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Abstract. An extended Brueckner-Hartree-Fock (EBHF) theory is constructed for the
description of nuclear structure in order to use a bare interaction among constituent particles.
The nuclear interaction is characterized by the strong tensor force induced by pion exchange
interaction. To handle the strong tensor force based on the single-particle picture, the Hartree-
Fock variational model space is extended to include 2-particle 2-hole (2p-2h) states with all
possible configurations, which are able to describe high momentum components originating
from pseudo-scalar nature of the pion. We take a variational principle of the total energy in this
extended model space. We obtain an equation for single-particle states in the Fermi sea with
inclusion of the effect of the pion exchange and short-range repulsive interaction. We elucidate
the nature of the EBHF theory by comparing with the Brueckner-Hartree-Fock (BHF) theory
and the Feshbach projection operator method. The EBHF theory has a similar structure as
the BHF theory except for the inclusion of the concept of the energy of the total system. The
Feshbach projection operator method completely agrees with our framework when the P -space
projection corresponds to the Hartree-Fock state and the Q-space projection corresponds to
2p-2h states with all possible configurations.

1. Introduction
One of the fundamental subjects of Nuclear Physics is to understand basic structure of nucleus,
binding energy, magic number and saturation properties, etc., as a consequence of the interaction
among constituent particles. The pion is the most important ingredient in nuclear physics as
a mediator of the nuclear force, which is introduced by Yukawa[1]. The nuclear interaction is
characterized by strong tensor interaction induced by the pion exchange interaction and short-
range repulsion. It is well known that the deuteron has a bound state due to the tensor force.
The binding energy is very tiny at 2.2 MeV, but this value is dynamically obtained by strong
cancelation of large kinetic energy (20MeV) and large attraction due to the tensor interaction
(17MeV) with small central attraction (5MeV). There is a strong correlation between tensor
interaction and the kinetic energy. This is because the tensor interaction is accompanied by
particle excitation in high momentum region. Since the tensor operator includes the spherical
harmonics Y2, it produces s- and d-wave mixing. Reflecting this mechanism d-wave contains high-
momentum components and has a spatially compact distribution due to uncertainty principle.
The amplitude of the wave functions are very small due to the short-range repulsive force
in the region where the relative distance of the interacted pair becomes smaller than the
nucleon size. As a consequence the matrix element of the tensor force has maximum value
at around 1 fm. We have to take into account explicitly all these mechanisms in a theoretical
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framework. Furthermore, an ab initio variational calculation using the Green’s Function Monte-
Carlo method by the Argonne-Illinois group for light nuclei (A ≤ 12) shows that the pion plays
an important role and the energy contribution of the pion exchange in the total two-body
attractive force is about 80 %[2]. Due to pseudo-scalar nature of pion, strong tensor correlation
is induced by the pion exchange interaction between an interacted pair. To take into account
those correlations in a few-body system, it is essential to use the trial functions which depend
explicitly on the relative coordinates of each nucleon pair, rij . This few-body technique is,
however, hard to apply to medium and heavy nuclei, because the number of nuclear relative
coordinates increases as A2 and becomes tremendously large as the mass number A increases.
It is therefore highly desirable to construct a theoretical framework for finite system with large
mass numbers to treat explicitly the strong tensor and short-range repulsive interaction.

A very powerful method of treating the tensor correlation, which is called the tensor optimized
shell model (TOSM), was developed based on the shell model framework by including 2p-
2h states up to high momentum excitations for finite nuclei[3, 4]. This framework shows a
good convergence of the tensor correlation with full tensor strengths by taking enough particle
states in the 2p-2h space. In medium and heavy nuclei, a single-particle picture is a good
approximation as a first step and we need to use a self-consistent field theoretical method based
on the single-particle picture. It is therefore very interesting to construct the framework based
on the Hartree-Fock theory and to extend the model space up to 2p-2h states with spatially
compact configurations to treat the tensor correlation. In this talk we present the framework
to handle the strong tensor and short-range repulsion in a convincing manner to the many-
body problem for medium and heavy nuclei[5]. In this case, there are two difficult points to
be solved when we construct a powerful framework for finite nuclei. First of all, a large model
space is needed, because the tensor and short-range repulsion induce particle excitation in high
momentum region. The second is that the single-particle wave functions in the Fermi sea should
be self-consistently obtained by solving an appropriate equation. The second point is linked
with the first one.

