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Dedication





Measurement of neutrino fluxes produced by cosmic rays interactions and
the deficit of solar neutrino compared with the Solar Standard Model suggest
a major reconsideration of our understanding of the fundamental neutrino
properties, pointing to neutrino oscillations as possible explanation and in
any case to neutrinos masses. Many experiments have been performed and
many other will investigate this possibility in the coming years. A particular
kind of neutrino experiment use a proton accelerator to produce neutrinos,
the most ambitious project in this field being the Neutrino Factory. In a
Neutrino Factory a MW-scale proton accelerator is used to produce a pion
beam. Muons from pion decays, collected with a magnetic horn are accel-
erated up to 50 GeV and finally stored in an accumulation ring where they
decay, sending neutrinos to detectors at different distances.
The present accelerator based experiments generally produce neutrinos from
the decay of pions and kaons generated from high energy protons with a power
in the 40 kW range. These experiments can be divided into two classes: short
baseline experiments where the detector is close to the production point and
long baseline experiments where the detector is at hundreds of kilometers
away from the production point. An intermediate step between the present
accelerator based experiments and the Neutrino Factory, are the so called
neutrino superbeams. These superbeams are conventional neutrino beams
generated by pion decay but using a very intense MW-scale proton source.
A new low energy linear accelerator in the MW-scale, the SPL (Supercon-
ducting Proton Linac), has been designed at CERN, and could be used for
both superbeam and as first stage for the Neutrino Factory. A working group
has been created at CERN to investigate the feasibility and the physics reach
of this low energy neutrino superbeam.
The analysis of the potential of the possible SPL-based superbeam is per-
formed in the present study. The experiment would aim at observe the
appearance of νe in a initial νµ beam and improve some of the existing mea-
surements on the oscillation parameters. With the technology of present
neutrino detectors, a high level of background rejection is possible, hence in
appearance experiments the dominant background is given by the νe con-
tamination of the initial beam. The leading part of the presented study is
the optimization of the initial neutrino superbeam purity in the SPL based
configuration.
The oscillation parameters and the experiments investigating on them will be
considered in the first chapter, reporting the present values of the measured
parameters.
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Neutrino oscillations formalism is developed in the second chapter; formulas
derived there will be used to calculate oscillations probabilities to estimate
the number of oscillated neutrinos in the considered superbeam.
The description of the SPL-based neutrino superbeam is analyzed in the third
chapter. Starting from a brief description of the accelerator the attention will
concentrate on the pion production and focalization with a magnetic horn.
The only tool to define the initial composition of the neutrino beam is the
pion decay tunnel. The relation between νe contamination and decay tunnel
parameters has been investigated.
Neutrino from pion decay and subsequent muon decay have been studied
analytically and a FORTRAN program has been implemented to calculate
neutrino fluxes. The detailed explanation of the decay analysis is the subject
of the fourth chapter. The program used is reported in appendix. The do-
minant effort in this study is the optimization of the pion decay tunnel and
it is performed with a systematic analysis of all the possible configurations.
The sensibility of the experiment using this neutrino superbeam has been in-
vestigated. In order to have significant signal, a 40 kton detector at 130 km
has been chosen as a reasonable configuration. The detectors studied are a
water Cerenkov Super Kamiokande-like and a liquid scintillator MiniBooNE-
like. The analysis of the scintillator detector has been performed using the
data on detector performance reported in the MiniBooNE proposal, while
for the water Cerenkov it has been possible to take advantage of the Super
Kamiokande collaboration and use the full detector simulation software. Re-
sults of the compared analysis are discussed in the fifth chapter.
The analysis on the oscillation parameters has been focalized on θ13. Likeli-
hood method and exclusion plots as general tools used in neutrino oscillation
studies are described in the sixth chapter. Results of the analysis performed
with the studied superbeam are reported and compared, in the significant pa-
rameters range, with the present limits on θ13 given by CHOOZ. The present
study has shown an improvement of almost an order of magnitude in sensi-
tivity with respect to these published data.
This study has been possible thanks to the collaboration between the physics
department of “Universtà degli studi di Milano” and the “Université de
Genève” in the frame of the Erasmus project. I wish to thank: CERN
that allowed me to collaborate with the PS-division; Dave Casper for Su-
per Kamiokande simulations and the important explanations on detector
physics; Mauro Mezzetto for the important discussion on MiniBooNE; Si-
mone Gilardoni for MARS simulations of the neutrino factory horn and the
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whole Neutrino Factory Oscillations Working Group.
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Chapter 1

Introduction

The first man who had the idea of neutrino existence was W. Pauli in 1930
studying the continuous spectrum of β particles emitted by radioactive de-
cay of nuclei. Energy conservation doesn’t allow a continuous spectrum for
a two body decay. Pauli attempted to solve this problem by imagining a
neutral spin 1/2 particle which he called “neutron”. He was to present this
idea in a conference in Tübingen in December 1930 but, following a genuine
“Erasmus-project spirit”, he preferred a ball in Zurich and sent a letter to his
colleagues at the conference (“Liebe Radioaktive Damen und Herren...”) [1].
J. Chadwick would discover what we today call neutron in 1932 [2]. In 1934
E. Fermi took up Pauli’s idea and proposed a quantitative theory of β decay
which could explain the continuous energy spectrum and predict the decay
rate [3]. Fermi proposed that the emission of β particles (electrons) was due
to the decay of Chadwick’s neutron to a proton, an electron, and Pauli’s
invisible particle which he called for the first time with the italian diminu-
tive of “neutrino”. The first evidence of neutrino existence was obtained in
1956 by F. Reines and C. Cowan at the nuclear reactor of Savannah River
[4]. In 1958 R.P. Feynman and M. Gell Mann proposed a universal theory
of the weak “V-A” interaction [5]. The neutrino was established to be left
handed in 1958 by M. Goldhaber et al. [6]. In 1959 R.Davis and D. Harmer
discovered that neutrino is different from anti neutrino [7]. The proposal of
a muon neutrino by Pontecorvo in 1959 [8] stimulated the research of L.M.
Lederman, M. Schwartz and J. Steinberger which led to the discovery of νµ

in 1962 at Brookhaven [9]. The ντ was established from decays of the τ lep-
tons discovered in 1975. In 1989 precise measurements of the Z0 decay width
provided evidence that there are only three light neutrinos [10]. Finally in

1
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2000 the last missing neutrino was added at the list with the discovery of the
τ neutrino at Fermilab with the DONUT experiment [11].
In June 1998 a very important event in neutrino physics occurred. The
Super Kamiokande collaboration reported a strong evidence for neutrino os-
cillations in the atmospheric neutrino data [12]. Neutrino oscillations was a
reality growing in the last twenty years in solar neutrino experiments. How-
ever it was the Super Kamiokande experiment that, for the first time, not
only showed with high statistic the deficit of neutrino flux compared with
the expectation, but also demostrated that this deficit depends on neutrino
pathlenght and energy in the way it is expected to depend in the case of
neutrino oscillations. Since neutrino mass is forced to zero in the Standard
Model, the evidence for neutrino oscillations (and therefore neutrino mass) is
often seen as evidence for physics beyond the Standard Model [13], although
it is possible to add masses to neutrinos as Dirac spinors in a straightforward
extension of the Standard Model which account for all abserved phenomena.

1.1 Solar neutrinos

As all visible stars, the Sun was formed from the gravitational collapse of a
cloud of gas contisting mostly of hydrogen and helium. This collapse pro-
duced an increase of the core density and temperature resulting in the ignition
of nuclear fusion reactions. A state of hydrostatic equilibrium was reached
when the kinetic and radiation pressure balanced the gravitational forces
preventing any further collapse. There are several nuclear fusion reactions
occurring in the sun core. The Solar Standard Model (SSM) which has been
developed and continuosly updated by J. Bahcall during the past 20 years
[14] predicts the energy spectrum of solar neutrinos. The main assumptions
of the SSM are:

• hydrostatic equilibrium;

• energy produced by fusion;

• thermal equilibrium

• energy transport inside the Sun is dominated by radiation
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Figure 1.1: pp chain

The SSM calculations are performed by adjusting the initial parameters, by
evolving them to the present day and comparing the predicted and measured
properties of the Sun. The initial composition of the Sun is taken to be equal
to the present day measurement of the surface abudances. If the predicted
properties disagree with the measured ones, the calculations are repeated
with different inital parameters until agreement is found. These calculations
require the knowledge of absolute cross sections for nuclear reactions in a
very low energy region where little information is directly available from
laboratory experiment. There are two main nuclear reaction chains in the
Sun core: the pp chain responsible of the 98.5% of the Sun luminosity and the
CNO chain which involves heavier elements. In figure (1.1) the pp chain is
shown. In these two chains there are eight reactions that produce neutrinos.
Figure (1.2) shows the νe flux as a function of energy as predicted by the SSM
for the different reactions. It must be pointed out that while solar neutrinos
arrive on the Earth approximately 8 minutes after being produced, it takes
106 years for energy produced in the same reactions to be transported from
the sun core to its surface. Thus the luminosity which is measured today
is associated with neutrinos which reached the Earth 106 years ago. This,
however, is not considered a problem for the SSM because is thought that
the Sun has no appreciable change of properties over 108 years.
In the following major experiments on solar neutrinos are briefly described.
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Figure 1.2: Solar neutrino spectrum

1.1.1 Homestake experiment

Solar neutrinos were successfully detected for the first time in an experiment
performed by R. Davies et al. in the Homestake gold mine (U.S.A) [15].
The method consits in measuring the production of 37Ar from the capture
reaction

νe +37 Cl → e− +37 Ar

which occures in a tank filled with C2Cl4 (a cleaning fluid). The neutrino
energy threshold for this reaction is 0.814 MeV, so this reaction is not sensi-
tive to the νpp (see figure (1.2)). The tank is installed deep underground in
order to reduce 37Ar production from cosmic rays. The extraction efficiency
is measured by injecting a known amount of 37Ar in the tank. The 37Ar
production is of the order of 0.5 atoms/day.
It is customary to express the solar neutrino capture rate in solar experiment
in SNU (Solar Neutrino Units, 1 SNU corresponds to 1 capture/s from 1036

nuclei). The results of the homestake experiment averaged over more than 20
years of data taking is [16] 2.56±0.16±0.16 SNU (the first error is statistical
and the second one systematic) where the SSM predictions as calculated by
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Bahcall et al. is [14] 7.7+1.2
−1.0 ± 3.0 SNU. Hence the total measured number

disagrees with the predicted value.

1.1.2 Gallium experiment

Two experiments, GALLEX [17] installed in the LNGS (Laboratori Nazionali
del Gran Sasso, Italy) and SAGE [18] installed in the Baksan underground
laboratory (Russia) have measured the rate of the reaction

νe +71 Ga →71 Ge + e−

This reaction has a neutrino threshold of 0.233 MeV and is sensitive to the νpp

contribution (see figure (1.2)). Both experiments have measured the neutrino
detection efficiecy, with the use of intense source of 51Cr. In the GALLEX
experiment the 71Ge extraction efficiency has been measured directly by in-
jection in the tank of known quantities of 71As that decays to 71Ge.
The solar neutrino flux measured by the GALLEX experiment is [19] 77.5±
6.2+4.3

−4.7 SNU; the measurement of SAGE experiment is [20] 66.6+6.8
−7.1

+3.8
−4.0 SNU.

The SSM predictions are [14] 123 ± 5 SNU. Again the measured number is
much lower than the SSM prediction.

1.1.3 Super Kamiokande

Super Kamiokande is a real-time experiment which uses an underground
detector installed in the Kamioka mine 350 km from Tokio [21]. The detector
consist in a tank filled with 22000 ton of water and approximately 40% of the
surface is covered with photomultipliers. The detector is used as an imaging
Cerenkov counter. (This detector will be described in more detail in the fifth
chapter). Solar neutrinos are detected by the scattering reaction

ν + e− → ν + e−

The detection threshold is 5 MeV, hence sensitive only to ν from B or “hep”,
(see figure (1.2)). The detected electron from the previous scattering reaction
has a very strong directional correlation with the incident neutrino. This
property is used to demostrate the solar origin of the events. The Super
Kamiokande experiment began data taking in 1996 and has published the
following flux [14] 2.40 ± 0.03 ± 0.08 106 cm−2s−1. This value is the 47% of
the SSM prediction [14] 5.15+0.98

−0.72 106 cm−2s−1. Again the measured number
is much lower than the SSM prediction.
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1.1.4 Interpretation of the phenomenon

The global analysis of the solar neutrino data shows an apparent absence of
νe from the Be line. This is a real puzzle because νe from 8B are observed by
Super Kamiokande and, as it is possible to see in figure (1.1), 8B is formed
from the fusion reaction

p +7 Be → γ +8 B

which implies that 7Be must exist in the Sun. This in turn implies the
occurence of the reaction

e− +7 Be →7 Li + νe

which is responsible for νe from 7Be production. There are at least two
possible explanations to this puzzle:

• The SSM in not correct, resulting in unreliable predictions of solar
neutrino flux (however, the SSM correctly predicts the results of helio-
seisomlogical observations [22] which depend on the temperature profile
of the Sun)

• The νe produced in the core of the Sun are no longer νe when they
reach the earth.

The second explanation, which is thought to be the correct one, implies neu-
trino masses and most probably neutrino oscillations. (For an introduction
the the formal theory of the neutrino oscillation physics, see the next chap-
ter.)
In the frame of the oscillations explanation there are two classes of solutions
to this puzzle: vacuum oscillations solutions and matter enhanced solutions.
The experimental results on solar neutrinos can be explained by vacuum
oscillation parameters that strongly suppress νe from the Be line when these
neutrinos reach the Earth at a distance L = 1.5 1011 m from the Sun. So-
lutions derived by the Super Kamiokande collaboration [14], are shown in
figure (1.3). The ∆m2 value are in the range of 4 10−11 - 5 10−10 eV 2 and the
mixing angle is large (sin2(2θ) > 0.6).
The other class of oscillations solution to the solar problem can be found

in the framework of the theory of neutrino oscillations in matter. It was
first pointed out by L. Wolfenstein [23] that neutrino oscillations in dense
matter differ from oscillations in vacuum if νe are involved. In fact νe can
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Figure 1.3: The Super Kamiokande two flavours fit for vacuum oscillation.[14]

interact in matter through the exchange of a W boson directly with an elec-
tron. This supplemental contribution makes the oscillation length and the
neutrino mass eigenvalue depending on the density of the material which
they are traversing. For neutrino propagating through the Sun, the density
ρ varies along the trajectory from a value higher than 100 g/cm3 in the core
to much less than 1 g/cm3 in the outermost layers. Oscillation solutions in
matter are the so called Mikheyev-Smirnov-Wolfenstein (MSK) solutions [24].
The results of the latest analysis of the solar neutrino event rates in terms
of matter enhanced oscillations are shown in figure (1.4). There are three
possible solutions: two with large mixing angles (LMA) and ∆m2 ' 10−7 eV 2

or 4 10−5 eV 2 and one with small mixing angle (SMA) sin2(2θ) ' 0.005 and
∆m2 ' 6 10−6 eV 2.
New experiments such as Borexino, SNO and KAMLAND, should add new
information to help to solve the neutrino oscillation puzzle.



