2n,m = (1− n)
d

2
+ (n−m)κ + (2n− 2) = (n−m)κ + (1− n)(

d

2
− 2). (4.16)

This formula was already derived independently by Fischer in 2006 [68].

Now we are in the position to derive the infrared exponents of the other diagrams of the
three-gluon vertex DSE in �g. 4.3 via eq. (4.13). Diagram B contains one bare three-
gluon vertex, so the infrared exponent is (−3κ + d

2
− 2) + (3κ − d

2
+ 2) = 0. Diagrams

C, D and E contain a bare four-gluon vertex and have therefore an infrared exponent of
(−3κ+ d

2
− 2)+ (4κ− d

2
+2) = κ. The results are the same as eqs. (13) in [2] independent

of the dimension. Calculating the infrared exponent of the four-gluon vertex is now easy
with eq. (4.16) at hand. We have m = 4, n = 0 and v = 0:

ρ0,4 = −4κ +
d

2
− 2. (4.17)

An important part is still missing: What about higher orders in the skeleton expansion?
From eq. (4.16) we can see immediately that higher orders terms have the same infrared
behavior as the �rst term: Insertions which lead to higher orders only contribute with
dressed vertices and propagators and these were all considered in the derivation of eq.
(4.16). Such insertions are shown in �g. 4.4. Alternatively one can check this directly by
counting the infrared exponents of these insertions (the d

2
stems from the additional loop

integration that is necessary when inserting these diagrams):

A (2κ + 1− d
2
) + 2(−κ− 1) + 21

2
+ d

2
= 0

B 2(2κ + 1− d
2
) + (−κ− 1) + (−3κ + d

2
− 3

2
) + 1

2
+ d

2
= 0

C 3(2κ + 1− d
2
) + 2(−3κ + d

2
− 3

2
) + d

2
= 0

D 2(2κ + 1− d
2
) + (−4κ + d

2
− 2) + d

2
= 0
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A B C D

Figure 4.4: Insertions that generate higher orders in the skeleton expansion.

A remark on including the dressed four-gluon vertex in the derivation of eq. (4.16): In the
DSE of the three-gluon vertex there are no dressed four-gluon vertices in the �rst order
of the skeleton expansion. Higher orders, where dressed four-gluon vertices appear, can
be achieved via updating a three- to a four-gluon vertex, but this does not change the
infrared exponent. However, if one would like to include the dressed four-gluon vertex in
the derivation of eq. (4.16), one can see straightforwardly that the result does not change:
In eq. (4.8) we have the additional contribution v0,4(−4κ + d

2
− 2), where it is important

that the infrared exponent for the four-gluon vertex can also be calculated without eq.
(4.16) via direct counting of the exponent of the ghost loop contribution in its DSE. The
part proportional to d

2
cancels with the contribution from the four-gluon vertex to eq.

(4.9). The contributions to the parts proportional to κ and 1
2
cancel with the new part

from eq. (4.10). Upon including contributions from dressed four-gluon vertices eqs. (4.9),
(4.10) and (4.16) become

l = mi + ni + 1− (vb
0,4 + v0,4 + v0,3 + vb

0,3 + v2,1), (4.18)
2mi = 4(vb

0,4 + v0,4) + 3(v0,3 + vb
0,3) + v2,1 −m, (4.19)

ρ2n,m = (l −mi + v0,3 + v0,4)
d

2
+ (2mi − ni − 3v0,3 − 4v0,4)κ+

+
1

2
(2mi − 2ni − 3v0,3 − 4v0,4 + vb

0,3 + v2,1 − 2v) =

= (n−m)κ + (1− n)(
d

2
− 2). (4.20)

Finally we can compare the infrared behavior of the Yang-Mills Green functions. In table
4.1 the complete momentum dependence of ghost and gluon propagator and the three-
and four-gluon vertices are shown. One can see that the qualitative behavior does not
change in di�erent dimensions. Only the gluon propagator in two dimensions could be
�nite for one value of κ, in contrast to the other cases where it is infrared vanishing. Table
4.2 shows the infrared exponents.
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4.2 Calculation of the Ghost Triangle

Dimension 4 3 2
κ 0.6 0.4 0.5 0.2 0
Ghost −κ− 1 −1.6 −1.4 −1.5 −1.2 −1
Gluon 2κ + 1− d

2
0.2 0.3 0.5 0.4 0

3-gluon −3κ + d
2
− 3

2
−1.3 −1.2 −1.5 −1.1 −0.5

4-gluon −4κ + d
2
− 2 −2.4 −2.1 −2.5 −1.8 −1

Table 4.1: The dimension dependence of the infrared behavior of Yang-Mills Green func-
tions.

Dimension 4 3 2
κ 0.6 0.4 0.5 0.2 0
Ghost −κ −0.6 −0.4 −0.5 −0.2 0
Gluon 2κ + 2− d

2
1.2 1.3 1.5 1.4 1

3-gluon −3κ + d
2
− 2 −1.8 −1.7 −2 −1.6 −1

4-gluon −4κ + d
2
− 2 −2.4 −2.1 −2.5 −1.8 −1

Table 4.2: Infrared exponents of Yang-Mills Green functions in two, three and four di-
mensions.

4.2 Calculation of the Ghost Triangle

The results of the preceding section showed that the ghost triangle is the dominant part
in the infrared also in two and three dimensions. Therefore, in this section I will calculate
the ghost triangle of the three-gluon vertex DSE (see �g. 4.5) analytically using NDIM
which was explained in section 3.3. One can keep the calculation general enough to end
up with a formula for arbitrary exponents of the so-called three-point integral, so that this
formula can also be used for other massless one-loop diagrams. Unfortunately the result
is given in terms of Appell's series F4 that does not converge in the Euclidean momentum
region. For a solution in Euclidean space-time an analytic continuation of the series is
required.

4.2.1 The Ghost Triangle

First of all we have to establish the integral we would like to calculate. Therefore we need
the following (for details see Appendix A):

• The ghost propagator: Dab
G (k) = −δab

G(k2)
k2

• The bare ghost-gluon vertex: G
(bare)abc
µ (q, p) = i g fabc qµ
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p1

a
µ

q
p2

b
ν

q-p2

p3

c

ρ
q+p1

Figure 4.5: Momentum routing, Lorentz and color indices of the ghost triangle. Internal
propagators are dressed and all gluon momenta are �owing inwards.

