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Preface

Integrability of both sides of AdS/CFT has enabled many quantitative checks of the

correspondence. The Bethe ansatz determines the anomalous dimensions of gauge

theory operators, which at strong coupling are also encoded in the energies of classical

string configurations. The “giant magnon” is a particular limit that simplifies the

spectrum on both sides of the correspondence. In this limit a general state can have

any number of elementary excitations (magnons) and their bound states. In this

dissertation we construct classical string solutions describing arbitrary superpositions

of scattering and bound states of multi-charged giant magnons in various spaces

including AdS5 × S5 and AdS4 × CP 3. We use the sigma model dressing method

to construct these solutions and analyze several of their properties, such as their

scattering phase shift. We also use the inverse scattering and dressing methods to

find various string solutions in AdS whose edges trace out complicated timelike curves

on boundary. These solutions correspond to sinh-Gordon solitons and breathers and

may be used to calculate certain Wilson loops via AdS/CFT. Our results provide

important quantitative checks of the AdS/CFT correspondence.

vii



Acknowledgements

I am grateful to my academic advisor Anastasia Volovich for continuous guidance

and support, helpful discussions and comments, and for being my instructor to sev-

eral courses. I would like to thank my collaborators Antal Jevicki, Kewang Jin,

Georgios Papathanasiou, Marcus Spradlin, and Anastasia Volovich. I am grateful to

Michael Abbott, Inês Aniceto, Jean Avan, Nikolay Bobev, Antal Jevicki, Kewang Jin,

Juan Maldacena, Georgios Papathanasiou, and Marcus Spradlin for comments and

discussions. I would like to thank my instructors, the high energy theory faculty, and

my colleagues. Finally, I would like to thank my readers Antal Jevicki, Chung-I Tan,

Marcus Spradlin, and Anastasia Volovich.

viii



Contents

1 Introduction 1

1.1 AdS/CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 BMN sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Giant magnon limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Dyonic Giant Magnons . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Scattering amplitudes through AdS/CFT . . . . . . . . . . . . . . . . 6

1.6 ABJM theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Useful tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.8 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Dressing the Giant Magnon 10

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Giant Magnons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Dressing Method for S5 = SU(4)/Sp(2) . . . . . . . . . . . . . . . . . 13

2.5 Giant Magnons on R× S5 . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 A single dyonic giant magnon . . . . . . . . . . . . . . . . . . 15

2.5.2 A scattering state of two dyonic magnons, with three spins on S5 17

2.5.3 A scattering state of two HM magnons, with arbitrary positions

on the transverse S3 . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Classical Time Delay for Scattering of Dyonic Magnons . . . . . . . . 20

3 Exact solutions for N-magnon scattering 22

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Giant magnons on R× S3 . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Review of the dressing method . . . . . . . . . . . . . . . . . . 25

ix



3.3.2 Application and recursion . . . . . . . . . . . . . . . . . . . . 27

3.4 The N -magnon solution . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Hirota form of the solution . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Determinant form for Z1 . . . . . . . . . . . . . . . . . . . . . 31

3.4.3 Asymptotic behavior . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Construction rules - Examples . . . . . . . . . . . . . . . . . . . . . . 35

4 Dressing the Giant Gluon 38

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 AdS Dressing Method . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 AdS3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 A special case . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.2 In search of the Wilson loop . . . . . . . . . . . . . . . . . . . 45

4.4.3 A very special case . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 AdS5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.1 Construction of the dressing factor . . . . . . . . . . . . . . . 51

4.5.2 A special case . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Generating AdS String Solutions 54

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Pohlmeyer reduction for AdS strings . . . . . . . . . . . . . . . . . . 56

5.3.1 Constructing string solutions from sinh-Gordon solutions . . . 58

5.4 Review of sinh-Gordon solutions . . . . . . . . . . . . . . . . . . . . . 59

5.5 String solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5.1 Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5.2 Long strings in AdS3 as sinh-Gordon solitons . . . . . . . . . . 61

5.5.3 One-soliton solutions . . . . . . . . . . . . . . . . . . . . . . . 62

5.5.4 Two-soliton solutions . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 AdS dressing method . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6.1 Breather solution . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

x



6 On Dyonic Giant Magnons on CP 3 71

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 The CP 3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 The Dressing Method for the CP 3 Coset . . . . . . . . . . . . . . . . 75

6.5 Giant Magnon Solutions on CP 3 . . . . . . . . . . . . . . . . . . . . 77

Bibliography 79

xi



Chapter 1

Introduction

1.1 AdS/CFT

In 1974 ’t Hooft [1] realized that the perturbative expansion of SU(N) gauge theory in

the large N limit can be interpreted as a genus expansion of two dimensional surfaces

built from field theory Feynman diagrams. In the case of N = 4 supersummetric

Yang-Mills field theory (SYM) this expansion can be schematically written as

F = N2(1 + λ + λ2 + . . .)︸ ︷︷ ︸
planar

+ N0(1 + λ + λ2 + . . .)︸ ︷︷ ︸
genus 1

+
1

N2
(1 + λ + λ2 + . . .)

︸ ︷︷ ︸
genus 2

+ . . . ,

(1.1.0.1)

where 1/N counts the genus of the Feynman diagram, gY M is the gauge theory cou-

pling, λ = g2
Y MN the ’t Hooft coupling, and F the free energy. In the large N limit

only planar diagrams contribute to the above expansion.

Ever since 1974 it has been widely suspected that there should exist a dual de-

scription of large N gauge theories in terms of string theories. The first concrete

example was proposed more than 20 years later with the AdS/CFT correspondence

[2, 3, 4] (see [5] for a review) that relates string theory on AdS5 × S5 background

to N = 4 SYM gauge theory. AdS/CFT correspondence relates a four dimensional

gauge theory to a higher dimensional string model, which is a manifestation of the

holographic principle [6, 7] that indicates that the entire degrees of freedom of a quan-

tum theory of gravity live on the boundary of the space-time region in question. In

our case, the boundary of AdS5×S5 is four dimensional and this is where the N = 4

theory lives.

The string model is controlled by two parameters, the string coupling constant gs

1
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and the string tension α′, whereas the gauge theory is parameterized by the rank N of

the gauge group and the coupling constant gY M or equivalently the ’t Hooft coupling

λ = g2
Y MN . According to the AdS/CFT those parameters should be related as

4πλ

N
= gs,

√
λ =

R2

a′
, (1.1.0.2)

where R is the common radius of AdS5 and S5.

The above equation (1.1.0.2) relates the coupling constants of the two theories,

but there is also a dictionary that relates the string energy to suitable gauge theory

operators according to

〈OA(x)OB(y)〉 =
M δA,B

(x− y)2∆A(λ, 1
N

)
⇔ Hstring |OA〉 = EA(

R2

α′
, gs) |OA〉, (1.1.0.3)

where |OA〉 denotes a string eigenstate, A indicates suitable composite gauge theory

operators that can be written as the trace of elementary fields of N = 4 in the adjoint

representation (and their covariant derivatives), and ∆ is the scaling dimension of

the dual gauge theory operator and is determined by the two point function of the

conformal field theory. AdS/CFT conjectures that

∆(λ,
1

N
) = E(

R2

a′
, gs). (1.1.0.4)

A zeroth order test of the conjecture is the agreement of the underlying summetry

supergroup PSU(2, 2|4) of the two theories.

String theory on AdS5 × S5 is a complicated two dimensional field theory (even

in its free version, gs = 0) and the quantization in this background remains an open

problem. Thus the string theory side of the correspondence could so far be addressed

by its low energy effective description which is it terms of type IIB supergravity. In

this approximation the curvature of the background is small compared to a string

scale or in other words λ À 1. On the other hand perturbative calculations in

N = 4 require that λ ¿ 1. In other words the duality relates a strongly coupled

theory to a weakly coupled and vice versa. Because of the strong/weak nature of the

correspondence, dynamical tests of the AdS/CFT in regimes which are not protected

by the large amount of symmetry in the problem where very difficult.

1.2 BMN sector

The situation improved in 2002 with the work of Berenstein, Maldacena, and Nas-

tase (BMN limit) [8] where it was shown that the two theories possess overlapping
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perturbative regimes. The key idea behind BMN limit is to consider a U(1) charge J

of SO(6) and define a new effective coupling λ̃ ≡ λ/J2. Then if we take the quantum

number J much larger than
√

λ the effective coupling λ̃ can be very small even on

the string theory side.

On the string theory side, the U(1) charge corresponds to an angular momentum

that the string carries on S5, while on the gauge theory side it is a U(1) R-charge of

a local operator. In the large spin limit, the energies E of the string states as well

as the conformal dimensions ∆ of SYM operators are also very large. More precisely,

the BMN limit is defined as

J,N →∞,
J√
N

= fixed, λ̃ ≡ λ

J2
= fixed, E − J = fixed. (1.2.0.5)

1.3 Giant magnon limit

Another interesting limit of the AdS/CFT correspondence was considered by Hofman

and Maldacena (HM) in [9], where they also considered operators where one of the

SO(6) charges, J, was considered to be very large.

According to the AdS/CFT dictionary states with E−J = 0 correspond to a long

chain of Z fields

E − J = 0 ⇔ tr(ZJ). (1.3.0.6)

One can also consider states with finite E − J which would correspond to operators

of the form

E − J = finite ⇔ Op =
∑

l

eipl(. . . ZZZW
↑
l

ZZZ . . .), (1.3.0.7)

where an impurity W was inserted. p is the momentum the field W propagates

along the chain of Z’s. Since on the gauge theory side the problem of diagonalizing

the planar Hamiltonian reduces to a type of spin chain [10, 11, 12], we call these

excitation states magnons.

Using supersymmetry, Beisert has shown in [13] that these excitation states have

a dispersion relation

E − J =

√
1 +

λ

π2
sin2 p

2
(1.3.0.8)

that in the large coupling limit takes the form

E − J =

√
λ

π

∣∣∣sin p

2

∣∣∣ . (1.3.0.9)
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Here the periodicity of p comes from the discreteness of the spin chain. In order

to obtain (1.3.0.9) from the string point of view, HM identified p to be a geometric

angle, thus recovering periodicity.

In order to take the HM limit, we first need to consider the usual ’t Hooft limit.

Then we pick up a SO(6) generator J, and consider the limit where J is large. The

states that are considered have finite E − J and the ’t Hooft coupling is kept fixed.

Finally we consider the momentum of the excitation states p fixed. Summarizing the

HM limit is

E, J →∞, λ = g2
Y MN = fixed, p = fixed, E − J = finite. (1.3.0.10)

The HM limit differs from the BMN limit in two ways as summarized in the following

table

HM BMN
λ fixed λ →∞
p fixed pJ fixed

The HM limit has the nice feature that it decouples quantum effects characterized

by the ’t Hooft coupling λ from finite J effects. In this limit the spectrum on both

sides can be analyzed in terms of asymptotic states and the S-matrix describing theirs

scattering.

We now review the construction of the elementary giant magnon according to

[9]. HM considered the Nambu-Goto action of the string model in R × S2 and they

imposed the boundary conditions that the end points of the sting lie on the equator of

S2 moving with the speed of light. In spherical coordinates the sting action becomes

S =

√
λ

2π

∫
dtdφ′

√
cos2 θθ′2 + sin2 θ (1.3.0.11)

and the equation of motion can be easily integrated to give the desired solution

sin θ =
sin θ0

cos φ′
, (1.3.0.12)

where θ0 is the integration constant.

We can now compute the energy of the (1.3.0.12) to be

E − J =

√
λ

π
sin

∆φ

2
, (1.3.0.13)
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where ∆φ is the angle between the end point of the string. In order to match (1.3.0.9)

we need to identify ∆φ with p, where p is the momentum of the excitation in the spin

chain picture.

Let us also mention that giant magnons on R×S2 are in one to one correspondence

with sine-Gordon solitons [14]. Some of the physical quantities appearing in these

two theories like the time delay of a scattering process are the same, whereas other

quantities like the speed or the phase shift are different according to the following

table

sine-Gordon giant magnon

EsG = γ Emagnon =
√

λ
π

1
γ

∆TCM = 2
γv

log v ∆T12 = 2
γ1v1

log vcm

v = cos
p

2
, γ−2 = 1− v2, phase shift =

∫
dE1∆T12. (1.3.0.14)

1.4 Dyonic Giant Magnons

In addition to the elementary magnon, a spin chain can also contain an infinite number

of elementary magnons as well as boundstates [15]. Magnons with polarizations in

an SU(2) subsector carry a second conserved U(1) R-charge, J2, and they can form

boundstates with exact dispersion relation

E − J =

√
J2

1 +
λ

π2
sin2 p

2
. (1.4.0.15)

that correspond to operators of the form

Op =
∑

l

eipl(. . . ZZZW
↑
l

J1ZZZ . . .). (1.4.0.16)

For J1 = 1 we get the dispersion relation of the elementary magnon, where as for

J1 = Q = integer we have a Q-magnon boundastate. These states should exist for

all values of the ’t Hooft coupling constant and we are free to consider states with

J2 ∼
√

λ. For such states we can consider the corresponding classical string carrying a

second large angular momentum. We call these string states dyonic giant magnons

and were first discussed in [16] where they exploited the equivalence of string theory

on R× S3 with the complex sine-Gordon system.
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1.5 Scattering amplitudes through AdS/CFT

One of the most interesting application of AdS/CFT is the work that was initiated

by Alday and Maldacena [17] that gave a prescription on how to compute on-shell

planar gluon scattering amplitudes at strong coupling in N = N . The computation

is based on finding a certain classical string configuration whose boundary conditions

are determined by the gluon momenta. They also computed the leading order 4-point

scattering amplitude and they showed agreement with the BDS ansatz [18] (the 8-

point amplitude has been recently computed in [19]). The results in [17] are infrared

divergent and, in order to regularize, AM introduced a gravity version of dimensional

regularization.

1.6 ABJM theory

Initiated by the work of Bagger and Lambert [20], Aharony, Bergman, Jafferis, and

Maldacena (ABJM) [21] constructed a N = 6 superconformal Chern-Simons theory

with SU(N) × SU(N) gauge symmetry at level k that is believed to be dual to M -

theory on AdS4 × S7/Zk. Moreover, ABJM considered the large N, k → ∞ limit

keeping the ’t Hooft coupling λ = N/k fixed and they conjectured that the N = 6

field theory is dual to type IIA string theory on AdS4 ×CP 3. This new AdS4/CFT3

correspondence is also a strong-weak duality.

1.7 Useful tools

Here we review some useful relations and methods that will repeatedly be used in the

course of this work.

sine-Gordon theory

The sine-Gordon (sG) equation of motion is

φττ − φσσ = −1

2
sin 2φ. (1.7.0.17)

The fundamental soliton solutions of (1.7.0.17) on the infinite line are the single kink

(+) and the single anti-kink (-) given by

φ(σ, τ) = 2 arctan e±γ(σ−βτ), (1.7.0.18)



7

where γ = 1/
√

1− β2. The solution describing the scattering of a kink and an

anti-kink is given by

φss̄(σ, τ) = 2 arctan
sinh γβτ

β cosh γσ
. (1.7.0.19)

From this solution one can obtain the scattering of two kinks by the shift

γσ → γσ +
iπ

2
, γβτ → γβτ +

iπ

2
, (1.7.0.20)

and the result is

φss(σ, τ) = 2 arctan
cosh γβτ

β sinh γσ
. (1.7.0.21)

The breather solution of (1.7.0.17) is obtained by analytically continuing the speed

of the kink-antikink solution, β → ia

φbr(σ, τ) = 2 arctan
sin γaaτ

a cosh γaσ
, (1.7.0.22)

where γa =
√

1 + a2. The period of a breather is T = 2π
aγa

.

Periodic solution to the sG equation gives rise to strings with finite word-sheet

[22, 23]. The fundamental periodic soliton solutions are given by the kink (+) and

antikink (-) train

φ(α, τ) =
π

2
+ am(±(kσ − ωτ |m). (1.7.0.23)

For m < 1 the above solution describes an infinite equally separated sequence of kinks

and antikinks moving with constant velocity ω/k. The solution is quasi-periodic since

every kink is a 2π step. For m < 1, on the other hand, we obtain an infinite sequence

of kink-antikink, whereas for m = 1 we recover the periodic solutions. Periodic

generalizations of scattering states are given in [24].

complex sine-Gordon

The complex sine-Gordon theory (CsG) consists of two real field φ and χ that together

can be combined to a single complex field ψ = sin(φ/2) exp(iχ/2) and in light cone

coordinates obey the equation

∂+∂−ψ + ψ∗
∂+ψ∂−ψ

1− |ψ|2 + ψ(1− |ψ|2) = 0. (1.7.0.24)

The 1-soliton solution is given by

ψ = eiµ cos a exp(iT sin a)

cosh((X −X0) cos a)
, (1.7.0.25)
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where

X = x cosh θ − t sinh θ, T = t cosh θ − x sinh θ, µ = constant (1.7.0.26)

and the equivalence of the CsG model to string on R × S3 have been used in the

construction of dyonic giant magnons [16].

sinh-Gordon

In light cone coordinates the sinh-Gordon (shG) can be written in the standard form

∂+∂−α− 4 sinh α = 0 (1.7.0.27)

and it admits solitonic solutions in a infinite line as well as periodic solutions that

can be expressed as

αinf = ± ln
(
tan2 γ(σ − vτ)

)
,

αper = ln
(
k sn2(σ/

√
k|k)

)
.

(1.7.0.28)

Solitons in shG models are related to classical string configurations moving in AdS

through a Pohlemeyer map [14]. This equivalence has been successfully used (see for

example [25, 26, 27].

The dressing method

The dressing method was introduced by Zakharov and Mikhailov in [28, 29]. It is a

very general technique that allows for construction of solitonic classical solutions of

integrable systems. One starts with any known solution of the unitary N ×N matrix

field g(z, z̄) that satisfies the equation of motion

∂̄(∂g−1) + ∂(∂̄gg−1) = 0 (1.7.0.29)

and proceeds with the construction of a dressing factor χ such that g′ = χg is a new

solution. The dressing factor χ depends on the model we are considering and the

construction of it is given later in the text for the different physical problems we are

considering.

The dressing method has several advantages and disadvantages compared to other

methods for constructing of classical string solutions (for example the inverse scat-

tering method). One of the advantages is that the dressing method reduces a second

order differential equation that in principle can be difficult to solve to a system of two
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first order equations. As we said earlier we have to start with any known solution of

our model that we either know or it is easy to guess like the vacuum of the theory in

consideration. If we choose to start with the vacuum we would have to solve a much

simpler system of first order differential equations.

One other advantage it that after we have constructed one solution we can use

algebraic methods and find all other solutions of the problem without the need to

solve any more differential equations. An example here can be the construction of he

N -giant magnon solutions on R× S3.

Finally and most of the time we have the flexibility to approach the same problem

with different kind of dressing methods.

The disadvantage is that it is not easy to see a priori that the dressing method

can give us the solution we are interested in.

1.8 Outlook

In chapter 2 we consider the problem of constructing more general giant magnon

solutions in R × S5, whereas the most general N−magnon solution on R × S3 is

given in chapter 3. In view of the Alday-Maldacena problem we present in chapter 3

new solutions in Euclidian AdS3 and AdS5 spaces that we call giant gluons, whereas

solitonic solutions in Minkowskian worldsheets are considered in chapter 4. Finally,

in chapter 5 we attack the problem of classical solutions in CP 3 space.



Chapter 2

Dressing the Giant Magnon

2.1 Abstract

We extend earlier work by demonstrating how to construct classical string solutions

describing arbitrary superpositions of scattering and bound states of dyonic giant

magnons on S5 using the dressing method for the SU(4)/Sp(2) coset model. We

present a particular scattering solution which generalizes solutions found in hep-

th/0607009 and hep-th/0607044 to the case of arbitrary magnon momenta. We

compute the classical time delay for the scattering of two dyonic magnons carrying

angular momenta with arbitrary relative orientation on the S5.