8 CHAPTER 1. INTRODUCTION

Figure 1.4: The Super Kamiokande two flavours fit to MSW conversion to
an active neutrino.[14]
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1.1.5 Borexino

Borexino is an experiment presently under construction at the LNGS (La-
boratori Nazional del Gran Sasso, Italy) [25]. The detector consists of a
spherical acrylic vessel of 8.5 m diameter filled with very high purity, low
activity liquid scintillator and viewed by an array of 1650 photomultipliers
located on its surface. The relative timing of the photomultipliers signals
provides information on the event position within the detector volume. The
entire detector is immersed in a cylindrical tank 16.5 m high with 16.5 m
diameter filled with high purity water acting as a shield. The aim of the
experiment is to detect ν−e− elastic scattering with threshold as low as 0.25
MeV. The experiment would be sensitive to the νe from the Be line compo-
nent of the solar flux which is expected to be strongly suppressed if neutrino
oscillations are indeed the solution of the solar neutrino puzzle.

1.1.6 SNO

The Sudbury Neutrino Observatory (SNO) is a solar neutrino detector in-
stalled in the Creighton mine (Ontario, U.S.A.) [26]. SNO is presently in
data taking. The detector consists of a spherical acrylic vessel containing
1000 ton of high purity heavy water (D2O) surrounded by 7800 tons of ultra-
pure water for shielding purposes. Cerenkov light produced in heavy water
is collected by 9546 photomultipliers. As for Super Kamiokande experiment
neutrino are detected by the elastic scattering reaction ν+e− → ν+e− which
have a threshold of 5 MeV. However in heavy water the charged current re-
action νe + d → p + p + e− also occur with a threshold of 6.5 MeV. However
the main feature of SNO is its capability to detect the reaction

ν + d → p + n + ν

which has the same cross-section for all the three neutrino flavours and mea-
sures the total solar neutrino flux. Any significant difference from charged
current reactions would provide, therefore, unambiguous proof of neutrino
oscillations.

1.1.7 KAMLAND

The Kamioka Liquid scintillator Anti Neutrino Detector (KAMLAND) [27],
is not a solar neutrino experiment. It is discussed here because it is sensitive
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to oscillation parameters which could explain the solar neutrino problem.
The detector is a trasparent sphere with a diameter of 13 m filled with scin-
tillating isoparaffin oil. This sphere is itself contained in a larger, concentric
sphere (18 m diameter) filled with isoparaffin oil. Scintillation light from the
inner sphere is collected by 1300 photomultipliers located on the surface of
the outer sphere. The entire system is immersed in high purity water and
installed in the Kamioka mine at a depth of 2700 of water equivalent. KAM-
LAND aims at detecting the ν̄e produced by five nuclear reactors located at
distances between 150 and 210 km from the detector and producing a total
thermal power of 127 GW. Because of the large distance from the reactors
and of the low ν̄e energy KAMLAND is sensitive to ∆m2 > 7 10−6eV 2 and
sin2(2θ) > 0.1 a region which includes the large mixing angle solutions.

1.2 Atmospheric neutrinos

Since the total thickness of the atmosphere is ' 103 g/cm2 the interaction
of primary cosmic rays in the upper layers of the atmosphere results in the
development of hadronic showers leading to a flux of neutrinos from charged
pions and muon decay. These neutrinos have energies ranging from ' 0.1
GeV to several GeV. Their interaction rate is of the order of 100/y for a
target mass of 1kton.
Since νµ is produced from both π± and µ± decay and a νe form µ± decay
only, one expects the ratio between the νµ and νe fluxes on the earth to be of
the order of two if both π± and µ± decay in the atmosphere. This indeed is
a very good approximation for neutrinos with energies lower than 3 GeV. At
higer energy the fraction of µ± decaying in the atmosphere and producing νe

or ν̄e decreases.
Calculations of atmospheric neutrino fluxes are affected by sizeable uncer-
tainties which result from uncertainties on the composition and energy spec-
trum of the primary cosmic rays and on secondary particle distribution. In
addition, these calculations ignore for semplicity the lateral shower develop-
ment and treat the problem in one dimension only. The final uncertainties
affecting the νµ νe fluxes on Earth is estimated to be of the order of ±30%.
However, because of partial cancellations, the uncertainties on the predicted
νµ/νe ratio is believed to be of the order of ±5%.
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Experiment R

Kamiokande 0.60 ± 0.06 ± 0.05
Super Kamiokande 0.65 ± 0.02 ± 0.05

IMB 0.54 ± 0.05 ± 0.07
FREJUS 0.99 ± 0.13 ± 0.08
NUSEX 1.00 ± 0.3
Soudan-2 0.68 ± 0.11 ± 0.06

Table 1.1: Results on R. The first errors is statistical, the second is system-
atic.

1.2.1 Atmospheric neutrino experiments

Six underground experiments have measured the atmospheric neutrino fluxes
by detecting quasi-elestic interactions:

νµ(νe) + n → µ−(e−) + p

ν̄µ(ν̄e) + p → µ+(e+) + n

Three experiments (Kamiokande [28], IMB-3 [29], Super Kamiokande [21])
detect Cerenkov light rings. The other three experiments, FREJUS [30], NU-
SEX [31], Soudan-2 [32] use calorimeters with high longitudinal and trans-
verse segmentation. The comparison between the measured and the predicted
νµ/νe ratio for the six experiment is shown in table (1.1) which list the value
of the double ratio R defined as:

R =
(νµ/νe)measured

(νµ/νe)predicted

With the exception of the values measured by FREJUS and NUSEX, all va-
lues of R are significantly lower than the expectation (R=1). The NUSEX
result is affected by a large statistical error, while the FREJUS result is not
confirmed by Soudan-2 which use the same detection technique. It can be
concluded, therefore, that a small R value (of the order of 0.6) is now firmly
established.

The flightpath of atmospheric neutrino from the production point to the
detector, L, varies enormously with the zenith angle θZ . For example, neu-
trinos impinging on the detector from above (cos θZ = 1) are produced '
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Figure 1.5: Zenith angle dependence of multi-GeV neutrino interactions from
Super Kamiokande, [33]. The expectations for no oscillations is shown in the
hatched region.

10 km above the detector while upward going neutrinos (cos θZ = −1) have
traversed the Earth and so have travelled for ' 13000 km before reaching
the detector. Also the higher the neutrino energy, the better the outgoing
charged lepton follows the incident neutrino direction. Hence the charged lep-
ton zenith angle is a direct measurement of L. Because of the directionality of
Cerenkov light, the water detector can be seen as disappearence experiment
with variable neutrino energies and pathlength. Measurement of the zenith
angle distributions are a sensitive way to search for neutrino oscillations.
The Kamiokande experiment [33] published a dependece of R on θZ which
disagrees from the expected shape. The Super Kamiokande θZ distributions
[34] with a much larger event sample are shown in figure (1.5). It is clear that
there are less muon events in the upward direction than the expected, while
the number of downward going muon events is consistent with the expecta-
tion. For electrons, however, the distribution agree with the expectations.
Figure (1.6) shows the up-down asymmetry defined as (U-D)/(U+D) where
U (D) is the total number of events with cos θZ < −0.2 (cos θZ > 0.2), as
a function of the charged lepton momentum [35]. While for electron events
the asymmetry is consistent with zero, for muon events its absolute value
increases with momentum and reaches a value around -0.4 above 1 GeV.
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Figure 1.6: The (U-D)/(U+D) zenith angle asymmetry is plotted versus
momentum for e-like and µ-like events. The expectations for no oscillations
is shown in the hatched region. The solid line shows the expectation for
νµ → νe oscillations [35].
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1.2.2 Interpretation of the phenomenon

Figures (1.5), (1.6) clearly demonstrates the existence of a new phenomenon.
Its most plausible interpretation is the occurrence of νµ oscillations. Since
the νµ/νe ratio at the production is equal to 2 or larger, νµ → νe oscillations
would induce a large up-down asymmetry for electrons as well, with more
up-going than down-going electrons, in disagreement with the data. Hence
the νµ predominantly oscillates to ντ or to a new type of “sterile” neutrino,
which is a neutrino that doesn’t interact in charged or neutral current. In fig-
ure (1.7) the oscillations parameters required to describe Super Kamiokande
atmospheric neutrino results are shown.
Another phenomenon that confirm the hypothesis of νµ → ντ oscillations

come from upward going muons. Charged current interactions of upward-
going νµ’s in the rock produce upward-going muons which can either stop
or traverse the detector. The study of the zenith angle distribution in the
interval −1 < cos θZ < 0 has provided an additional evidence for νµ → νx

oscillations.
Upward-going µ have been studied by Super Kamiokande where good agree-
ment is obtained under the assumption of νµ → ντ oscillations.
Another experiment that studied upward-going µ is the MACRO experiment
at LNGS (Laboratori Nazionali del Gran Sasso, Italy) [36]. The MACRO de-
tector is a system of horizontal streamer tube and scintillator counter planes
interleaved with absorber plates. The muon direction is determined by the
time-of-flight. MACRO has a very good resolution for muons near the ver-
tical direction, but the efficiency decreases rapidly as cos θZ approces zero.
The final MACRO analysis confirms the νµ → ντ oscillation.
Recently, evidence has been shown by the Super Kamiokande collaboration
of νµ → ντ oscillations, although this result is, for now, only at 2σ level [37].

1.3 Nuclear reactor experiments

Between experiments only CHOOZ [39] will be mentioned because its results
on sin2 θ, the most costraining today, are directly comparable with the ana-
lysis done in this study.
The detector is installed in an underground site under 115 m of rock at a
distance of 1114 and 998 m from two 4.25 GW nuclear reactors of the CHOOZ
nuclear power plant in France. The detector consists of three concentric
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Figure 1.7: Two flavors fit to atmospheric data, at TAU 2000.[38]



16 CHAPTER 1. INTRODUCTION

vessels. The innermost one contains 5 ton of scintillator (CH2) which acts
as the ν̄e target. The intermediate vessel also filled with CH2 is used for
containment. The outermost vessel acts as a veto counter.
The ν̄e are detected by the e+ signal from reaction

ν̄e + p → e+ + n

followed by the delayed signal from neutron capture. The ratio between
the measured and expected event rate is, in absence of neutrino oscillations,
0.98± 0.04± 0.04. Figure (1.8) shows the region of ν̄e → νx excluded by the
CHOOZ experiment at the 90% confidence level. This plot will be compared
in the last chapter with the exclusion plot emerging from this study.
Other conceptually similar experiments are in data taking (Palo Verde [40],

Arizona U.S.A.) or are planned (KAMLAND [27], Kamioka Japan).

The last kind of neutrino experiments are the accelerator based experi-
ments that will be described in the next chapter.
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Figure 1.8: CHOOZ exclusion plot. [39]
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Chapter 2

Neutrino oscillation physics

In the Standard Model leptons are described by three flavour doublets

(

e
νe

)(

µ
νµ

)(

τ
ντ

)

Today all these particle have been detected directly. The last being the ντ

with DONUT (in 2000). The definition of flavour eigenstate is experimental:
flavour eigenstate is the weak eigenstate under which neutrinos are gener-
ated, for example in the following reactions:

π+ → e+ + νe

π+ → µ+ + νµ

τ− → 2π− + π+ + ντ

or:

νe + n → p + e−

νµ + n → p + µ−

ντ + n → p + τ−

Lepton number is defined to be the eigenvalue of the lepton number operator:

Li|νj〉 = δij|νj〉, (i = e, µ, τ)

Li|ν̄j〉 = −δij|ν̄j〉, (i = e, µ, τ)

19
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Experiments show that Li is a conserved number but, since it is not based
on any known symmetry of the weak Lagrangian density, it is possible that
is not a fundamental physical law. Neutrino oscillations would violate this
principle, although the total lepton number L =

∑

i Li, (i = e, µ, τ) would
still be conserved.
The presence of neutrino oscillations is strictly related to neutrino mass.
Neutrino oscillations are only possible if at least one neutrino has non-zero
rest mass. In the Standard Model neutrino mass is fixed at zero, hence if
neutrino oscillations occur, new physics is necessary beyond the Standard
Model.
If eigenstates |νi〉 of the Hamiltonian of the weak interaction are not mass
eigenstates, then a neutrino mixing occurs.
To understand the relation between mass and mixing, the simple case of two
generation is considered. The most general mass term in the weak eigenstates
basis is1

Lm = ν̄Mν (2.1)

where

M =

(

mνeνe
mνeµµ

mνeνµ
mνµνµ

)

(2.2)

The Lagrangian density can be written explicitly as:

Lm = ν̄emνeνe
νe + ν̄µmνeνµ

νe + ν̄emνeνµ
νµ + ν̄µmνµνµ

νµ (2.3)

In general this Lagrangian density has non vanishing off-diagonal elements,
but being a R symmetrical matrix it is possible to diagonalize it with a uni-
tary transformation U :

M̃ = UMU † (2.4)

M̃ =

(

m1 0
0 m2

)

, U =

(

cos θ − sin θ
sin θ cos θ

)

(2.5)

Then it is possible to write:

(

νe

νµ

)

=

(

cos θ sin θ
− sin θ cos θ

)(

ν1

ν2

)

(2.6)

1Here and in the following will always be considered Dirac particle and no CP violation.

Natural units will be used ~ = c = 1.
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Figure 2.1: Two generation neutrino mixing.