With the momentum routing depicted in �g. 4.5 and a minus sign from the fermion loop
we get:

Γabc
µνρ,gh−∆(p1, p2, p3) =

= −
∫

ddq

(2π)d
Gade

µ (q + p1, q)D
fe
G (q + p1)G

cfg
ρ (q − p2, q + p1)×

×Dhg
G (q − p2)G

bhi
ν (q, q − p2)D

di
G (q) =

= −
∫

ddq

(2π)d
i g fade(q + p1)µ(−δfe)

G((q + p1)
2)

(q + p1)2
i g f cfg(q − p)ρ×

× (−δhg)
G((q − p2)

2)

(q − p2)2
i g f bhi qν (−δdi)

G(q2)

q2
=

= −i g3

∫
ddq

(2π)d
(q + p1)µ(q − p2)ρqνf

adef cegf bgd G((q + p1)
2)

(q + p1)2

G((q − p2)
2)

(q − p2)2

G(q2)

q2
.

(4.21)

The color structure was evaluated with FeynCalc to be −Nc

2
fabc. We are interested in

this integral at small external momenta p1, p2, and p3. Because of the denominators of
the propagators the integral is then dominated by values of the loop momentum q also
very small. Therefore we can put in the power law for the ghost propagator, see eq. (4.1),
which is valid only for small momenta:

Γabc
µνρ,gh−∆,IR(p1, p2, p3) =

i fabc Nc B3 g3

2

∫
ddq

(2π)d
(q + p1)µ(q − p2)ρqν((q + p1)

2)−κ−1((q − p2)
2)−κ−1(q2)−κ−1.

(4.22)
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4.2.2 Solution to the Massless Three-Point Integral

In this section I will calculate the formal solution of the scalar part of eq. (4.22). Therefore
we denote a general three-point integral by

I(ν1, ν2, ν3; p1, p2, p3) =

∫
ddq((q − p2)

2)ν1((q + p1)
2)ν2(q2)ν3 . (4.23)

As we saw in section 3.3 the integrals over the Schwinger parameters always cancel, so we
start with the Gaussian integral
∫

ddq exp
(−x1(q − p2)

2 − x2(q + p1)
2 − x3q

2
)

=
π

d
2

φ
d
2

exp

(
−1

φ
(x1x2p

2
3 + x1x3p

2
2 + x2x3p

2
1)

)
.

(4.24)
φ stands for x1 + x2 + x3 and a quadratic expansion of the exponent was performed:

x3q
2 + x2(q + p1)

2 + x1(q − p2)
2 =

= (x1 + x2 + x3)q
2 + 2q(x2p1 − x1p2) + x2p

2
1 + x1p

2
2 =

= φ(q +
1

φ
(x2p1 − x1p2))

2 − 1

φ
(x2p1 − x1p2)

2 + x2p
2
1 + x1p

2
2 = . . . =

= φ(q +
1

φ
(x2p1 − x1p2))

2 +
1

φ
(x1x2p

2
3 + x1x3p

2
2 + x2x3p

2
1). (4.25)

Energy and momentum conservation in the form p2
3 = (p1 + p2)

2 were employed.

The next steps are the Taylor expansion of the exponential in eq. (4.24) and the multi-
nomial expansions2 of φ and (x2x3p

2
1 + x1x3p

2
2 + x1x2p

2
3):

π
d
2

φ
d
2

∑
n

1

n!

(−1)n

φn
(x2x3p

2
1 + x1x3p

2
2 + x1x2p

2
3)

n =

= π
d
2

∑

{ni}=
{

s1,s2,s3,
r1,r2,r3

}
(−1)n

n!

(−n− d
2
)!

s1!s2!s3!

n!

r1!r2!r3!
(x2x3p

2
1)

r1(x1x3p
2
2)

r2(x1x2p
2
3)

r3xs1
1 xs2

2 xs3
3 .

(4.26)

The conditions from the multinomial expansions,

s1 + s2 + s3 = −n− d

2
, (4.27)

r1 + r2 + r3 = n, (4.28)
2In the following all sums are understood to go from 0 to ∞.
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are combined to
s1 + s2 + s3 + r1 + r2 + r3 = −d

2
. (4.29)

We also can make a Taylor expansion for the Gaussian integral in eq. (4.24):
∫

ddq
∑

ν1,ν2,ν3

xν1
1 xν2

2 xν3
3

ν1!ν2!ν3!
(−1)ν1+ν2+ν3((q − p2)

2)ν1((q + p1)
2)ν2(q2)ν3 =

=
∑

ν1,ν2,ν3

xν1
1 xν2

2 xν3
3

ν1!ν2!ν3!
(−1)ν1+ν2+ν3I(ν1, ν2, ν3; p1, p2, p3). (4.30)

By comparison of the exponents of the two eqs. (4.26) and (4.30) we get three additional
constraints,

ν1 = s1 + r3 + r2,

ν2 = s2 + r1 + r3,

ν3 = s3 + r1 + r2, (4.31)

and the solution of the integral is

I(ν1, ν2, ν3; p1, p2, p3) =

= π
d
2

∑

{ni}
(−1)r1+r2+r3−ν1−ν2−ν3

(s1 + s2 + s3)!ν1!ν2!ν3!

s1!s2!s3!r1!r2!r3!
(p2

1)
r1(p2

2)
r2(p2

3)
r3 =

= π
d
2

∑

{ni}
(−1)

d
2
(s1 + s2 + s3)!ν1!ν2!ν3!

s1!s2!s3!r1!r2!r3!
(p2

1)
r1(p2

2)
r2(p2

3)
r3 . (4.32)

The system of linear equations consisting of eqs. (4.29) and (4.31) gives twelve non-
vanishing solutions. They can be divided into three kinematic regions:

I:
√

p2
2 +

√
p2

3 <
√

p2
1

II:
√

p2
1 +

√
p2

3 <
√

p2
2

III:
√

p2
1 +

√
p2

2 <
√

p2
3

In the following we consider only region I, which means we keep as summation indices
{s2, s3}, {s2, r3}, {s3, r2} and {r2, r3}. It is not important which region we choose, because
the three regions are connected via analytic continuations. In region I we get these
solutions:
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{s2, s3}: s1 = −d− s2 − s3 − ν1 − ν2 − ν3

r1 = −d
2
− s2 − s3 − ν1

r2 = d
2

+ s2 + ν1 + ν3

r3 = d
2

+ s3 + ν1 + ν2

{s2, r3}: s1 = −d
2
− s2 − r3 − ν3

s3 = −d
2

+ r3 − ν1 − ν2

r1 = −s2 − r3 + ν2

r2 = d
2

+ s2 + ν1 + ν3

{s3, r2}: s1 = −d
2
− s3 − r2 − ν2

s2 = −d
2

+ r2 − ν1 − ν3

r1 = −s3 − r2 + ν3

r3 = d
2

+ s3 + ν1 + ν2

{r2, r3}: s1 = −r2 − r3 + ν1

s2 = −d
2

+ r2 − ν1 − ν3

s3 = −d
2

+ r3 − ν1 − ν2

r1 = d
2
− r2 − r3 + ν1 + ν2 + ν3

For a result in region I we sum up the single solutions:

I(ν1, ν2, ν3; p1, p2, p3) = Is2,s3 + Is2,r3 + Is3,r2 + Ir2,r3 . (4.33)

The single I i,j, i, j ∈ {r2, r3, s2, s3} are de�ned as the integral in eq. (4.32) with i and
j as summation indices and the other indices determined by the solutions of the system
of equations. I give the detailed calculation of Is2,s3 . The calculation of the other three
cases is analog. The goal is to get Is2,s3 as a prefactor dependent on the momenta and
the indices times a hypergeometric series.