2.2 Introduction

The study of classical spinning string solutions in AdS5×S5 has provided a wealth of

data for detailed study of the AdS/CFT correspondence. An interesting step forward

was taken by Hofman and Maldacena [9], who found the classical string solution

corresponding to a single magnon in the dual gauge theory. In this context the word

magnon refers to an elementary excitation which can travel along a chain of Z’s with

some momentum p, i.e.

Op ∼
∑

l

eipl(· · ·ZZZWZZZ · · · ), (2.2.0.1)

where the magnon W is inserted at position l along the chain. The corresponding

‘giant magnon’ is an open string whose endpoints move at the speed of light along

an equator of the S5, separated in longitude by an angle p. This state carries an

10
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infinite amount of angular momentum J in the plane of the equator of the S5 and is

characterized by a finite value of ∆− J . Work on giant magnons include [15, 16, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 22, 41, 42, 43].

In [34] the dressing method [28, 29, 44] was used to construct classical string solu-

tions corresponding to various scattering and bound states of magnons. In particular,

it was demonstrated how to obtain solutions representing superpositions of any num-

ber of elementary giant magnons (or bound states thereof) on R× S5, as well as any

number of dyonic giant magnons on R×S3. The dyonic giant magnon, discovered in

[15, 16], is a BPS bound state of many (O(
√

λ)) magnons which carries, in addition

to an infinite amount of J in the equator of the S3, a non-zero macroscopic amount

of angular momentum J1 in the orthogonal plane on S3.

In this note we study scattering states of dyonic giant magnons on S5, some

special cases of which have appeared in [34, 35, 42]. We fill a gap in previous work by

demonstrating how to construct classical string solutions describing general scattering

states of dyonic giant magnons whose individual angular momenta Ji have arbitrary

orientations in the directions transverse to the equator of the S5.

After reviewing the basics of giant magnons in section 3, we explain in section 4

how to apply the dressing method for the SU(4)/Sp(2) = S5 coset model, following

the construction of [44]. This coset construction apparently has more flexibility than

the SO(6)/SO(5) = S5 coset construction employed in [34], since we have been

unable to find the dyonic giant magnon solution via the latter dressing method. In

[34] the SU(2) principal chiral model was instead used to construct superpositions of

dyonic magnons. That was sufficient for solutions living only on an S3 ⊂ S5, but the

SU(4)/Sp(2) coset used in this work allows us to construct solutions living on the full

S5. In section 5 we begin with a detailed analysis of the parameter space for a single

soliton in the SU(4)/Sp(2) coset model. We present in (2.5.2.33) a particular explicit

solution for the scattering of two dyonic giant magnons with arbitrary momenta

p1, p2 which carry angular momentum in orthogonal planes. This solution generalizes

the special case p1 = −p2 = π which was obtained in [34] and was generalized to

p1 = −p2 = p in [35]. Finally in section 6 we calculate the classical time delay for the

scattering of two dyonic giant magnons with arbitrary relative orientations on the S5.

It would be interesting to compare the corresponding classical phase shift to a gauge

theory analysis along the lines of [9, 39, 40].
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2.3 Giant Magnons

We consider string theory on R × S5 in conformal gauge, writing the S5 part of the

theory in terms of three complex fields Zi subject to the constraint

ZiZ̄i = 1. (2.3.0.2)

The equation of motion for Zi can be written as

∂̄∂Zi +
1

2
(∂Zj ∂̄Z̄j + ∂Z̄j ∂̄Zj)Zi = 0, (2.3.0.3)

where we use the worldsheet coordinates z = 1
2
(x − t), z̄ = 1

2
(x + t). The Virasoro

constraints take the form

∂Zi∂Z̄i = ∂̄Zi∂̄Z̄i = 1 (2.3.0.4)

after setting the gauge X0 = t (X0 is the time coordinate on R× S5).

We consider a giant magnon to be any open string whose endpoints move at the

speed of light along an equator of the S5, which we choose to lie in the Z1 plane. The

appropriate boundary conditions at fixed t are

Z1(t, x → ±∞) = ei(t±p/2)+iα,

Zi(t, x → ±∞) = 0, i = 2, 3,
(2.3.0.5)

where eiα is an arbitrary overall phase and p represents the difference in longitude

between the endpoints of the string on the equator of the S5. In the gauge theory

picture, p is identified with the momentum of the magnon [9]. We may refer to p

as the ‘momentum’ of a magnon, but it should be kept in mind that the worldsheet

momentum of all of the solutions we consider is zero due to the Virasoro constraints

(2.3.0.4).

The equations (2.3.0.2)–(2.3.0.5) have infinitely many distinct solutions, which

can be partly classified by their conserved charges. The boundary conditions (2.3.0.5)

explicitly break the SO(6) symmetry of the S5 down to U(1)×SO(4). The conserved

charge associated with the U(1) is

∆− J =

√
λ

2π

∫ +∞

−∞
dx

(
1− Im[Z̄1∂tZ1]

)
, (2.3.0.6)

where
√

λ/2π is the string tension expressed in terms of the ’t Hooft coupling λ of

the dual gauge theory. The SO(4) symmetry leads to conserved angular momentum

matrix

Jab = i

√
λ

2π

∫ ∞

−∞
dx (Xa∂tXb −Xb∂tXa) , a, b = 1, . . . , 4, (2.3.0.7)
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which we have written in terms of the real basis defined by Z2 = X1 + iX2, Z3 =

X3 + iX4.

2.4 Dressing Method for S5 = SU(4)/Sp(2)

In order to construct solutions of (2.3.0.2)–(2.3.0.5) we will apply the dressing method

of Zakharov and Mikhailov [28, 29] for building soliton solutions of classically inte-

grable equations, following the application of this method to the SU(4)/Sp(2) coset

model given in [44].

We will see that an elementary soliton of the SU(4)/Sp(2) coset model is char-

acterized by the choice of a complex parameter λ and a point w on P3. The most

general solution obtainable1 via the dressing method takes the form of a scattering

state of any number of elementary solitons or bound states of them. Each individual

soliton carries some ‘momentum’ pi and a single non-zero SO(4) angular momentum

Ji (i.e., the eigenvalues of the matrix (2.3.0.7) for a single soliton are {+Ji,−Ji, 0, 0}).
These two quantities are encoded in the parameter λi of the soliton, while the pa-

rameter wi determines the plane of its angular momentum in the transverse R4 (i.e.,

the eigenvetors of (2.3.0.7)).

The simplest context in which the dressing method may be applied is the reduced

[14] principal chiral model describing a unitary matrix g(z, z̄) satisfying the equation

of motion

∂̄(∂g g−1) + ∂(∂̄g g−1) = 0 (2.4.0.8)

subject to the Virasoro constraints

(ig−1∂g)2 = 1, (ig−1∂̄g)2 = 1. (2.4.0.9)

Given any solution g(z, z̄) of these equations, the dressing method provides for the

construction of an appropriate dressing matrix χ such that

g′(z, z̄) = χ(z, z̄)g(z, z̄) (2.4.0.10)

is also solution of (2.4.0.8) and (2.4.0.9).

For the application to classical string theory on R × S5 we are not interested

in a principal chiral model but rather a coset model. In previous work [34] the

1It is not clear to us that all solutions may be obtained through the dressing method. For example,
we have been unable to obtain the dyonic giant magnon solution via the dressing method in the
SO(6)/SO(5) coset model.
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S5 = SO(6)/SO(5) was employed but for the present analysis it is more fruitful to

use the coset S5 = SU(4)/Sp(2) following the analysis of [44]. We define this coset

by imposing on g ∈ SU(4) the constraint

gT = J gJ −1, (2.4.0.11)

where J is the fixed antisymmetric matrix

J =




0 0 +1 0

0 0 0 +1

−1 0 0 0

0 −1 0 0




. (2.4.0.12)

A convenient parametrization of this coset, which allows us to immediately read off

the S5 coordinates Zi from the matrix g, is given by

g =




Z1 Z2 0 Z3

−Z̄2 Z̄1 −Z3 0

0 Z̄3 Z1 −Z̄2

−Z̄3 0 Z2 Z̄1




, (2.4.0.13)

which is unitary and satisfies (2.4.0.11) precisely when (2.3.0.2) holds.

To apply the dressing method, we begin with a given solution g by solving the

linear system

∂Ψ =
∂g g−1Ψ

1− λ
, ∂̄Ψ =

∂̄g g−1Ψ

1 + λ
(2.4.0.14)

to find Ψ(λ) as a function of the auxiliary complex parameter λ, subject to the initial

condition

Ψ(0) = g, (2.4.0.15)

the unitarity constraint [
Ψ(λ̄)

]†
Ψ(λ) = 1, (2.4.0.16)

and the coset constraint

Ψ(λ) = Ψ(0)JΨ(1/λ̄)J −1, (2.4.0.17)

whose role is to ensure that the dressed solution g′ we now construct will continue to

satisfy the coset condition (2.4.0.11).

Once we know Ψ(λ), the dressing factor for a single soliton may be written in

terms of the parameters (λi, wi) discussed above as [44]

χ(λ) = 1 +
λ1 − λ̄1

λ− λ1

P +
1/λ̄1 − 1/λ1

λ− 1/λ̄1

Q, (2.4.0.18)
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where P is the hermitian projection operator whose image is spanned by Ψ(λ̄1)w1 for

any constant four-component complex vector w1 (the overall scale of w1 clearly drops

out so it parametrizes P3) and Q is the hermitian projection operator whose image is

spanned by Ψ(1/λ1)J w̄1. Concretely,

P =
Ψ(λ̄1)w1w

†
1

[
Ψ(λ̄1)

]†

w†
1

[
Ψ(λ̄1)

]†
Ψ(λ̄1)w1

, Q =
Ψ(1/λ1)J w̄1w

T
1 J −1 [Ψ(1/λ1)]

†

wT
1 J −1 [Ψ(1/λ1)]

† Ψ(1/λ1)J w̄1

. (2.4.0.19)

Then

Ψ′(λ) = χ(λ)Ψ(λ) (2.4.0.20)

satisfies the constraints (2.4.0.16) and (2.4.0.17), and provides the desired one-soliton

solution g′ = Ψ′(0) to the original equations (2.4.0.8) and (2.4.0.9). Unlike the

SO(6)/SO(5) coset considered in [34], in this case there are no restrictions on the

complex polarization vector w1. Repeated application of this procedure can be used

to generate multi-soliton solutions.

2.5 Giant Magnons on R× S5

To apply the dressing method we begin with the vacuum solution

Z1 = eit,

Z2 = 0,

Z3 = 0,

(2.5.0.21)

which describes a point-like string moving at the speed of light around the equator of

the S5. This state clearly has ∆−J = 0. After embedding this solution into SU(4) as

in (2.4.0.13), a simple calculation reveals that the desired solution Ψ(λ) to the linear

system (2.4.0.14) subject to the constraints (2.4.0.15)–(2.4.0.17) is

Ψ(λ) = diag(e+iZ(λ), e−iZ(λ), e+iZ(λ), e−iZ(λ)), Z(λ) =
z

λ− 1
+

z̄

λ + 1
. (2.5.0.22)

2.5.1 A single dyonic giant magnon

Let us begin by applying the dressing method once to the vacuum (2.5.0.21). We will

reproduce the dyonic giant magnon solution of [16]. The value of this exercise is to set

some notation for subsequent solutions and also to illustrate the physical significance
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of the parameters λ1 and w1 which characterize the soliton. We parametrize the latter

as

w1 =




+ ie+y1/2+iψ1/2+iχ1/2 cos α1

e−y1/2−iψ1/2+iχ1/2 cos β1

−ie+y1/2−iψ1/2−iχ1/2 sin α1

e−y1/2+iψ1/2−iχ1/2 sin β1




, (2.5.1.23)

where y1 is complex and the remaining four angles are real. Here we have used the

fact that the overall scale of w1 drops out. Application of the dressing method gives

the solution

Z1 =
e+it

|λ1|
[
λ̄1e

−2iZ(λ1)+ȳ1

D1

+
λ1e

+2iZ(λ1)−ȳ1

D1

]
,

Z2 =
ieiψ1(λ̄1 − λ1)

|λ1|
[
e−it cos α1 cos β1

D1

+
e+it sin α1 sin β1

D1

]
,

Z3 =
ieiχ1(λ̄1 − λ1)

|λ1|
[
e−it cos α1 sin β1

D1

− e+it sin α1 cos β1

D1

]
,

(2.5.1.24)

where

D1 = e−2iZ(λ1)+ȳ1 + e−2iZ(λ̄1)−y1 . (2.5.1.25)

The solution (2.5.1.24) carries U(1) charge

∆− J =

√
λ

4π

∣∣∣∣λ1 − λ̄1 − 1

λ1

+
1

λ̄1

∣∣∣∣ (2.5.1.26)

and one non-zero SO(4) angular momentum

J1 =

√
λ

4π

∣∣∣∣λ1 − λ̄1 +
1

λ1

− 1

λ̄1

∣∣∣∣ . (2.5.1.27)

Note that ∆− J is always strictly positive, but we have defined J1 to be positive by

choice–the eigenvalues of (2.3.0.7) come in ± pairs. Furthermore, the value of p for

this solution, which may be read off by comparing (2.5.1.24) to (2.3.0.5), is given by

eip =
λ1

λ̄1

. (2.5.1.28)

In fact, λ1 and λ̄1 are (sometimes up to an author-dependent normalization factor) the

quantities frequently referred to in the recent literature as x+ and x− (see in particular

[13, 45]). From the worldsheet point of view, the solution (2.5.1.24) describes a wave

which propagates with phase velocity (i.e., the waveform depends on x − v1t) given

by

v1 =
λ1 + λ̄1

1 + |λ1|2 . (2.5.1.29)
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Using (2.5.1.26), (2.5.1.27) and (2.5.1.28), we find that the dispersion relation

takes the familiar form for the dyonic giant magnon [15, 16]

∆− J =

√
J2

1 +
λ

π2
sin2 p

2
. (2.5.1.30)

Note that all of the parameters associated with the choice of the ‘polarization’ w1

completely drop out of the expressions for the conserved charges and the dispersion

relation.

We can be more explicit about the role of these parameters. The parameters α1,

β1, ψ1 and χ1 determine the ‘orientation’ of the soliton in the transverse R4. Specifi-

cally, the angular momentum matrix (2.3.0.7) has eigenvalues (+J1,−J1, 0, 0), so the

soliton is characterized by an amount J1 of angular momentum inside a certain 2-

plane in the transverse R4. The four parameters α1, β1, ψ1 and χ1 label the particular

plane (they are coordinates on the Grassmannian Gr2(R4)).

The remaining complex parameter y1 can be completely absorbed by making the

translation

Z(λ1) → Z(λ1)− i

2
ȳ1. (2.5.1.31)

The real part of y1 corresponds to a translation of the soliton in the x direction while

the imaginary part of y1 corresponds to a rotation inside the plane of the soliton’s

angular momentum.

2.5.2 A scattering state of two dyonic magnons, with three

spins on S5

Having analyzed in detail the parameter space for a single soliton in the last section,

we are now in a position to use the dressing method to construct multi-soliton scat-

tering states. The general n-soliton solution is specified by n complex numbers λi

which encode the energy (2.5.1.26) and angular momentum (2.5.1.27) of each soliton.

Each soliton with non-zero angular momentum is also characterized by the choice of

a 2-plane inside the transverse R4. Finally, the n-soliton solution has a non-obvious

classical shift symmetry of the form (2.5.1.31) for each i. For n solitons this gives an

additional 2n real moduli, but 2 linear combinations can be absorbed into overall t

and x translations.

The procedure for constructing an n-soliton solution is therefore clear, but generic

solutions are rather messy. We display here an explicit formula only for the special
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case of two dyonic giant magnons with completely orthogonal angular momenta,

specifically, with soliton 1’s angular momentum in the Z2 plane and soliton 2’s angular

momentum in the Z3 plane. To this end we pick the polarization vectors

wT
1 =

(
i 1 0 0

)
, wT

2 =
(
i 0 0 1

)
. (2.5.2.32)

Applying the dressing method twice with parameters (λ1, w1) and then (λ2, w2) gives

the solution

Z1 =
e+it

|λ1λ2|
N12

D12

,

Z2 =
ie−it(λ̄1 − λ1)λ2

|λ1λ2|
[
λ1λ̄2 − 1

λ1λ2 − 1
e2iZ(λ2) +

λ̄1 − λ̄2

λ̄1 − λ2

e2iZ(λ̄2)

]
e2i(Z(λ1)+Z(λ̄1))

D12

,

Z3 =
ie−it(λ̄2 − λ2)λ1

|λ1λ2|
[
λ̄1λ2 − 1

λ1λ2 − 1
e2iZ(λ1) +

λ̄1 − λ̄2

λ1 − λ̄2

e2iZ(λ̄1)

]
e2i(Z(λ2)+Z(λ̄2))

D12

,

(2.5.2.33)

where

N12 =
(
λ1e

2iZ(λ1) λ̄1e
2iZ(λ̄1)

)



∣∣∣λ1λ̄2−1
λ1λ2−1

∣∣∣
2

1

1
∣∣∣λ1−λ2

λ1−λ̄2

∣∣∣
2




(
λ2e

2iZ(λ2)

λ̄2e
2iZ(λ̄2)

)
,

D12 =
(
e2iZ(λ1) e2iZ(λ̄1)

)



∣∣∣λ1λ̄2−1
λ1λ2−1

∣∣∣
2

1

1
∣∣∣λ1−λ2

λ1−λ̄2

∣∣∣
2




(
e2iZ(λ2)

e2iZ(λ̄2)

)
,

(2.5.2.34)

and Z(λ) is defined in 2.5.0.22.

This solution carries U(1) charge

∆− J =

√
λ

4π

2∑
i=1

∣∣∣∣λi − λ̄i − 1

λi

+
1

λ̄i

∣∣∣∣ (2.5.2.35)

and two independent angular momenta

Ji =

√
λ

4π

∣∣∣∣λi − λ̄i +
1

λi

− 1

λ̄i

∣∣∣∣ , (2.5.2.36)

which are the eigenvalues of the angular momentum matrix (2.3.0.7) in the Z2 and

Z3 planes respectively. The total momentum of this giant magnon is

eip = ei(p1+p2) =
λ1

λ̄1

λ2

λ̄2

, (2.5.2.37)

and the dispersion relation can be written as

∆− J =

√
J2

1 +
λ

π2
sin2 p1

2
+

√
J2

2 +
λ

π2
sin2 p2

2
. (2.5.2.38)
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Special cases of the solution (2.5.2.33) have appeared previously in the literature.

The case p1 = −p2 = π was presented in [34], and a generalization to p1 = −p2 was

given in [35]. Making direct contact with equation (5.19) of the former requires taking

the shift parameters ci in that work to be

tanh c1 = − tanh c2 = −
∣∣∣∣
λ2

λ1

∣∣∣∣
|λ1|2 − 1

|λ2|2 − 1
. (2.5.2.39)

2.5.3 A scattering state of two HM magnons, with arbitrary

positions on the transverse S3

In the previous subsection we chose the particular polarization vectors (2.5.2.32) in

order to avoid too much clutter in (2.5.2.33). An interesting limit in which the

formulas simplify is when |λi| → 1. Taking λi onto the unit circle sets the angular

momentum of each soliton to zero–the dyonic giant magnon reduces to the elementary

Hofman-Maldacena magnon [9]. Each such magnon is characterized by a momentum

p and a unit vector na in the transverse R4 which specifies the polarization of its

fluctuation away from the equator of the S5. A giant magnon with polarization na

describes a scalar field impurity φa, a = 1, 2, 3, 4 in the dual gauge theory. Using

the real basis defined under (2.3.0.7), the solution for such a scattering state can be

written as

Z1 = eit +
eit

D12

[
cos p1

2
− cos p2

2
+ i sin p1

2
tanh u1 − i sin p2

2
tanh u2

]
,

Xa =
1

D12

[
na

1 sin p1

2
sech u1 − na

2 sin p2

2
sech u2

]
, a = 1, 2, 3, 4,

(2.5.3.40)

where

ui = i(Z(λi)− Z(λ̄i)) = (x− t cos pi

2
) csc pi

2
(2.5.3.41)

and now

D12 =
1− cos p1

2
cos p2

2
− sin p1

2
sin p2

2
[tanh u1 tanh u2 + (n1 · n2) sech u1 sech u2]

cos p2

2
− cos p1

2

.