The mass eigenvalues m1, m2, are:

m1,2 =
1

2

[

mνeνe
+ mνµνµ

±
√

(mνeνe
− mνµνµ

)2 + 4m2
νeνµ

]

(2.7)

and the mixing angle is:

tan 2θ =
2mνeνµ

mνµνµ
− mνeνe

(2.8)

It is possible to represent this mixing as a rotation in a bi-dimensional space
with the two bases (|ν1〉, |ν2〉) and (|νe〉, |νµ〉), figure (2.1)

2.1 Oscillation formalism

Neutrino oscillations can be described with the general formalism of quantum
mechanics.[41]
As shown in the previuos section flavour eigenstates |νi〉, (i = e, µ, τ) are
the mixing of several mass eigenstate |να〉, (α = 1, 2, 3). If mass differences
mα−mβ are smaller than the experimental resolution, the correspondent |να〉,
|νβ〉 eigenstates are indistinguishable, thus flavour eigenstates are described
with a coherent superposition of mass eigenstates:

|νi〉 =
∑

α

Uiα|να〉 (2.9)
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U is a 3 × 3 unitary matrix that associates mass eigenstates basis with the
flavour eigenstates. Considering no CP violation U is a R orthogonal matrix.
When a neutrino is generated at t = 0 in a certain position x it is, by defini-
tion, in a definite flavour eigenstate, and can be described as a superposition
of different mass eigenstates:

|νi〉 = |ν(~x, 0)〉 =
∑

α

Uiα|να(~x, 0)〉 =
∑

α

Uiαe−i~pα·~x|να〉 (2.10)

At a later time, applying the time-evolution operator to the previous expres-
sion:

|ν(~x, t)〉 =
∑

α

Uiαei~pα·~xe−iEαt|να〉 (2.11)

Neutrinos can always be considered ultrarelativistic particles, hence it is pos-
sible to use the approximation mα � pα,

Eα =
√

m2
α + p2

α ' pα +
m2

α

2pα

(2.12)

then (2.11) can be written as:

|ν(~x, t)〉 =
∑

α

Uiαe−i
m2

α
2pα

t|να〉 (2.13)

It is possible to go from the mass eigenstates basis to weak eigenstates:

|να〉 =
∑

k

Ukα|νk〉 (2.14)

and the (2.13) becomes:

|ν(~x, t)〉 =
∑

k

[

∑

α

UkαUiαe−i
m2

α
2pα

t

]

|νk〉 (2.15)

It is possible to note that a flavour eigenstate at time t=0 in the position x,
becomes a superposition of all flavours.
To calculate the transition probability νi → νl (i 6= l) it is necessary to
calculate the probability amplitude :

Ai→l(x) = 〈νl|ν(~x, t)〉 =
∑

k

∑

α

UkαUiαe−i
m2

α
2pα

t〈νl|νk〉 =
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=
∑

α

UlαUiαe−i
m2

α
2pα

t (2.16)

The probability that a neutrino, created in a weak eigenstate |νi〉 is, at time t,
in the state |νl〉 is given by the square of the absolute value of the amplitude:

Pi→l(t) = |Ai→l(t)|2 (2.17)

Pi→l(t) =
∑

α

∑

β

UlαUiαUlβUiβe
−i

(

m2
α

2pα
−

m2
β

2pβ

)

t

(2.18)

By the assumption mα � pα and mβ � pβ, then pα = pβ = p and (2.18)
becomes:

Pi→l(t) =
∑

α

∑

β

UlαUiαUlβUiβe
−i

(

∆m2
αβ

2p

)

t

(2.19)

Since v ' c then t ' x and (2.19) can be written as

Pi→l(x) =
∑

α

∑

β

UlαUiαUlβUiβe
−i

(

∆m2
αβ

2p

)

x

(2.20)

This probability varies periodically with distance (time) from the source.
The periodicity is characterized by the oscillation length:

Lαβ =
4πp

∆m2
αβ

=
4πE

∆m2
αβ

(2.21)

It is important to observe that if all masses are identical, or if all mass vanish,
no oscillation would occur (Lαβ → ∞)

2.2 Two family oscillations

To discuss general features about oscillations probability it is easier to con-
sider the simple case of two neutrino flavours. To fix the notation flavour
eigenstates will be |νe〉, |νµ〉 while mass eigenstates will be |ν1〉, |ν2〉
The mixing matrix is a 2 × 2 orthogonal matrix identical to (2.5); then, in
the mass basis the states |νe〉 and |νµ〉 can be written explicitly:

|νe〉 = cos θ|ν1〉 + sin θ|ν2〉 (2.22)
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|νµ〉 = − sin |ν1〉 + cos θ|ν2〉 (2.23)

The expression (2.20) can be written with the cartesian notation of the ima-
ginary exponential as:

Pνµ→νe
(t) = sin2(2θ) sin2(

∆m2x

4E
) (2.24)

The oscillation formula is composed by two terms: the first one depending
on the mixing angle θ fixes the amplitude, while the second, depending on
∆m2 = (m2

2 − m2
1), x, E, is the oscillatory term.

The oscillation length is :

L =
4πE

∆m2
(2.25)

Fixing θ = π
4

(maximum mixing) when a νµ is at the points x = L(n + 1/2)
it fully oscillated into a νe.
There is an important observation regarding the dimensions of the neutrino
source and detector. These two lengths must be compared with the oscillation
length L. If L is too small compared with the length of the decay tunnel at
the production or again too small with respect to the detector linear size, the
oscillation probability will be averaged on the oscillatory term depending on
x,

〈Pνµ→νe
(x)〉L =

1

2
sin2(2θ)

and the only possible measurement would be on the mixing angle.

2.3 Three family oscillations

In the case of three neutrino flavours, the mixing matrix U is a 3 × 3 ortho-
gonal matrix.





νe

νµ

ντ



 =





Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3









ν1

ν2

ν3



 (2.26)

As in the two dimensional case neutrino mixing could be seen as a rotation
in a two dimensional space, here it is possible to look at mixing as a rotation
in a three dimensional space, with the usual definition of Euler angles θ12,
θ23, θ13 as shown in figure (2.2).
U can be written as:
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Figure 2.2: Three generation neutrino mixing as a rotation parametrized
with Euler angles.

U =





c12c13 s12c13 s13

−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13



 (2.27)

where cij = cos θij and sij = sin θij.
Equation (2.20) can be written explicitly in a trigonometrical form as:

Pνi→νl
(x) = −4Ui2Ui3Ul2Ul3 sin2 ∆32

−4Ui1Ui3Ul1Ul3 sin2 ∆31

−4Ui1Ui2Ul1Ul2 sin2 ∆21

(2.28)

where

∆ij =
1.27δm2

ij x

E

and δm2
ij = (m2

i − m2
j), having expressed length in km mass in eV 2 and

energy in GeV.
In the case of interest for this study the oscillations considered are νµ → νe.
Using the parameters suggested by the LMA (Large Mixing Angle) solution
(see chapter 1) the previous formula can be approximated to:

Pνν→νe
(x) = sin2(2θ13) sin2(θ23) sin2

(

1.27δm2
23 x

E

)

(2.29)
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considering δm2
12 = 5 10−5eV 2 negligible with respect to δm2

23 ' δm2
13 =

3.2 10−3eV 2 and considering the fact that the matrix is unitary.
There are anyway some limitations in the use of this simplified formula. As
explained in the previous chapter there isn’t an univocal set of values fitting
all the experimental data. In this study the so called LMA (large mixing
angle) solution has been chosen:

sin2(2θ12) = 0.8
sin2(θ23) = 0.5
sin2(2θ13) = 0.01

(2.30)

and the following mass difference values:

δm2
12 = 5 10−5eV 2

δm2
23 = 3.2 10−3eV 2

δm2
13 = 3.25 10−3eV 2

(2.31)

Considering the LMA solution it is not possible to neglect δm2
12. The three

terms in (2.28) have different weights and even if δm2
12 is two order of mag-

nitude lower than δm2
23 the approximation is not adeguate. This is shown

clearly in the difference between the two figures (2.3),(2.4).
One last observation is necessary about the oscillation probability as func-

tion of the distance x. The simplified formula is a squared sinus with ampli-
tude sin2(2θ13) sin2(θ23) and oscillation period L = πE/1.27δm2, figure (2.5).
The complete formula is the superposition of three squared sinus hence its
shape is as shown in figures (2.6),(2.7), with different resolutions. In our
analysis anyway, as will be explained in chapter 4, only the first peak will be
used.
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Figure 2.3: Oscillation probability for a fixed L=130 km calculated with the
approximated formula
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Figure 2.4: Oscillation probability for a fixed L=130 km calculated with the
complete formula
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Figure 2.5: Oscillation probability for E=0.250 GeV as a function of the
distance calculated with the approximate formula.
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Figure 2.6: Oscillation probability for E=0.250 GeV as a function of the
distance calculated with the complete formula.
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Figure 2.7: Oscillation probability for E=0.250 GeV as a function of the
distance calculated with the complete formula.
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Chapter 3

Superbeam

Neutrino oscillations studies generally concern the observation of neutrinos
coming from the Sun or from interaction of primary cosmic rays with the
atmosphere. The general problem related with these experiments is the im-
possibility to know the real initial neutrino flux. Neutrino experiments which
avoid this problem are the accelerator based experiments.
The general way to produce neutrino beam is to make a proton beam imping-
ing on a target. Depending on the energy of the protons, pions and kaons
and other particles are produced. They are collected with a focusing system
and finally they decay in a decay tunnel. Neutrino beams from accelerators
can have energies from few MeV up to several GeV.
Neutrino beams can be divided according to their energy spread into two
classes: narrow band and wide band neutrino beams. Wide band are gen-
erally produced with a horn-focused pion-kaon beam (magnetic horn will be
discussed later) while narrow beams come from momentum selected pions
and kaons.
There are two main kind of experimental set up for accelerator based neutrino
experiments: short baseline and long baseline. For short baseline usually is
intended few meters between the neutrino production point and the detector,
while in a long baseline configuration there can be several km from target to
detector.
In the following some short baseline and long baseline neutrino beam are
briefly described. None of these experiment has data directly comparable
with the results of the present study.
LSND (Liquid Scintillator Neutrino Detector) [42] and the KARMEN (KArl-
sruhe Rutherford Medium Energy Neutrino) [43] experiments use neutrinos

31
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produced in a proton beam dump. LSND is at LANSCE (Los Alamos Labo-
ratory Neutron Science CEnter) and KARMEN at the ISIS neutron spallation
source, Rutherford Appleton Laboratory. For both the proton beam energy
is of 800 MeV. In these experiment neutrinos are produced by the decay of
pions and muons, and have an energy of the order of tens of MeV. These ex-
periments search for neutrino oscillations νµ → νe and ν̄µ → ν̄e. LSND uses
a 167 ton mineral oil detector and gives evidence for an excess of ν̄e events.
In KARMEN neutrinos are detected in a 56 ton scintillation calorimeter si-
tuated at a distance of approximately 18 m from the source and is still in
data taking.
Future research on νµ → νe oscillations are planned at Fermilab with Mini-
BooNE (Booster Neutrino Experiment) [44] which is the first phase of the
high sensitivity experiment BooNE. Neutrinos are produced using the 8 GeV
high intensity proton beam from the Fermilab Booster synchrotron. The
beam consists mainly in νµ from π+ decay with a broad energy from 0.3 to 2
GeV. The MiniBooNE detector (which will be briefly described in the fifth
chapter), will be installed at 500 m from the neutrino source.
Two experiments searching for νµ → ντ oscillations CHORUS (CERN Hy-
brid Oscillation Research apparatUS) [45] and NOMAD (Neutrino Oscilla-
tion MAgnetic Detector) [46] have recently completed their data taking at
CERN. Both used the wide band neutrino beam from the CERN 450 GeV
SPS (Super Proton Synchrotron). The method adopted by both experiments
consists in detecting τ− production with high sensitivity. The two experi-
ments are installed one behind the other at a distance of '820 m from the
proton target. CHORUS uses an emulsion detector which provide the high
resolution of ' 1µm well matched to the averaged τ− decay length of 1 mm.
While NOMAD is designed to observe τ− production using kinematical crite-
ria, which requires the precise measurement of secondary particles momenta.
The other class of neutrino experiments are long baseline accelerator exper-
iments which have the aim to verify atmospheric neutrino results (νµ → ντ

oscillations).
The K2K [47] project uses neutrinos at a mean energy of 1.4 GeV from
the decay of pions and kaons produced by the KEK 12 GeV proton syn-
chrotron. Two detectors located at different distances are used. The near
one to study precisely neutrino beam spectra and cross sections, and the
Super Kamiokande detector at 250 km to verify the oscillation hypothesis.
Neutrino energy is below the τ production threshold, hence it is not possible
to search for τ appearance. K2K is presently in data taking
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The NuMI [48] project uses neutrinos from the decay of pions and kaons pro-
duced by the Fermilab Main Injector (MI), a 120 GeV proton synchrotron.
The expected number of proton on target is 3.6 1020/y. The detector of this
experiment will be located in the Soudan mine at a distance of 730 km from
the proton target.
The MINOS [48] experiment (Main Injector Neutrino Oscillations Search)
will use two detectors, a near one at Fermilab and another one to be built
at the Soudan site. Both detectors are iron-scintillator sandwich calorimeter
with a magnetic field in the iron plates. The comparison between the fluxes
measured by the two will be sensitive to neutrino oscillations.
The CNGS project consists in a neutrino beam from the CERN 450 GeV
SPS to the LNGS (Laboratori Nazionali del Gran Sasso, Italy) at a distance
of 732 km. The detailed description of the beam design can be found in [49].
A possible detector for this experiment can be ICARUS (Imaging Cosmic
And Rare Underground Signal) [50]. This is a new type of detector based
on a liquid Argon time projection chamber, which allows three-dimensional
reconstruction of events with spatial resolution of the order of mm.
A new ambitious program in accelerator based neutrino experiment is the
Neutrino Factory [51], where neutrinos are produced with a muon storage
ring. A very schematic layout of the Neutrino Factory complex is shown in
figure (3.1). The first object of the complex is a proton beam of 4 MW onto
a high-Z target. The actual configuration in study at CERN uses the SPL
(Superconducting Proton Linac, which will be briefly described in the next
section) that accelerates protons up to a kinetic energy of 2.2 GeV. Due to the
low energy of protons, kaon production is strongly suppressed. The target is
placed in a magnetic horn (see figure (3.3)) which collects and focuses pions
in the centre of a solenoid. After a drift space where pions decay, the decay
muons are “cooled”, i.e. the muons volume in the six dimensional phase space
is reduced. Since muons are unstable (lifetime of 2.2µs) all further actions on
them must be highly efficient so as to accelerate them as quickly as possible
up to their final energy of 50 GeV, profiting to a maximum from Lorentz
time dilation. Finally muons enter the storage ring. The storage ring has
two straight sections, each pointing to detectors at different distances. The
nearer one should be located at the LNGS (Laboratori Nazionali del Gran
Sasso, Italy) at 732 km and a second one should be located farther away at
approximately 2500 3000 km. The proposed sites for the far detector are
“Santa Cruz de la Palma” (Spain) [52] or “Longyearbyen” at Svalbard is-
lands (Norway) [53].
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Figure 3.1: Neutrino Factory layout.