Is2,s3(ν1, ν2, ν3; p1, p2, p3) =

= π
d
2 (−1)

d
2 Γ(1 + ν1)Γ(1 + ν2)Γ(1 + ν3)Γ(1− ν1 − ν2 − ν3 − d)×

×
∑
s2,s3

1

s2!s3!

(
p2

2

p2
1

)s2
(

p2
3

p2
1

)s3 (p2
1)
− d

2
−ν1(p2

2)
d
2
+ν1+ν3(p2

3)
d
2
+ν1+ν2

Γ(1− d− s2 − s3 − ν1 − ν2 − ν3)
×

× 1

Γ(1− d
2
− s2 − s3 − ν1)Γ(1 + d

2
+ s2 + ν1 + ν3)Γ(1 + d

2
+ s3 + ν1 + ν2)

=

= π
d
2 (−1)

d
2

Γ(1 + ν1)

Γ(1− d
2
− ν1)

Γ(1 + ν2)

Γ(1 + d
2

+ ν1 + ν2)

Γ(1 + ν3)

Γ(1 + d
2

+ ν1 + ν3)
×

× (p2
1)
− d

2
−ν1(p2

2)
d
2
+ν1+ν3(p2

3)
d
2
+ν1+ν2×

×
∑
s2,s3

1

s2!s3!

(
p2

2

p2
1

)s2
(

p2
3

p2
1

)s3 1

(1− d− ν1 − ν2 − ν3,−s2 − s3)
×
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× 1

(1− d
2
− ν1,−s2 − s3)(1 + d

2
+ ν1 + ν3, s2)(1 + d

2
+ ν1 + ν2, s3)

=

= π
d
2 (−1)

d
2 (1− d

2
− ν1,

d

2
+ 2ν1)(1 +

d

2
+ ν1 + ν2,−d

2
− ν1)×

× (1 +
d

2
+ ν1 + ν3,−d

2
− ν1)(p

2
1)
− d

2
−ν1(p2

2)
d
2
+ν1+ν3(p2

3)
d
2
+ν1+ν2

∑
s2,s3

1

s2!s3!

(
p2

2

p2
1

)s2
(

p2
3

p2
1

)s3

×

× (d + ν1 + ν2 + ν3, s2 + s3)(
d
2

+ ν1, s2 + s3)

(1 + d
2

+ ν1 + ν3, s2)(1 + d
2

+ ν1 + ν2, s3)
=

= π
d
2 (p2

1)
− d

2
−ν1(p2

2)
d
2
+ν1+ν3(p2

3)
d
2
+ν1+ν2×

× (
d

2
+ ν1,−d

2
− 2ν1)(−d

2
− ν1 − ν2,

d

2
− ν1)(−d

2
− ν1 − ν3,

d

2
+ ν1)×

× F4

(
d + ν1 + ν2 + ν3,

d

2
+ ν1; 1 +

d

2
+ ν1 + ν3, 1 +

d

2
+ ν1 + ν2;

p2
2

p2
1

,
p2

3

p2
1

)
.

(4.34)

Successive use of eqs. (3.12), (3.3), (3.9) and (3.31) was made. Performing the same
procedure for the other three cases one arrives at the �nal result:

I(ν1, ν2, ν3; p1, p2, p3) = π
d
2×{

Γ(d
2

+ ν1)Γ(−d
2
− ν1 − ν3)Γ(−d

2
− ν1 − ν2)(p

2
1)
− d

2
−ν1(p2

2)
d
2
+ν1+ν3(p2

3)
d
2
+ν1+ν2

Γ(−ν1)Γ(−ν2)Γ(−ν3)
×

× F4(d + ν1 + ν2 + ν3,
d

2
+ ν1; 1 +

d

2
+ ν1 + ν3, 1 +

d

2
+ ν1 + ν2;

p2
2

p2
1

,
p2

3

p2
1

)+

+
Γ(d

2
+ ν1 + ν3)Γ(d

2
+ ν1 + ν2)Γ(−d

2
− ν1 − ν2 − ν3)(p

2
1)

d
2
+ν1+ν2+ν3

Γ(−ν2)Γ(−ν3)Γ(d + ν1 + ν2 + ν3)
×

× F4(−ν1,−d

2
− ν1 − ν2 − ν3; 1− d

2
− ν1 − ν3, 1− d

2
− ν1 − ν2;

p2
2

p2
1

,
p2

3

p2
1

)+

+
Γ(d

2
+ ν3)Γ(d

2
+ ν1 + ν2)Γ(−d

2
− ν1 − ν3)(p

2
1)

ν2(p2
2)

d
2
+ν1+ν3

Γ(−ν1)Γ(−ν3)Γ(d + ν1 + ν2 + ν3)
×

× F4(
d

2
+ ν3,−ν2; 1 +

d

2
+ ν1 + ν3, 1− d

2
− ν1 − ν2;

p2
2

p2
1

,
p2

3

p2
1

)+

+
Γ(d

2
+ ν2)Γ(d

2
+ ν1 + ν3)Γ(−d

2
− ν1 − ν2)(p

2
1)

ν3(p2
3)

d
2
+ν1+ν2

Γ(−ν1)Γ(−ν2)Γ(d + ν1 + ν2 + ν3)
×
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× F4(−ν3,
d

2
+ ν2; 1− d

2
− ν1 − ν3, 1 +

d

2
+ ν1 + ν2;

p2
2

p2
1

,
p2

3

p2
1

)

}
. (4.35)

Eq. (4.35) was already derived in [53, 69] via NDIM and an alternative method, but it
was not mentioned that this representation is not convergent in the Euclidean momentum
region as explained below.

4.2.3 Euclidean Region

Appell's series F4 in eq. (4.35) is convergent for
√

p2
2

p2
1
+

√
p2
3

p2
1

< 1, but this is an inequality
that cannot be ful�lled by Euclidean momenta as one can show from momentum and
energy conservation, p1 + p2 + p3 = 0:

p2
1 = (−p2 − p3)

2 = p2
2 + p2

3 + 2p2 · p3 = p2
2 + p2

3 + 2|p2||p3| cos(α). (4.36)

α is the angle between p2 and p3 and its cosine ranges from −1 to +1 so that we get the
following inequality (x =

p2
2

p2
1
, y =

p2
3

p2
1
):

p2
2 + p2

3 − 2|p2||p3| < p2
1 < p2

2 + p2
3 + 2|p2||p3|

x + y − 2
√

x y < 1 < x + y + 2
√

x y. (4.37)
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Figure 4.6: x and y are the ratios of the squared momenta. The Euclidean momentum
region is in red, the region of convergence for the standard representation of
Appell's series F4 in blue. The green and yellow regions correspond to the
series representations eqs. (3.35) and (3.37) respectively.
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The values for which this inequality holds are depicted in red in �g. 4.6. The region of
convergence for the series representation of Appell's series F4 in eq. (4.35) is in blue. One
can see clearly, that these two regions have no intersection and therefore Appell's series
in eq. (4.35) does not converge.