(2.5.3.42)

It is also straightforward to obtain this solution via the Bäcklund transformation (see

[46] in particular). The conserved charges and dispersion relation of this solution do

not depend on the polarization vectors na
i .
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2.6 Classical Time Delay for Scattering of Dyonic

Magnons

With explicit formulas for the scattering solutions in hand, it is a simple matter to

read off the classical time delay for soliton scattering. To find the time delay as soliton

1 passes soliton 2 (let us take v1 > v2 > 0 with the velocities vi given by (2.5.1.29) we

set x = v1(t− δt) and compare the solution at t → ±∞ to the single soliton solution.

The total time delay is then ∆T12 = δt+ − δt−.

We are particularly interested in seeing the dependence of the time delay on the

relative orientations of the angular momenta of the two scattering solitons. Without

loss of generality we can take the polarization of w1 as in (2.5.2.32), but we keep w2

arbitrary as in (2.5.1.23). We find

∆T12 =
i

2

|1− λ1|2|1 + λ1|2
λ2

1 − λ̄2
1

log
[
(A cos2 α2 + B sin2 α2)(A cos2 β2 + B sin2 β2)

]
,

(2.6.0.43)

where

A =
|λ1 − λ2|2
|λ1 − λ̄2|2

, B =
|λ1 − 1/λ̄2|2
|λ1 − 1/λ2|2 . (2.6.0.44)

It would be interesting to evaluate the corresponding classical phase shift δ12 (i.e.,

the S-matrix element eiδ12), which may be obtained by integrating ∆T12 with respect

to the energy of soliton 1 (2.5.1.26) while holding the angular momentum (2.5.1.27)

fixed, and to compare the result with a corresponding gauge theory calculation along

the lines of [39, 40].

We can subject 2.6.0.43 to some consistency checks by comparing special cases of

the formula to known results. First of all, we can recover the scattering of two HM

magnons by taking λi = eipi/2 on the unit circle. In this case we obtain

∆T12 = tan
p1

2
log

[
1− cos 1

2
(p1 − p2)

1− cos 1
2
(p1 + p2)

]
, (2.6.0.45)

in complete agreement with the result of [9]. Note that this result is independent of

the positions of the two magnons on the transverse S3, in accord with the expectation

of [9]. The result (2.6.0.45) can also be read off directly from the solution (2.5.3.40).

Another check is obtained by setting α2 = β2 = 0 so that we have two dyonic

giant magnons whose angular momenta both lie within the Z2 plane, leading to

∆T12 = 2i
|1− λ1|2|1 + λ1|2

λ2
1 − λ̄2

1

log

∣∣∣∣
λ1 − λ2

λ1 − λ̄2

∣∣∣∣ (2.6.0.46)
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in complete agreement with [39, 40] where this case was studied.

As a final consistency check, we can take α2 = β2 = π/2, which leads to

∆T12 = 2i
|1− λ1|2|1 + λ1|2

λ2
1 − λ̄2

1

log

∣∣∣∣
λ1 − 1/λ̄2

λ1 − 1/λ2

∣∣∣∣ . (2.6.0.47)

From equation (2.5.1.24) it is evident that this choice of orientation simply reverses

the sign of the angular momentum of the second soliton relative to α = β = 0. But

this is completely equivalent to changing λ2 → 1/λ̄2, which is indeed precisely the

transformation between (2.6.0.46) and (2.6.0.47).



Chapter 3

Exact solutions for N-magnon

scattering

3.1 Abstract

Giant magnon solutions play an important role in various aspects of the AdS/CFT

correspondence. We apply the dressing method to construct an explicit formula for

scattering states of an arbitrary number N of magnons on R × S3. The solution

can be written in Hirota form and in terms of determinants of N × N matrices.

Such a representation may prove useful for the construction of an effective particle

Hamiltonian describing magnon dynamics.

3.2 Introduction

Classical string solutions in AdS5×S5 play an important role in understanding various

aspects of the AdS/CFT correspondence (see [47, 48, 49, 50] for review). Integrability

[51] is a powerful computational tool which has enabled many quantitative checks of

the correspondence. A lot of work has been done exploring both string theory and

gauge theory sides of the correspondence, culminating in the proposal for an exact

S-matrix for planar N = 4 Yang-Mills theory [52].

Magnons are building blocks of the spectrum in the spin chain description of

AdS/CFT. The Hofman-Maldacena elementary magnon corresponds to a particular

string configuration moving on an R × S2 subspace of AdS5 × S5 [9]. String theory

on R × S2 (or R × S3) is classically equivalent to sine-Gordon theory (or complex

22
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sine-Gordon theory) via Pohlmeyer reduction [14, 53] (see [54] for AdS case). Giant

one-magnon solutions on R × S2 and R × S3 map to one-soliton solutions in sine-

Gordon and complex sine-Gordon respectively [9, 16]. Using this map, the scattering

phase of two magnons was computed in [9] and shown to match that of [55]. Moreover,

a sine-Gordon-like action has been proposed for the full Green-Schwarz superstring

on AdS5 × S5 [56, 57].

In sine-Gordon theory, the dynamics of N -solitons is captured by the Ruijsenaars-

Schneider model [58, 59]. Specifically, the eigenvalues of a particular N × N matrix

entering into the description of the N -soliton solution (or τ -function) of sine-Gordon

evolve according to the Ruijsenaars-Schneider Hamiltonian. Positions and momenta

in the Hamiltonian are related to the positions and rapidities of the solitons, and

the phase shift for soliton scattering can be calculated from the quantum mechanical

model. It is natural to wonder what the analagous Hamiltonian in the case of complex

sine-Gordon and giant magnons is. Explicit N -soliton solutions (in τ -function form)

serve as a useful starting point in deriving the Ruijsenaars-Schneider model from the

sine-Gordon theory, and it is likely that a similar technique may prove useful for

complex sine-Gordon and giant magnons as well.

Interest for an effective particle description of giant magnon scattering emerged

through the work of Dorey, Hofman and Maldacena [60], where they illuminated

the nature of double poles appearing in the proposed S-matrix of planar N = 4

Yang-Mills [52]. They were able to interpret these double poles as occurring from

the exchange of pairs of particles, and in particular to precisely match their position

on the complex domain with the prediction of [52], under the assumption that the

exchanged particles are BPS magnon boundstates [15]. By studying the quantum

mechanical problem corresponding to an effective particle Hamiltonian describing the

scattering of two magnons with very small relative velocity, one should obtain an S-

matrix whose double poles compare to the aforementioned results in the appropriate

limit.

Superposing magnons is a difficult problem because of the nonlinear equations of

motion they satisfy. Integrability allows the use of algebraic methods such as dressing

to construct solutions of nonlinear equations of motion [28, 29]. Indeed, the dressing

method was used to describe the scattering of two magnons and spikes on R × S5

(and various subsectors) as well as spikes in AdS3 [34, 61, 62, 63, 25, 26]. However,

it is a tedious process to obtain even the three-magnon solution. In this work we
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will present an explicit string solution on R×S3 describing scattering of an arbitrary

number N of magnons by solving the recursive formula following from the dressing

the (N − 1)-magnon.

This work is organized as follows. In section 3 we review the dressing method for

R×S3 and derive a recursive formula for the N -magnon solution in terms of (N −1)-

magnons. In section 4 we solve this recursion and present the N -magnon solution.

The solution can be presented in various ways, we find useful Hirota and determinental

forms. As a consistency check we verify that our solution separates asymptotically

into a linear sum of N well-separated single magnon solutions and demonstrate that

the only nontrivial effect of the N -magnon interaction is the expected sum of two-

magnon time delays. The appendix clarifies the rules to construct the N -magnon

solution and some examples are presented.

3.3 Giant magnons on R× S3

The classical action for bosonic strings on R× S3 can be written as

S = −1

2

∫
dt dx

[
∂aXµ∂aXµ + Λ(Xi ·Xi − 1)

]
, (3.3.0.1)

where µ runs from 0 to 4 and i from 1 to 4. The Xi are embedding coordinates on

R4 and the Lagrange multiplier Λ constrains them on S3.

After we impose the gauge X0(t, x) = t, eliminate Λ in terms of the embedding

coordinates and switch to light-cone worldsheet coordinates z = (x − t)/2, z̄ =

(x + t)/2, the equations of motion and Virasoro constraints become

∂̄∂Zi +
1

2
(∂Zj ∂̄Z̄j + ∂Z̄j ∂̄Zj)Zi = 0, ZiZ̄i = 1, (3.3.0.2)

and

∂Zi∂Z̄i = ∂̄Zi∂̄Z̄i = 1, (3.3.0.3)

where we have used the parametrization

Z1 = X1 + iX2, Z2 = X3 + iX4. (3.3.0.4)

Giant magnons on R×S3 are defined as solutions to the above system of equations,

obeying the boundary conditions

Z1(t, x → ±∞) = eit±ip/2+iα ,

Z2(t, x → ±∞) = 0. (3.3.0.5)
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The physical meaning of the boundary conditions is that the endpoints of the string

lie on the equator of the S3 on the Z1 plane moving at the speed of light, and the

quantity p called total momentum represents the angular distance between them.

Finally, α can be any real constant.

3.3.1 Review of the dressing method

The dressing method is a general procedure for constructing soliton solutions to in-

tegrable differential equations first developed by Zakharov and Mikhailov [28, 29].

It was applied in the context of giant magnons [34, 61], providing classical solutions

for a variety of backgrounds. In what follows, we will review the basic steps of the

method as they apply to the particular case of R× S3.

We start by defining the matrix-valued field

g(z, z̄) ≡
(

Z1 −iZ2

−iZ̄2 Z̄1

)
∈ SU(2) (3.3.1.6)

and recasting (3.3.0.2) into

∂A + ∂̄B = 0, (3.3.1.7)

where the currents A and B are given by

A = i∂̄gg−1 , B = i∂gg−1. (3.3.1.8)

The Virasoro constraints (3.3.0.3) can be also written as

TrA2 = TrB2 = 2. (3.3.1.9)

The nonlinear second order equation for g in (3.3.1.7) is equivalent to a system of

linear first order equations for auxiliary field Ψ(z, z̄, λ)

i∂Ψ =
AΨ

1− λ
, i∂̄Ψ =

BΨ

1 + λ
(3.3.1.10)

provided (3.3.1.10) holds for any value of the new complex variable λ called the

spectral parameter, with A and B independent of λ.

Given any known solution g, we can determine A, B and solve (3.3.1.10) to find

Ψ(λ) subject to the condition

Ψ(λ = 0) = g. (3.3.1.11)
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Any ambiguity on factors that don’t depend on z, z̄ is removed by also imposing the

unitarity condition [
Ψ(λ̄)

]†
Ψ(λ) = I. (3.3.1.12)

It is easy to show that the equations of motion for the auxiliary field (3.3.1.10) are

covariant under the following transformation with a λ-dependent parameter χ(λ),

Ψ(λ) → Ψ′(λ) = χΨ(λ),

A → A′ = χAχ−1 + i(1 + λ)∂̄χχ−1,

B → B′ = χBχ−1 + i(1− λ)∂̄χχ−1,

(3.3.1.13)

under the condition that A′, B′ remain independent of λ. Thus, performing the above

transformation to the known solution (Ψ(λ), A, B) produces a new solution to (3.3.1.7)

with g′ = Ψ′(λ = 0).

The condition (3.3.1.12) implies that χ(λ) must obey

[
χ(λ̄)

]†
χ(λ) = I, (3.3.1.14)

whereas the demand that A′, B′ are independent of λ can be translated as further

constraints on the analytic properties of χ(λ). For the R × S3 case it turns out [34]

that the dressing factor χ(λ) is

χ(λ) = I +
λ1 − λ̄1

λ− λ1

P, (3.3.1.15)

where λ1 is an arbitrary complex number and the hermitian projection operator P is

given by

P =
υ1υ

†
1

υ†1υ1

, υ1 = Ψ(λ̄1)e, (3.3.1.16)

where e is an arbitrary vector with constant complex entries called the polarization

vector. The projector P does not depend on the length of the e vector.

The determinant of χ(λ) is

det χ(λ) =
λ− λ̄1

λ− λ1

(3.3.1.17)

and if we want our dressed solution χ(0)Ψ(0) to sit in SU(2) we should rescale it by

the compensating factor
√

λ1/λ̄1.

Putting everything together, the new solution g′ = Ψ′(λ = 0) to the system

(3.3.1.7) is given by

g′ =

√
λ1

λ̄1

(
I +

λ1 − λ̄1

−λ1

P

)
g. (3.3.1.18)
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3.3.2 Application and recursion

This procedure can be repeated with g′ as the solution we begin with, in order to

obtain another new solution. In fact, once we have solved the differential equation

(3.3.1.10) for Ψ(λ) the first time, we no longer need to repeat this step for Ψ′(λ), as we

have that information already. Thus, from this point the method proceeds iteratively

in a purely algebraic manner.

More specifically, we can show that the auxiliary field ΨN(λ) that is constructed

after N iterations is related to the auxiliary field ΨN−1(λ) occuring after N − 1

iterations through

ΨN(λ) =

√
λN

λ̄N

1

(λ− λN)(ab− cd)

(
ψN

11 ψN
12

ψN
21 ψN

22

)
, (3.3.2.19)

where

ψN
11 = (−cd(λ− λN) + ab(λ− λ̄N))ΨN−1

11 (λ)− ac(λN − λ̄N)ΨN−1
21 (λ),

ψN
12 = (−cd(λ− λN) + ab(λ− λ̄N))ΨN−1

12 (λ)− ac(λN − λ̄N)ΨN−1
22 (λ),

ψN
21 = (ab(λ− λN)− cd(λ− λ̄N))ΨN−1

21 (λ) + bd(λN − λ̄N)ΨN−1
11 (λ),

ψN
22 = (ab(λ− λN)− cd(λ− λ̄N))ΨN−1

22 (λ) + bd(λN − λ̄N)ΨN−1
12 (λ),(3.3.2.20)

and

a = ΨN−1
11 (λ̄N) + ΨN−1

12 (λ̄N),

b = ΨN−1
21 (λN)−ΨN−1

22 (λN),

c = ΨN−1
11 (λN)−ΨN−1

12 (λN),

d = ΨN−1
21 (λ̄N) + ΨN−1

22 (λ̄N). (3.3.2.21)

The new solution of (3.3.1.7) follows from (3.3.2.19) when taking λ = 0. Due

to (3.3.1.6) we can then read off the relation between the Zi coordinates of the two

solutions as

ZN
1 =

1

|λN |(ab− cd)

[
(abλ̄N − cdλN)ZN−1

1 + ac(λN − λ̄N)(−iZ̄N−1
2 )

]
,

ZN
2 =

i

|λN |(ab− cd)

[
(abλ̄N − cdλN)(−iZN−1

2 ) + ac(λN − λ̄N)Z̄N−1
1

]
.(3.3.2.22)

Starting with the simple ‘vacuum’ solution representing a point particle rotating

around the equator in the Z1 plane,

Z1 = eit ,

Z2 = 0, (3.3.2.23)
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and using the polarization vector e = (1, 1) the dressing method yields [34] the

single magnon solution on R × S3 first obtained in [16] as a generalization of the

original Hofman-Maldacena giant magnon solution on R× S2. Applying the method

once more using the same polarization vector as before then gives a solution which

asymptotically reduces to a sum of two single magnon solutions, and whose conserved

charges are sums of the respective charges of two single magnon solutions. Hence it

can be interpreted as a scattering state of two single magnons.

From the above considerations, it is natural to expect that the N -times dressed

solution will correspond to a scattering state of N magnons. The quantities λi are

parameters of the N -magnon solution which we can more conventionally express as

λi = rie
ipi/2, with pi the momentum of each constituent magnon and ri a quantity

associated to its U(1) charge.

3.4 The N-magnon solution

Successive application of the dressing method suggests a compact closed form for the

N -magnon solution, which can be written as follows

Z1 =
eit

∏N
l=1 |λl|

N1

D
,

Z2 = −i
e−it

∏N
l=1 |λl|

N2

D
, (3.4.0.24)

with

D =
∑

µi=0,1

exp

[
2N∑
i<j

Bij[µiµj + (µi − 1)(µj − 1)] +
2N∑
i=1

µi(2iZi)

]
,

N1 =
∑

µi=0,1

exp

[
2N∑
i<j

Bij[µiµj + (µi − 1)(µj − 1)] +
2N∑
i=1

µi(2iZi + Ci)

]
, (3.4.0.25)

N2 =
∑

µi=0,1

exp

[
2N∑
i<j

Bij[µiµj + (µi − 1)(µj − 1)] +
2N∑
i=1

[µi(2iZi) + (µi − 1)Ci]

]
,

where

Zi =
z

λi − 1
+

z̄

λi + 1
,

eBij = λi − λj, (3.4.0.26)

eCi = λi,
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and N is the number of magnons.

In the above formula the indices i, j take the 2N values (1, 1̄, 2, 2̄, ..., N̄), i < j

implies this particular ordering, and we identify λk̄ ≡ λ̄k, Zk̄ ≡ Z̄k
1. The symbol∑

µi=0,1 implies the summation over all possible combinations of µ1 = 0, 1, µ1̄ =

0, 1, . . . , µN̄ = 0, 1 under the conditions

2N∑
i=1

µi =





N, for N1, D,

N + 1, for N2.
(3.4.0.27)

This description makes contact with a variety of N -soliton expressions of other

integrable systems (for example see [64]).

We have numerically checked (3.4.0.25) for high number of magnons, whereas in

Fig. (3.1) we plot |Z2| for the first 4 magnons. At the end of the chapter we give

some examples.

Our R×S3 N -magnon solution is reduced to the R×S2 one if we let the spectral

parameters λl lie on a unit circle, |λl| = 1.

3.4.1 Hirota form of the solution

It is possible to write Z1, Z2 of (3.4.0.24) in an equivalent form similar to Hirota’s

[65], where N1, N2, D are given by

D =
∑

2NCN

d(i1, i2, . . . , iN) exp [2i(Zi1 + Zi2 + · · ·+ ZiN )] ,

N1 =
∑

2NCN

n1(i1, i2, . . . , iN) exp [2i(Zi1 + Zi2 + · · ·+ ZiN )] , (3.4.1.28)

N2 =
∑

2NCN+1

n2(i1, i2, . . . , iN+1) exp
[
2i(Zi1 + Zi2 + · · ·+ ZiN+1

)
]
,

and

d(i1, i2, . . . , iN) =

(N)∏

k<l≤N

λikil

(N)∏
N<m<n

λimin ,

n1(i1, i2, . . . , iN) =
N∏

j=1

λij

(N)∏

k<l≤N

λikil

(N)∏
N<m<n

λimin , (3.4.1.29)

n2(i1, i2, . . . , iN+1) =
2N∏

j=N+1

λij

(N+1)∏

k<l≤N+1

λikil

(N−1)∏
N+1<m<n

λimin ,

1Alternatively we may define new quantities ρk such that ρ2l−1 = λl and ρ2l = λ̄l, and similarly
for Zl. These will take values 1, 2...2N as usual.
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Figure 3.1: Plot of |Z2| for the first 4 magnons on R× S3 at time t=2 as a function
of the worldsheet coordinate x. The chosen spectral parameters are λ1 = 2ei, λ2 =
e2i, λ3 = 3e2i, λ4 = e4i.

where N is the number of magnons, NCn indicates summation over all possible com-

binations of n elements taken from N ,
∏(n) indicates the product of all possible

combinations of the n elements, and λij = λi − λj. Finally, we have arranged our

2N elements Zi as {Z1, Z̄1, . . . , Z̄N} and our 2N λ’s as {λ1, λ̄1, . . . , λ̄N}. We always

assume that i1 < . . . < iN .