We discuss the construction and the structure of the EBHF theory by comparing with the
Brueckner-Hartree-Fock theory and the Feshbach projection operator method. Finally, we give
the summary and outlook.

2. Extended Brueckner-Hartree-Fock theory
The pion exchange interaction is expressed in terms of the tensor and spin-spin central parts,

σ⃗1 · q⃗σ⃗2 · q⃗
q⃗2 + m2

π

=
1
3
S12(q̂)

q⃗2

q⃗2 + m2
π

+
1
3
σ⃗1 · σ⃗2

q⃗2

q⃗2 + m2
π

. (1)

There appears the tensor interaction due to the pion exchange interaction. Hence, it is
fundamentally important to treat the tensor interaction in order to consider the effect of the
role of pion in nuclei.

2.1. Tensor interaction
When two nucleons approach each other within a distance of the Compton wave length of the
pion, they feel a strong tensor interaction from each other. The pion exchange interaction brings
about spin and iso-spin flips of single-particle states of interacting nucleons, because it induces
the tensor interaction, S12 = [Y2 ⊗ [σ⃗ ⊗ σ⃗]2]0, having Y2(q̂) spherical harmonics with rank 2.
Since spin and iso-spin flipped states are already occupied by other nucleons in spin-saturated
nuclear ground state |0〉 the interacted nucleons must jump into states above the Fermi level. In
the spin saturated Hartree-Fock (HF) state the expectation value of the tensor operator becomes
zero, 〈0|S12|0〉 = 0. Hence, we have to extend the HF model space at least up to 2p-2h states
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with all possible configurations so as to express the effect of the tensor correlation. The total
wave function is taken as

|Ψ〉 = C0|0〉 +
∑
α

Cα|2p − 2h; α〉, (2)

where we take summation of all the possible 2p-2h configurations labeled, α, with higher pionic
angular momentum (0− ⊗ L(−1)L) of exchange pion until energy convergence is achieved. The
normalization condition of the total wave function is given by 〈Ψ|Ψ〉 = |C0|2 +

∑
α |Cα|2 = 1.

Validity of this model space is checked by detailed comparison of the ground state of 4He with the
tensor-optimized shell model[4, 6] and the rigorous few-body model calculations[7]. Furthermore,
the relativistic Brueckner-Hartree-Fock method takes 2p-2h space and its results show a good
reproduction of the saturation property in nuclear matter[8]. For the total Hamiltonian we write
in the creation and annihilation operator form,

Ĥ =
∑
ij

〈i|T |j〉a†iaj +
1
2

∑
ijkl

〈ij|V |kl〉a†ia
†
jalak, (3)

and the total energy of the nuclear ground state is given by

E = C∗
0C0〈0|Ĥ|0〉 + C∗

0

∑
β

Cβ〈0|Ĥ|2p − 2h;β〉 + C0

∑
α

C∗
α〈2p − 2h;α|Ĥ|0〉 (4)

+
∑
αβ

C∗
αCβ〈2p − 2h; α|Ĥ|2p − 2h; β〉.

The guiding principle for the total wave function Ψ is to make the total energy minimization,
δ〈Ψ|Ĥ|Ψ〉/〈Ψ|Ψ〉 = 0. The variational condition for the amplitudes of 2p-2h states as a whole,
C∗

α,
∂

∂C∗
α

〈Ψ|Ĥ − E|Ψ〉 = 0. (5)

We take into account the effect of the two-pion exchange (iterative one-pion exchange) in the
intermediate interaction range by using the variational method in this extended model space
including 2p-2h states with all the possible configurations. This is a very important point of
our method. Due to this method we can obtain the wave function including high-momentum
components with pionic correlation. The amplitudes of 2p-2h states with all the possible
configurations are decided by the variational condition (5),

Cβ =
∑
α

〈β| 1
E − Ĥ

|α〉〈α|Ĥ|0〉C0, (6)

where we have introduced an abbreviation of expressing 2p-2h states as |2p − 2h;α〉 = |α〉 for
the later use. As the next step in the many-body theory based on the single-particle picture
mentioned in the introduction, we take the variation with respect to the single-particle wave
function in the Fermi sea. The tensor and the short-range repulsive force have an effect on those
single-particle states through the extended model space of 2p-2h states. They should be decided
so as to make the total energy of the system minimized under the condition of orthonormalization
〈i|j〉 = δij ,