In section 3.2.2 analytic continuations of Appell's series F4 were considered. Equations
eq. (3.35) and eq. (3.37), that continue the series from convergence around (0, 0) to
convergence around (0,∞) and (∞, 0) respectively, �ll the green and yellow regions in
�g. 4.6. These green and yellow parts are the kinematic regions II and III. So we can
alternatively use the analytic continuation formulas eq. (3.37) (region II) and eq. (3.35)
(region III) instead of redoing the whole calculation for the other solutions. What is
missing, is a continuation into the Euclidean region. This lengthy calculation can be found
in Appendix B resulting in eq. (B.12), which is convergent in parts of the Euclidean region.
The full solution of eq. (4.23) is then eq. (4.35) together with eq. (B.12) for Appell's
functions F4.

4.2.4 Tensor Components

The result from the preceding chapter can be used to determine the tensor components
of the ghost-triangle. Thereby the following quantity adopted from eq. (4.22) was calcu-
lated:

Γµνρ,gh−∆,IR(p1, p2, p3) =

3

2

∫
ddq

(2π)d
(q + p1)µ(q − p2)ρqν((q + p1)

2)−κ−1((q − p2)
2)−κ−1(q2)−κ−1. (4.38)

In the following this is written as Γµνρ. The three-gluon vertex is composed of 14 tensor
components:

Γµνρ =
∑

a

ca τa
µνρ. (4.39)

For calculating single tensor components ca, one contracts on both sides with a basis
tensor τ b

µνρ,
τ b
µνρΓµνρ =

∑
a

ca τa
µνρτ

b
µνρ, (4.40)

which leads to a scalar integral on the left hand side that can be calculated. Doing so for
all basis tensors one gets a system of equations, which has to be solved (except the basis
is orthogonal, but this is not the case for the used bases).

For all calculations Mathematica and the Mathematica package FeynCalc were used.
The di�culty in the implementation of eq. (B.12) are many special cases of the parameters
that have to be considered. Such are for example occurrences of ε

(ε,m−n)
, ε → 0, where
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Figure 4.7: The three components of the three-gluon vertex at the symmetric point in
three (left) and four dimensions. Black: H1 . Blue: H2 (negative). Red: H3.
(Basis of Celmaster, Gonsalves [67]).

m and n are summation indices. Depending on the values of m and n this part is 0 or
�nite. Finally the code for evaluating three-point integrals was combined with a routine
for extracting the tensor components. These were calculated for various kinematic points
in three and four dimensions with the values of 0.4 and 93−√1201

98
for κ respectively.

The simplest kinematics is at the symmetric point, for details see Appendix A. The
symmetric point has the advantage that only three tensor components are necessary which
are plotted in �g. 4.7 in a double-logarithmic plot. The slope of the three graphs was
determined to be −1.78606 and −1.7, as expected, cf. table 4.2. The used basis is that
of Celmaster and Gonsalves from [67]. The basis tensors are de�ned in Appendix A, eq.
(A.22). For negative values the absolute values were taken3. No physical unit is given in
the plots as we have no scale to determine one.
Another special kinematic point is the one with two momenta orthogonal to each other
and the same magnitude, what corresponds to the point (1

2
, 1

2
) in the x-y-plane of �g. 4.6.

The tensor basis reduces to eleven tensors in this case, which are given in eq. (A.19) in
Appendix A. This point is especially interesting as it is a favored point on the lattice where
orthogonal con�gurations are very easy to achieve. The tensor components as de�ned in
eq. (A.19) have an intrinsic dependence on the momentum. The reason for that are
the basis tensors, which are not normalized. For example the basis tensor belonging to
the function F2 is proportional to (p2)

5
2 . As Γµνρ has to be proportional to momentum,

the quantity F2 p4 was plotted to absorb the trivial scaling of the tensor. For the other
functions according quantities were used in �gs. 4.8, 4.9 and 4.10. The values of the
slopes were determined to be the same as at the symmetric point.
Other special points in the x-y-plane of �g. 4.6 are for example (1

2
, 1) or (1, 1

2
). They also

correspond to an orthogonal con�guration of two momenta with the same magnitude.

3For which tensor components this applies is given in the description of the plots.
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Figure 4.8: The components A1, A2, A3 (red), B2 and B3 (green) of the three-gluon vertex
in an orthogonal con�guration in three (left) and four dimensions. A1, A2, A3

and B2 are negative.
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Figure 4.9: The components C1 + p2F1 (orange), F2 and F3 (blue) of the three-gluon
vertex in an orthogonal con�guration in three (left) and four dimensions. F2

is negative.
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Figure 4.10: The components C1 + p2F1 (orange), H (magenta), C2 and C3 (cyan) of the
three-gluon vertex in an orthogonal con�guration in three (left) and four
dimensions.
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5 Conclusions
The main results of this thesis were presented in the preceding chapter. In the �rst
part the power counting procedure devised by Alkofer, Fischer and Llanes-Estrada was
extended to two and three dimensions. The expansion scheme used by them, the skeleton
expansion, turned out to work also for two and three dimensions and the qualitative
behavior of vertices and propagators proved to be very similar, i.e. in all three values
of space-time dimension the ghost propagator and the gluon vertices show divergence,
whereas the gluon propagator vanishes. The only exception is one of the two solutions
for κ in two dimensions, which gives an infrared �nite gluon propagator. The infrared
exponents of propagators, three-gluon vertex and four-gluon vertex are listed in table 4.2.
A comparison to Monte-Carlo simulations is not possible for the vertices yet, because the
infrared region is not reached in neither value of space-time dimension. Hopefully this
will improve in the near future and one will be able to compare the two methods.
A di�culty of the Dyson-Schwinger approach is �nding ansätze for higher n-point func-
tions and the results from [2] already provided useful input for this, as the required low
momentum behavior for these ansätze is known. Within the extended power counting
scheme presented here, applications are no longer restricted to four dimensions; for exam-
ple the high-temperature limit of Landau gauge, cf. [29], is a three-dimensional theory.
There is also a connection between Coulomb gauge in four and Landau gauge in three
dimensions, and the results of this thesis can prove helpful when investigating this in more
detail.
The analytic calculation of the ghost triangle showed that the three-gluon vertex behaves
as predicted at low momenta (in �rst order of the skeleton expansion). A complete
investigation of the whole Euclidean momentum region will provide more insight into
the behavior at low energies, which can be used in further DSE studies. However, at
the kinematic points considered in this thesis (the symmetric point and an orthogonal
con�guration of two momenta with the same magnitude), the behavior is as expected
from naive power counting. In this work a method was presented how to deal with the
known solution of the three-point integral, eq. (4.35), in Euclidean space-time by analytic
continuation of Appells' function F4. The result, eq. (4.35) combined with eq. (B.12),
may prove useful also in other areas.
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A Conventions, Notations and
Formulas