Finally, we should mention that we can get a more symmetric yet complicated-

looking version of our N -magnon expressions, by factoring out the terms





∏N
l=1 λl exp

(
2i

∑N
l=1Zl

)
from N1,

∏N
l=1 λ̄l exp

(
2i

∑N
l=1Zl

)
from N2,

exp
(
2i

∑N
l=1Zl

)
from D.

(3.4.1.30)

Written in this way, D has the nice feature of being real. More importantly, and

as we will see in the following sections, this form of the N -magnon solution is useful

for analyzing its asymptotic behavior and demonstrates the symmetry that will allow

us to write it in a determinant form.
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3.4.2 Determinant form for Z1

It is known that for the (complex) sine-Gordon equation and several other integrable

equations, the N -soliton expressions similar to (3.4.0.24)-(3.4.0.27) and (3.4.1.28)-

(3.4.1.29) can also be rewritten in a form involving determinants of N ×N matrices

[66]. It is precisely expressions of this type that become particularly useful when

extracting the effective particle description of the soliton problem [59]. Motivated by

the same goal for the case of giant magnons, we haven been able to find a determinant

formula for Z1. In particular, we may write

Z1 = eit

N∏

l=1

(
λl

λ̄l

)1/2
det(I + Λ−1F Λ̄F̄ )

det(I + FF̄ )
, (3.4.2.31)

where Λ, F are N ×N matrices2 with elements

Λkl = δklλl,

Fkl = e−2iZkGkl, (3.4.2.32)

Gkl =
∏

m6=l

λkm̄

λl̄m̄

,

k, l = 1, 2, . . . , N , and I the identity matrix. Interestingly, the matrix G can further

be expressed as G = H
(
H̄

)−1
where H is a matrix with elements Hkl = (λk)

l−1. The

determinant of H is what is known in the literature as the Vandermonde determinant,

given by the simple formula

det H =
∏

k<l

(λl − λk). (3.4.2.33)

This decomposition in terms of H also reveals the property of G, that Ḡ = G−1.

Finally, one may use the property that two square matrices related by a similarity

transformation A′ = SAS−1 obey det(I + A′) = det(I + A) to regroup the matrix

products of (3.4.2.31) in a different manner if desired.

The fact that the exponents in N2 contain N +1 Zi terms complicates the deriva-

tion of a determinant formula for Z2.

3.4.3 Asymptotic behavior

In this section we will examine how our solution behaves for x → ±∞ and t → ±∞
respectively. Since the dependence of our solutions on the worldsheet coordinates is

2The matrix Λ is not to be confused with the Lagrange multiplier of (3.3.0.1).
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encoded in the factors 2iZi, the asymptotic behavior of the N -magnon solution will

be determined by their respective real parts.

Using notation similar to [34], we define

ul ≡ i(Zl − Z̄l) = κlx− νlt,

wl ≡ Zl + Z̄l,

vl ≡ wl − t, (3.4.3.34)

with

κl = −i
(λl − λ̄l)(1 + |λl|2)
|1− λl|2 |1 + λl|2

=
2(1 + r2

l )rl sin
pl

2

1 + r4
l − 2r2

l cos pl

,

νl =
−i(λ2

l − λ̄2
l )

|1− λl|2 |1 + λl|2
=

2rl sin pl

1 + r4
l − 2r2

l cos pl

, (3.4.3.35)

and in the second equality we have also employed the usual parametrization λl =

rle
ipl/2 for the spectral parameters. Additionally, the relations (3.4.3.35) imply

2iZl = ul + iwl, 2iZ̄l = −ul + iwl. (3.4.3.36)

The parameter range for a single dyonic magnon is r ∈ (0,∞) and p ∈ [0, 2π),

with p ∼ p + 2π for any other p. We can use the same restrictions for our parameters

rl, pl of the N -magnon solution, in which case the κl are clearly positive. From the

formulas (3.4.1.28)-(3.4.1.29) after we factor out (3.4.1.30), it is then easy to see that

the our solution has its boundaries on the equator of S3 on the Z1 plane. Namely,

for x → ±∞ the boundary conditions (3.3.0.5) are satisfied, with p =
∑N

l=1 pl as

expected.

Next, we proceed to determine the behavior of the solution for t → ±∞ and large

magnon separation. Without loss of generality, we can assume that the magnons are

ordered such that their velocities νk

κk
obey

ν1

κ1

>
ν2

κ2

> ... >
νN

κN

. (3.4.3.37)

In order to focus on the k-th magnon, we keep uk fixed as t → ±∞. This means

that x should scale as x = νk

κk
t + uk

κk
and in total the ul will behave as

ul = κl

(
νk

κk

− νl

κl

)
t + κl

uk

κk

. (3.4.3.38)
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In particular, the limit t → −∞ under the aforementioned ordering and scaling

implies

u1, u2, . . . , uk−1 → +∞,

uk finite, (3.4.3.39)

uk+1, uk+2, . . . , uN → −∞.

Thus, it is easy to see from (3.4.0.25)-(3.4.0.27) that the terms which dominate in

the limit have µi = 1 for i ∈ {1, . . . , k − 1, k, k + 1, . . . , N} and i ∈ {1, . . . , k −
1, k, k + 1, . . . , N} in the case of N1, D, and i ∈ {1, . . . , k − 1, k, k, k + 1, . . . , N} in

the case of N2, with the rest of the µ’s being zero.

Up to common factors that will eventually cancel out (including the divergent

terms), we can express the limiting values of N1, N2 and D as

D ∼ (
f+euk + f−e−uk

)
eiwk ,

N1 ∼
k−1∏

l=1

λl

N∏

l=k+1

λ̄l

(
λk f+ euk + λ̄k f− e−uk

)
eiwk , (3.4.3.40)

N2 ∼
k−1∏

l=1

λ̄l

N∏

l=k+1

λl λ22̄ h e2iwk ,

where f+, f−, h are functions of the spectral parameters λi given by

f+ =
k−1∏

l=1

|λk − λl|2
N∏

l=k+1

|λ̄k − λl|2,

f− =
k−1∏

l=1

|λ̄k − λl|2
N∏

l=k+1

|λk − λl|2, (3.4.3.41)

h =
k−1∏

l=1

(λk − λl)(λ̄k − λl)
N∏

l=k+1

(λk − λ̄l)(λ̄k − λ̄l).

Noticing that |h|2 = f+f−, and with the help of (3.4.0.24), (3.4.3.40) and (3.4.3.41),

we can write the t → −∞ limit of the N -magnon solution as

Z1 = eiθ1eit
[
cos

pk

2
+ i sin

pk

2
tanh(uk + δu−(k))

]
,

Z2 = eiθ2eivk
sin pk

2

cosh [uk + δu−(k)]
, (3.4.3.42)
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where3

δu−(k) =
1

2
log

f+

f−
=

k−1∑

l=1

δuk,l −
N∑

l=k+1

δuk,l (3.4.3.43)

with

δuk,l = log

∣∣∣∣
λk − λl

λ̄k − λl

∣∣∣∣ , (3.4.3.44)

and the phase factors eiθ1 , eiθ2 are independent of x and t. For completeness, we can

write them explicitly as

eiθ1 =
k−1∏

l=1

(
λl

λ̄l

)1/2 N∏

l=k+1

(
λ̄l

λl

)1/2

= exp

[
i

2

(
k−1∑

l=1

pl −
N∑

l=k+1

pl

)]
,

eiθ2 = eiζe−iθ1 =

(
h

h̄

)1/2

e−iθ1 . (3.4.3.45)

Equation (3.4.3.42) is precisely the single magnon solution on R× S3 [16, 34], up to

a pure phase and a shift in uk, which reflects the additional freedom of the solution.

The case t →∞ can be treated in a similar manner, yielding (3.4.3.42) with

δu−(k) → δu+(k) = −δu−(k),

θ1 → −θ1,

ζ → −ζ.

(3.4.3.46)

Since k is arbitrary, we have in fact proven that asymptotically our N -magnon solution

splits into N single magnon solutions. Each magnon retains its shape after scattering

with the rest of the magnons, with the effect of the interaction being encoded only in

a relative shift in uk,

δu(k) ≡ δu+(k)− δu−(k) = −2δu−(k). (3.4.3.47)

Because of (3.4.3.35), the shift in uk is usually interpreted as a time delay [67],

δt(k) ≡ δu(k)

νk

= −
k−1∑

l=1

δtk,l +
N∑

l=k+1

δtk,l, (3.4.3.48)

where

δtk,l ≡ 2δuk,l

νk

= 2i
|1− λk|2 |1 + λk|2

λ2
k − λ̄2

k

log

∣∣∣∣
λk − λl

λ̄k − λl

∣∣∣∣ (3.4.3.49)

3The signs of δu±(k) are chosen for compatibility with the most standard method of determining
time delays, whereby one performs the ansatz uk = −νkδt±(k) and solves for the position of
the magnon’s peak, given by −νkδt±(k) + δu±(k) = 0. Note the agreement with the definition
(3.4.3.48) below.
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is the time delay that occurs because of the interaction of the k-th with the l-th

magnon, namely two-magnon scattering.

Hence, our N -magnon solution exhibits the property of factorized scattering, as

expected by the integrability of the R × S3 σ-model and its classical equivalence

to the complex sine-Gordon system. Finally, the dyonic two-magnon time-delay we

retrieved in (3.4.3.49) is in complete agreement with [39, 40, 61].

3.5 Construction rules - Examples

To help clarify the meaning of the formulas (3.4.0.24)-(3.4.0.27) and (3.4.1.28)-(3.4.1.29),

we reduce them to a simple set of rules for the construction of N1, N2, D. These

rules may also facilitate computer code for generating N -magnon solutions.

The N -magnon solution can be written as

Z1 =
eit

∏N
l=1 |λl|

N1

D
,

Z2 = −i
e−it

∏N
l=1 |λl|

N2

D
. (3.5.0.50)

and it contains N spectral parameters λi along with their conjugates λ̄i that we can

arrange as the set A = {λ1, λ̄1, λ2, . . . , λN , λ̄N}.
In order to write the denominator D we take all the possible subsets of N numbers

of the set A. There are (2N)!/N !2 such subsets. For each subset we form a product

and then D is the sum of all those products. Let us see how to form the product for

a specific subset B. The product contains

a) an exponential with exponent 2i
∑

iZ(λi) ≡ 2i
∑

iZi, where λi are all the λ’s

that belong to B,

b) all the possible differences λi− λj, i < j, where λi, λj all belong to the subset

B and

c) finally all the possible differences λi − λj, i < j, where λi, λj all belong to the

complement subset of B.

The rules for N1 are the same as D except that now the product contains in

addition all the λ’s that belong to the subset B.

The rules for N2 are the same as the rules for N1, but now all the subsets B should

have N +1 elements instead of N and the product contains all the λ’s that belong to

the complement subset of B instead of the B itself.
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As an example let us write N1, N2, D in the case of 1, 2 and 3-magnons.

For 1-magnon we have [16]

D = e2iZ1 + e2iZ̄1 ,

N1 = λ1e
2iZ1 + λ̄1e

2iZ̄1 , (3.5.0.51)

N2 = λ11̄e
2i(Z1+Z̄1).

For 2-magnons we have [34]

D = λ11̄λ22̄e
2i(Z1+Z̄1) + λ12λ1̄2̄e

2i(Z1+Z2) + λ12̄λ1̄2e
2i(Z1+Z̄2)

+λ1̄2λ12̄e
2i(Z̄1+Z2) + λ1̄2̄λ12e

2i(Z̄1+Z̄2) + λ22̄λ11̄e
2i(Z2+Z̄2),

N1 = λ1λ̄1λ11̄λ22̄e
2i(Z1+Z̄1) + λ1λ2λ12λ1̄2̄e

2i(Z1+Z2) + λ1λ̄2λ12̄λ1̄2e
2i(Z1+Z̄2)

+ λ̄1λ2λ1̄2λ12̄e
2i(Z̄1+Z2) + λ̄1λ̄2λ1̄2̄λ12e

2i(Z̄1+Z̄2) + λ2λ̄2λ22̄λ11̄e
2i(Z2+Z̄2),

N2 = λ̄2λ11̄λ12λ1̄2e
2i(Z1+Z̄1+Z2) + λ2λ11̄λ12̄λ1̄2̄e

2i(Z1+Z̄1+Z̄2)

+λ̄1λ12λ12̄λ22̄e
2i(Z1+Z2+Z̄2) + λ1λ1̄2λ1̄2̄λ22̄e

2i(Z̄1+Z2+Z̄2). (3.5.0.52)

For 3-magnons we have

D = λ11̄λ12λ1̄2λ2̄3λ2̄3̄λ33̄e
2i(Z1+Z̄1+Z2) + λ11̄λ12̄λ1̄2̄λ23λ23̄λ33̄e

2i(Z1+Z̄1+Z̄2)

+ λ11̄λ13λ1̄3λ22̄λ23̄λ2̄3̄e
2i(Z1+Z̄1+Z3) + λ11̄λ13̄λ1̄3̄λ22̄λ23λ2̄3e

2i(Z1+Z̄1+Z̄3)

+ λ12λ12̄λ22̄λ1̄3λ1̄3̄λ33̄e
2i(Z1+Z2+Z̄2) + λ12λ13λ23λ1̄2̄λ1̄3̄λ2̄3̄e

2i(Z1+Z2+Z3)

+ λ12λ13̄λ23̄λ1̄2̄λ1̄3λ2̄3e
2i(Z1+Z2+Z̄3) + λ12̄λ13λ2̄3λ1̄2λ1̄3̄λ23̄e

2i(Z1+Z̄2+Z3)

+ λ12̄λ13̄λ2̄3̄λ1̄2λ1̄3λ23e
2i(Z1+Z̄2+Z̄3) + λ13λ13̄λ33̄λ1̄2λ1̄2̄λ22̄e

2i(Z1+Z3+Z̄3)

+ λ1̄2λ1̄2̄λ22̄λ13λ13̄λ33̄e
2i(Z̄1+Z2+Z̄2) + λ1̄2λ1̄3λ23λ12̄λ13̄λ2̄3̄e

2i(Z̄1+Z2+Z3)

+ λ1̄2λ1̄3̄λ23̄λ12̄λ13λ2̄3e
2i(Z̄1+Z2+Z̄3) + λ1̄2̄λ1̄3λ2̄3λ12λ13̄λ23̄e

2i(Z̄1+Z̄2+Z3)

+ λ1̄2̄λ1̄3̄λ2̄3̄λ12λ13λ23e
2i(Z̄1+Z̄2+Z̄3) + λ1̄3λ1̄3̄λ33̄λ12λ12̄λ22̄e

2i(Z̄1+Z3+Z̄3)

+ λ22̄λ23λ2̄3λ11̄λ13̄λ1̄3̄e
2i(Z2+Z̄2+Z3) + λ22̄λ23̄λ2̄3̄λ11̄λ13λ1̄3e

2i(Z2+Z̄2+Z̄3)

+ λ23λ23̄λ33̄λ11̄λ12̄λ1̄2̄e
2i(Z2+Z3+Z̄3) + λ2̄3λ2̄3̄λ33̄λ11̄λ12λ1̄2e

2i(Z̄2+Z3+Z̄3),
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N1 = λ1λ̄1λ2λ11̄λ12λ1̄2λ2̄3λ2̄3̄λ33̄e
2i(Z1+Z̄1+Z2) + λ1λ̄1λ̄2λ11̄λ12̄λ1̄2̄λ23λ23̄λ33̄e

2i(Z1+Z̄1+Z̄2)

+ λ1λ̄1λ3λ11̄λ13λ1̄3λ22̄λ23̄λ2̄3̄e
2i(Z1+Z̄1+Z3) + λ1λ̄1λ̄3λ11̄λ13̄λ1̄3̄λ22̄λ23λ2̄3e

2i(Z1+Z̄1+Z̄3)

+ λ1λ2λ̄2λ12λ12̄λ22̄λ1̄3λ1̄3̄λ33̄e
2i(Z1+Z2+Z̄2) + λ1λ2λ3λ12λ13λ23λ1̄2̄λ1̄3̄λ2̄3̄e

2i(Z1+Z2+Z3)

+ λ1λ2λ̄3λ12λ13̄λ23̄λ1̄2̄λ1̄3λ2̄3e
2i(Z1+Z2+Z̄3) + λ1λ̄2λ3λ12̄λ13λ2̄3λ1̄2λ1̄3̄λ23̄e

2i(Z1+Z̄2+Z3)

+ λ1λ̄2λ̄3λ12̄λ13̄λ2̄3̄λ1̄2λ1̄3λ23e
2i(Z1+Z̄2+Z̄3) + λ1λ3λ̄3λ13λ13̄λ33̄λ1̄2λ1̄2̄λ22̄e

2i(Z1+Z3+Z̄3)

+ λ̄1λ2λ̄2λ1̄2λ1̄2̄λ22̄λ13λ13̄λ33̄e
2i(Z̄1+Z2+Z̄2) + λ̄1λ2λ3λ1̄2λ1̄3λ23λ12̄λ13̄λ2̄3̄e

2i(Z̄1+Z2+Z3)

+ λ̄1λ2λ̄3λ1̄2λ1̄3̄λ23̄λ12̄λ13λ2̄3e
2i(Z̄1+Z2+Z̄3) + λ̄1λ̄2λ3λ1̄2̄λ1̄3λ2̄3λ12λ13̄λ23̄e

2i(Z̄1+Z̄2+Z3)

+ λ̄1λ̄2λ̄3λ1̄2̄λ1̄3̄λ2̄3̄λ12λ13λ23e
2i(Z̄1+Z̄2+Z̄3) + λ̄1λ3λ̄3λ1̄3λ1̄3̄λ33̄λ12λ12̄λ22̄e

2i(Z̄1+Z3+Z̄3)

+ λ2λ̄2λ3λ22̄λ23λ2̄3λ11̄λ13̄λ1̄3̄e
2i(Z2+Z̄2+Z3) + λ2λ̄2λ̄3λ22̄λ23̄λ2̄3̄λ11̄λ13λ1̄3e

2i(Z2+Z̄2+Z̄3)

+ λ2λ3λ̄3λ23λ23̄λ33̄λ11̄λ12̄λ1̄2̄e
2i(Z2+Z3+Z̄3) + λ̄2λ3λ̄3λ2̄3λ2̄3̄λ33̄λ11̄λ12λ1̄2e

2i(Z̄2+Z3+Z̄3),

N2 = λ3λ̄3λ11̄λ12λ12̄λ1̄2λ1̄2̄λ22̄λ33̄e
2i(Z1+Z̄1+Z2+Z̄2) + λ̄2λ̄3λ11̄λ12λ13λ1̄2λ1̄3λ23λ2̄3̄e

2i(Z1+Z̄1+Z2+Z3)

+ λ̄2λ3λ11̄λ12λ13̄λ1̄2λ1̄3̄λ23̄λ2̄3e
2i(Z1+Z̄1+Z2+Z̄3) + λ2λ̄3λ11̄λ12̄λ13λ1̄2̄λ1̄3λ2̄3λ23̄e

2i(Z1+Z̄1+Z̄2+Z3)

+ λ2λ3λ11̄λ12̄λ13̄λ1̄2̄λ1̄3̄λ2̄3̄λ23e
2i(Z1+Z̄1+Z̄2+Z̄3) + λ2λ̄2λ11̄λ13λ13̄λ1̄3λ1̄3̄λ33̄λ22̄e

2i(Z1+Z̄1+Z3+Z̄3)

+ λ̄1λ̄3λ12λ12̄λ13λ22̄λ23λ2̄3λ1̄3̄e
2i(Z1+Z2+Z̄2+Z3) + λ̄1λ3λ12λ12̄λ13̄λ22̄λ23̄λ2̄3̄λ1̄3e

2i(Z1+Z2+Z̄2+Z̄3)

+ λ̄1λ̄2λ12λ13λ13̄λ23λ23̄λ33̄λ1̄2̄e
2i(Z1+Z2+Z3+Z̄3) + λ̄1λ2λ12̄λ13λ13̄λ2̄3λ2̄3̄λ33̄λ1̄2e

2i(Z1+Z̄2+Z3+Z̄3)

+ λ1λ̄3λ1̄2λ1̄2̄λ1̄3λ22̄λ23λ2̄3λ13̄e
2i(Z̄1+Z2+Z̄2+Z3) + λ1λ3λ1̄2λ1̄2̄λ1̄3̄λ22̄λ23̄λ2̄3̄λ13e

2i(Z̄1+Z2+Z̄2+Z̄3)

+ λ1λ̄2λ1̄2λ1̄3λ1̄3̄λ23λ23̄λ33̄λ12̄e
2i(Z̄1+Z2+Z3+Z̄3) + λ1λ2λ1̄2̄λ1̄3λ1̄3̄λ2̄3λ2̄3̄λ33̄λ12e

2i(Z̄1+Z̄2+Z3+Z̄3)

+ λ1λ̄1λ22̄λ23λ23̄λ2̄3λ2̄3̄λ33̄λ11̄e
2i(Z2+Z̄2+Z3+Z̄3),

(3.5.0.53)

where λij ≡ λi − λj, and Zi = z/(λi − 1) + z̄/(λi + 1).