∂

∂ψ∗
i (x⃗)

{
〈Ψ|Ĥ|Ψ〉 −

∑
ij

εij〈ψi|ψj〉
}

= 0. (7)
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This variational condition leads to the equation of motion for single-particle states in the Fermi
sea. We call this an extended Brueckner-Hartree-Fock equation,

Tψi(x⃗) +
∑
j

∫
d3xψ∗

j (x⃗)V (x⃗ − x⃗
′
)[ψi ⊗ ψj ]A(x⃗, x⃗

′
) (8)

+ C∗
0

∑
α

Cα
∂

∂ψ∗
i (x⃗)

〈0|Ĥ|α〉 +
∑
αβ

C∗
αCβ

∂

∂ψ∗
i (x⃗)

〈α|H̃|β〉 = εiψi(x⃗).

Here, we use the relation 〈α|Ĥ|β〉 = 〈0|Ĥ|0〉 + 〈α|H̃|β〉 and the normalization condition of
the total wave function. The first line of the equation corresponds to the HF equation. The
effect of the tensor correlation is included in the single-particle states in the Fermi sea through
the second line of the equation. Equations (6) and (8) should be solved iteratively until self-
consistency for the wave function and the energy is achieved. We obtain the equation that
connects straightforwardly between nuclear structure and bare interaction among the constituent
particles.

2.2. Short-range repulsion
We take a method for treating the short-range repulsion in order to describe quantitatively
nuclear many-body system without seeking the origin of this force in this stage. In finite nuclear
system we should try to express the short-range behaviour of the relative wave function to a
certain extent in terms of 2p-2h configurations as the case of the tensor interaction. Considering
the extreme short-ranged nature, we use a suitable method which is developed by Jastrow[9] or
the unitary correlation operator method by Feldmeier[10]. In these methods the correlated wave
function can be obtained by multiplying a trial wave function with a certain correlation function∏

ij f(rij). This correlation function f(rij) is zero at the small relative distance and gradually
approaches unity at the healing distance. The form of the correlation function is decided by
energy minimization. We have to treat regorously the short-range repulsive correlation, because
it affects the amount of the tensor matrix element. In the previous subsection of the EBHF
formulation, we use the correlated wave functions or correlated operators.

3. Structure of the theory
We would like to discuss the structure of the EBHF theory by comparing with the Brueckner-
Hartree-Fock (BHF) theory. We substitute the expression of 2p-2h amplitudes (6) in the EBHF
equation (8). We obtain an effective Hamiltonian and take the expectation value of the HF
states, |0〉 =

∏occ.
i a†i |vac〉, as follows,

〈0|Ĥeff |0〉 = |C0|2〈0|T̂ + V̂ |0〉 − |C0|2
∑
αβ

〈0|V̂ |α〉〈α| 1
Ĥ − E

|β〉〈β|V̂ |0〉. (9)

The energy denominator which is an important part in this framework is written by

〈α|Ĥ|β〉 − E = ê + 〈α|H̃|β〉 + 〈0|Ĥ|0〉 − E. (10)

Here, ê denotes 2p-2h energies.

3.1. Comparison with the Brueckner-Hartree-Fock theory
The BHF theory is based on the two-body scattering with the Pauli principle in self-consistent
uniform potential Û [11]. This self-consistent potential is formed from the reaction matrix, G,
obtained by solving the following 2-body equation,

G = V − V
Q

ê
G = V − V

(Q

ê
− Q

ê
V

Q

ê
+ · · ·

)
V = V − V

Q

ê + V
V. (11)
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Here, the energy denominator, ê = T̂ + Û − εh1 − εh2, represents 2 particle-energies minus 2
hole-energies, ê|α〉 = (εp1 + εp2 − εh1 − εh2)|α〉. An interacted pair must jump above the Fermi
surface and the intermediate states are 2p-2h states. The iteration process for the G-matrix
is to repeat scattering many times within 2p-2h states. This G-matrix is considered to be the
2-body effective interaction in the HF-space. We write the expectation value of the HF states
in the following form,

〈0|T + G|0〉 = 〈0|T + V |0〉 −
∑
αβ

〈0|V |α〉〈α| 1
ê + V

|β〉〈β|V |0〉. (12)

Comparing (9) with (12), both have similar structures except for the coefficient |C0|2 and the
energy denominator (10). The difference of the total energy, E, and the HF energy appears in
the denominator of EBHF theory as shown as the last two terms in (10) is a very important term.
This is because this part expresses the particle excitation in high momentum region induced by
the strong tensor and short-range repulsion. The concept of the total energy E appears in the
EBHF theory, because this theory handles the fully many-body system by using the variational
method.