In books and articles about quantum �eld theory one often encounters di�erent conven-
tions and notations. These depend for example on the choice of metric, Minkowski or
Euclidean, and there is also a certain freedom to de�ne auxiliary quantities. In this work
a consistent notation was attempted. Therefore I brie�y summarize my notation, which
is roughly the same as in [4] except a few minor changes. Throughout the whole thesis
Landau gauge in Euclidean space-time was used. In diagrams blobs denote dressed prop-
agators or vertices. Inner propagators are always dressed from section 2.2.3 onwards.

A.1 Propagators

The gluon propagator is denoted by a wiggly line and the ghost propagator by a dashed
one, see �g. A.1.

ka b

µ ν

ka b

Figure A.1: Ghost and gluon propagator.

The color structure of both propagators is trivial, namely δab. Therefore I will most of
the time omit color indices. In general covariant gauge with the Lorenz gauge condition
∂ · A = 0 the gluon propagator has the following form:

Dab
µν(k) = δab

Z(k)

k2

[
δµν − (1− α)

kµkν

k2

]
. (A.1)

The gauge �xing parameter α is de�ned by the gauging �xing term in the Lagrangian,
Lgf = 1

2α
(∂µA

a
µ)2, and Z(k) is the gluon dressing function. The bare gluon propagator is

then
D(bare)ab

µν (k) = δab
1

k2

[
δµν − (1− α)

kµkν

k2

]
. (A.2)
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In Landau gauge α is 0. As an important consequence the gluon propagator is transverse,
i.e. kµD

ab
µν(k) = 0.

For the ghost propagator we have

Dab
G (k) = −δab

G(k2)

k2
(A.3)

where G(k2) is the ghost dressing function, so that the bare propagator is

D
(bare)ab
G (k) = −δab

k2
. (A.4)

A.2 Vertices

In Yang-Mills theory there are only three primitively divergent vertices instead of the four
in full QCD. These are the ghost-gluon vertex, the three-gluon vertex and the four-gluon
vertex.

The ghost-gluon vertex couples a ghost-antighost-pair with one gluon, for details see
section 2.1.2. It is interesting that in "ghost-free" gauges, as for example in axial gauge,
DSEs not simplify as one would expect because of the non-existence of a ghost-gluon
vertex. The reason is that the gluon propagator has an additional tensor component in
axial gauge [4, 70].

p

b

q

c

k

a µ

Figure A.2: The ghost-gluon vertex, the gluon momentum is ingoing.

The ghost-gluon vertex Gabc
µ (k; q, p) is here de�ned with incoming gluon momentum, de-

noted by the �rst momentum, and one outgoing and one incoming ghost momentum,
denoted by the second and third momentum respectively. The color indices are mainly
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A.2 Vertices

suppressed so we de�ne the following structure of the vertex functions to make the con-
nection between colored and uncolored expressions clear:

Gabc
µ (k; q, p) = (2π)4δ(k + p− q)Gabc

µ (q, p) (A.5)
Gabc

µ (q, p) = fabcGµ(q, p) (A.6)
Gµ(q, p) = i g qνG̃µν(q, p). (A.7)

For the bare vertex G̃µν(q, p) becomes δµν :

G(bare)abc
µ (q, p) = i g fabc qµ. (A.8)

For the three-gluon vertex we also de�ne a structure similar to the one of the ghost-gluon
vertex:

Γabc
µνρ(p1, p2, p3) = i g fabc(2π)4δ(p1 + p2 + p3)Γµνρ(p1, p2, p3). (A.9)

Here all momenta are de�ned to be ingoing and the color structure of the three-gluon
vertex is proportional to fabc as was veri�ed on the lattice in ref. [71]. In this notation
the tree-level expression is

Γ(bare)
µνρ (p1, p2, p3) = δµν(p1 − p2)ρ + δνρ(p2 − p3)µ + δµρ(p3 − p1)ν . (A.10)

µ,a ν,b

ρ,c

p1 p2

p3

Figure A.3: The three-gluon vertex, all momenta are ingoing.

The tensor structure of the three-gluon vertex is quite complex. We have three momenta,
p1, p2 and p3, that are dependent on each other. Due to energy and momentum conser-
vation the dependence reads

p1 + p2 + p3 = 0. (A.11)
Out of two vectors and the metric tensor, δµν , we can build fourteen tensors:

p1µp1νp1ρ , p2µp2νp2ρ ,
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p1µp1νp2ρ , p1µp2νp1ρ , p2µp1νp1ρ ,

p2µp2νp1ρ , p2µp1νp2ρ , p1µp2νp2ρ ,

p1µδνρ, p1νδµρ, p1ρδµν ,

p2µδνρ, p2νδµρ, p2ρδµν . (A.12)

Because of the total antisymmetry of the color part and the total symmetry of the three-
gluon vertex the Lorentz part has to be antisymmetric under the exchange of any two
external momenta and the corresponding Lorentz indices. An often used basis is the
so-called Ball-Chiu basis [72]. The tensors are split up into transverse and longitudinal
parts. The transverse part is de�ned to be that part, that gives zero when contracted
with an external momentum. It consists of four tensors,

Γ(t)
µνρ(p1, p2, p3) =

F3(p
2
1, p

2
2; p

2
3)(δµνp1 · p2 − p1νp2µ)B3

ρ+

+ F1(p
2
2, p

2
3; p

2
1)(δνρp2 · p3 − p2ρp3ν )B1

µ+

+ F2(p
2
3, p

2
1; p

2
2)(δµρp3 · p1 − p3µp1ρ)B2

ν+

+ H(p2
1, p

2
2, p

2
3)(−δµνB3

ρ − δνρB1
µ − δµρB2

ν+

+ p1ρp2µp3ν − p1νp2ρp3µ), (A.13)

where

B3
ρ = p1ρp2 · p3 − p2ρp1 · p3,

B1
µ = p2µp3 · p1 − p3µp2 · p1,

B2
ν = p3νp1 · p2 − p1νp3 · p2. (A.14)