Chapter 4

Dressing the Giant Gluon

4.1 Abstract

We demonstrate the applicability of the dressing method to the problem of con-

structing new classical solutions for Euclidean worldsheets in anti-de Sitter space.

The motivation stems from the work of Alday and Maldacena, who studied gluon

scattering amplitudes at strong coupling using a generalization of a particular world-

sheet found by Kruczenski whose edge traces a path composed of light-like segments

on the boundary of AdS. We dress this ‘giant gluon’ to find new solutions in AdS3

and AdS5 whose edges trace out more complicated, timelike curves on the boundary.

These solutions may be used to calculate certain Wilson loops via AdS/CFT.

4.2 Introduction

Classical string solutions play an important role in exploring the AdS/CFT corre-

spondence (see [47] and [48, 49, 50] for reviews). Generally speaking such solutions

fall into two categories. On the one hand there are closed string energy eigenstates in

AdS, which are in correspondence with gauge invariant operators of definite scaling

dimension in the dual gauge theory. On the other hand we can also consider open

strings which end along some curve on the boundary of AdS, corresponding to Wilson

loops [68, 69].

An important example of the former is the so-called ‘giant magnon’ of Hofman

and Maldacena [9], which is dual to a single elementary excitation in the gauge the-

ory picture. More general states containing arbitrary numbers of bound or scattering

38
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states of magnons correspond to more general classical string solutions [15, 16, 34].

These solutions can be constructed algebraically using the dressing method [34, 61],

a well-known technique [28, 44] for generating solutions of classically integrable equa-

tions.

Here we turn our attention to the latter, demonstrating the applicability of the

dressing method to the problem of constructing certain new Euclidean minimal area

surfaces in anti-de Sitter space1. To apply the dressing method it is necessary to

choose some solution of the classical equations of motion to use as the ‘vacuum’,

which is then ‘dressed’ to build more general solutions. For the giant magnon system

considered in [34, 61] it was natural to choose as vacuum the solution describing a

pointlike string moving at the speed of light around the equator of the S5, since this

state corresponds to the natural vacuum in the spin chain picture.

For the present problem we choose as vacuum a particular solution, shown in Fig.

(4.1), originally used by Kruczenski [70] to study the cusp anomalous dimension via

AdS/CFT. It is the minimal area surface which meets the boundary of global AdS3

along four intersecting light-like lines. This solution was generalized, and given a new

interpretation, by Alday and Maldacena [17], who gave a prescription for computing

planar gluon scattering amplitudes in N = 4 Yang-Mills at strong coupling using the

AdS/CFT correspondence and found perfect agreement with the structure predicted

on the basis of previously conjectured iteration relations for perturbative multiloop

gluon amplitudes [71, 18, 72, 73, 74].

The Alday-Maldacena prescription is (classically) computationally equivalent to

the problem of evaluating a Wilson loop composed of light-like segments. According

to the AdS/CFT dictionary, such a Wilson loop is computed by evaluating the area

of the surface in Fig. (4.1). The interpretation of this surface in terms of a gluon

scattering process suggests calling this kind of solution a ‘giant gluon.’

We dress the giant gluon to find new minimal area surfaces in AdS3 and AdS5

whose edges trace out more complicated, timelike curves on the boundary of AdS. It

is not clear whether these new solutions have any interpretation as a scattering process

of the type studied in [17], although they do have straightforward interpretations in

terms of Wilson loops. However, when calculating a Wilson loop one usually first

specifies a curve on the boundary of AdS and then finds the minimal area surface

1The dressing method has also been used to construct Minkowskian worldsheets in de Sitter
space [54]
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Figure 4.1: The ‘giant gluon’ solution (4.4.0.20) in AdS3 global coordinates. The glu-
ons follow the four light-like segments on the boundary of AdS3 where the worldsheet
ends.

bounding that curve. In contrast, the dressing method provides the minimal area

surface without telling us the curve that it spans, i.e. without telling us which Wilson

loop it is calculating. That information must be read off directly by analyzing the

solution to see where it reaches the boundary of AdS, a procedure that we will see is

rather nontrivial.

The outline of this work is as follows. In section 3 we demonstrate the applicability

of the dressing method, focusing on the AdS3 case which is simpler because there the

problem can be mapped into the SU(1, 1) principal chiral model. In section 4 we

discuss the dressed giant gluon in AdS3, display explicit formulas for a special case

of the solution, and analyze in detail the edge of the worldsheet on the boundary of

AdS3. In section 5 we turn to the more complicated construction for AdS5 solutions

using the SU(2, 2)/SO(4, 1) coset model, and present some examples.

The main goal of this work is to demonstrate the applicability of the dressing

method. Although we consider a few examples, they amount to only a small subset

of the simplest possible solutions. It would be very interesting to more fully explore

the parameter space of solutions that can be obtained. It would also be interesting to
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evaluate the (regulated) areas of these solutions, thereby calculating the correspond-

ing Wilson loops in gauge theory. The giant gluon shown in Fig. (4.1) can actually

be related [75], by analytic continuation and a conformal transformation, to a closed

string energy eigenstate (a limit of the GKP spinning string [47]). It would be inter-

esting to see whether it is possible to relate more general Euclidean worldsheets of

the type we consider to various closed string states.

4.3 AdS Dressing Method

The dressing method [28, 29] is a general technique for constructing solutions of

classically integrable equations. As we review shortly, at the heart of the method

lies the ability to transform nonlinear equations of motion into a linear system for

an auxiliary field. Here we apply this very general method to the specific problem of

constructing minimal area Euclidean worldsheets in anti de-Sitter space. Initially we

restrict our attention to AdS3, where the problem relates to the SU(1, 1) principal

chiral model, deferring the slightly more complicated AdS5 case to section 4. Many of

the equations in this section are similar to those appearing in [34, 61], which the reader

may consult for further details. The two most significant differences compared to the

SU(2) principal chiral model considered in [34] are that we use complex coordinates

z, z̄ on the worldsheet, which is now Euclidean, and that the indefinite SU(1, 1) metric

significantly changes the behavior of the solutions compared to SU(2).

We parameterize AdSd with d + 1 embedding coordinates ~Y subject to the con-

straint

~Y · ~Y ≡ −Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 + · · ·+ Y 2
d−1 = −1. (4.3.0.1)

Minimal area worldsheets are given by solutions to the conformal gauge equations of

motion

∂∂̄~Y − ~Y
(
∂~Y · ∂̄ ~Y

)
= 0 (4.3.0.2)

subject to the Virasoro constraints

∂~Y · ∂~Y = ∂̄ ~Y · ∂̄ ~Y = 0. (4.3.0.3)

Here and throughout this work we use complex coordinates

z =
1

2
(u1 + iu2), z̄ =

1

2
(u1 − iu2), (4.3.0.4)
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with

∂ = ∂1 − i∂2, ∂̄ = ∂1 + i∂2. (4.3.0.5)

Our first step is to recast the system (4.3.0.2), (4.3.0.3) into the form of a principal

chiral model for a matrix-valued field g satisfying the equation of motion

∂̄A + ∂Ā = 0 (4.3.0.6)

in terms of the currents

A = i∂g g−1, Ā = i∂̄g g−1. (4.3.0.7)

Note that the relation

∂̄A− ∂Ā− i[A, Ā] = 0 (4.3.0.8)

follows automatically from (4.3.0.7).

To see how this is done let us consider for simplicity first the AdS3 case. Here we

use the coordinates ~Y to parameterize an element g of SU(1, 1) according to

g =

(
Z1 Z2

Z̄2 Z̄1

)
, Z1 = Y−1 + iY0, Z2 = Y1 + iY2, (4.3.0.9)

which satisfies

g†Mg = M, M =

(
+1 0

0 −1

)
(4.3.0.10)

and

det g = −~Y · ~Y = +1. (4.3.0.11)

It is easy to check that the systems (4.3.0.2), (4.3.0.3) and (4.3.0.6), (4.3.0.8) are

equivalent to each other under this change of variables.

Next we transform the nonlinear second-order system (4.3.0.6), (4.3.0.7) for g(z, z̄)

into a linear, first-order system for an auxiliary field Ψ(z, z̄, λ) at the expense of

introducing a new complex parameter λ called the spectral parameter. Specifically,

the two equations (4.3.0.6), (4.3.0.7) are equivalent to

i∂Ψ =
AΨ

1 + iλ
, i∂̄Ψ =

ĀΨ

1− iλ
. (4.3.0.12)

For later convenience we have rescaled our definition of λ in this equation by a factor

of i compared to the conventions of [34, 61].

To apply the dressing method we begin with any known solution g (which we refer

to as the ‘vacuum’ for the dressing method, though we emphasize that any solution
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may be chosen as the vacuum) and then solve the linear system (4.3.0.12) to find

Ψ(λ) subject to the initial condition

Ψ(λ = 0) = g. (4.3.0.13)

In addition we impose on Ψ(λ) the SU(1, 1) conditions

Ψ†(λ̄)MΨ(λ) = M, det Ψ(0) = 1. (4.3.0.14)

The purpose of the factor of i mentioned below (4.3.0.12) is to avoid the need to take

−λ̄ instead of λ̄ in the first relation here.

Then we make a ‘gauge transformation’ of the form

Ψ′(λ) = χ(λ)Ψ(λ). (4.3.0.15)

If χ(λ) were independent of z and z̄ this would be an uninteresting SU(1, 1) gauge

transformation. Instead we want χ(λ) to depend on z and z̄ but in such a way

that Ψ′(λ) continues to satisfy (4.3.0.12) and hence Ψ′(0) provides a new solution

to (4.3.0.6), (4.3.0.8). For AdS3 it is not hard to show that this is accomplished by

taking χ(λ) to have the form

χ(λ) = 1 +
λ1 − λ̄1

λ− λ1

P (4.3.0.16)

where λ1 is an arbitrary complex parameter and P is a projection operator onto any

vector of the form v1 ≡ Ψ(λ̄1)v for any constant vector v. Concretely, P is therefore

given by

P =
v1v

†
1M

v†1Mv1

. (4.3.0.17)

As in [34] there is a minor remaining detail that (4.3.0.16) has

det χ(λ) = λ̄1/λ1 (4.3.0.18)

so in order for g′ to lie in SU(1, 1) rather than U(1, 1) we should rescale g′ by the

constant phase factor
√

λ1/λ̄1 to ensure that it has unit determinant. To summarize,

the desired dressed solution is given by

g′ =

√
λ1

λ̄1

[
1 +

λ1 − λ̄1

−λ1

P

]
Ψ(0). (4.3.0.19)

The real embedding coordinates ~Y ′ of the dressed solution may then be read off from

g′ using the parameterization (4.3.0.9). The resulting solution is characterized by the

complex parameter λ1 and the choice of the constant vector v.
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4.4 AdS3 Solutions

In this section we obtain new solutions for worldsheets in AdS3 via the dressing

method, taking as ‘vacuum’ the giant gluon solution [70, 17]

~Y =




Y−1

Y0

Y1

Y2




=




cosh u1 cosh u2

sinh u1 sinh u2

sinh u1 cosh u2

cosh u1 sinh u2




. (4.4.0.20)

Using the AdS3 parameterization (4.3.0.9) we find from (4.3.0.7) that

A = 2

(
− cosh u2 sinh u2 i cosh2 u2

i sinh2 u2 + cosh u2 sinh u2

)
,

Ā = 2

(
− cosh u2 sinh u2 i sinh2 u2

i cosh2 u2 + cosh u2 sinh u2

)
.

(4.4.0.21)

Then a solution to the linear system (4.3.0.12) for Ψ(λ) is2

Ψ(λ) =

(
m− ch Z ch u2 + im+ sh Z sh u2 m− sh Z ch u2 + im+ ch Z sh u2

m+ sh Z ch u2 − im− ch Z sh u2 m+ ch Z ch u2 − im− sh Z sh u2

)

(4.4.0.22)

where

m+ = 1/m− =

(
1 + iλ

1− iλ

)1/4

, Z = m2
−z + m2

+z̄. (4.4.0.23)

The solution (4.4.0.22) has been chosen to satisfy the desired constraints (4.3.0.14)

as well as the initial condition

Ψ(0) =

(
cosh u1 cosh u2 + i sinh u1 sinh u2 sinh u1 cosh u2 + i cosh u1 sinh u2

sinh u1 cosh u2 − i cosh u1 sinh u2 cosh u1 cosh u2 − i sinh u1 sinh u2

)
,

(4.4.0.24)

correctly reproducing the giant gluon solution (4.4.0.20) embedded into SU(1, 1) ac-

cording to (4.3.0.9). The dressed solution g′ is then given by (4.3.0.19).

4.4.1 A special case

Since the general solution is rather complicated, we present here an explicit formula

for the dressed solution for the particular choice of initial vector v =
(
1 i

)
, with λ1

2We will occasionally use sh, ch instead of sinh, cosh to compactify otherwise lengthy formulas.
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arbitrary. We find that the dressed SU(1, 1) principal chiral field takes the form

g′ =

(
Z ′

1 Z ′
2

Z̄ ′
2 Z̄ ′

1

)
(4.4.1.25)

where

Z ′
1 =

1

|λ1|
~Y · ~N1

D
, Z ′

2 =
1

|λ1|
~Y · ~N2

D
(4.4.1.26)

in terms of the numerator factors

~N1 =




−(λ̄1|m|2 − λ1) cosh(Z + Z̄) + i(λ̄1|m|2 + λ1) sinh(Z − Z̄)

−(λ1|m|2 + λ̄1) sinh(Z − Z̄)− i(λ1|m|2 − λ̄1) cosh(Z + Z̄)

(λ1 − λ̄1)m̄(sinh(Z + Z̄)− i cosh(Z − Z̄))

(λ1 − λ̄1)m(cosh(Z − Z̄)− i sinh(Z + Z̄))




,

~N2 =




−(λ1 − λ̄1)m̄(sinh(Z + Z̄)− i cosh(Z − Z̄))

−(λ1 − λ̄1)m(cosh(Z − Z̄)− i sinh(Z + Z̄))

+(λ̄1|m|2 − λ1) cosh(Z + Z̄)− i(λ̄1|m|2 + λ1) sinh(Z − Z̄)

+(λ1|m|2 + λ̄1) sinh(Z − Z̄) + i(λ1|m|2 − λ̄1) cosh(Z + Z̄)




,

(4.4.1.27)

~Y given in (4.4.0.20), and the denominator

D = (|m|2 − 1) cosh(Z + Z̄)− i(|m|2 + 1) sinh(Z − Z̄). (4.4.1.28)

In these expressions

m =

(
1 + iλ1

1− iλ1

)1/2

, m̄ =

(
1− iλ̄1

1 + iλ̄1

)1/2

, (4.4.1.29)

and

Z = z/m + mz̄, Z̄ = z̄/m̄ + m̄z. (4.4.1.30)

The real embedding coordinates ~Y ′ of the dressed solution are easily read off

from (4.4.1.25) using (4.3.0.9). In Fig. (4.2) we plot a representative example of

the solution (4.4.1.26). However before one can make sense of the plot we must

understand the behavior of (4.4.1.26) at the boundary of AdS, which we address in

the next subsection.

4.4.2 In search of the Wilson loop

Minimal area worldsheets in AdS5 are related to Wilson loops in the dual gauge

theory [68, 69]. According to the AdS/CFT dictionary, in order to calculate the
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Figure 4.2: An example of a surface described by the solution (4.4.1.26) for the
particular choice λ1 = 1/2 + i/3.

expectation value of the Wilson loop for some closed path C on the boundary of AdS

we should first find the minimal area surface (or surfaces) in AdS which spans that

curve and then calculate e−A where A is the (regulated) area of the minimal surface.

The solutions we have obtained by the dressing method turn this procedure on its

head. In the previous subsection we displayed an explicit example of such a solution,

which indeed describes a minimal area Euclidean worldsheet in AdS3, but it is not

immediately clear what the corresponding curve C is whose Wilson loop the solution

computes. In order to answer this question we must look at (4.4.1.26) and find the

locus C where the worldsheet reaches the boundary of AdS3—this will tell us which

Wilson loop we are computing.

In global AdS coordinates, the familiar radial coordinate ρ is related to the coor-

dinates appearing in (4.3.0.9) according to

cosh2 ρ = |Z1|2, sinh2 ρ = |Z2|2. (4.4.2.31)

Hence the boundary of AdS3 lies at Zi = ∞. Before proceeding with our complicated

dressed solution let us pause to note that the giant gluon solution (4.4.0.20) reaches

the boundary of AdS3 precisely when |u1| → ∞ or |u2| → ∞. Moreover the four

‘edges’ of the worldsheet, at u1 → +∞, u1 → −∞, u2 → +∞ and u2 → −∞, sit on
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four separate null lines on the boundary of AdS3 which intersect each other at four

cusps [70, 17] to form the closed curve C.

Looking at the dressed solution (4.4.1.26) we see a feature which makes it signif-

icantly more complicated to understand than the giant gluon. The presence of the

nontrivial denominator factor

D = (|m|2 − 1) cosh(Z + Z̄)− i(|m|2 + 1) sinh(Z − Z̄) (4.4.2.32)

in (4.4.1.26) means that the solution reaches the boundary of AdS3 any time D = 0,

which occurs at finite (rather than infinite) values of the worldsheet coordinates z, z̄.

In fact since D is periodic in Z (with period πi), the solution reaches the boundary of

AdS3 infinitely many times as we allow z (and hence Z) to vary across the complex

plane. It is important to note that while D is periodic, the full solution is not.

If we define real variables Ui according to

Z = (U1 + iU2)/2, Z̄ = (U1 − iU2)/2 (4.4.2.33)

then the locus C̃ of points on the worldsheet where the solution reaches the boundary

of AdS3 is

D = (|m|2 − 1) cosh U1 + (|m|2 + 1) sin U2 = 0. (4.4.2.34)

This equation describes an infinite array of oval-shaped curves C̃j periodically dis-

tributed along the U2 axis and centered at (U1, U2) = (0, 2πj + π/2). Note that the

curves C̃j in the worldsheet coordinates are not to be confused with their images Cj

on the boundary of AdS3 under the map (4.4.1.26). In particular the C̃j are un-

physical artifacts of the particular coordinate system we happen to be using on the

worldsheet—only the curves Cj on the boundary are physically meaningful.