3.2. Comparison with the Feshbach projection operator method
It is very interesting to compare the EBHF theory with the Feshbach projection operator
method[12]. We introduce the projection operator P and Q, where P 2 = P , Q2 = Q and
PQ = 0 under the condition P + Q = 1. From the many-body Schroedinger equation,

HΨ = EΨ, (13)

we can derive an effective Hamiltonian for the PΨ state using the properties of the projection
operators,

(PHP − PHQ
1

QHQ − E
QHP )Ψ = EPΨ. (14)

We should identify P -projection as |0〉〈0| and Q-projection as 2p-2h states
∑

α |α〉〈α|, namely,
P |Ψ〉 = C0|0〉 and Q|Ψ〉 =

∑
α Cα|α〉, we then obtain the effective Hamiltonian for HF state,

|0〉. The matrix element by HF state is given as

〈0|Heff |0〉 = 〈Ψ|PHP |Ψ〉 − 〈Ψ|PHQ
1

QHQ − E
QHP |Ψ〉 (15)

= |C0|2〈0|H|0〉 − |C0|2
∑
αβ

〈0|V |α〉〈α| 1
H − E

|β〉〈β|V |0〉.

If we take the energy variation of HF energy, 〈0|Heff |0〉, with respect to the single-particle
states ψ∗

i in the Fermi sea leads to precisely the EBHF equation (8). Hence, both the effective
Hamiltonians agree completely with each other. The normalization requires the contribution of
the Q-space wave function. This means that the HF state alone is not normalized to unity.

4. Summary and outlook
A nuclear many-body theory, which is called extended Brueckner-Hartree-Fock (EBHF) theory,
has been presented to understand the nuclear structure as a consequence of the bare interaction
among constituent particles. The nuclear force is characterized by the strong tensor and the
short-range repulsive forces. The fact that the tensor matrix element of the spin-saturated HF
state vanishes forces us to extend the ground state HF wave function. We therefore take the
HF + 2p-2h states with all possible configurations as the variational model space for medium
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and heavy nuclear system in a consistent manner of the single-particle picture. We take the
variational method and obtain a total wave function including the high-momentum components
originated from the pseudo-scalar nature of pion. We obtain the EBHF equation for the single-
particle states in the Fermi sea under the influence of the Q-space (2p-2h) wave function. We
have compared the EBHF equation with the BHF theory and the Feshbach projection operator
method. The EBHF equation and the BHF theory has the same structure. There is the
concept of the total energy in the energy denominator of the EBHF because of full consistency
of many-body system. The energy difference between the HF and the total energy in the energy
denominator of EBHF theory contains high-momentum components due to the tensor and short-
range repulsive correlation. This is the reason why we would like to call the present framework as
an extended Brueckner-Hartree-Fock theory. The coefficient |C0|2 appears in the EBHF theory,
which means that the normalization condition of the HF state (P-space) is not normalized to 1,
because of |C0|2 ̸= 1.

Finally, we would like to mention our outlook and why we have constructed the present
framework. The pseudo-scalar nature of pion, which emerges as the Nambu-Goldstone boson,
originates from spontaneous chiral symmetry breaking[13]. The chiral symmetry is known to be
the most important symmetry in hadron physics and the hadron mass generation is described
clearly in the Nambu-Jona-Lasinio model with fermion fields[13]. The pion plays an important
role in both nuclear and hadron physics. To handle the nature of pion is a key to make connection
between nuclear and hadron physics governed by the strong force which has the fundamental
principles in QCD. To understand nuclear structure on the same footing as hadron physics, we
need the framework to understand the nuclear many-body system starting from bare interaction
among the constituent particles instead of the nuclear force obtained phenomenologically from
the phase-shift analysis of nucleon-nucleon scattering data. Recently, the specific characteristics
of the nuclear force can be reproduced numerically by the Lattice QCD calculations[14], though
the pion mass is still large. For this purpose, proper treatment of the pion based on the field
theoretical method is essential.
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