An intermediate step between conventional neutrino beams and the Neutrino
Factory is possible with the new era of MW-scale proton accelerators. A con-
ventional neutrino superbeam is a neutrino beam coming from the decay of
π±, but using a very intense MW-scale proton source. The present study will
analyze a possible superbeam configuration at CERN.

3.1 Considered configuration

The considered superbeam configuration is the option that became possible
at CERN with the SPL. The target and focusing system used in this study
are the preliminary set up for the Neutrino Factory components. The decay
tunnel can be seen as the only superbeam dedicated component of the whole
project (obviously excluding detectors).
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Mean beam power 4MW
Kinetic energy 2.2 GeV
Repetition rate 75Hz
Pulse duration 2.2 ms
Number of protons per pulse (per second) 1.5 1014(1.1 1016)
Mean current during a pulse 11 mA
Overall lenght 799 m
Bunch frequency (minimum time between bunches) 352.2 MHz (2.84 ns)

Table 3.1: Basic SPL characteristics

3.2 SPL

The Neutrino Factory collaboration estimates in 1021 the number of muons
per year necessary to reach the published physics purpose [51]. To do this a
high intensity proton accelerator is necessary.
To cope with these requirements CERN has moved to the new era of the
MW-scale accelerators with the SPL (Superconductiong Proton Linac) [55].
The basic parameters of the SPL are reported in table (3.1). The design of
the accelerator is based upon the re-use of the LEP RF equipment available
with LEP dismantling. Out of the 800 m of Linac length, more than 500
m are equipped with LEP-2 cryostats, while the low energy part, up to 390
MeV(' 280 m), is of a completely new design.
The performance of the SPL have been studied basically for the Neutrino
Factory project. However, if these requirements will change after the HARP
experimental results (see next section), or for new physics goals, it would
still be possible to modify some of the above cited parameters. In particular
the possiblity to run SPL at higher power has been studied.

3.3 Target

Pions are produced with the interactions of the SPL proton beam with a
target. The target used in this study is the one developed for the Neutrino
Factory. The target to use to produce pions with a proton beam of 4 MW
must satisfy some important characteristics:

• have the largest possible pion production rate per proton
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• stand at the mechanical shock of the impinging proton beam

• stand at the thermal shock of the impinging proton beam

The first point is the most important from the physics point of view. In
fact the number of final neutrinos in the detector is directly related to the
number of pions produced. The pion production is related to the A (atomic
number) of the target. The larger A the more pions are produced. How-
ever, the interaction between the 2.2 GeV proton beam and the target is
particularly difficult to estimate. In fact not enough precise cross sections
are available for these energies. The HARP [67] experiment is about to take
data to measure these values. The target studies are performed with Monte
Carlo simulations. The computer code used for these simulations are usually
FLUKA or MARS. Unfortunatly in this energy range the compared results
of the two are very different (40%). The code used for this target simulations
is MARS [54]. However it is necessary to remember that the final pion flux
obtained is affected by large uncertainties ' 50%.
Thermal response of the target is very important in a study of pion produc-
tion with a proton beam of 4 MW. When the beam impinges on the target it
creates a shock wave that tends to blow it away. Using a solid target would
require to replace it very often because of the stress it has to substain. The
presently favoured solution for the Neutrino Factory is the use of a liquid
target. Mercury has been chosen because it has a large A and because its
handling technology is advanced. The mercury target is a cylinder of 26 cm
length and 0.75 cm radius. These dimensions are chosen to be ' 2 λI (inter-
actions lengths) and large enough to cover the dimensions of the impinging
proton beam (which is σx = σy = 0.3 cm). The mercury jet is injected in the
focusing system where it is hit by the proton beam. The choice of a liquid
target solve the problem of thermal and mechanical resistance because the
liquid jet is continuously replaced. However it raises other interesting prob-
lems, such as the collection of the mercury after interaction with the proton
beam.
A general problem of target handling is the activation of the material after
the interactions with protons. All the mercury used in this experiment will
be filtered, treated and the residues stocked as radioactive material.
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Figure 3.2: Magnetic horn in the original drawing of S. Van der Meer.

3.4 Focusing system: magnetic horn

Since there is no way to deviate neutrinos and directly focus them, it is nec-
essary to act upon the parent particles. The pion focusing system must be
considered as directly responsible of the final neutrino focusing. As will be
explained in the next chapter the low energy of the pions is the fundamental
reason of the non-perfect focusing of neutrinos. In fact neutrinos emitted
from a pion at rest are isotropically distributed over the whole solid angle.
The higher the momentum of the pions the higher is the focusing of neutrino
due to Lorentz boost.
A magnetic horn is the solution proposed for this study and it is presently
under analysis by the Neutrino Factory working group. The magnetic horn
was invented by S. Van der Meer in 1961. This system is composed by two
coaxial conductors an inner one and an outer one. The current flows in the
conductors along the axis direction (see figure (3.2)) and creates a toroidal
magnetic field between the conductors. The target is usually placed at the
beginning of the horn or just inside it, where no magnetic field is present.
When a particle is produced goes through the first layer of the horn conduc-
tor; inside the horn it feels a magnetic field transverse to its momentum. As
can be seen in figure (3.2) the effect of this field is to bend the trajectory of
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Figure 3.3: Neutrino Factory horn. (purple) The target and (red lines) pion
trajectories.[56]

the particle towards a focus. For a fixed current polarity the focused parti-
cles can be only of one sign. When the magnetic field is focusing a charge is
clearly defocusing the other. For this reason magnetic horns are said to be
charge selectives.
The particular shape of the horn used in this study is the one conceived for
the Neutrino Factory and can be seen in figure (3.3) [56]. The thickness of
the horn is 16 mm around the target and 1.8 mm at the end.
In figure (3.4) the initial total and transverse pion momentum is shown, while
in figure (3.5) is shown the effect of the horn on the transverse momentum.
In figure (3.6) the pion space distribution is shown.

This horn is called point to point because particles created in one fo-
cus of the horn are focused in the other one. In a Neutrino Factory it is
necessary to put as many pions as possible into a solenoid where they will
decay emitting the desidered muons. For the superbeam needs it would be
better to use a point to parallel horn, i.e. particles produced in the focus
of the horn are focused along parallel trajectories toward the decay tunnel.
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Figure 3.4: Pion total and transverse momentum before the horn.
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Figure 3.5: Effect of the horn on the transverse momentum.
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This configuration is presently under study. The proposed geometry of this
focusing system could be composed by two horns: a first focusing horn and
a second defocusing one called reflector. This device acts as as the optical
system of converging and diverging lenses.
The magnetic horn is the choice for the focusing system also for its radiation
resistance. In fact in the interactions of protons with the target a lot of
secondary particles are produced, in particular neutrons. The mean life of a
horn in this severe radiation environment is of few weeks. In this perpective
the low cost of this system becomes relevant. The AC current flowing in the
horn is about 300 kA with a frequency of 50 Hz. The resistance of the horn
to this mechanical stress is presently under study.

3.5 Decay tunnel

The kind of experiment that will be performed with this neutrino beam is
commonly called an appearance experiment. That means it is necessary to
observe the appearance of νe in a νµ beam. The physics studies performed
with this neutrino beam are heavily influenced by its purity. In the ideal
case of pure νµ beam even a single electronic neutrino interaction would be
the clear sign of oscillations. In the real case the beam is contaminated by
the νe coming from the decay muons. The low energy of the SPL suppresses
almost entirely kaon production.
The only way to act on the purity of the beam is to work on the geometry
of the decay tunnel. Considering, for symmetry reasons a cylindrical decay
tunnel, the only two characteristics that can be modified are its length and
radius. Pion and muons in the decay tunnel have basically two different
characteristics: different mean lives, and different trajectory angles.
Pion and muon mean lives are
τπ = 2.6 10−8s;
τµ = 2.2 10−6s;
or in the more convenient length units:
cτπ = 7.8 m;
cτµ = 658.7 m.
The length of the decay tunnel must be a compromise between the maximum
number of pions decay in flight and the lowest number of muons decay in
flight. It is important to observe that the energy spectrum of neutrinos from
pions and muons decay is dependent on the length of the decay tunnel. In
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fact with a short decay tunnel only particles with very low energy would
decay, and the emitted neutrinos would be at low energy as well; while for
long decay tunnel also pions with higher energy would decay, causing the
peak of the neutrino distribution to move towards higher energy. The same
argument is valid for muons.
In this study it has been assumed that pions and muons are immediatly cap-
tured by the tunnel walls or its end plates and no further decay is assumed.
This is a good approximation for neutrino fluxes considerations, in fact the
emitted neutrinos from muon and pion capture are at very low energy and
almost isotropically distributed, hence their probability to reach the detector
is negligible.
Pions after the magnetic horn have relatively low transverse momentum,
hence they can flight for some meters before hitting the tunnel walls or the
end plates. Muons emitted from pions, on the contrary, are emitted isotropi-
cally in the center of mass of the pion, and feel only the weak focusing effect
due to the Lorentz boost. Hence muons have big angles with respect to the
tunnel decay axis; their flight is short and their probability to decay in flight
is small. The outer radius of the magnetic horn is 1 m hence it is useless
to consider larger decay tunnels, but a shorter radius would probably in-
crease the number of captured muons. The study on the decay tunnel radius
confirm this hypothesis, but unfortunatly, the pions space distribution (see
figure 3.6) shows that reducing the radius of the decay tunnel their number
in the decay tunnel also decreases dramatically, reducing the final intensity
of the νµ flux. The global analysis to optimize the decay tunnel dimensions
have been performed systematically and will be shown in the next chapter.
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Chapter 4

Neutrino flux calculations

Neutrino flux calculations for both pion and subsequent muon decays has
been performed analytically instead of producing a Monte Carlo simulation.
The small solid angle covered by the detector (area of 100 m2 located at
about 100 km from the target) reduces considerably the flux of neutrinos in
it, hence to produce enough statistics it would be necessary to consider a
large number of protons on target in the simulations.
The strategy chosen to compute neutrino fluxes is to consider each pion and
muon individually, propagate it through the horn and the decay tunnel and
then calculate the probability that neutrinos coming from it have to reach the
detector. This probability is the composition of the probability distribution
for the specific decay kinematics and the probability that the particle decay
along its flight.
Neutrinos considered in this study are those coming from pion and muon
decays. Pions are produced at the target and focused by the magnetic horn,
muons are produced in the successive pion decay. With the considered Su-
perbeam configuration the energy of the focused pion is in the range of a
few hundreds of MeV. A lot of other neutrino producing phenomena appear
in the interactions of pions and muons of the beam with the material of the
apparatus. Pions interaction with decay tunnel walls give rise to pions of few
tens of MeV and subsequent neutrinos; muons captured by the decay tunnel
walls decay producing neutrinos. Other sources of neutrinos are the decays
of other particles (e.g. neutrons) produced by the interaction of the proton
beam with the target and from the proton beam dump. All these neutrinos
are expected to have very low energy and to be produced quasi isotropically;
their probability to enter the solid angle of the detector is reduced; they have

45
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been neglected for this conceptual study.

4.1 Kinematics

Neutrino distribution per unit area is needed to compute fluxes. The decay
processes studied are the two body pion decay and the three body muon
decay. Neutrino masses (known to be less than few eV/c2) are neglected
throughout.

4.1.1 Two body decay

The π± decay is considered here:

π± → µ±νµ(ν̄µ)
In the centre of mass frame, neglecting neutrino mass:

(

M
~0

)

π

=

(

E∗
µ

~P ∗

)

µ

+

(

|~P ∗|
−~P ∗

)

ν

Applying the energy conservation law:

M = E∗
µ + |~P ∗|

E∗2
µ = |~P ∗|2 + m2

µ

E∗2
µ =

(

M − |~P ∗|
)2

= M2 + |~P ∗|2 − 2M |~P ∗|

Hence,

|~P ∗| =
M2 − m2

µ

2M
(4.1)

E∗
µ =

M2 + m2
µ

2M
(4.2)

Introducing pion and muon masses

mπ = 0.140 (GeV )
mµ = 0.106 (GeV )
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muon energy and momentum are:

|~P ∗| = 0.030 (GeV )
E∗

µ = 0.110 (GeV )

and neutrino energy and momentum are:

E∗
ν ' |~P ∗| = 0.030 (GeV )

Pion decays isotropically in its centre of mass. That means the probability
distribution dP/dΩ to find a neutrino in a certain solid angle is constant.

dP
dΩ

=
dP

d cos θ∗dϕ
=

1

4π
(4.3)

In the laboratory frame the pion is moving with a velocity ~βπ, so a Lorentz
transformation has to be applied to the probability distribution. The effect
of this transformation is to squeeze the trajectory angle θ∗ of the emitted
neutrino, along the pion direction of flight, producing a focusing effect.
Let K and K’ be two coordinate systems moving with constant velocity v
with respect to each other. Let the direction of the axes of K and K’ be pa-
rallel and such that the z and z’ axes coincide and are parallel to the relative
velocity, see figure (4.1) .
The Lorentz transformation of a four vector from K’ to K [58] can be written

as:

~P = γ
(

~P ′ + ~βE ′
)

(4.4)

E = γ
(

E ′ + ~β · ~P ′

)

(4.5)

where
β = v/c
γ = 1√

1−β2
.

For simplicity let observe the modification of the emitted neutrino angle
going from the pion rest frame to the laboratory frame, in two dimensions,
with the pion momentum along the z-axis of the pion. Let θ∗ and P ∗

ν be the
angle and the momentum of the emitted neutrino in the centre of mass of
the pion and β, γ the relativistic factors of the pion. P ∗

ν can be decomposed
in longitudinal and transverse component with respect to the pion frame.
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Figure 4.1: K K’ frames.

P ∗
νT = P ∗

ν sin θ∗

P ∗
νL = P ∗

ν cos θ∗

The transverse component remains unchanged after the Lorentz transforma-
tion while the longitudinal one is dilated (see figure 4.2).

PνL = γ (P ∗
νL + βE∗

ν)

PνT = P ∗
νT

Eν = γ (E∗
ν + βP ∗

νL)

Neglecting neutrino mass E∗
ν = P ∗

ν , Eν = Pν

PνL = γP ∗
ν (cos θ∗ + β)

PνL = ~Pν · ~ez = Eν cos θ = cos θ (γP ∗
ν (1 + β cos θ∗)) .

Hence the transformation formula from pion rest frame to the laboratory
frame of the neutrino angle is:

cos θ =
β + cos θ∗

1 + β cos θ∗
, (4.6)
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Figure 4.2: Lorentz boost

and the inverse one:

cos θ∗ =
β − cos θ

β cos θ − 1
. (4.7)

The probability that a neutrino, with angle θ∗ in the pion rest frame, reach
the detector can be calculated using (4.7) and integrating (4.3).