The longitudinal part has ten tensors and reads

Γ(l)
µνρ(p1, p2, p3) =

A3(p
2
1, p

2
2; p

2
3)δµν(p1 − p2)ρ+

+ A1(p
2
2, p

2
3; p

2
1)δνρ(p2 − p3)µ+

+ A2(p
2
3, p

2
1; p

2
2)δµρ(p3 − p1)ν+

+ B3(p
2
1, p

2
2; p

2
3)δµν(p1 + p2)ρ+

+ B1(p
2
2, p

2
3; p

2
1)δνρ(p2 + p3)µ+

+ B3(p
2
3, p

2
1; p

2
2)δµρ(p3 + p1)ν+

+ C3(p
2
1, p

2
2; p

2
3)(p1νp2µ − δµνp1 · p2)(p1 − p2)ρ+

+ C1(p
2
2, p

2
3; p

2
1)(p2ρp3ν − δνρp2 · p3)(p2 − p3)µ+

+ C2(p
2
3, p

2
1; p

2
2)(p3µp1ρ − δµρp3 · p1)(p3 − p1)ν+

+ S(p2
1, p

2
2, p

2
3)(p1ρp2µp3ν + p1νp2ρp3µ). (A.15)
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The following notation is quite common [72]:

Γ(t)
µνρ(p1, p2, p3) =

F (p2
1, p

2
2; p

2
3)(δµνp1 · p2 − p1νp2µ)B3

ρ+

+ H(p2
1, p

2
2, p

2
3)(−δµνB

3
ρ+

+
1

3
(p1ρp2µp3ν − p1νp2ρp3µ)) + cycl. perm., (A.16)

Γ(l)
µνρ(p1, p2, p3) = (A.17)

A(p2
1, p

2
2; p

2
3)δµν(p1 − p2)ρ+

+ B(p2
1, p

2
2; p

2
3)δµν(p1 + p2)ρ+

+ C(p2
1, p

2
2; p

2
3)(p1νp2µ − δµνp1 · p2)(p1 − p2)ρ+

+ S(p2
1, p

2
2, p

2
3)

1

3
(p1ρp2µp3ν + p1νp2ρp3µ) + cycl. perm. (A.18)

The longitudinal part in this basis is actually not completely longitudinal because it is not
orthogonal to the transverse part. It is de�ned as the remaining part of Γµνρ(p1, p2, p3)
after subtracting the transverse part and is constrained by the Ward-Takahashi identity.
Another disadvantage of the Ball-Chiu basis is that the tree-level tensor, eq. (A.10), is
not part of it. So a basis that has orthogonal tensors, which allows easy decomposition
of the vertex into tensor components, including the tree-level tensor, would be the most
convenient one.
The symmetry properties of the above scalar functions are as follows:

• Totally symmetric in all arguments: H

• Totally antisymmetric in all arguments: S

• Symmetric in the �rst two arguments: A1, A2, A3, C1, C2, C3, F1, F2, F3

• Antisymmetric in the �rst two arguments: B1, B2, B3

There are certain kinematic points at which the number of tensors reduces. One is the
point with two momenta perpendicular to each other and the same magnitude. Let us
assume that these two momenta are p2

2 = p2
3 = p2. Then p1 has to be 2p2. The scalar

functions B1 and S vanish because they are antisymmetric in p2 and p3. As p2 · p3 = 0
and p1 · p2 = p1 · p3 = (p2

2 − p2
1 − p2

3)/2 = −p2 the basis tensors then become

Γ(perp)
µνρ (p1, p2, p3) =

F3(2p
2, p2; p2)(−δµνp

2 − p1νp2µ)p2ρp
2+

+ (C1(p
2, p2; 2p2) + p2 F1(p

2, p2; 2p2))p2ρp3ν (p2µ − p3µ)+

+ F2(p
2, 2p2; p2)(δµρp

2 + p3µp1ρ)p3νp
2+

+ H(2p2, p2, p2)(−δµνp2ρ + δνρ(p2µ − p3µ) + δµρp3ν )p
2+
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+ p1ρp2µp3ν − p1νp2ρp3µ)+

+ A3(2p
2, p2; p2)δµν(p1 − p2)ρ+

+ A1(p
2, p2; 2p2)δνρ(p2 − p3)µ+

+ A2(p
2, 2p2; p2)δµρ(p3 − p1)ν+

+ B3(2p
2, p2; p2)δµν(p1 + p2)ρ+

+ B3(p
2, 2p2; p2)δµρ(p3 + p1)ν+

+ C3(2p
2, p2; p2)(p1νp2µ + δµνp

2)(p1 − p2)ρ+

+ C2(p
2, 2p2; p2)(p3µp1ρ + δµρp

2)(p3 − p1)ν . (A.19)

Note that the tensors C1 and F1, which come from the longitudinal and transverse part
respectively, have merged into a single function C1 + p2F1.
A point with even less tensor components is the symmetric point, de�ned by

p2
1 = p2

2 = p3
3 = p2 (A.20)

which leads to
p1 · p2 = p2 · p3 = p3 · p1 = −p2

2
. (A.21)

Only three basis tensors remain, which can be chosen according to [67] as

Γ(symm)
µνρ (p1, p2, p3) =

H1(p
2) ((p1 − p2)ρδµν + (p2 − p3)µδνρ + (p3 − p1)νδµρ) +

+ H2(p
2)

(p2 − p3)µ(p3 − p1)ν(p1 − p2)ρ

p2
+

+ H3(p
2)

p1ρp2µp3ν − p1νp2ρp3µ

p2
. (A.22)
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A.3 Gamma Function and Pochhammer Symbol
For easy reference I list certain relations of Gamma functions and Pochhammer symbols
which can be useful for calculations with NDIM. Equations where the analytic continua-
tion of the Pochhammer symbol is used require special attention if the second argument
in the continued Pochhammer symbol is integer.

a Γ(a) = Γ(a + 1) (a, b + c) = (a + b, c)(a, b) (A.23)

Γ(2a) =
Γ(a)Γ(a + 1/2)

21−2a
√

π
(a, 2b) = 22b(a/2, b)(1/2 + a/2, b)

(A.24)
Γ(a− n)

Γ(a)
= (−1)−n Γ(1− a)

Γ(1− a + n)
(a,−n) =

(−1)−n

(1− a, n)
(A.25)

Γ(a + b) = Γ(a)(a, b)
1

Γ(a + b)
=

1

Γ(a)(a, b)
(A.26)

Γ(a− b) = Γ(a)
(−1)b

(1− a, b)

1

Γ(a− b)
=

(−1)−b(1− a, b)

Γ(a)
(A.27)

Γ(a + b + c) = Γ(a)(a + b, c)(a, b)
1

Γ(a + b + c)
=

1

Γ(a)(a + b, c)(a, b)
(A.28)

Γ(a + b− c) = Γ(a)(a, b)
(−1)c

(1− a− b, c)

1

Γ(a + b− c)
=

(−1)−c(1− a− b, c)

Γ(a)(a, b)
(A.29)

Γ(a− b− c) = Γ(a)
(−1)b+c

(1− a, b)(1− a− b, c)

1

Γ(a− b− c)
=

(−1)−b−c(1− a, b)(1− a + b, c)

Γ(a)
(A.30)
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B Analytic Continuation of Appell's
Function F4 into the Euclidean
Momentum Region

In this appendix I will derive the analytic continuation of Appell's function F4 that was
used in my calculations. It is more intricate than the well-known analytic continuation
eq. (3.35) that is given as an example in section 3.2.2. The original derivation was done
by Exton in [49]. In this appendix I will review it in more detail and correct a few
misprints.