To summarize, we find that the solution (4.4.1.26) actually describes not one but

infinitely many different minimal area surfaces in AdS3, each spanning a different

curve Cj on the boundary. In order to isolate any given worldsheet j we restrict the

worldsheet coordinates U1, U2 to range over the interior of the curve C̃j. In particular,

in order to find the area of the j-th worldsheet, and hence calculate the expectation

value of the Wilson loop corresponding to the curve Cj, one should integrate the

induced volume element on the worldsheet only over the region C̃j. It would be

interesting to pursue this calculation further, although we will not do so here.
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4.4.3 A very special case

In the previous subsection we explained that the minimal area surfaces generated

by the dressing method actually calculate infinitely many different Wilson loops. In

general the solutions are sufficiently complicated that we find it necessary to analyze

them numerically (one example is shown in Fig. (4.3)), but it is satisfying to analyze

in detail one particularly simple example based on the solution (4.4.1.26) which itself

is already a special case of the most general dressed solution.

Therefore we look now at the case λ1 = i. Since the solution naively looks singular

at this value we will carefully take the limit as λ1 → i from inside the unit circle. To

this end we consider

λ1 = ia, m =

√
1− a

1 + a
(4.4.3.35)

in the limit a → 1. In this limit the equation for the boundary reduces to

cosh U1 = sin U2 (4.4.3.36)

whose solutions are just points in the (U1, U2) plane.

In order to isolate what is going on near the point (0, π/2) (for example) we should

rescale the worldsheet coordinates by defining new coordinates x, y according to

U1 = 2mx, U2 =
π

2
+ 2my (4.4.3.37)

Then in the limit a → 1 the equation becomes

0 = D = (1− x2 − y2)(1− a) +O(1− a)2 (4.4.3.38)

So now the edge of the worldsheet is the circle x2 + y2 = 1 in the (x, y) plane. Using

(4.4.2.33) and (4.4.1.30) gives

u1 =
1

2
x(1− a), u2 =

π

4a

√
1− a2 +

1

2a
(1− a)y. (4.4.3.39)

Plugging these values and (4.4.3.35) into the solution (4.4.1.26) we can then safely

take a → 1, obtaining the surface

Z1 = −i
1 + x2 + y2

1− x2 − y2
, Z2 =

2ix− 2y

1− x2 − y2
. (4.4.3.40)

Switching now to Poincaré coordinates (R, T,X) according to the usual embedding

Z1 =
1

2

(
1

R
+

R2 − T 2 + X2

R

)
+ i

T

R
, Z2 =

X

R
+

i

2

(
1

R
− R2 − T 2 + X2

R

)

(4.4.3.41)
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we find

R =
1− x2 − y2

x
, T = −1 + x2 + y2

x
, X = −y

x
. (4.4.3.42)

Finally we note that this surface in AdS3 satisfies

−T 2 + X2 = −1− (1− x2 − y2)2

4x2
. (4.4.3.43)

At the edge of the worldsheet the second term on the right-hand side is zero, so we

conclude that the solution (4.4.3.42) intersects the boundary of AdS3 along the curve

described by

−T 2 + X2 = −1. (4.4.3.44)

Interestingly this is a timelike curve whereas the giant gluon solution we started with

traces out a path of lightlike curves on the boundary.

More complicated cases must be studied numerically. In Fig. (4.3) we show the

timelike curve on the boundary of AdS3 that bounds the sample surface shown in

Fig. (4.2).

4.5 AdS5 Solutions

We now turn our attention to the dressing problem for worldsheets in AdS5. This

case is somewhat more complicated because it is not realized as a principal chiral

model. Rather we use the SU(2, 2)/SO(4, 1) coset model, parameterizing an element

g of the coset in terms of the embedding coordinates ~Y according to [76]

g =




0 +Z1 −Z3 +Z̄2

−Z1 0 +Z2 +Z̄3

+Z3 −Z2 0 −Z̄1

−Z̄2 −Z̄3 +Z̄1 0




(4.5.0.45)

where

Z1 = Y−1 + iY0, Z2 = Y1 + iY2, Z3 = Y3 + iY4. (4.5.0.46)

This parameterization satisfies

gT = −g, g†Mg = M, (4.5.0.47)
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Figure 4.3: In this plot we consider, as an example, the solution (4.4.1.26) for the
particular case λ1 = 1/2 + i/3. As explained in the text, the solution actually cor-
responds to infinitely many Wilson loops on the boundary of AdS3, one of which
is the curve shown here in the (X, T ) plane on the boundary of AdS3 in Poincaré
coordinates. The light-cone to which these timelike curves asymptote is also shown.
The Wilson loop is of course a closed curve; the upper and lower branches shown here
live on opposite sides of the The minimal area surface spanning this curve is shown
in Fig. (4.2).

where

M =




−1 0 0 0

0 −1 0 0

0 0 +1 0

0 0 0 +1




(4.5.0.48)

and has determinant

det g = −~Y · ~Y = 1. (4.5.0.49)
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Taking again the giant gluon solution (4.4.0.20) (supplemented with Y3 = Y4 = 0) as

the ‘vacuum’ we now find that the solution to the linear system (4.3.0.12) is

Ψ(λ) =




0 + ch u1 ch U2 + im− sh u1 sh U2

− ch U1 ch u2 − im+ sh U1 sh u2 0

0 − sh u1 ch U2 − im− ch u1 sh U2

−m+ sh U1 ch u2 + i ch U1 sh u2 0




.




0 +m− sh u1 ch U2 − i ch u1 sh U2

+ sh U1 ch u2 + im+ ch U1 sh u2 0

0 −m− ch u1 ch U2 + i sh u1 sh U2

+m+ ch U1 ch u2 − i sh U1 sh u2 0




(4.5.0.50)

in terms of

U1 = m−z + m+z̄, U2 = (m−z −m+z̄)/i, m+ = 1/m− =

(
1 + iλ

1− iλ

)1/2

.

(4.5.0.51)

The solution (4.5.0.50) has been chosen to satisfy the desired constraints

Ψ†(λ̄)MΨ(λ) = M, det Ψ(0) = 1 (4.5.0.52)

as well as the initial condition

Ψ(λ = 0) = g, (4.5.0.53)

where g is the giant gluon solution (4.4.0.20) written in the embedding (4.5.0.45).

Note that the symbols U1, U2 defined in (4.5.0.51) have been chosen because at λ = 0

they reduce to u1, u2.

4.5.1 Construction of the dressing factor

The dressing factor for this coset model takes the form

χ(λ) = 1 +
λ1 − λ̄1

λ− λ1

P1 +
1/λ1 − 1/λ̄1

λ + 1/λ̄1

P2. (4.5.1.54)

In order to satisfy all the constraints on the dressed solution, we choose P1 and P2

as follows. First we choose P1 to be the hermitian (with respect to the metric M)

projection operator onto the vector v1 = Ψ(λ̄1)v, where v is an arbitrary complex

constant vector. Specifically, P1 is then given as in (4.3.0.17) by

P1 =
v1v

†
1M

v†1Mv1

, (4.5.1.55)
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which satisfies

P 2
1 = P1, P †

1 = MP1M (4.5.1.56)

as desired. Next we choose

P2 = Ψ(0)PT
1 Ψ(0)−1. (4.5.1.57)

Because of (4.5.1.56) it is easy to check that P2 also satisfies

P 2
2 = P2, P †

2 = MP2M, (4.5.1.58)

so P2 is also a hermitian projection operator; in fact it is easy to check that P2 projects

onto the vector

v2 = Ψ(0)Mv1 (4.5.1.59)

and hence can be written as

P2 =
v2v

†
2M

v†2Mv2

. (4.5.1.60)

Now let us explain the choice (4.5.1.57). Notice that

v†2Mv1 = vT
1 MΨ(0)†Mv1 = vT

1 Ψ(0)−1v1 (4.5.1.61)

where we used Ψ(0)†MΨ(0) = M . But since Ψ(0) is antisymmetric, this is zero! So

v2 and v1 are orthogonal, and hence

P1P2 = P2P1 = 0. (4.5.1.62)

Using all of the above relations one can check that (4.5.1.54) satisfies the conditions

[χ(λ̄)]†Mχ(λ) = M, ΨT(0)χT(0) = −χ(0)Ψ(0), (4.5.1.63)

which guarantee that the dressed solution Ψ′(λ) = χ(λ)Ψ(λ) continues to satisfy

(4.5.0.47). As in the AdS3 case we find that χ does not have unit determinant but

rather

det χ(λ) =
λ− λ̄1

λ− λ1

λ− 1/λ1

λ− 1/λ̄1

. (4.5.1.64)

We must therefore rescale the dressed solution Ψ′(0) = χ(0)Ψ(0) by a factor of√
λ1/λ̄1.

To summarize, the dressed solution g′ is given by

g′ =

√
λ1

λ̄1

[
1 +

λ1 − λ̄1

−λ1

P1 +
1/λ1 − 1/λ̄1

1/λ̄1

P2

]
Ψ(0) (4.5.1.65)

in terms of (4.5.0.50) and the projection operators (4.5.1.55), (4.5.1.57). The solution

is characterized by an arbitrary complex parameter λ1 and the choice of a complex

four-component vector v.
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4.5.2 A special case

Since the general solution is again rather complicated we display only a special case,

choosing the vector v =
(
1 i 0 0

)
. We then find that the dressed solution g′ has

the form (4.5.0.45) with

Z ′
1 =

1

|λ1|
~Y · ~N1

D
, Z ′

2 =
1

|λ1|
~Y · ~N2

D
, Z ′

3 =
1

|λ1|
N3

D
(4.5.2.66)

in terms of the numerator factors

~N1 =




−|m|2λ̄1(ch U1 ch Ū1 + ch U2 ch Ū2) + λ1 sh U1 sh Ū1 + |m|4λ1 sh U2 sh Ū2

−i|m|2λ1(ch U1 ch Ū1 + ch U2 ch Ū2) + iλ̄1 sh U1 sh Ū1 + i|m|4λ̄1 sh U2 sh Ū2

−(λ1 − λ̄1)m̄ sh U1 ch Ū1 + i(λ1 − λ̄1)m̄|m|2 ch U2 sh Ū2

+i(λ1 − λ̄1)m ch U1 sh Ū1 − (λ1 − λ̄1)m|m|2 sh U2 ch Ū2




,

~N2 =




−(λ1 − λ̄1)m̄ sh U1 ch Ū1 + i(λ1 − λ̄1)m̄|m|2 ch U2 sh Ū2

+i(λ1 − λ̄1)m ch U1 sh Ū1 − (λ1 − λ̄1)m|m|2 sh U2 ch Ū2

−|m|2λ̄1(ch U1 ch Ū1 + ch U2 ch Ū2) + λ1 sh U1 sh Ū1 + |m|4λ1 sh U2 sh Ū2

−i|m|2λ1(ch U1 ch Ū1 + ch U2 ch Ū2) + iλ̄1 sh U1 sh Ū1 + i|m|4λ̄1 sh U2 sh Ū2




,

N3 = m̄(λ1 − λ̄1)(−i sh U1 ch Ū2 + |m|2 ch U1 sh Ū2),

(4.5.2.67)

~Y again given in (4.4.0.20), and the denominator

D = −|m|2(ch U1 ch Ū1 + ch U2 ch Ū2) + sh U1 sh Ū1 + |m|4 sh U2 sh Ū2. (4.5.2.68)

In these expressions m and m̄ are as in (4.4.1.29), with

U1 = z/m + mz̄, U2 = (z/m−mz̄)/i. (4.5.2.69)

The real embedding coordinates ~Y ′ of the dressed solution may then be extracted

from (4.5.0.46). It is straightforward, though somewhat tedious, to directly verify

that the resulting ~Y ′ satisfies the equations of motion (4.3.0.2) and the Virasoro

constraints (4.3.0.3), providing a check on our application of the dressing method.

4.6 Conventions

Here we summarize the standard conventions for global AdS3 that we have used in

preparing Fig. (4.1) and (4.2). We parametrize the SU(1, 1) group element (4.3.0.9)
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as

g =

(
e+iτ sec θ e+iφ tan θ

e−iφ tan θ e−iτ sec θ

)
, (4.6.0.70)

where τ is global time, φ is the azimuthal angle, and θ runs from 0 in the interior of

the AdS3 cylinder to π/2 at the boundary of AdS3. In terms of these quantities the

parametric plots in Figures 1 and 2 have Cartesian coordinates

(x, y, z) = (θ cos φ, θ sin φ, τ) (4.6.0.71)

and the boundary of AdS3 is the cylinder x2 + y2 = (π/2)2.



Chapter 5

Generating AdS String Solutions

5.1 Abstract

We use a Pohlmeyer type reduction to generate classical string solutions in AdS

spacetime. In this framework we describe a correspondence between spikes in AdS3

and soliton profiles of the sinh-Gordon equation. The null cusp string solution and

its closed spinning string counterpart are related to the sinh-Gordon vacuum. We

construct classical string solutions corresponding to sinh-Gordon solitons, antisolitons

and breathers by the inverse scattering technique. The breather solutions can also be

reproduced by the sigma model dressing method.

5.2 Introduction

Classical string solutions in AdS5×S5 have provided a lot of data in exploring various

aspects of the AdS/CFT correspondence (see [47, 48, 49, 50] for review). Alday

and Maldacena have given a prescription for computing gluon scattering amplitudes

using AdS/CFT [17]. The prescription is equivalent to finding a classical string

solution with boundary conditions determined by the gluon momenta. The value

of the scattering amplitude is then related to the area of this solution. Using this

prescription and the solution originally constructed in [70] they found agreement

with the conjectured iteration relations for perturbative multiloop amplitudes for

four gluons [71, 18, 72, 73, 74]. Several papers including [63, 77, 78, 75] have studied

various aspects of the classical string solutions (see [79]–[95] for other developments).

For the case of four and five gluons the results are fixed by dual conformal symmetry

55
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[96, 90]. For a large number of gluons the amplitude at strong coupling was computed

in [96] and it disagreed with the corresponding limit of the gauge theory guess [18].

In order to test the multiloop iterative structure of gauge theory amplitudes it would

be very important to construct the string solution for six gluons and more.

Classical string theory on R×S2 (or R×S3) is equivalent to classical sine-Gordon

theory (or complex sine-Gordon theory) via Pohlmeyer reduction [14]. De Vega and

Sanchez showed that similarly string theory on AdS2, AdS3 and AdS4 is equivalent to

Liouville theory, sinh-Gordon theory and B2 Toda theories respectively [54, 98, 99].

Moreover, a sine-Gordon-like action has been proposed for the full Green-Schwarz

superstring in AdS5 × S5 [56, 100]. Classical solitons in both theories should be in

one to one correspondence. Indeed, giant magnon solutions on R×S2 and R×S3 map

to one soliton solution in sine-Gordon and complex sine-Gordon respectively [9, 16].

Integrability of string theory on AdS5×S5 allows the use of algebraic methods to

construct solutions of the nonlinear equations of motion. Given a vacuum solution of

an integrable nonlinear equation, the dressing method provides a way to construct a

new solution which also satisfies the equations of motion by using an associated linear

system [28, 44]. In [34, 61] the dressing method was used to construct classical string

solutions describing scattering and bound states of magnons on R × S5 and various

subsectors, such as R × S2 and R × S3, by dressing the vacuum corresponding to a

pointlike string moving around the equator of the sphere at the speed of light. In

[62] it was used to construct solutions describing the scattering of spiky strings on a

sphere [35] by starting with a different vacuum, a static string wrapped around the

equator of the sphere.

In [63] the applicability of the dressing method to the problem of finding Euclidean

minimal area worldsheets in AdS was demonstrated. We took as a vacuum the null

cusp string solution constructed in [70] (which was later generalized and given a

new interpretation in [17]). We dressed this vacuum and found new minimal area

surfaces in AdS3 and AdS5. These solutions generically trace out timelike curves

on the boundary, and might be relevant to studies of the propagation of massive

particles in gauge theory. The vacuum solution [17, 70] can be related by analytic

continuation and a conformal transformation to a closed string energy eigenstate (an

infinite string limit of GKP string [47, 75]). In this work we outline the dressing

method for Minkowskian worldsheets in AdS and construct new string solutions by

starting with an infinite closed spinning string. We also show that the spikes of the
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long GKP string can be mapped to sinh-Gordon solitons at the boundary of AdS.

We use the inverse scattering method to construct string solutions corresponding

to sinh-Gordon solitons, antisolitons, breathers and soliton scattering solutions. The

sigma model solutions can be constructed in terms of wavefunctions of the Pohlmeyer

reduced model 1 [102]. The advantage of this method is that it allows us to construct a

string solution starting from any sinh-Gordon solution. All one has to do is to solve a

linear system with coefficients depending on the chosen sinh-Gordon solution. Notice

that in the dressing method one is also solving a linear system, but the difference is

that in the dressing method the coefficients of the system depend on the chosen vac-

uum solution of the string equations, whereas in this method the coefficients depend

only on the sinh-Gordon or reduced system solution. This is advantageous because

any sinh-Gordon solution is generaly simpler than the corresponding sigma model

solution.

This work is organized as follows. In section 3 we review the Pohlmeyer reduction

and inverse scattering method for constructing string solutions from sinh-Gordon

solutions. In section 4 various sinh-Gordon solutions are reviewed. In section 5

explicit string solutions are constructed and the physical meanings are discussed. It

would be interesting to understand the physics of these new string solutions better.

In section 6 we reproduce the breather solutions by the dressing method.

5.3 Pohlmeyer reduction for AdS strings

In this section we review the Pohlmeyer reduction for string theory in AdSd space

following [54]. We also review how to write down string solutions in terms of the

wavefunctions of the sinh-Gordon inverse problem [102].

We parameterize AdSd with d + 1 embedding coordinates ~Y subject to the con-

straint

~Y · ~Y ≡ −Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 + · · ·+ Y 2
d−1 = −1. (5.3.0.1)

The conformal gauge equation of motion for strings in AdSd is

∂∂̄~Y − (∂~Y · ∂̄ ~Y )~Y = 0 (5.3.0.2)

1A different solution generating technique based on Pohlmeyer-type reduction was employed for
string solutions on AdS3 × S1 in [101].
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subject to the Virasoro constraints

∂~Y · ∂~Y = ∂̄ ~Y · ∂̄ ~Y = 0. (5.3.0.3)

Here we use coordinates z and z̄ related to Minkowski worldsheet coordinates τ and

σ by z = 1
2
(σ − τ), z̄ = 1

2
(σ + τ) with ∂ = ∂σ − ∂τ , ∂̄ = ∂σ + ∂τ .

Now let us show the equivalence of the string equations (5.3.0.2), (5.3.0.3) to the

generalized sinh-Gordon model. To make the reduction we first choose a basis

ei = (~Y , ∂̄ ~Y , ∂~Y , ~B4, · · · , ~Bd+1), (5.3.0.4)

where i = 1, 2 · · · d + 1 and the vectors ~Bk with k = 4, 5 · · · d + 1 are orthonormal

~Bk · ~Bl = δkl, ~Bk · ~Y = ~Bk · ∂~Y = ~Bk · ∂̄ ~Y = 0. (5.3.0.5)

Defining

α ≡ α(z, z̄) = ln(∂~Y · ∂̄ ~Y ), (5.3.0.6)

uk ≡ uk(z, z̄) = ~Bk · ∂̄2~Y , (5.3.0.7)

vk ≡ vk(z, z̄) = ~Bk · ∂2~Y , (5.3.0.8)

where k = 4, 5 · · · d + 1, the equation of motion for α becomes

∂∂̄α− eα − e−α

d+1∑
i=4

uivi = 0. (5.3.0.9)

This is called the generalized sinh-Gordon model. We can find the evolution of the

vectors ui and vi by expressing the derivatives of the basis (5.3.0.4) in terms of the

basis itself. In d = 2, u = v = 0 and the equation (5.3.0.9) becomes the Liouville

equation. In d = 3 and d = 4 it can be reduced to sinh-Gordon and B2 Toda models

respectively [54].