Consider now the situation illustrated in figure (4.3) where the pion is
produced at an angle θ with respect to the êz axis.
It is assumed that the proton beam and the decay tunnel are in line with the

detector and the target, hence the cylindrical symmetry of the problem can
be used. With the right choice of the coordinates system, the 3 dimensional
problem is reduced to a simpler 2 dimensional one. The choice of the axes
for the laboratory frame (êx, êy, êz) and the pion frame (ûx, ûy, ûz) is such
that:

• the decay tunnel - detector axis correspond to the the z axis of the
laboratory frame (êz);

• the z axis of the pion rest frame (ûz) is along its momentum ûz =
~Pπ/|~Pπ|;
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Figure 4.3: Pion (ûx, ûy, ûz) and laboratory (êx, êy, êz) frames

• the y axis of the pion rest frame (ûy) coincides with the y axis of the
laboratory frame (êy) if ûy = êy = êz × ûz;

• the x axis of the laboratory frame is êx = êy × êz;

• the x axis of the pion rest frame is ûx = ûy × ûz;

The angles θ∗ in the centre of mass of the pion are measured with respect to
the pion ûz axis and the angles θ in the laboratory frame are measured with
respect to the êz axis.
The angle ϕ, due to the choice of the ûy, êy axes, coincides in the two frames.
The tunnel decay lengths and radii are always considered negligible with
respect to the target detector distance. Decay tunnels of 5 m to 50 m length
and 0.25 m to 1 m radius have been considered while the distance to the
detector is about 100 km. Hence the decay tunnel is considered point-like
and, concerning the solid angle seen by the particles, there is no difference
between pion production position and muon decay position.
From figure (4.3) it is clear that, to reach the detector (far away along the
êz), the neutrino has to be emitted along the êz axis, i.e. θ must be equal to
α and ϕ = π.
To calculate the number of neutrinos reaching the detector, the probability
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density (4.3) in the laboratory frame is required.

dP
dΩ

=
dP
dΩ∗

dΩ∗

dΩ
=

1

4π

dΩ∗

dΩ

To change the solid angle element from the pion frame to the laboratory
frame, the Jacobian of the transformation has to be calculated.

d cos θ∗dϕ∗ =
∂(cos θ∗, ϕ∗)

∂(cos θ, ϕ)
d cos θdϕ

∂(cos θ∗, ϕ∗)

∂(cos θ, ϕ)
=

∣

∣

∣

∣

∂ cos θ∗

∂ cos θ

∂ϕ∗

∂ cos θ
∂ cos θ∗

∂ϕ

∂ϕ∗

∂ϕ

∣

∣

∣

∣

=
∂ cos θ∗

∂ cos θ

because off-diagonal terms are zero and ϕ = ϕ∗.
Using (4.7):

d cos θ∗

d cos α
=

(

1

− sin α

)

d

dα

[

β − cos α

β cos α − 1

]

=
1 − β2

(β cos α − 1)2

(as explained above the angle θ has to be equal to α), hence the density
probability with the solid angle expressed in the laboratory frame is

dP
dΩ

=
1

4π

d cos θ∗

d cos α
=

1

4π

1 − β2

(β cos α − 1)2

Finally the probability density per unit area:

dP
ds

=
1

4πL2

1 − β2

(β cos α − 1)2
(4.8)

Due to the smallness of the solid angle covered by the detector, the proba-
bility density is considered constant on the detector area and so it is possible
to obtain the integrated probability simply multiplying it times the detector
area A:

P = P (α, β) =
1

4π

A

L2

1 − β2

(β cos α − 1)2
(4.9)
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4.1.2 Three body decay

The considered three body decay is

µ± → e±νe(ν̄e) ν̄µ(νµ)

In the two body decay the energy and momentum of the produced particle
have fixed values. In the three body decay the energy and momentum assume
a continuous distribution. The probability distribution to find a neutrino in
a certain solid angle with a certain fraction x of the centre of mass energy is
[59]

dP
dxdΩ∗

=
1

4π
[f0(x) ∓ Πµf1(x) cos θ∗]

where:

• dΩ∗ is the solid angle in the muon rest frame;

• x = 2E∗
ν/mµ is the fraction of the centre of mass energy taken by the

neutrino;

• E∗
ν is the neutrino energy in the muon rest frame;

• Πµ is the muon polarization in the muon rest frame along the muon
direction;

• θ∗ is the angle between the neutrino momentum vector and the muon
direction (in the muon rest frame);

• mµ is the muon mass;

The functions f0(x), f1(x) are given in table (4.1)
The energy spectra of the emitted particles are shown in figure (4.4)

f0(x) f1(x)

νµ, e 2x2(3 − 2x) 2x2(1 − 2x)
νe 12x2(1 − x) 12x2(1 − x)

Table 4.1: Flux functions in the muon rest frame

In the muon rest frame frame it is easy to express this distribution as a
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Figure 4.4: Neutrino energy spectra from π+ and µ+ decay in the rest frames

function of the neutrino energy.

x =
2E∗

ν

mµ

dx =
2dE∗

ν

mµ

dP
dE∗

νdΩ∗
=

1

4π

2

mµ

[f0(E
∗
ν) ∓ Πµf1(E

∗
ν) cos θ∗]

To calculate neutrino fluxes, the probability distribution in the laboratory
frame is needed. In this case two Lorentz transformations are necessary to go
from the muon rest frame to the laboratory frame. Neutrinos coming from
muon are boosted along the muon trajectory but muon itself is boosted along
the pion trajectory in laboratory frame.
This procedure can be simplified if the neutrino boosted along the muon
trajectory in the laboratory frame is considered directly. To do this the muon
in the pion rest frame is first considered. As seen in the previous section it
has a fixed energy and momentum. To transform energy and momentum of
the muon to the laboratory frame it is necessary to boost it along the pion
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trajectory considering the angle θ∗ at which it is emitted from the pion. The
muon energy and momentum in the laboratory frame depends on that angle.
Considering the pion trajectory as the longitudinal axis:

P ∗
µT = P ∗

µ sin θ∗µ

P ∗
µL = P ∗

µ cos θ∗µ

The transverse component remain unchanged after the Lorentz transforma-
tion while the longitudinal one is dilated, applying (4.4):

PµL = γπ

(

P ∗
µL + βπE∗

µ

)

PµT = P ∗
µT

Finally for the energy in the laboratory frame is possible to use (4.5):

Eµ = γπ

(

E∗
µ + βπP ∗

µL

)

Once the muon momentum and energy in the laboratory frame is known it is
possible to consider neutrinos coming from its decay. The solid angle covered
by the detector viewed from the muon rest frame has to be transformed in
the solid angle viewed from the target in the laboratory frame. Thanks to
the point-like approximation of the decay tunnel it is possible to consider
the muon exactly in the origin of the laboratory frame. The two coordinates
systems, (êx, êy, êz) for the laboratory and (v̂x, v̂y, v̂z) for the muon, are iden-
tical to those considered in the previous section for the pions:

• the decay tunnel - detector axis correspond to the the z axis of the
laboratory frame (êz);

• the z axis of the muon frame (v̂z) is along the its momentum v̂z =
~Pµ/|~Pµ|;

• the y axis of the muon frame (v̂y) coincides with the y axis of the
laboratory frame (êy) if v̂y = êy = êz × v̂z it is considered;

• the x axis of the laboratory frame is êx = êy × êz;

• the x axis of the muon frame is v̂x = v̂y × v̂z;
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Figure 4.5: Muon (v̂x, v̂y, v̂z) and laboratory (êx, êy, êz) frames

The angles θ∗ in the centre of mass of the muon are measured with respect
to the muon v̂z axis and the angles θ in the laboratory frame are measured
with respect to the êz axis.
The angle ϕ, due to the choice of the v̂y, êy axes, coincides in the two frames.
To boost neutrinos in the laboratory frame it is possible to follow exactly the
same argument used for neutrinos from pion decay.
The momentum of the neutrino in the laboratory frame is

PνT = P ∗
νT = P ∗

ν sin θ∗

P ∗
νL = P ∗

ν cos θ∗

PνL = γµ (P ∗
νL + βµE∗

ν)

PνT = P ∗
νT

while the energy is

Eν = γµ (E∗
ν + βµP ∗

νL) (4.10)
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The same relation is found for the angle transformation from the muon centre
of mass to the laboratory:

cos θ =
βµ + cos θ∗

1 + βµ cos θ∗
, (4.11)

and the inverse one:

cos θ∗ =
βµ − cos θ

βµ cos θ − 1
. (4.12)

To write the probability distribution in the laboratory frame it is necessary
to write the solid angle element and the energy of the neutrino in that frame.

dP
dEνdΩ

=
dP

dE∗
νdΩ∗

dE∗
νdΩ∗

dEνdΩ

For the solid angle the argument used is the same as in the pion decay:

d cos θ∗dϕ∗ =
∂(cos θ∗, ϕ∗)

∂(cos θ, ϕ)
d cos θdϕ

∂(cos θ∗, ϕ∗)

∂(cos θ, ϕ)
=

∂ cos θ∗

∂ cos θ

∂ cos θ∗

∂ cos θ
=

1 − β2
µ

(βµ cos θ − 1)2
=

1 − β2
µ

(βµ cos ρ − 1)2

As shown in figure (4.5), neutrinos must have a trajectory angle θ in the
laboratory frame equal to the angle ρ of the muon in the same frame, to
reach the detector.
The energy of the neutrino is simply written from (4.10) as

Eν = γµE∗
ν (1 + βµ cos θ∗)

E∗
ν =

Eν

γµ (1 + βµ cos θ∗)

hence,

dE∗
ν =

dEν

γµ (1 + βµ cos θ∗)

The probability distribution in the laboratory frame is finally:

dP
dEνdΩ

=
1

4π

2

mµ

1

γµ (1 + βµ cos θ∗)

1 − β2
µ

(βµ cos ρ − 1)2
[f0(Eν) ∓ Πµf1(Eν) cos θ∗]

(4.13)
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The above expression gives the probability distribution as a function of the
neutrino energy in the laboratory frame, the decay angle θ∗ of the νe(ν̄µ) in
the muon rest frame and the polarization of the µ in the same frame.
Use this formula to perform fluxes calculation is not straightforward. From
the pion production simulations it is possible to obtain βπ in the laboratory
frame. In the two body decay the emitted neutrino is characterized only by
one significant angle θ∗. Thus, the only way for this neutrino to reach the
detector is to have an angle θ in the laboratory frame equal to the angle α
between the pion direction of flight and the êz axis as shown in figure (4.3).
Using the formula (4.9) it is straightforward to calculate the probability that
neutrinos have to reach the detector and to count it like a weight. In the
three body decay the neutrino is characterized by four significant variables:
the angles (θ∗µ, ϕ∗

µ) of the muon direction in the pion rest frame and the angles
(θ∗, ϕ∗) of the neutrino direction in the muon rest frame.
Only a well defined pair of directions (θ∗µ, ϕ∗

µ), (θ∗, ϕ∗), allows the neutrino
to reach the detector. As will be explained in the next section, a computer
program has to be implemented to find all the possible pairs and, using (4.13),
calculate and sum the probabilities. This is equivalent but more precise than
a sampling integration.
Muons are spin 1/2 particles and this affect the final spectrum of emitted
neutrinos, hence one has to discuss the polarization Πµ of the muon produced
in pion decay.
Muon polarization is usually described in terms of helicity which is defined

P
µ
*

Pν
*

θ

µ

ν

s

s βπ

∗

Figure 4.6: Pion decay in its rest frame

to be the projection of the spin vector ~s in the muon rest frame along its
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momentum direction ~p/|~p|.
h =

~p · ~s
|~p|

In the pion rest frame (figure (4.6)) muon and neutrino are emitted with
collinear momenta, equal in magnitude but opposite in direction. The neu-
trino (antineutrino) helicity has a fixed value of -1 (+1) (neutrino masses are
neglected) and the conservation of the angular momentum implies that the
positive (negative) muon is completely polarized longitudinally in the pion
rest frame with helicity -1 (+1). A Lorentz transformation in the direction of
the muon velocity does not change the component of its spin in this direction
and so the muon is also completely polarized in its rest frame. However, in
the transformation of the muon into the laboratory frame, an angle develops
between the transformed muon momentum and its spin in the rest frame. As
a result the magnitude of the polarization in the laboratory frame is generally
less than 1.
To define the transverse and longitudinal polarization, one uses the normal
definition relative to the muon laboratory direction in the laboratory, as
viewed in the muon rest frame [60].
For simplicity assume a pion flying along êz. In the muon frame the pion

∗ −β

µ

π β−β

β

β

π π

µ

∗

µ θ∗

φ
θ

−β µ

µ

Figure 4.7: Pion and muon decay seen from the muon.

rest frame moves with a velocity −p∗
µ/E∗

µ = −β∗
µ (see figure (4.7)). In the

pion rest frame the laboratory appears to move to the left with velocity −βπ,
while on transforming to the muon rest frame this direction is rotated to-
wards the pion - muon relative velocity and becomes −βµ.



4.1. KINEMATICS 59

In any Lorentz transformation the transverse component of the velocity four-
vector γ(1, β) is conserved [58], and for this particular case

γπβπ sin θ∗ = γµβµ sin φ

The transverse polarization is then defined as

ΠT
µ = sin φ =

γπβπ

γµβµ

sin θ∗

The longitudinal polarization is needed in the probability distribution. The
modulus of this angle is simply

ΠL
µ = cos φ =

√

1 − ΠT2
µ

The sign of this angle can be calculated observing that it changes when
sin φ = 1. Imposing sin φ = 1 it is possible to calculate the correspondent
limit condition cos θ∗:

cos θ∗ = − P ∗
µ

βπE∗
µ

Figure (4.8) shows the variation of the averaged muon helicity in the labo-
ratory frame as a function of the pion momentum.
Now all the ingredients are ready for the integration.
The probability can be written per unit area:

dP
dEνds

=
dP

dEνL2dΩ

As in the previous section the solid angle covered by the detector is very small
and so the distribution can be considered constant on it. The integration can
be simply performed multiplying the probability density times the detector
area:

dP
dEν

=
1

4π

A

L2

2

mµ

1

γµ (1 + βµ cos θ∗)

1 − β2
µ

(βµ cos ρ − 1)2
[f0(Eν) ∓ Πµf1(Eν) cos θ∗]

(4.14)
The last integration is in dEν

P(βµ, ρ) =

∫ Eµ

0

dP(βµ, ρ, Eν)dEν (4.15)

and is calculated numerically.
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Figure 4.8: Magnitude of the averaged muon helicity in the laboratory frame
as a function of pion momentum.