The �rst step is rewriting the original de�nition of F4 in such a way that it contains the
Gaussian hypergeometric series of one variable:

F4(a, b; c, d; x, y) =
∞∑

m=0

(a,m)(b,m)

(c,m)

xm

m!
2F1(a + m, b + m; d; y). (B.1)

Now we use another analytic continuation of 2F1, namely ((15.3.6) in [41])

2F1(a, b; c; y) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b; a + b− c + 1; 1− y)+

+
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
(1− y)c−a−b

2F1(c− a, c− b; c− a− b + 1; 1− y), (B.2)

which is valid for | arg(1 − y)| < π. The condition is ful�lled naturally because we are
only interested in real values of y. We put eq. (B.2) into eq. (B.1) and treat the two
appearing terms separately. The �rst one will lead to a series which we call G according
to the conventions of [49]. It is the easier one of the two emerging series:
∞∑

m=0

xm

m!

(a, m)(b,m)

(c,m)

Γ(d)Γ(d− a− b− 2m)

Γ(d− a−m)Γ(d− b−m)

∞∑
n=0

(1− y)n

n!

(a + m,n)(b + m,n)

(a + b + 2m− d + 1, n)
=

=
Γ(d)Γ(d− a− b)

Γ(d− a)Γ(d− b)

∞∑
m,n=0

xm

m!

(1− y)n

n!

(a,m + n)(b,m + n)

(c,m)(a + b + 2m− d + 1, n)

(d− a− b,−2m)

(d− a,−m)(d− b,−m)
=
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=
Γ(d)Γ(d− a− b)

Γ(d− a)Γ(d− b)

∞∑
m,n=0

xm

m!

(1− y)n

n!

(a,m + n)(b,m + n)

(c,m)

(1− d + a,m)(1− d + b,m)

(1− d + a + b, 2m + n)
=

=
Γ(d)Γ(d− a− b)

Γ(d− a)Γ(d− b)
G(a, b, 1− d + a, 1− d + b; 1− d + a + b, c; x, 1− y). (B.3)

We have used eqs. (3.12) and (3.9) and the G series is de�ned as

G(a, b, c, d; e, f ; x, y) =
∞∑

m,n=0

xm

m

yn

n!

(a,m + n)(b,m + n)(c,m)(d,m)

(e, 2m + n)(f,m)
. (B.4)

The region of convergence for this series was calculated in section 3.1.5.
The second part is more intricate:

∞∑
m=0

xm

m!

(a,m)(b,m)

(c,m)

Γ(d)Γ(a + b− d + 2m)

Γ(a + m)Γ(b + m)
(1− y)d−a−b−2m×

×
∞∑

n=0

(1− y)n

n!

(d− a−m, n)(d− b−m,n)

(1 + d− a− b− 2m, n)
=

=
Γ(d)Γ(a + b− d)

Γ(a)Γ(b)
(1− y)d−a−b×

×
∞∑

m,n=0

(
x

(1− y)2

)m
1

m!

(1− y)n

n!

(a,m)(b,m)

(c,m)

(a + b− d, 2m)

(a,m)(b,m)
×

× (d− a, n−m)

(d− a,−m)

(d− b, n−m)

(d− b,−m)
(−1)n(a + b− d + 2m,−n) =

=
Γ(d)Γ(a + b− d)

Γ(a)Γ(b)
(1− y)d−a−b×

×
∞∑

m,n=0

(
x

(1− y)2

)m
(y − 1)n

m!n!

(a + b− d, 2m− n)(1 + a− d,m)(1 + b− d,m)

(1 + a− d,m− n)(1 + b− d,m− n)(c,m)
.

(B.5)

We have made use of eqs. (3.12), (3.9) and (3.4). In this form the series is still not
convergent in the Euclidean region and we need another analytical continuation. For this
we rewrite eq. (B.5) into a form, that contains the generalized hypergeometric series
4F3:
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Γ(d)Γ(a + b− d)

Γ(a)Γ(b)
(1− y)d−a−b×

×
∞∑

m,n=0

(
x

(1− y)2

)m
(y − 1)n

m!n!

(a + b− d, 2m− n)(1 + a− d,m)(1 + b− d, m)

(1 + a− b,m− n)(1 + b− d,m− n)(c, m)
=

=
Γ(d)Γ(a + b− d)

Γ(a)Γ(b)
(1− y)d−a−b

∞∑
n=0

(y − 1)n

n!

(a + b− d,−n)

1 + a− d,−n)(1 + b− d,−n)
×

×
∞∑

m=0

(
x

(1− y)2

)m
(a + b− d− n, 2m)(1 + a− d,m)(1 + b− d, m)

m!(1 + a− b− n,m)(1 + b− d− n,m)(c,m)
=

=
Γ(d)Γ(a + b− d)

Γ(a)Γ(b)
(1− y)d−a−b

∞∑
n=0

(y − 1)n

n!

(−1)n(d− a, n)(d− b, n)

(1− a− b + d, n)
×

×
∞∑

m=0

(
x

(1− y)2

)m 22m(a
2

+ b
2
− d

2
− n

2
,m)(1

2
+ a

2
+ b

2
− d

2
− n

2
,m)

m!(1 + a− b− n,m)(1 + b− d− n,m)
×

× (1 + a− d,m)(1 + b− d,m)

(c,m)
=

=
Γ(d)Γ(a + b− d)

Γ(a)Γ(b)
(1− y)d−a−b

∞∑
n=0

(1− y)n

n!

(d− a, n)(d− b, n)

(1− a− b + d, n)
×

× 4F3

(
a
2

+ b
2
− d

2
− n

2
, 1

2
+ a

2
+ b

2
− d

2
− n

2
, 1 + a− d, 1 + b− d;

c, 1 + a− d− n, 1 + b− d− n;

4x

(1− y)2

)
. (B.6)

Eqs. (3.4), (3.9) and (3.11) were used. The generalized hypergeometric series 4F3 can be
analytically continued with the Meijer-G function, which is in our case (eq. (5) on p. 208
in [48]):

Gm,n
p,q

(
x

∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq

)
=

m∑

h=1

∏′m

j=1
Γ(bj − bh)

∏n
j=1 Γ(1 + bh − aj)

∏q
j=m+1 Γ(1 + bh − bj)

∏p
j=n+1 Γ(aj − bh)

xbh×

×p Fq−1

(
1 + bh − a1, . . . , 1 + bh − ap;

1 + bh − b1, . . . , ∗, . . . , 1 + bh − bq;
(−1)p−m−nx

)
p < q ∨ p = q ∧ |x| < 1.