Now let us discuss the d = 3 case in more detail. For the case of AdS3, one can

write an explicit formula for ~B4

B4a ≡ e−αεabcd Yb ∂Yc ∂̄Yd, (5.3.0.10)

where a, b, c, d = 1, 2, 3, 4 and εabcd is the antisymmetric Levi-Civita tensor. The

equations of motion can then be rewritten as

∂̄ei = Aij(z, z̄)ej, ∂ei = Bij(z, z̄)ej, (5.3.0.11)
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where

A =




0 1 0 0

0 ∂̄α 0 u

eα 0 0 0

0 0 −ue−α 0




, B =




0 0 1 0

eα 0 0 0

0 0 ∂α v

0 −ve−α 0 0




. (5.3.0.12)

The integrability condition ∂A − ∂̄B + [A,B] = 0 implies u = u(z̄), v = v(z) and

∂∂̄α− eα − uve−α = 0. We can make a change of variables

α(z, z̄) = α̂(z, z̄) +
1

2
ln(−u(z̄)v(z)) (5.3.0.13)

to bring the equation (5.3.0.9) to a standard sinh-Gordon form

∂∂̄α̂− 4 sinh α̂ = 0. (5.3.0.14)

5.3.1 Constructing string solutions from sinh-Gordon solu-

tions

In this section we use the Pohlmeyer reduction to express solutions of the equations

(5.3.0.2, 5.3.0.3) in terms of solutions of the sinh-Gordon equation (5.3.0.9) [102].

The idea is to first rewrite the matrices Aij and Bij which appear in (5.3.0.11) in

a manifestly SO(2, 2) symmetric way. Then recalling that SO(2, 2) is isomorphic

to SU(1, 1) × SU(1, 1) one can expand Aij and Bij in terms of SU(1, 1) generators.

Defining

A1 =

( −i
2
√

2
(ue−α/2 + eα/2) i

4
∂̄α− 1

2
√

2
(ue−α/2 − eα/2)

− i
4
∂̄α− 1

2
√

2
(ue−α/2 − eα/2) i

2
√

2
(ue−α/2 + eα/2)

)
, (5.3.1.15)

A2 =

( −i
2
√

2
(ve−α/2 − eα/2) − i

4
∂α + 1

2
√

2
(ve−α/2 + eα/2)

i
4
∂α + 1

2
√

2
(ve−α/2 + eα/2) i

2
√

2
(ve−α/2 − eα/2)

)
, (5.3.1.16)

B1 =

( −i
2
√

2
(ue−α/2 − eα/2) i

4
∂̄α− 1

2
√

2
(ue−α/2 + eα/2)

− i
4
∂̄α− 1

2
√

2
(ue−α/2 + eα/2) i

2
√

2
(ue−α/2 − eα/2)

)
, (5.3.1.17)

B2 =

( −i
2
√

2
(ve−α/2 + eα/2) − i

4
∂α + 1

2
√

2
(ve−α/2 − eα/2)

i
4
∂α + 1

2
√

2
(ve−α/2 − eα/2) i

2
√

2
(ve−α/2 + eα/2)

)
, (5.3.1.18)

we can rewrite equations (5.3.0.11) in terms of two unknown complex vectors φ =

(φ1, φ2)
T and ψ = (ψ1, ψ2)

T as

∂̄φ = A1φ, ∂φ = A2φ, (5.3.1.19)
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∂̄ψ = B1ψ, ∂ψ = B2ψ. (5.3.1.20)

The vectors φ and ψ are normalized φ†φ = φ∗1φ1 − φ∗2φ2 = ψ†ψ = ψ∗1ψ1 − ψ∗2ψ2 = 1.

In other words, given a solution α(z, z̄), u(z̄) and v(z) of the sinh-Gordon equation,

we can find φ and ψ such that they solve the above linear system. Then the string

solution is given by

Z1 ≡ Y−1 + iY0 = φ∗1ψ1 − φ∗2ψ2, (5.3.1.21)

Z2 ≡ Y1 + iY2 = φ∗2ψ
∗
1 − φ∗1ψ

∗
2. (5.3.1.22)

This formula follows from the isomorphism between SO(2, 2) and the product of two

copies of SU(1, 1) parametrized by the matrices

(
φ1 φ∗2
φ2 φ∗1

)
and

(
ψ1 ψ∗2
ψ2 ψ∗1

)
.

5.4 Review of sinh-Gordon solutions

The sinh-Gordon equation (5.3.0.14) has a vacuum solution

α̂0 = 0 or α0 = ln 2. (5.4.0.23)

The one-soliton solutions are

αs,s̄ = ln 2± ln
(
tanh2 γ(σ − vτ)

)
, (5.4.0.24)

where v is the velocity of the solitons and γ = 1/
√

1− v2.

We can also consider solutions periodic in σ

α′s,s̄ = ln 2± ln
(
tan2 γ(σ − vτ)

)
. (5.4.0.25)

Multi-soliton solutions can be constructed via the Bäcklund transformation. If

we call the plus solution of (5.4.0.24) soliton and the minus solution antisoliton, the

two-(anti)soliton solution is given by

αss,s̄s̄ = ln 2± ln
[v cosh X − cosh T

v cosh X + cosh T

]2

, (5.4.0.26)

where X = 2γσ, T = 2vγτ , and the soliton-antisoliton solution is given by

αss̄ = ln 2± ln
[v sinh X − sinh T

v sinh X + sinh T

]2

. (5.4.0.27)

Here the solutions are in the center of mass frame with v1 = −v2 = v.
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If we analytically continue the soliton-antisoliton solution and take v to be imag-

inary, v = iw, we get the breather solution of the sinh-Gordon system

αB = ln 2± ln
[w sinh XB − sin TB

w sinh XB + sin TB

]2

, (5.4.0.28)

where XB = 2σ/
√

1 + w2 and TB = 2wτ/
√

1 + w2. In order to make the center

mass move with velocity vc, one can make a boost by replacing σ → γc(σ − vcτ) and

τ → γc(τ − vcσ), where γc = 1/
√

1− v2
c .

5.5 String solutions

5.5.1 Vacuum

Now let us look at some examples. Starting with the sinh-Gordon vacuum u = 2, v =

−2, α0 = ln 2, the results of solving the linear system (5.3.1.19), (5.3.1.20) are

φ1 = e−iτ φ2 = 0 ψ1 = cosh σ ψ2 = − sinh σ. (5.5.1.29)

Then the Minkowskian worldsheet solution is given by (see fig. 5.1)

Z1 = eiτ cosh σ, (5.5.1.30)

Z2 = eiτ sinh σ. (5.5.1.31)

This is the infinite string limit of spinning string [47].

The Euclidean worldsheet solution is obtained by making the change τ → −iτ .

Then Y0 and Y2 become imaginary, thus effectively exchanging places. The Euclidean

vacuum solution reads

~YE =




cosh σ cosh τ

sinh σ sinh τ

sinh σ cosh τ

cosh σ sinh τ




. (5.5.1.32)

This is the solution found in [70] which was used by the authors of [17] to calculate

the scattering amplitude for four gluons.

The energy and angular momentum can be calculated after we introduce the cutoff
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Figure 5.1: The vacuum solution in (a) Minkowskian and (b) Euclidean worldsheet
plotted in AdS3 coordinates. (c) Top view of Minkowskian vacuum solution. The
boundary of the worldsheet touches the boundary of AdS space.

Λ À 0,

E =

√
λ

π

∫ Λ

−Λ

dσ cosh2 σ ≈
√

λ

4π
e2Λ, (5.5.1.33)

S =

√
λ

π

∫ Λ

−Λ

dσ sinh2 σ ≈
√

λ

4π
e2Λ, (5.5.1.34)

E − S =

√
λ

π

∫ Λ

−Λ

dσ ∼
√

λ

π
ln

4π√
λ

S, (5.5.1.35)

which is exactly the result of [47].

5.5.2 Long strings in AdS3 as sinh-Gordon solitons

Consider the GKP spinning string solution found in [47]

Z1 = eiτ cosh ρ(σ), (5.5.2.36)

Z2 = eiωτ sinh ρ(σ), (5.5.2.37)

where

ρ(σ) = am(iσ|1− ω2), (5.5.2.38)

and am the Jacobi amplitude function. In the infinite string limit ω → 1 this solution

reduces to (5.5.1.30), (5.5.1.31). The corresponding sinh-Gordon solution is given by

α = ln(2ρ′2) = ln
(
2dn2(iσ|1− ω2)

)
, (5.5.2.39)

where dn is the Jacobi elliptic function.
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Taking the (5.5.2.38) solution ρ′2 = cosh2 ρ−ω2 sinh2 ρ we can expand ρ near one

of spikes (turning points of the string) and let ω = 1 + 2η, where η ¿ 1, to get

ρ′2 ∼ e2ρ(e−2ρ − η). (5.5.2.40)

Denoting u = e−ρ the above equation becomes

u′2 ∼ u2 − η. (5.5.2.41)

If we choose the location of the spike to be at σ = σ0, we find

ρ(σ) = − ln
(√

η cosh(σ − σ0)
)
. (5.5.2.42)

Now we can use the map (5.3.0.6) to find the sinh-Gordon solution corresponding to

this spinning string

α = ln(2ρ′2) = ln(2 tanh2(σ − σ0)) (5.5.2.43)

This is exactly the one-soliton solution to the sinh-Gordon equation (5.3.0.9). There-

fore, the long string limit of the spinning string solution [47] itself is a two-soliton

configuration of the sinh-Gordon system and the solitons are located near the bound-

ary of AdS.

5.5.3 One-soliton solutions

Let us describe the method of constructing string solutions corresponding to one-

soliton sinh-Gordon solution in detail. Start with the sinh-Gordon solution

αs = ln 2 + ln(tanh2 σ). (5.5.3.44)

The matrices entering into the linear system (5.3.1.19), (5.3.1.20) are given by

A1 =

(
−i coth 2σ (i− 1)csch2σ

−(i + 1)csch2σ i coth 2σ

)
, (5.5.3.45)

A2 =

(
i coth 2σ −(i + 1)csch2σ

(i− 1)csch2σ −i coth 2σ

)
, (5.5.3.46)

B1 =

(
−icsch2σ icsch2σ − coth 2σ

−icsch2σ − coth 2σ icsch2σ

)
, (5.5.3.47)

B2 =

(
icsch2σ −icsch2σ − coth 2σ

icsch2σ − coth 2σ −icsch2σ

)
. (5.5.3.48)
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The spinors that solve the linear system are

φ1 = e−iτ cosh(
1

2
ln tanh σ), (5.5.3.49)

φ2 = −e−iτ sinh(
1

2
ln tanh σ), (5.5.3.50)

ψ1 = (τ + i) cosh(
1

2
ln sinh 2σ)− τ sinh(

1

2
ln sinh 2σ), (5.5.3.51)

ψ2 = −(τ + i) sinh(
1

2
ln sinh 2σ) + τ cosh(

1

2
ln sinh 2σ). (5.5.3.52)

Then we use (5.3.1.21, 5.3.1.22) to find the corresponding string solution (see fig. 5.2)

Zs
1 =

eiτ

2
√

2 cosh σ

(
2τ + i(cosh 2σ + 2)

)
, (5.5.3.53)

Zs
2 =

eiτ

2
√

2 cosh σ

(−2τ − i cosh 2σ
)
. (5.5.3.54)

Because of the Lorentz invariance, we can always boost the solution as σ → γ(σ −
vτ), τ → γ(τ − vσ). Notice this differs from the magnon case, where the boost

symmetry of sine-Gordon translates into a non-obvious symmetry on the string side

[9].

The Euclidean worldsheet solution is obtained by making the changes τ → −iτ .

Then Y−1 and Y1 become imaginary, thus effectively exchanging places. The Euclidean

one-soliton solution reads

~Y s
E =

1

2
√

2 cosh σ




2τ cosh τ − sinh τ cosh 2σ

−2τ sinh τ + cosh τ(cosh 2σ + 2)

−2τ cosh τ + sinh τ(cosh 2σ + 2)

2τ sinh τ − cosh τ cosh 2σ




. (5.5.3.55)

One can easily compute the energy and angular momentum

E =

∫ Λ

−Λ

dσ

√
λ

16π cosh2 σ
(1 + 8τ 2 + 4 cosh 2σ + cosh 4σ) ≈

√
λ

π
(
1

8
e2Λ + τ 2), (5.5.3.56)

S =

∫ Λ

−Λ

dσ

√
λ

16π cosh2 σ
(1 + 8τ 2 − 4 cosh 2σ + cosh 4σ) ≈

√
λ

π
(
1

8
e2Λ + τ 2). (5.5.3.57)

If we neglect the τ dependence since the exponential term is much larger than the

square term, we have

E − S =

∫ Λ

−Λ

√
λ

2π
cosh 2σ sech2 σdσ ∼

√
λ

π
ln

8π√
λ

S. (5.5.3.58)
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Figure 5.2: The one-soliton solution in (a) Minkowskian worldsheet plotted in AdS3

coordinates. (b) Top view of the Minkowskian one-soliton solution. Please note the
curvature of the string changes with the evolution of time.

The energy is not conserved because there is momentum flow at the asymptotic end

of the string and the string itself is not closed.

Similarly, the one-antisoliton string solution corresponding to αs̄ is given by

Z s̄
1 =

eiτ

2
√

2 sinh σ

(
2τ − i cosh 2σ

)
, (5.5.3.59)

Z s̄
2 =

eiτ

2
√

2 sinh σ

(−2τ + i(cosh 2σ − 2)
)
, (5.5.3.60)

whereas the periodic in σ string solutions mapping to α′s and α′s̄ are respectively

~Y ′
s =

1

2
√

2 cos σ




2τ cosh τ − sinh τ cos 2σ

2τ sinh τ − cosh τ(cos 2σ + 2)

2τ cosh τ − sinh τ(cos 2σ + 2)

−2τ sinh τ + cosh τ cos 2σ




, (5.5.3.61)

~Y ′
s̄ =

1

2
√

2 sin σ




2τ cosh τ + sinh τ cos 2σ

2τ sinh τ + cosh τ(cos 2σ − 2)

−2τ cosh τ − sinh τ(cos 2σ − 2)

2τ sinh τ + cosh τ cos 2σ




. (5.5.3.62)

Energy and angular momentum are singular for those solutions.
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5.5.4 Two-soliton solutions

For the two-soliton solution αss in sinh-Gordon, the spinors are

φ1 = eiτ i
√

1− v2 sinh T + iv sinh T√
cosh2 T − v2 cosh2 X

, (5.5.4.63)

φ2 = eiτ v sinh X√
cosh2 T − v2 cosh2 X

, (5.5.4.64)

ψ1 =
(
√

1− v2 cosh X + i sinh T ) cosh σ − sinh X sinh σ√
cosh2 T − v2 cosh2 X

, (5.5.4.65)

ψ2 =
(−√1− v2 cosh X + i sinh T ) sinh σ + sinh X cosh σ√

cosh2 T − v2 cosh2 X
, (5.5.4.66)

where X = 2γσ, T = 2vγτ . The two-soliton string solution is 2

Zss
1 = e−iτ vchT chσ + chXchσ −√1− v2shXshσ + i

√
1− v2shT chσ

chT + vchX
,(5.5.4.67)

Zss
2 = e−iτ vchT shσ + chXshσ −√1− v2shXchσ + i

√
1− v2shT shσ

chT + vchX
.(5.5.4.68)

Figure 5.3: The Minkowskian two-soliton solution with v = 1√
5

at different global

time (a) t = 0, (b) t = π/4.

Fig. 5.3 shows the shape of the two-soliton string at two different global time

instants. In fig. 5.3(a), the string is folded along the x axis, whereas in fig. 5.3(b),

we find the usual bulk spikes.

2We occasionally use the notation sh and ch for sinh and cosh to simplify otherwise lengthy
formulas.
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The two-soliton solution can also be anallytically continued to the Euclidean

worldsheet under the τ → −iτ change. Then Y0 and Y2 become imaginary and

they effectively change place.

The two-antisoliton string solution can be constructed in the same way and it

only differs from the two-soliton solution by three signs, the second and third terms

in the numerator and the second term in the denominator.

For the soliton-antisoliton αss̄ solution, the result is

Zss̄
1 = e−iτ vshT chσ ± shXchσ ∓√1− v2chXshσ + i

√
1− v2chT chσ

shT ± vshX
,(5.5.4.69)

Zss̄
2 = e−iτ vshT shσ ± shXshσ ∓√1− v2chXchσ + i

√
1− v2chT shσ

shT ± vshX
.(5.5.4.70)

Finally, we take the breather solution of sinh-Gordon (5.4.0.28) and we solve the

spinors from (5.3.1.19), (5.3.1.20) to find the string solution

ZB
1 =

e−iτ

sin TB ± wshXB

{−w sin TBshσ ± shXBshσ

∓
√

1 + w2chXBchσ + i
√

1 + w2 cos TBshσ
}
, (5.5.4.71)

ZB
2 =

e−iτ

sin TB ± wshXB

{−w sin TBchσ ± shXBchσ

∓
√

1 + w2chXBshσ) + i
√

1 + w2 cos TBchσ
}
, (5.5.4.72)

where XB = 2σ/
√

1 + w2 and TB = 2wτ/
√

1 + w2.

5.6 AdS dressing method

The dressing method allows the construction of solutions to nonlinear classically in-

tegrable equations. Many of the equations here are similar to [63] and the reader

may look there for further details. Here we use the dressing method to construct new

string theory solutions on AdS3 for a Minkowskian worldsheet.

We recast the system (5.3.0.2, 5.3.0.3) into the form of a principal SU(1, 1) chiral

model for the matrix-valued field g(z, z̄) that satisfies the equation of motion

∂̄A + ∂Ā = 0, (5.6.0.73)

where the currents A and Ā are given by

A = i∂gg−1 , (5.6.0.74)

Ā = i∂̄gg−1. (5.6.0.75)
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As an example we can consider the AdS3 case and easily prove the equivalence

of equations (5.6.0.73) to equations (5.3.0.2, 5.3.0.3) using the following SU(1, 1)

parametrization

g =

(
Y−1 + iY0 Y1 + iY2

Y1 − iY2 Y−1 − iY0

)
(5.6.0.76)

that satisfies

g†Mg = M, M =

(
1 0

0 −1

)
, det g = 1. (5.6.0.77)

The second order system (5.6.0.73) is equivalent to the first order system

i∂Ψ =
AΨ

1− λ
, i∂̄Ψ =

ĀΨ

1 + λ
(5.6.0.78)

for the auxiliary field Ψ(z, z̄, λ). The complex number λ is called the spectral param-

eter.

In order to apply the dressing method we start with any known solution that we

call the vacuum and we solve (5.6.0.78) to find Ψ(λ) subject to the condition

Ψ(λ = 0) = g. (5.6.0.79)

Since we want Ψ(λ) to be an SU(1, 1) element we further impose the unitarity con-

straint

Ψ†(λ̄)MΨ(λ) = M (5.6.0.80)

and demand that

det Ψ(0) = 1. (5.6.0.81)

Furthermore we consider the transformation

Ψ′(λ) = χ(λ)Ψ(λ) (5.6.0.82)

and seek a χ(λ), the dressing factor, that depends on z and z̄ in such a way that

Ψ′(λ) still satisfies (5.6.0.78). In that case Ψ′(λ = 0) is a new solution to (5.6.0.73).

For the AdS3 case we can take the dressing factor to be

χ(λ) = I +
λ1 − λ̄1

λ− λ1

P, (5.6.0.83)

where λ1 is an arbitrary complex number and the projector P is given by

P =
υ1υ

†
1M

υ†1Mυ1

, υ1 = Ψ(λ̄1)e, (5.6.0.84)
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where e is an arbitrary vector with constant complex entries called the polarization

vector. The projector P does not depend on the length of the e vector.

The determinant of χ(λ) is λ̄1/λ1 and if we want our solution to sit in SU(1, 1)

we should rescale χ(λ) by the compensating factor
√

λ1

λ̄1
.