4.2 Flux computation

To calculate neutrino fluxes a Fortran77 program shown in Appendix A has
been produced. In this section a brief explanation of the technique used is
given.
Numbers handled in this calculations ranges from 10−22 to 1020. The For-
tran77 real type [61] can manage values in the range from around 10−38

to just over 1038, so this data type can fit this necessity. The problem is
the precision allowed by the computer where the program run. Usually, for
a real data type, a word of 32 bits is allocated. This gives precision over
7 decimal digits. In the calculation of the integral probability it is neces-
sary to sum several numbers around 10−20. Due to the limited precision of
the machine, numbers that differ from each other after the seventh decimal
digit (frequent case with these probability density), are considered equal, and
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summed several times, give rise to unpleasant nonsense. Many checks have
been performed on the inaccuracy introduced by the number representation
and finally the suitable data type has been found to be the double precision.
Neutrino energy range is from 0 up to 2 GeV. The resolution chosen for neu-
trino energy is 20 MeV/bin. That means the range is divided into 100 bins.
The program receive as input MARS files of the target-horn simulation (the
typical size of this file is tens of Mbyte). In this file are contained data of
the particles surviving after the horn.
The format of this file is:

Event, particle id, x, y, z, px, py, pz, et ,ctoff, w
where:
Event event number in the simulation

particle id
3=π+ 4=π−

7=µ+ 8=µ−

x, y, z coordinate in cm
px, py, pz momentum in GeV/c
et total energy in GeV
ctoff c×(time of flight) in cm
w statistical weight

For the pion decay all the values used in the probability formula (4.9) can
be calculated with data read from the input file; once the value of the pro-
bability to emit a neutrino that reach the detector has been calculated, it
is necessary to multiply it times the probability that the pion has to decay
along the path between the end of the horn and the absorption point in the
tunnel walls.
A similar procedure has been followed for muons, produced in pion decay.
In the program these have been generated scanning the whole solid angle in
bins of cos θ∗ and ϕ∗. Then for each of them the integral (4.15) has been
calculated.
These probabilities are summed and stored in an array (as a weight) in the
right energy bin. In this way six arrays are created: νµ, ν̄µ from pions,
νe, ν̄µ, ν̄e, νµ from muons.
To transform these probabilities in the number of neutrinos reaching the de-
tector it is necessary to multiply it times the right normalization. This factor
contains the information that input files are created considering 106 protons
on target. For simplicity, neutrino fluxes are calculated for one year of SPL
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run (1 year=107s) . The normalization factor is then:

number of neutrinos (bini)

year
= weight (bini)

1

106 (protons)
1016

protons

s
107

s

year

The output of this program consists of a file containing neutrino spectra with
the format:

ie, E, nmp, anmp, ne, am, ae, nm
where:
ie energy bin number
E energy upper limit of the bin
nmp number of νµ coming from π+ decay in the binie

anmp number of ν̄µ coming from π− decay in the binie

ne number of νe coming from µ+ decay in the binie

am number of ν̄µ coming from µ+ decay in the binie

ae number of ν̄e coming from µ− decay in the binie

nm number of νµ coming from µ− decay in the binie

4.3 Decay tunnel optimization

As seen in the previous chapter the geometry of the decay tunnel is the only
way to act upon the superbeam purity. The problem is to find the right
compromise between high purity and enough signal into the detector. In fact
high purity is achieved with severe cuts in the pion beam, which means a
reduction for both signal and background.
The best decay tunnel configuration has been systematically studied for the
two polarities of the horn, i.e. focusing π+ and focusing π−. Fluxes for
different lengths and radii have been computed.

4.4 Neutrino flux

The influence of the decay tunnel geometry on the fluxes purity has been
analyzed in the third chapter. In this section all the generated fluxes for the
two current polarities of the horn has been collected. Decay tunnel lengths
from 5 meters to 50 meters have been chosen. It is possible to observe that
after 30 40 meters fluxes don’t increase anymore reaching a sort of satura-
tion. This means that almost all pions (muons) have decayed. The decay
tunnel length also acts on the peak position of the superbeam distribution;
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the shorter the decay tunnel the lower the energy of the spectrum peak, be-
cause only low energy particles had enough time to decay. Radii have been
considered from 25 cm to 100 cm, where the largest radius corresponds to
the magnetic horn outer radius.
To generate these fluxes a detector of 1 kton at 130 km has been considered.
The value of 1 kton for the mass has been chosen because it is easy to rescale
to other detectors. The distance, as will be explained in the next chapter,
is equal to the distance from the decay tunnel located at CERN and the
detector site considered at LSM (Modane).
Tables (4.2), (4.3) summarize the ratios between the integrated νe and νµ

fluxes with the magnetic horn focusing π+ and the ratios between the inte-
grated ν̄e and ν̄µ fluxes with the magnetic horn focusing π−

The final geometry of the decay tunnel requires to strike into compromise
between the minimal contamination of the superbeam (which would require
the smallest decay tunnel) and the maximal flux into the detector (which on
the other hand requires the biggest decay tunnel).
A decay length of 20 m and 1 m radius has been found, for both polarities
of the magnetic horn to be the right compromise.
For completeness, figures (4.9)-(4.14) show the superbeam energy distribu-
tion for the various configuration studied with a magnetic horn focusing π+

and (4.15)-(4.20) with a magnetic horn focusing π−.
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Lenght/Radius 25 (cm) 50 (cm) 75 (cm) 100 (cm)
5(m) 0.86 1.12 1.27 1.38
10(m) 1.26 1.76 2.07 2.28
20(m) 1.65 2.53 3.12 3.56
30(m) 1.8 2.98 3.80 4.44
40(m) 1.91 3.27 4.27 5.07
50(m) 1.96 3.45 4.6 5.54

Table 4.2: Integrated fluxes νe/νµ, focusing π+, in fraction per 1000.

Lenght/Radius 25 (cm) 50 (cm) 75 (cm) 100 (cm)
5(m) 0.91 1.24 1.45 1.60
10(m) 1.30 1.90 2.27 2.54
20(m) 1.67 2.65 3.32 3.82
30(m) 1.82 3.08 3.98 4.69
40(m) 1.90 3.34 4.43 5.3
50(m) 1.95 3.51 4.74 5.75

Table 4.3: Integrated fluxes ν̄e/ν̄µ, focusing π+, in fraction per 1000.
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Figure 4.9: νµ fluxes from π+ → µ+νµ, focusing π+. Numbers are integrated
fluxes. In black radius = 100 cm, in red radius = 75 cm, in green radius =
50 cm, in blue radius = 25 cm
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Figure 4.10: ν̄µ fluxes from π− → µ−ν̄µ, focusing π+. Numbers are integrated
fluxes. In black radius = 100 cm, in red radius = 75 cm, in green radius =
50 cm, in blue radius = 25 cm
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Figure 4.11: νe fluxes from µ+ → e+νeν̄µ, focusing π+. Numbers are inte-
grated fluxes. In black radius = 100 cm, in red radius = 75 cm, in green
radius = 50 cm, in blue radius = 25 cm
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Figure 4.12: ν̄µ fluxes from µ+ → e+νeν̄µ, focusing π+. Numbers are inte-
grated fluxes. In black radius = 100 cm, in red radius = 75 cm, in green
radius = 50 cm, in blue radius = 25 cm
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Figure 4.13: ν̄e fluxes from µ− → e−ν̄eνµ, focusing π+. Numbers are inte-
grated fluxes. In black radius = 100 cm, in red radius = 75 cm, in green
radius = 50 cm, in blue radius = 25 cm
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Figure 4.14: νµ fluxes from µ− → e−ν̄eνµ, focusing π+. Numbers are inte-
grated fluxes. In black radius = 100 cm, in red radius = 75 cm, in green
radius = 50 cm, in blue radius = 25 cm
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Figure 4.15: νµ fluxes from π+ → µ+νµ, focusing π−. Numbers are integrated
fluxes. In black radius = 100 cm, in red radius = 75 cm, in green radius =
50 cm, in blue radius = 25 cm
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Figure 4.16: ν̄µ fluxes from π− → µ−ν̄µ, focusing π−. Numbers are integrated
fluxes. In black radius = 100 cm, in red radius = 75 cm, in green radius =
50 cm, in blue radius = 25 cm
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Figure 4.17: νe fluxes from µ+ → e+νeν̄µ, focusing π−. Numbers are inte-
grated fluxes. In black radius = 100 cm, in red radius = 75 cm, in green
radius = 50 cm, in blue radius = 25 cm
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Figure 4.18: ν̄µ fluxes from µ+ → e+νeν̄µ, focusing π−. Numbers are inte-
grated fluxes. In black radius = 100 cm, in red radius = 75 cm, in green
radius = 50 cm, in blue radius = 25 cm
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Figure 4.19: ν̄e fluxes from µ− → e−ν̄eνµ, focusing π−. Numbers are inte-
grated fluxes. In black radius = 100 cm, in red radius = 75 cm, in green
radius = 50 cm, in blue radius = 25 cm
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Figure 4.20: νµ fluxes from µ− → e−ν̄eνµ, focusing π−. Numbers are inte-
grated fluxes. In black radius = 100 cm, in red radius = 75 cm, in green
radius = 50 cm, in blue radius = 25 cm



Chapter 5

Detectors

There are many factors that influence the detector choice. Mainly these can
be summarized as:
- detector mass (dimensions): this affects the total number of events detected
and the statistical errors of the observations;
- kind of detector: the main problems are background rejection and system-
atic errors depending on the technique used.
In this study two solutions has been analyzed: a water Cerenkov (Super
Kamiokande-like) and a liquid scintillator (MiniBooNE-like), neglecting cost
estimations (anyway attention has been payed not to propose impossible so-
lutions).
The first issue of this analysis is the distance between neutrino production
point and the detector. This is dictated by two needs: neutrino oscillation
pattern and flux considerations. This experiment would aim to observe neu-
trino oscillations νµ → νe and measure oscillation parameters (in particular
θ13); hence the best target - detector distance should be approximatively
over one of the possible oscillation peaks. The oscillations as a function of
the distance is shown in figure (5.1), for a mean energy of 250 MeV, for
the LMA (Large Mixing Angle) solution sin2(2θ12) = 0.8, sin2(2θ23) = 1,
sin2(2θ13) = 0.01, δm2

12 = 5 10−5 eV 2, δm2
23 = 3.2 10−3 eV 2.

The probability, for a fixed energy, has a structure function of the distance.
The oscillation “period” is about 200 km and the first peak is at about 100
km. Although the probability has a superimposed oscillation behaviour with
a larger period and it increases going to larger distances, it is not convenient
for this experiment to use successive peaks (the second being at 300 km).
Neutrino flux decrease with the square of the distance and beyond the first
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Figure 5.1: Oscillation probability p(νµ → νe) as function of L (km) for a
mean energy of 250 MeV.

peak the signal would become too small to be detected with a reasonable
detector size.
A detector for neutrino experiments must be shielded by the background due
to cosmic rays. Hence its location is usually chosen to be deep underground.
In a first analysis it was suggested a detector in the Leman (Geneva) lake,
but it has been discarded. In fact this lake it is not deep enough (600 m). An-
other, more exotic, scenario considered for neutrino experiment, is a detector
undersea [62],[63], but it has been excluded for this experiment because of
the CERN location (too far away from the sea) .
If an existing laboratory is required, it is possible to make a rough observa-
tion of the possible sites using a map (see figure(5.2)). Possible sites for the
detector can be:
- LSM (Laboratoire Souterrain de Modane) ' 130 km;
- old Monte Bianco laboratory ' 60 km.
The second parameter to take into account is the detector mass. Indepen-
dently from its nature, this parameter is directly related to the number of
observable events for two reasons: the solid angle covered by the detector
is proportional to its area and the number of possible neutrino interactions
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Figure 5.2: Possible detector sites.
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is directly proportional to the depth of the detector. Due to the distance
from the target, it makes nonsense to increase the detector area because the
covered solid angle would increase negligibly. On the other hand the depth
of the detector can increase sensibly the number of events, but it is limited
by its cost.
The largest uncertainty on the oscillations measurement arise from system-
atic errors on flux estimations, from the little knowledge about neutrino
interaction at these energies and from the detector efficiency. For these rea-
sons it has been suggested to use two detectors: a near one for a precise flux
measurement and to study neutrino cross sections and a distant one for the
real oscillation experiment. If a distant detector identical to the near one
is chosen, then it would be possible to eliminate systematic errors on the
detector accuracy simply taking the ratio between the two measured signals.
The detector mass considered is 40 kton. The major problem of this experi-
ment arises from the low number of collected events, hence the detector mass
has been chosen in order to ensure a significant number of events, assuming
a period of 5 years of data taking.
The typical detector design is composed by two parts: the inner detector,
devoted to the observation of neutrino events, and the outer one acting as
veto detector for cosmic rays and as a shield from rocks radioactivity.
In figure (5.3)(5.4) artistic schemes of SuperK (water Cerenkov) and Mini-
BooNE (scintillator) are shown.
The parameters describing the two detectors are summarized in tables (5.1),
(5.2).

5.1 Water Cerenkov

This kind of detector observes relativistic particles through their emission of
Cerenkov light [65]. Water is used as active material to produce Cerenkov
radiation. The choice of this material is based on three basic consideration:
its low cost, high transparencies and reachable purity.
When a charged particle pass trough a medium with speed faster than light in
that medium, a shock wave of radiation, in the visible part of the spectra, is
emitted at a fixed angle with respect to the particle trajectory (figure (5.5)).
The wavefront creates a cone with an angle (θ) depending on the speed (β)
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Figure 5.3: Super Kamiokande layout. [21]
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Figure 5.4: MiniBooNE layout.[44]
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Tank Dimensions 38 diameter 42m height
Volume 50kton

Outer detector Thickness 2.6m
Volume 32 kton
Number of PMT 1885

Inner detector Dimension 3.8m diameter 36.2m height
Volume 18 kton
Number of PMT 9398 (40%)

Fiducial volume 22 kton

Table 5.1: SuperK datas [21].

Tank Dimensions 12 m diameter
Volume 0.77 kton

Outer detector Thickness 0.5m
Volume 0.18 kton
Number of PMT 292

Inner detector Dimension 11 m radius
Volume 0.6 kton
Number of PMT 1220 (10%)

Fiducial volume 0.45 kton

Table 5.2: MiniBooNE datas [44].
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Figure 5.5: Cerenkov radiation.

of the particle:

cos θ =
1

βn

where n is the refractive index of the medium.
An important characteristic of this kind of radiation is that the light is emit-
ted whenever the speed of the particle exceed a critical value,

βcn > 1

determining a correspondent critical angle for the radiation emission:

θc = arccos
1

n

In a water Cerenkov detector this radiation is collected by an array of PMT
(covering the internal face of the tank) and the ring image is reconstructed
via software. The usual procedure is to find an initial vertex and direction
using PMT timing informations, then the number of rings is found, with
reconstruction software and finally a particle is assigned to each ring. Typical
images for electron and muon events are shown in figure (5.6), (5.7).