(B.7)

The primed product excludes the expression Γ(0) (when b = j), and the ∗ stands for the
one expression taken out as argument of pFq−1. A generalized hypergeometric series can
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be expressed in terms of a Meijer-G function via (eq. (1) on page 215 in [48])

pFq(a1, . . . , ap; b1, . . . , bq; x) =

∏q
j=1 Γ(bj)∏p
j=1 Γ(aj)

Gp,1
q+1,p

(
−1

x

∣∣∣∣∣
1, b1, . . . , bq

a1, . . . , ap

)
. (B.8)

Our series 4F3 from eq. (B.6) then becomes

4F3(a, b, c, d; e, f, g; x) =
Γ(e)Γ(f)Γ(g)

Γ(a)Γ(b)Γ(c)Γ(d)
G4,1

4,4

(
−1

x

∣∣∣∣∣
1, e, f, g
a, b, c, d

)
. (B.9)

Inserting eq. (B.7) into eq. (B.9) is a bit tedious and Mathematica was used for this
task. It turns out, that two of the four expected 4F3 vanish due to the appearance of
Γ(−n) in the denominator. This yields 0 because n is an integer. The two functions left
are treated separately again. The calculation is tedious but straightforward: The goal is
to rewrite the two sums again into a new double sum as above. For this we have to get
rid of the n

2
that occur. We accomplish this by splitting the sum over n into two sums

for even and odd n respectively. During the whole calculation eqs. (3.12), (3.9) and (3.4)
are used. At the end we encounter a new series which Exton called K:

K(a, b, c, d; e, f, g, h; x, y) =
∞∑

m,n=0

(a,m + n)(b,m + n)(c,m− n)(d,m− n)

(e,m− n)(f, m− n)(g, m)(h, n)

xm

m!

yn

n!
.

(B.10)
It occurs four times (two times in each part from the splitting of the sum) and the total
result of the analytic continuation is

L(a, b; c, d;
(1− y)2

4x
,
x

4
) =

=
Γ(d)Γ(a + b− d)

Γ(a)Γ(b)
Γ(c)Γ(

1

2
)(−4x)

d
2
−a

2
− b

2×

×
{

1

Γ(a
2

+ b
2
− d

2
+ 1

2
)Γ(c− a

2
− b

2
+ d

2
)
×

×K

(
b
2
− a

2
+ d

2
, a

2
− b

2
+ d

2
, a

2
+ b

2
− d

2
, a

2
+ b

2
− c− d

2
+ 1;

b
2
− a

2
+ d

2
, a

2
− b

2
+ d

2
, 1

2
, 1

2
;

(1− y)2

4x
,
x

4

)
+

+
(d + a− b− 1)(d− a + b− 1)(−x)

1
2

2(d− a− b + 1)Γ(a
2

+ b
2
− d

2
)Γ(c− a

2
− b

2
+ d

2
+ 1

2
)
×

K

(
b
2
− a

2
+ d

2
+ 1

2
, a

2
− b

2
+ d

2
+ 1

2
, a

2
+ b

2
− d

2
−1

2
, a

2
+ b

2
− c− d

2
+ 1

2
;

b
2
− a

2
+ d

2
− 1

2
, a

2
− b

2
+ d

2
− 1

2
, 1

2
, 3

2
;

(1− y)2

4x
,
x

4

)}
+

+
Γ(d)Γ(a + b− d)

Γ(a)Γ(b)
Γ(c)Γ(−1

2
)(1− y)(−4x)

d
2
−a

2
− b

2
− 1

2×
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×
{

1

Γ(a
2

+ b
2
− d

2
)Γ(c− a

2
− b

2
+ d

2
− 1

2
)
×

×K

(
b
2
− a

2
+ d

2
+ 1

2
, a

2
− b

2
+ d

2
+ 1

2
, a

2
+ b

2
− d

2
+ 1

2
, a

2
+ b

2
− c− d

2
+ 3

2
;

b
2
− a

2
+ d

2
+ 1

2
, a

2
− b

2
+ d

2
+ 1

2
, 3

2
, 1

2
;

(1− y)2

4x
,
x

4

)
+

+
(d + a− b)(d− a + b)(−x)

1
2

2(d− a− b + 1)Γ(a
2

+ b
2
− d

2
− 1

2
)Γ(c− a

2
− b

2
+ d

2
)
×

×K

(
b
2
− a

2
+ d

2
+ 1, a

2
− b

2
+ d

2
+ 1, a

2
+ b

2
− d

2
, a

2
+ b

2
− c− d

2
+ 1;

b
2
− a

2
+ d

2
, a

2
− b

2
+ d

2
, 3

2
, 3

2
;

(1− y)2

4x
,
x

4

)}
.

(B.11)

It is quite a lengthy expression and therefore Exton abbreviated it with L(a, b, c, d; (1−y)2

4x
, x

4
).

In contrast to the above de�ned G and K series, the combinations of x and y are �xed in
the de�nition of L. This is caused by the appearance of x and y in the prefactors to the
K series. L di�ers from the result given in [49]:

• The second term has an additional 1
2
.

• The third argument of the second K series has an additional −1
2
.

• The second (−4x) has an additional −1
2
in the exponent.

• The fourth term has an additional 1
2
.

The corrections to reference [49] are red in eq. (B.11) for easier comparison. The �nal
result for the Appell function is

F4(a, b; c, d; x, y) =
Γ(d)Γ(d− a− b)

Γ(d− a)Γ(d− b)
G(a, b, 1− d + a, 1− d + b; 1− d + a + b, c; x, 1− y)+

+ L(a, b, c, d;
(1− y)2

4x
,
x

4
). (B.12)
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2
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1
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2
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Figure B.1: The region of convergence for the K series.

To determine the region of convergence one can use the method of cancellation of pa-
rameters for K. Thereby one discovers that K reduces to the original de�nition of F4 (set
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c = e, d = f) and the region of convergence is
√

(1− y)2

4x
+

√
x

4
< 1. (B.13)

This region is depicted in �g. B.1. The region of convergence for the G series can be
derived via Horn's theorem, as was done in section 3.1.5. Comparing the two regions of
convergence one sees that the K series is the limiting series.
There exist further analytic continuations with which one can cover the whole Euclidean
momentum region. They are given in the appendix of [49] and correspond to the analytic
continuations of the solutions in regions II and III, which were de�ned in section 4.2.2
below eq. (4.32). They are not necessary here, because we can always choose the ratios x
and y in such a way, that the area in the rectangle de�ned by (0, 0) and (1, 1) is su�cient.
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