Putting everything together the new solution g′ = Ψ′(λ = 0) to the system

(5.3.0.2, 5.3.0.3) is given by

g′ =

√
λ1

λ̄1

(
I +

λ1 − λ̄1

−λ1

P

)
g. (5.6.0.85)

5.6.1 Breather solution

Here we apply the above dressing method to dress the vacuum in order to find new

string theory solutions in AdS3. As a vacuum we choose the solution (5.5.1.30),

(5.5.1.31). Using the AdS3 parametrization (5.6.0.76) we find that the currents A, Ā

are given by

A =

(
1 ie2iτ

ie−2iτ −1

)
, (5.6.1.86)

Ā =

(
−1 ie2iτ

ie−2iτ 1

)
. (5.6.1.87)

Then a solution to the system (5.6.0.78) subject to the unitarity constraints yields

Ψ(λ) =


 eiτ

(
cosh Z − iλ sinh Z√

1−λ2

)
eiτ sinh Z√

1−λ2

e−iτ sinh Z√
1−λ2 e−iτ

(
cosh Z + iλ sinh Z√

1−λ2

)

 , (5.6.1.88)

where

Z = z

(
1 + λ

1− λ

)1/2

+ z̄

(
1− λ

1 + λ

)1/2

. (5.6.1.89)

The general solution, that can be read off from the components of the matrix field

g′ = χg in terms of the polarization vector e is rather complicated, so we present here

the full solution in the case of e = (1 i). The dressed solution is

Y−1 + iY0 = eiτ N1

D
, (5.6.1.90)

Y1 + iY2 = eiτ N2

D
, (5.6.1.91)
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where

N1 =
√

1− λ2
1 cosh Z1((λ̄1 − λ1)

√
1− λ̄2

1 cosh Z̄1(sinh σ − i cosh σ)

− (λ̄1 − 1) sinh Z̄1((λ1 + λ̄1) cosh σ − i(λ1 − λ̄1) sinh σ))

+ (λ1 − 1) sinh Z1((λ1 − λ̄1)(λ̄1 − 1) sinh Z̄1(i cosh σ + sinh σ)

+
√

1− λ̄2
1 cosh Z̄1((λ1 + λ̄1) cosh σ + i(λ1 − λ̄1) sinh σ)),

(5.6.1.92)

N2 =
√

1− λ2
1 cosh Z1((λ̄1 − λ1)

√
1− λ̄2

1 cosh Z̄1(cosh σ − i sinh σ)

+ i(λ̄1 − 1) sinh Z̄1((λ1 − λ̄1) cosh σ + i(λ1 + λ̄1) sinh σ))

+ (λ1 − 1) sinh Z1((λ1 − λ̄1)(λ̄1 − 1) sinh Z̄1(cosh σ + i sinh σ)

+
√

1− λ̄2
1 cosh Z̄1(i(λ1 − λ̄1) cosh σ + (λ1 + λ̄1) sinh σ)),

(5.6.1.93)

D = 2|λ1|
(

(λ1 − 1)
√

1− λ̄2
1 cosh Z̄1 sinh Z1 −

√
1− λ2

1(λ̄1 − 1) cosh Z1 sinh Z̄1

)
,

(5.6.1.94)

where 3

Z1 = z

(
1 + λ1

1− λ1

)1/2

+ z̄

(
1− λ1

1 + λ1

)1/2

, (5.6.1.95)

Z̄1 = z

(
1 + λ̄1

1− λ̄1

)1/2

+ z̄

(
1− λ̄1

1 + λ̄1

)1/2

, (5.6.1.96)

This is precisely the same solution (5.5.4.71), (5.5.4.72) that we obtained in the

previous section using the inverse scattering method as we can easily see by expressing

the spectral parameter λ1 in terms of center mass velocity v1 and the frequency w1

of the breather solution by

λ1 =
w1 − iv1

w1v1 − i
. (5.6.1.97)

5.7 Conventions

Here we summarize the standard conventions for global AdS3 that we have used in

preparing the figures. We parameterize the SU(1, 1) group element as

Z1 = eit sec θ,

Z2 = eiφ tan θ,

3Z1, Z̄1 should not to be confused with the embedding string coordinates in (5.3.1.21), (5.3.1.22).
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where t is the global time, φ the azimuthal angle, and θ runs from 0 in the interior of

the AdS3 cylinder to π/2 at the boundary of AdS3. In terms of these quantities the

parametric plots in the figures have Cartesian coordinates

(x, y, z) = (θ cos φ, θ sin φ, t)

and the boundary of AdS3 is the cylinder x2 + y2 = (π/2)2.



Chapter 6

On Dyonic Giant Magnons on CP 3

6.1 Abstract

A new example of AdS/CFT duality relating IIA string theory on AdS4×CP 3 toN =

6 superconformal Chern-Simons theory has recently been provided by ABJM. By now

a number of papers have considered particular giant magnon classical string solutions

in the CP 3 background, corresponding to excitations in the spin chain picture of the

dual field theory. In this work we apply the CP 3 = SU(4)/S(U(3)× U(1)) dressing

method to the problem of constructing general classical string solutions describing

various configurations of giant magnons. As a particular application we present a

new giant magnon solution on CP 3.

6.2 Introduction

Motivated by the work of Bagger, Lambert and Gustavsson [103] on maximally super-

conformal field theories in three dimensions, Aharony, Bergman, Jafferis, and Malda-

cena (ABJM) constructed [21] an N = 6 superconformal Chern-Simons theory with

U(N) × U(N) gauge symmetry at levels (k,−k) that is believed to be dual to M -

theory on AdS4 × S7/Zk (see also [104]). ABJM further considered the N, k → ∞
limit keeping the ’t Hooft coupling λ = N/k fixed and conjectured that in this limit

the N = 6 field theory is dual to type IIA string theory on AdS4 × CP 3.

Given the important role that integrability has played in exploring the structure of

N = 4 Yang-Mills theory and its dual, it is natural that this new example of AdS/CFT

provides an arena for further studying aspects of integrability in gauge/string duality.

72
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The worldsheet theory for IIA strings on AdS4 × CP 3 has been constructed and its

possible integrability explored in [105], while on the Chern-Simons side the anoma-

lous dimensions of local operators are apparently encoded in in integrable spin chain

Hamiltonian [106]. An exact magnon S-matrix for this spin chain has been proposed

in [107], numerous tests of these proposals have been carried out in [108], and aspects

of Wilson loops have been studied in [109].

Hofman and Maldacena [9] identified the string theory dual of an elementary

magnon in the spin chain description of N = 4 Yang-Mills theory as a a particular

classical open string configuration on an R × S2 subset of AdS5 × S5, called the

giant magnon. The study of giant magnons and their BPS bound states [15, 16]

has provided a wealth of detailed information about AdS/CFT. Naturally therefore

a number of papers [110, 112, 111, 113, 114] have explored in detail the properties of

various giant magnon solutions relevant to the ABJM incarnation of AdS4/CFT3.

The dressing method of Zakharov and Mikhailov [28, 29] provides an algorithm

to directly construct solutions of classically integrable equations. This method has

proven useful for the construction of various giant magnon solutions, including magnons

on spheres [34, 61, 62] and on anti-de Sitter space [25, 26, 27]. An explicit solution

describing the scattering of N giant magnons on R× S3 was also presented in [115],

and their dynamics on S2 was studied in [116].

Since the equations of motion for a string on R×CP 3 are also classically integrable,

these techniques can be employed here as well. In this work we demonstrate the

application of the dressing method for SU(4)/S(U(3) × U(1)) coset model (due to

Harnad et. al. [44]) to the problem of constructing CP 3 giant magnon solutions.

An important feature of the dressing method, which has been exploited for example

in [34, 61, 62, 115], is that repeated application can be used to generate explicit

classical string solutions describing the scattering of any number of giant magnons (or,

when applicable, bound states thereof). We present below an explicit solution (4.6)

with the interesting feature that the solution depends explicitly on two parameters,

and has a formula for the charge ∆ − J which is identical to that of Dorey’s two-

charge dyonic giant magnon [16], yet (4.6) carries only a single SO(6) charge. We

do not present any multi-magnon solutions here, but the algebra involved is no more

complicated than for the solutions studied in [61, 115].
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6.3 The CP 3 Model

The CP 3 model may be described by a complex four-component vector n with la-

grangian density

L = −∂µn
† · ∂µn + (n† · ∂µn)(∂µn† · n)− Λ(n† · n− 1). (6.3.0.1)

The Lagrange multiplier constrains the fields to lie on S7 ∈ C4, while the local

U(1) invariance of (6.3.0.1) allows us to identify n ∼ eiΛ(x)n, thereby reducing the

configuration space to S7/U(1) = CP 3. The action possesses an SU(4) symmetry

with Noether currents

Ja
µ = 2 Im[(n† · T a∂µn)− (n† · T an)(n† · ∂µn)], (6.3.0.2)

where T a are generators of SU(4). The equations of motion (after eliminating the

Lagrange multiplier) are

−∂2n + (n† · ∂2n)n + 2(n† · ∂µn)∂µn + 2(∂µn
† · n)(n† · ∂µn)n = 0. (6.3.0.3)

To describe classical strings on R×CP 3 (with a trivial time coordinate), the equations

of motion must be supplemented with the Virasoro constraints

(∂+n† · ∂+n)− (n† · ∂+n)(∂+n† · n) =
1

4
,

(∂−n† · ∂−n)− (n† · ∂−n)(∂−n† · n) =
1

4
,

(6.3.0.4)

where we have used light-cone coordinates x+ = 1
2
(x − t), x− = 1

2
(x + t) and the

derivatives are with respect to those coordinates, ∂+ = ∂x − ∂t, ∂+ = ∂x + ∂t.

Several classes of solutions to the equation of motion (6.3.0.3) and the Virasoro

constraints (6.3.0.4) may be obtained by embedding known giant magnon solutions

that live on S2 or S3 into CP 3 (an extensive discussion of these embeddings has

been given in [111]). As a first example, let (X1, X2, X3) be coordinates satisfying

X2
1 + X2

2 + X2
3 = 1. An isometric embedding S2 → CP 3 is given by

nT =
1√

2(1−X3)

(
X1 + iX2 1−X3 0 0

)
. (6.3.0.5)

In this manner any solution X i = (X1, X2, X3) of string theory on R× S2

−∂2X i + (X · ∂2X)X i = 0,

∂+X · ∂+X = ∂−X · ∂−X = 1,
(6.3.0.6)
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lifts to a solution of (6.3.0.3) and (6.3.0.4). In general it may be necessary to rescale

the worldsheet coordinates x, t in order to satisfy (6.3.0.4) with the normalization

shown. Such a rescaling does not affect the equations of motion (6.3.0.3). Similarly

we can consider what has been called the “S2×S2” embedding in the literature. This

is given by the map

nT =
1

2
√

(1−X3)

(
X1 + iX2 1−X3 X1 + iX2 1−X3

)
(6.3.0.7)

whose image inside CP 3 is actually [111] just a single S2 partially rotated into two

orthogonal directions compared to (6.3.0.5).

In the case of magnons living on S3 we can parameterize the unit 3-sphere with

embedding coordinates X i = (X1, X2, X3, X4). Given any such solution X i describing

a classical string on R×S3 there are two possible natural embeddings into a solution

of the CP 3 equations, given alternately by

nT =
(
X1 X2 X3 X4

)
(6.3.0.8)

or

nT =
1√
2

(
X1 + iX2 X3 + iX4 X1 − iX2 X3 − iX4

)
, (6.3.0.9)

whose images are both RP 3 ⊂ CP 3 [111].

To provide a concrete example we remind the reader of the solution describing

Dorey’s dyonic magnon [16] on S3,

X1 + iX2 = eit/2(cos p
2

+ i sin p
2
tanh u

2
),

X3 + iX4 = eiv/2 sin p
2
sech u

2
,

(6.3.0.10)

where

u = i(Z(λ1)− Z(λ̄1)), v = Z(λ1) + Z(λ̄1)− t (6.3.0.11)

in terms of

Z(λ) =
x+

λ− 1
+

x−
λ + 1

. (6.3.0.12)

The resulting CP 3 solution involves putting two conjugate (and hence, oppositely

charged) dyonic giant magnons together. The scaling of the world sheet coordinates

(x, t) by 1/2 compared to [16] leaves the equation of motion (6.3.0.3) intact but is

necessary in order to preserve the normalization of the Virasoro constraints (6.3.0.4).

In the above we have used the parameterization λ1 = reip/2 of the spectral parameter,
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where p is the momentum of the magnon and r is related to its charge. In the limit

r → 1 we recover the “S2 × S2” solution presented in [112].

More generally we can take any known giant magnon solution on S3 (such as

the general N -magnon solution found in [115]) and embed it into the CP 3 model,

thus obtaining a new classing string solution moving on R × CP 3 (again, it may be

necessary to also scale the worldsheet coordinates to preserve the normalization given

in (6.3.0.4)). Besides these ‘trivial’ solutions reviewed here, the CP 3 model admits

more general solutions that can be obtained via the dressing method, to which we

now turn our attention.

6.4 The Dressing Method for the CP 3 Coset

In order to apply the dressing method as outlined in [44] we first embed the CP 3

vector field n into an SU(4) principal chiral field g. This may be done by noting that

CP 3 = {g ∈ SU(4) : gΩgΩ = 1}, with Ω =




+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




. (6.4.0.13)

In order to understand this embedding, first observe that if g satisfies g†g = 1 and

gΩgΩ = 1 then the matrix

P =
1 + Ωg

2
(6.4.0.14)

is a hermitian projection operator. Since det g = 1 it follows that det(2P − 1) = −1

so the rank of P must be either 1 or 3. In fact we can without loss of generality take

P to have rank 1 since otherwise we could just replace P → 1 − P throughout this

analysis. Then we identify the vector n as the (unit-normalized) image of P .

Conversely, given a unit vector n we take

g = Ω(2P − 1) with P = nn†, (6.4.0.15)

which is easily seen to satisfy gΩgΩ = 1 and g ∈ SU(4).

Under this embedding, the lagrangian (6.3.0.1) becomes proportional to

L = Tr[(g−1∂µg)2], (6.4.0.16)
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the equation of motion (6.3.0.3) becomes equivalent to the principal chiral model

equation

∂+∂−g − 1

2
(∂+gg−1∂−g + ∂−gg−1∂+g) = 0, (6.4.0.17)

while the Virasoro constraints (6.3.0.4) map into

Tr[(g−1∂+g)2] = −2, Tr[(g−1∂−g)2] = −2. (6.4.0.18)

Next we recall Theorem 4.2 of [44]. Given any solution g of the SU(4) principal

chiral model which satisfies gΩgΩ = 1, we first solve the auxiliary system

∂+Ψ =
∂+gg−1Ψ

1− λ
, ∂−Ψ =

∂−gg−1Ψ

1 + λ
(6.4.0.19)

to find Ψ(λ) as a function of the auxiliary complex parameter λ, subject to the initial

condition

Ψ(0) = g, (6.4.0.20)

the SU(4) constraints

det Ψ(0) = 1, [Ψ(λ̄)]†Ψ(λ) = 1, (6.4.0.21)

as well as the coset constraint

Ψ(λ) = Ψ(0)ΩΨ(1/λ)Ω. (6.4.0.22)

With Ψ(λ) in hand a new dressed solution to the coset model may be constructed

algebraically. The input to specify a new solution is an arbitrary complex parameter

λ1 and an arbitrary complex four-vector e. In terms of this data the dressed solution

is g′ = Ψ′(0) where

Ψ′(λ) =

[
1 +

Q1

λ− λ1

+
Q2

λ− 1/λ1

]
Ψ(λ) (6.4.0.23)

in terms of two matrices Qi = XiF
†
i specified by

F1 = Ψ(λ̄1)e, F2 = Ψ(0)ΩΨ(λ̄1)e (6.4.0.24)

and the Xi are the solutions to

X1
F †

1F1

λ1 − λ̄1

+ X2
F †

2F1

1/λ1 − λ̄1

= F1,

X1
F †

1F2

λ1 − 1/λ̄1

+ X2
F †

2F2

1/λ1 − 1/λ̄1

= F2.

(6.4.0.25)
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6.5 Giant Magnon Solutions on CP 3

In order to obtain new giant magnon solutions on CP 3 via the dressing method

described in the previous paragraph we first choose as the vacuum

nT =
(
cos(t/2) sin(t/2) 0 0

)
. (6.5.0.26)

(a perhaps more obvious, but less useful, choice will be considered below). The

scaling of the worldsheet time coordinate by 2 is necessary if we want our vacuum to

satisfy the Virasoro constraints (6.3.0.4). Then the solution to the auxiliary system

(6.4.0.19) that satisfies the initial condition and constraints is

Ψ(λ) =




cos Z(λ) sin Z(λ) 0 0

− sin Z(λ) cos Z(λ) 0 0

0 0 1 0

0 0 0 1




, (6.5.0.27)

where

Z(λ) =
x+

λ− 1
+

x−
λ + 1

. (6.5.0.28)

Choosing (arbitrarily) the polarization vector

eT =
(
1 0 i 0

)
. (6.5.0.29)

we find the solution

nT =
1√
r

(
n1 n2 n3 n4

)
, (6.5.0.30)

specified by

n1 = +2(1− λ2
1)λ̄1 cos(t/2) + (1− |λ1|2)(λ1 cos(t/2− iu) + λ̄1 cos(t/2 + iu))

+ (λ1 − λ̄1)(cos(t/2− v) + |λ1|2 cos(t/2 + v)),

n2 = −2(1− λ2
1)λ̄1 sin(t/2)− (1− |λ1|2)(λ̄1 sin(t/2 + iu) + λ1 sin(t/2− iu))

− (λ1 − λ̄1)(sin(t/2− v) + |λ1|2 sin(t/2 + v)),

n3 = −2i(λ1 − λ̄1)(1− |λ1|2) cosh(u/2 + iv/2),

n4 = 0.

(6.5.0.31)

In the above the normalization factor r is given by

r =
4∑

i=1

n̄ini (6.5.0.32)
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and

u = i(Z(λ1)− Z(λ̄1)), v = Z(λ1) + Z(λ̄1)− t. (6.5.0.33)

The solution (6.5.0.31) is identical to the one presented recently in [113] (including,

coincidentally, an almost identical choice of polarization vector (6.5.0.29)).

Parameterizing λ1 = reip/2 we find that the solution (6.5.0.30) carries a single

nonzero SU(4) charge J with dispersion relation of the form

∆− J =
1 + r2

2r

∣∣∣sin p

2

∣∣∣ . (6.5.0.34)

As usual for giant magnons, the charge J is itself infinite but the excitation energy

∆− J of the magnon above the ground state (a pointlike string moving at the speed

of light) is finite. Remarkably the formula (6.5.0.34) is identical to the corresponding

one for Dorey’s dyonic giant magnon [16], but the solution (6.5.0.31) carries only a

single macroscopic SU(4) charge and is hence not “dyonic” at all. The solution does

reduce to the original Hofman-Maldacena magnon [9] with momentum p when r → 1.

A second possible choice of vacuum is

nT =
1√
2

(
eit 1 0 0

)
, (6.5.0.35)

which differs from (6.5.0.26) by an SU(4) rotation which, importantly, does not com-

mute with Ω. In this case the solution to the linear system (6.4.0.19) is

Ψ(λ) =
1√

1 + λ




√
λ e+iZ(λ) +e+iZ(λ) 0 0

−e−iZ(λ)
√

λ e−iZ(λ) 0 0

0 0
√

1 + λ 0

0 0 0
√

1 + λ




. (6.5.0.36)

If we choose as polarization vector

eT =
(
1 i 0 0

)
(6.5.0.37)

we find the solution

n1 = e+it/2
(
(λ1 − λ̄1)|λ1|2eiv − (λ1 − λ̄1)e

−iv − i(1− |λ1|2)λ1e
u − i(1− |λ1|2)λ̄1e

−u
)
,

n2 = e−it/2
(
(λ1 − λ̄1)|λ1|2e−iv − (λ1 − λ̄1)e

iv + i(1− |λ1|2)λ1e
−u + i(1− |λ1|2)λ̄1e

u
)
,

n3 = n4 = 0,

(6.5.0.38)

in terms u and v as before in (6.5.0.33). (This solution must of course be normalized

to unit length as in (6.5.0.30).) This solution is a bound state of two HM giant

magnons on R× S2 found in (5.14) of [34] under the identification λ = e−q/2eip/2.
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