5.2 Scintillator

The scintillation process is triggered by an energy exchange between the par-
ticle to detect and the molecules of the scintillator [65]. When a particle
moves in a medium brings the molecules onto one of their excited states;
these will release energy with the typical exponential law of the fluorescence
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Figure 5.6: Electron event in Super Kamiokande.[21]
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Figure 5.7: Muon event in Super Kamiokande.[21]
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decay. An important characteristic of organic scintillators is that the emitted
light is produced by single molecules and not by a crystalline lattice. This
allows to use organic scintillators diluted in other materials.
There are three main differences between Cerenkov light and scintillation
light. The first one is that the light is emitted in the typical range of pico-
seconds for Cerenkov radiation while the typical range for scintillation light
is in the order of nanoseconds, which is the normal mean-life of the excited
states of a molecule. The second difference is that Cerenkov light is emitted
on a preferencial direction, resulting in a cone, while the scintillation lights
is emitted isotropically. Another difference is that Cerenkov light is emitted
above an energy threshold depending in the mass of the particle, while there
is no threshold in the scintillation process. The two phenomena of Cerenkov
and scintillation light are not exclusive. For example in MiniboNE is quoted
that 75% of the light comes from Cerenkov radiation while the remaining
25% is scintillation light.
The main challenge for this kind of experiments is to distinguish between
electrons and muons going through the detector. The use of both Cerenkov
and scintillation light can be used as a powerful tool to reduce this ambigu-
ity. In fact below 1 GeV electrons and muons have very different velocities;
muons falls below the Cerenkov threshold much before electrons hence it is
possible to look at them only with the scintillation light, while electrons will
be observed with both scintillation light and Cerenkov ring.

5.3 Event analysis

With a neutrino energy from few tens of MeV up to 1 GeV, the main reac-
tions in the detector are:

Charged current quasi elastic scattering: ν + N → lepton + N ′

Neutral current elastic scattering: ν + N → ν + N

the second reaction for both νe and νµ escapes the detection in a water
Cerenkov detector and will be ignored in the following
Other possible but less frequent reactions are:
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Charged current resonant scattering: ν + N → lepton + π + N ′

Neutral current resonant scattering: ν + N → ν + π0 + N ′

Charged current coherent scattering: ν + O → lepton + π + O
Neutral current coherent scattering: ν + O → ν + π0 + O
Charged current diffractive scattering: ν + p → lepton + p + π
Neutral current diffractive scattering: ν + p → ν + p + π0

Neutrino-electron scattering: ν + e− → ν + e−

Where:
- resonant means that the pion is produced via the decay of a nucleon reso-
nance (e.g. ∆)
- coherent means a reaction at low energy which can be though occuring with
the entire target nucleus
- diffractive means a reaction occurred with a single nucleon
All these reactions usually produce light in the detector. The informations
available and analyzed in an experiment are:

• the number PMT recording light;

• the timing of the initial hit in each tube;

• the number of photoelectrons produced;

• the veto response;

Based on this information it is possible to identify particles emitted in the re-
actions, their energy and direction and to reconstruct the interaction vertex.
The presence of a delayed coincidence can also be used to infer the presence
of the decay of a muon stopped inside the detector.
The previous cited reactions can be divided into three classes:
1) events unambiguously recognized as νe interactions;
2) events unambiguously recognized as not being νe interactions (the detected
charged particle is a muon);
3) ambiguous events in which it is not possible to assess whether they origi-
nate from a νe or νµ interaction.
Non ambiguous νe events can originate from a νe coming from an oscillated
νµ or from a νe of the beam contamination. The events of classes two and
three are usually cut. The following is the list of interactions that lead to
class two events:
· νµ + N → µ− + N ′ it appears only a µ-like ring
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· νµ + N → µ− + π + N ′ the emitted µ and the pion produce µ-like rings;
· νµ + N → νµ + π + N ′ the emitted pion produces a µ-like ring;
· νe + N → e− + π + N ′ produce two rings one µ-like for the emitted pion
and the other e-like;
· νe+N → νe+π+N ′ in this signal event the charged π produces a µ-like ring;
although this is a νe interaction the difficulty to unambiguously discriminate
the pion can lead to huge contamination from charged current quasi elastic
scattering.
In addition the following reactions have to be cut away because can be pro-
duced by background contamination:
· νµ + N → νµ + π0 + N ′ and νe + N → νe + π0 + N ′ where π0 → γγ. If
the two photons have similar energies it is possible to identify them with
a reconstruction algorithm that separates the two rings, however it is not
possible to distinguish between the two. Figure (5.8) shows a typical double
ring caused by π0

· νµ + N → µ− + N ′ this is the most frequent reaction and it is crucial not
to misidentify the µ in an e.
The two detectors considered reach high efficiency in rejecting the above
backgrounds; the main source of background is then a real νe due to the
contamination of the initial beam. This intrinsic background is clearly im-
possible to reduce. This is the reason why particular attention has been
payed to the optimal decay tunnel geometry.
A characteristic of all the accelerator experiments is that the beam can be
switched on and off. Moreover, usually, the neutrino beam has a time struc-
ture due to the time structure of the accelerator used to produce the initial
pion beam. This characteristic facilitates considerably the measurement of
the environmental background because it can be studied precisely with a
beam-on beam-off subtraction.

5.4 Oscillated flux

In this section the expected flux of oscillated neutrinos into the detector
is studied considering the updated oscillations values of the LMA solution
(table 5.3). The oscillated fluxes are produced applying the three family
oscillation scheme, as shown in the second chapter, to the fluxes generated
with a decay tunnel of 20 m length and 1 m radius. As pointed out above
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Figure 5.8: π0 rings reconstruction in Super Kamiokande.[21]
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sin22θ23 1
sin22θ12 0.8
sin22θ13 0.01
δm2

21 5 10−5
δm2

32 3.2 10−3

Table 5.3: Updated oscillation parameters (LMA solution).

the detector used is 40 kton mass and it is located at 130 km from the target
(roughly corresponding to the distance between CERN and LSM (Labora-
toire Souterrain de Modane)).
Using a magnetic horn focusing π+(π−) the number of ν̄(ν) produced is three
order of magnitude less than the signal hence they will be neglected through
all the analysis.
In the following figures the oscillation probabilities as a function of energy

and their effect on fluxes are shown. Fluxes are displayed as number of neu-
trinos per bin. The energy bin dimension is always 20 MeV.
It is possible to observe (figure(5.9),(5.10)) that the p(νe → νe) is almost
equal to 1 for the whole energy range, excepted for the very first bins, hence
the effect of the oscillations on νe is negligible. The p(νµ → νµ) has a large
minimum at about 300 MeV and the resulting flux is practically cut at that
energy (figure(5.11),(5.12)). The p(νµ → νe) is the probability this experi-
ment would take advantage of (figure (5.13)). This probability is very small;
as can be seen from figure (5.14) the flux of oscillated νµ is almost three order
of magnitude lower than the flux of unoscillated νµ. The large fraction of the
νµ will oscillate into ντ (figure (5.15),(5.16)) that are completely invisible to
this experiment because their energy is far below the τ production threshold.
The last figure (5.17) shows the total flux of νe and the intrinsic background
of νe from the beam contamination.
The same kind of plots are shown for ν̄µ when the polarity of the horn is
inverted to focalize π−, figure (5.18)-(5.26).
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Figure 5.9: Oscillation probability p(νe → νe) for a fixed length of 130 km.
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Figure 5.10: (black) Unoscillated νe flux and (red) oscillated νe → νe flux,
for a fixed length of 130 km.
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Figure 5.11: Oscillation probability p(νµ → νµ) for a fixed length of 130 km.

0

500

1000

1500

2000

2500

x 10 10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
GeV

Figure 5.12: (black) Unoscillated νµ flux and (red) oscillated νµ → νµ flux,
for a fixed length of 130 km.
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Figure 5.13: Oscillation probability p(νµ → νe) for a fixed length of 130 km.

10 9

10 10

10 11

10 12

10 13

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
GeV

Figure 5.14: (black) Unoscillated νµ flux and (red) oscillated νµ → νe flux,
three order of magnitude less, for a fixed length of 130 km.
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Figure 5.15: Oscillation probability p(νµ → ντ ) for a fixed length of 130 km.
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Figure 5.16: (black) Unoscillated νµ flux and (red) oscillated νµ → ντ flux,
for a fixed length of 130 km.
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Figure 5.17: (black) Total νe flux, (red) νe flux from the beam, for a fixed
length of 130 km.

5.5 Events

In this section the relation between the oscillated neutrino flux, and the
detector is analyzed.
The number of neutrino interactions in the detector is a function of the
neutrino energy, the length of the neutrino path in the detector and the
cross section. The rate of interactions per second can be calculate with (5.1):

Nevents

s
= σ

[

cm2

nucleon

]

N
[

nucleon

g

]

ρ
[ g

cm3

]

l [cm] φ
[ν

s

]

(5.1)

where:
σ is the neutrino cross section
N is the Avogadro’s number
ρ is the density of the target material
l is the length of the neutrino path in the detector
φ is the flux of neutrino per second.
The number of events has been analyzed using first the rough linear neutrino
cross section without any events rejection and then a more accurate analysis
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Figure 5.18: Oscillation probability p(ν̄e → ν̄e) for a fixed length of 130 km.
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Figure 5.19: (black) Unoscillated ν̄e flux and (red) oscillated ν̄e → ν̄e flux,
for a fixed length of 130 km.
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Figure 5.20: Oscillation probability p(ν̄µ → ν̄µ) for a fixed length of 130 km.
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Figure 5.21: (black) Unoscillated ν̄µ flux and (red) oscillated ν̄µ → ν̄µ flux,
for a fixed length of 130 km.
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Figure 5.22: Oscillation probability p(ν̄µ → ν̄e) for a fixed length of 130 km.
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Figure 5.23: (black) Unoscillated ν̄µ flux and (red) oscillated ν̄µ → ν̄e flux,
three order of magnitude less, for a fixed length of 130 km.
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Figure 5.24: Oscillation probability p(ν̄µ → ν̄τ ) for a fixed length of 130 km.
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Figure 5.25: (black) Unoscillated ν̄µ flux and (red) oscillated ν̄µ → ν̄τ flux,
for a fixed length of 130 km.
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Figure 5.26: (black) Total ν̄e flux, (red) ν̄e flux from the beam, for a fixed
length of 130 km.

with two different kinds of detectors, a water Cerenkov and a scintillator has
been performed.
As shown in figure (5.27), the quasi elestic cross section, for low energies,
can be considered in first approximation as linearly dependent from the
energy.[64]

σν ' 0.7 10−38

[

cm2

nucleon

]

× Eν

σν̄ ' 0.3 10−38

[

cm2

nucleon

]

× Eν̄

The reactions considered for this cross sections are:

ν + n → l− + p

ν̄ + p → l+ + n

Figure (5.28) shows the number of events calculated considering the rough
approximation of linear cross section and a data taking of 5 years. It is
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Figure 5.27: Cross section for the quasi elastic scattering for ν and ν̄[64]

total νe oscillated beam
events νe events νe events

Horn focusing π+ 40 20 20
Horn focusing π− 10 5 5

Table 5.4: Events considering linear cross sections

worthwhile to notice that the cross section will smear out pronounced peaks
at low energies (figure (5.28),(5.29)). The number of events is bigger than
the one obtained, as will be shown, with the other two detectors. The ratio
between signal (νµ → νe) and background (νe of the beam) is about 1.
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Figure 5.28: Number of events considering linear cross section for a magnetic
horn focusing π+.(black) total number of events, (blue) oscillated events,
(red) beam events
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Figure 5.29: Number of events considering linear cross section for a magnetic
horn focusing π−.(black) total number of events, (blue) oscillated events,
(red) beam events
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Figure 5.30: Number of events in a 40 kton water Cerenkov detector for a
magnetic horn focusing π+.(black) total number of events, (red) beam events

For a more precise evaluation of the expected number of events in the
detector it is necessary to use more accurate descriptions of the neutrino in-
teraction.
To study the water Cerenkov detector, it has been possible to use the full Su-
per Kamiokande simulation software with a detector of 40 kton (considering
the same PMT coverage as Super Kamiokande). This algorithm includes the
updated neutrino cross sections, the realistic threshold on visible energy for
particle detection (considering kinematic and Cerenkov thresholds and the
effect of Pauli blocking) and the full data rejection procedure.
In figures (5.30)-(5.33) the number of events for the two polarities of the
magnetic horn, focusing π+ and π−, are shown; these results are summarized
in table (5.5) always for 5 years of data taking.

For the analysis of the number of events in a scintillator detector a 40
kton MiniBooNE-like detector has been considered. The dominant reactions
in the scintillator are [44]:

νe(ν̄e) + C → e± + N
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Figure 5.31: Number of events in a 40 kton water Cerenkov detector for a
magnetic horn focusing π+.(black) total number of events, (blue) background
events

total νe oscillated beam background
events νe events νe events events

Horn focusing π+ 19 12 7 7
Horn focusing π− 5 3 2 3

Table 5.5: Events in a 40 kton water Cerenkov detector.
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Figure 5.32: Number of events in a 40 kton water Cerenkov detector for a
magnetic horn focusing π−.(black) total number of events, (red) beam events

νµ(ν̄µ) + C → µ± + N

νµ(ν̄µ) + e− → νµ(ν̄µ) + e−

νµ(ν̄µ) + C → νµ(ν̄µ) + π0 + N

νµ(ν̄µ) + C → νµ(ν̄µ) + π + N

νµ(ν̄µ) + C → µ± + π + N

Interaction probability for these reactions are reported in figures (5.34),(5.35)
[44].
The oscillated flux and cross sections have been used to evaluate the number

of detected events for every energy bin. Figure (5.36) shows the calculated
energy distribution of the oscillated νe together with the events coming from
beam contamination. The spectrum of νµ(ν̄µ)+C → νµ(ν̄µ)+π0 +N events
is also shown because, as discussed above, π0 can be confused with electron
events. Figure (5.37) shows the energy distribution of events due to νµ in-
teractions before any cut to reduce backgrounds is applied. It is possible to
observe that almost all the background events come from νµ(ν̄µ)+C → µ±N .
Anyway it doesn’t represent a problem, because they are very well recognized
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Figure 5.33: Number of events in a 40 kton water Cerenkov detector for a
magnetic horn focusing π−.(black) total number of events, (blue) background
events
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Figure 5.34: Probability of neutrino interaction in 40 kton liquid scintillator
detector as funtion of neutrino energy, for different processes.
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Figure 5.35: Probability of antineutrino interaction in 40 kton liquid scintil-
lator detector as funtion of neutrino energy, for different processes.
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Figure 5.36: Spectrum of events in a 40 kton scintillator detector. (blue) νe

oscillated events, (red) νe beam events, (black) total number of events.(green)
events from νµ + C → νµ + π0 + N .

as νµ(ν̄µ) events.
In table (5.6) suppression factors and signal efficiency published by the Mini-
BooNE collaboration are shown [44]. It is possible to observe that the sup-
pression factor on νµ+C → µ−N is 10−3 and reduces considerably the number
of misleading registered events. Figure (5.38) shows the event spectra for all
the signal and background reactions, combined with the suppression factors.
Figures (5.39)-(5.42) shows the analog results computed for a ν̄µ beam ob-
tained with a magnetic horn focusing π−.
All the results are summarized in table (5.7)

It is necessary to analyze the difference in the number of events found
for the three estimates. Using the linear cross section without any kind of
rejection on the events is a too rough approximation of the reality. The only
interesting information coming from this analysis can be an upper limit on
the expected number of events.
The analysis of the water Cerenkov detector is the most accurate, because is



5.5. EVENTS 111

0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
GeV

Figure 5.37: Spectrum of νµ events in a 40 kton scintillator detector. (black)
νµ +C → µ− +N , (green) νµ +C → νµ +π0 +N , (red) νµ +C → νµ +π +N ,
(blue) other events.

Reaction Suppression factor
νµ(ν̄µ) + C → µ± + N 10−3

νµ(ν̄µ) + e− → νµ(ν̄µ) + e− 10−1

νµ(ν̄µ) + C → νµ(ν̄µ) + π0 + N 10−2

νµ(ν̄µ) + C → νµ(ν̄µ) + π + N 10−3

νµ(ν̄µ) + C → µ± + π + N 10−4

νe(ν̄e) + C → e±N 0.5

Table 5.6: Background suppression factors and signal efficiency in the Mini-
BooNE detector.

total νe oscillated beam background
events νe events νe events events

Horn focusing π+ 11.9 5.8 6.1 0.8
Horn focusing π− 2.4 1.2 1.2 0.2

Table 5.7: Events in a 40 kton scintillator detector.
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Figure 5.38: Final spectrum of events in 40 kton scintillator detector, con-
sidering suppression factors and signal efficiency. (blue) νe oscillated events,
(red) νe beam events, (black) total number of νe events.(green) background
events.
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Figure 5.39: Spectrum of events in a 40 kton scintillator detector. (blue) ν̄e

oscillated events, (red) ν̄e beam events, (black) total number of events.
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Figure 5.40: Spectrum of (red) ν̄µ + C → ν̄µ + π0 + N events, (black) total
number of ν̄e events, in a 40 kton scintillator detector.
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Figure 5.41: Spectrum of ν̄µ events in a 40 kton scintillator detector. (black)
ν̄µ +C → µ+ +N , (green) ν̄µ +C → ν̄µ +π0 +N , (red) ν̄µ +C → ν̄µ +π +N ,
(blue) other events

performed taking into account all the parameters for a real event analysis. In
particular is the only examined estimate that take advantage of the rejection
algorithm on both signal and background events.
The scintillator analysis has been performed with cross sections stated by
the MiniBooNE collaboration. These values have been rescaled with the up-
dated correcting factors the LSND collaboration has published [66], hence
the description of the neutrino interaction is reasonably accurate. The main
reason to justify the difference in the number of events (table (5.5),(5.7)) is
again the lack of the full simulation.
The final result of this analysis is that a 40 kton detector based on water
Cerenkov light or scintillation detection can suit the necessity of this exper-
iment.
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Figure 5.42: Final spectrum of events in 40 kton scintillator detector, con-
sidering suppression factors and signal efficiency. (blue) ν̄e oscillated events,
(red) ν̄e beam events, (black) total number of ν̄e events, (green) background
events
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Chapter 6

Sensitivity on θ13

The sensitivity of this experiment in the measurement of θ13 has been evalu-
ated considering the beam configuration with a decay tunnel of 20 m length
and 1 m radius and a 40 kton water Cerenkov detector located at 130 km
with a data taking of 5 years (1 year of data taking corresponding to 107s).
As explained in the previous chapter no significant discrepancy in the final
number of events can be observed using a water Cerenkov detector instead
of a scintillator. However, the water Cerenkov is considered here because the
events analysis performed on it is the most accurate.

6.1 The likelihood method

In the search for neutrino oscillation evidence, the likelihood method is gene-
rally used to establish either a non zero mixing angle or mass difference, with
adequate statistical significance or, in case of no evidence for oscillations, set
an upper limit on the considered parameters. The general statement of the
problem is the following: the observed number of neutrino interaction is
compared with the expected number computed using a model for the oscilla-
tions; the expected number must also include an estimate of the number of
background events expected; the model describing the oscillations involves
a certain number of parameters; as shown in the second chapter, there are
three mixing angles, three mass differences and a phase δ for CP violation;
hence a statistical method is required to find the parameters that best fit the
experimental data.
The maximum likelihood method is generally used to extract parameters
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from experimental data. Suppose to have an energy interval divided into a
collection of N bins. Let ni be the number of events in the bin i (i = 1, ..., n).
Suppose to have a fitting function F, depending on a set of m parameters
(a1, ..., am). For the neutrino problem F is a function composed by the pro-
duct of two terms: one built with the knowledge about neutrino flux and
interactions in the detector and a second one based on the neutrino oscilla-
tion model, depending on the previous parameters. The object of the analysis
is to find the values of the parameters that best fit the data distribution. To
do this for each energy bin it is necessary to convert the function F into a
normalized distribution probability:

Pi = P (ni; a1, ...am)

Neutrino experiments belongs to the class of the counting experiments and
the distribution probability is poissonian,

P (µi, ni) =
e−µi µni

i

ni!

where µi is the mean expected number of events assuming neutrino oscil-
lations and ni is the number of measured events. The mean values µi are
function of the oscillation parameters, hence Pi is more properly written as

Pi = P (µi, ni) = P (ni; a1, ...am)

The likelihood function is generally defined as the product of the individual
probability densities:

L(a1, ..am) =
N
∏

i=1

Pi

The aim is to find the best set of parameters that maximize this function.
Because the probability of observing a particular number of events is a num-
ber less than 1, the product of a large number of such probabilities in the
likelihood can be a very small number and, using a computer to analyze this
function, can lead to accuracy problems. To avoid this kind of problems is
usually preferable to maximize the logarithm of the likelihood:

M = log L = χ2

(In the case of gaussian distributed data a similar definition leads to the
usual definition of χ2.)
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In the considered neutrino experiment the number of events for each bin is
very small, hence the total number of events has been decided to study as
an unbinned distribution disregarding the energy spectrum.
In this circumstance the log-likelihood assumes this particular expression
[57]:

χ2 = 2(Nth − Nobs) + 2Nobs log(
Nobs

Nth

)

where Nth is the number of expected neutrinos considering oscillations and
Nobs is the number of observed neutrinos without oscillations.

6.2 Oscillation parameter θ13

The sensitivity of this experiment is bounded by statistical and systematic
errors.
Statistical errors can be easily accounted for using the Poisson fluctuations
of the events coming from oscillated νe, beam contamination νe, and back-
ground.
Systematic errors are very difficult to analyze and in this study it has been
possible only to give an approximate estimation. The dominant systematic
errors will come from the uncertainties in the pion beam study and in the
detector study, for the latter mainly coming from neutrino cross sections and
background rejection. For the evaluation of the systematic errors on the beam
in this experiment the values coming from the experience of the MiniBooNE
collaboration has been considered stating an εsyst of 10% as conservative and
5% as possible [44]. MiniBooNE use the neutrino beam coming from the
FNAL (Fermi National Accelerator Center) Booster. In that setup νµ come
from the decay of the pions while the primary background due to νe comes
also from kaons. When the ratio νµ/νe is considered systematic errors of the
two fluxes don’t disappear. Hence it is necessary to take into account the
k/π ratio predicted by the MC simulation in final neutrino fluxes estimate.
At the energy of the SPL (2.2 GeV), kaon production is almost totally sup-
pressed, νµ and νe come from the same production chain of the pion-muon
decay, hence systematic errors on the ratio νµ/νe in the final neutrino flux
cancel each other. An important consideration is that in the next years will
be available the π production cross section measured by HARP [67] down to
a precision of few %. The present errors on these cross sections at the SPL
energy are approximatively 30-40%.
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The systematic errors on the considered water Cerenkov detector can be
monitored only using a near detector having the task to measure νe fluxes,
neutrino cross sections and the effective detector efficiency.
With these considerations a reasonable estimate of the systematic errors
should lead to 5% as conservative and 2% as possible.
Sensitivity is usually defined [68] as:

S =
Nosc

√

Nosc + Nbeam + Nbkg + ((Nosc + Nbeam) ∗ εsyst)2

where Nosc is the number of events coming from oscillated neutrinos, Nbeam is
the number of events coming from the νe initial contamination of the beam,
Nbkg are background events and εsyst is the systematic error.
Considering as explained in the first chapter the LMA (Large Mixing An-
gle) solutions sin2(2θ12) = 0.8, sin2(2θ23) = 1, sin2(2θ13) = 0.01, δm2

12 =
5 10−5 eV 2, δm2

23 = 3.2 10−3 eV 2 and the usual decay tunnel detector setup,
the number of events can be read from the previous chapter: 12 oscillated
events, 7 beam events and 7 background events. With this values and
εsyst = 2%, the sensitivity is S=2.5. The standard way to improve this
number is to select an energy window to cut part of the background but in
the considered case there is no significant energy separation between signal
and background.
The sensitivity study on oscillations parameters is usually performed in terms
of exclusion plots. The exclusion line is a level curve on the likelihood func-
tion at a certain value of confidence level. Usually in these plots are displayed
the 90% and 95% confidence level curves. The meaning of the exclusion plot
is that for all the points (sin2(2θ), δm2) on the right of the exclusion line in
the parameters plane, it is possible to say that can be excluded as true values
of the parameters with a certain confidence level. The relevant parameters in
the probability oscillation p(νµ → νe) are the mixing angle θ13 and the mass
difference δm2

23 then the χ2 function is defined with 2 degree of freedom. The
plot in figure (6.1) is calculated assuming the normal χ2 probability distri-
bution.
It is possible to observe that the 90% C.L. plot extends down to sin2(2θ13) ≥
4 10−3 and the 95% C.L. extends down to sin2(2θ13) ≥ 6 10−3, to be com-
pared with the present limit on the measurement of sin2(2θ13) coming from
CHOOZ. This experiment has been briefly described in the first chapter. The
final CHOOZ analysis [39] state the exclusion plot in figure (6.2). In this
plot the 90% C.L. extends down to sin2(2θ13) ≥ 2 10−2 and the 95% C.L.
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Figure 6.1: Exclusion plot produced considering the usual beam configuration
with a decay tunnel of 20 m length and 100 cm radius and a 40 kton water
Cerenkov detector located at 130 km with data taking of 5 years (1 year
corresponding to 107s)
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Figure 6.2: CHOOZ Exclusion plot.[39]
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extends down to sin2(2θ13) ≥ 6 10−2. Comparing the two exclusion plots, it
is possible to observe an improvement on sin2(2θ13) sensitivity by almost one
order of magnitude.
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Chapter 7

Conclusions

The potentiality of the SPL-based neutrino superbeam has been investigated.
Neutrino fluxes have been studied considering the SPL as proton source.
Proton kinetic energy from this accelerator is 2.2 GeV with a rate of 1023

pot/year (pot: protons on target). For the pion production the considered
target is a mercury jet with a length of 26 cm (∼ 2 interaction lengths) and
a radius of 0.75 cm. At this energy kaon production is almost completely
suppressed.
The simulated magnetic horn is that studied for the Neutrino Factory which
is probably not the best choice for this superbeam application. In fact the
considered horn has a point to point optics while it would be better to con-
sider a point to parallel one. Flux calculations, which is the main part of this
study, have been performed analytically studying the decay probability dis-
tribution of pions and subsequent muons. A FORTRAN program has been
implemented for calculations. Only pions coming from the horn have been
considered. Only a small number of muons have been found at the end of the
horn. They come from low energy pion decayed during the focusing process
and, since they are at very low energy too, they have been neglected.
Particular attention has been payed on the decay tunnel geometry because
is the only tool to define the beam purity. The decay tunnel configuration
has been studied systematically producing fluxes for a big set of geometry
parameters. The best choice has been found in a cylindrical shape of 20 me-
ters length and 1 meter radius. No significative energy difference between νµ

from pions and νe from muons varying the decay tunnel geometry has been
found, hence it is not possible to think about energy cuts on the pion beam
to improve the purity of the final neutrino beam. No significant difference
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have been observed in the best configuration for a decay tunnel used for π+

or π− beam. The optimization lead to a ratio between the number of νe and
νµ of the superbeam equal to about 0.35% for both polarities of the horn.
The total flux in a detector of 10 × 10 m2 at 130 km considering 1023 pot (1
year of SPL run) is 6.5 1013 νµ and 2.3 1011 νe with a horn focusing π+ and
4.32 1013 ν̄µ and 1.6 1011 ν̄e with a horn focusing π−. The mean energy of the
neutrino beam, in the optimal configuration for the decay tunnel, is about
250 MeV.
The aim of this experiment is to observe νµ → νe oscillations, hence the po-
sition of the detector plays an important role for two reasons: neutrino flux
decreases with the square of the distance from the production point and also
the oscillation probability changes with the distance. The possible location
has to be chosen near an oscillation probability peak and in a place where
a neutrino laboratory already exists. The suggested detector position is at
LSM (Laboratoire Souterrain de Modane) which is 130 km away from the
decay tunnel and near the first oscillation peak for a mean energy of 250
MeV. The detector analysis has been performed neglecting costs but anyway
attention has been payed not to propose impossible solutions. The mass of
the detector has been chosen in 40 kton which permits to obtain enough
statistics considering a reasonable data taking period of 5 years.
The detector study has been performed on a scintillator MiniBoone-like de-
tector and on a water Cerenkov Super Kamiokande-like. For the first a
reasonable estimations of the number of events and background rejection has
been given considering the estimates published in the MiniBooNE proposal.
For the water Cerenkov detector the full Super Kamiokande simulation has
been used, hence with an extremely precise analysis of events reconstruction
and background rejection. The number of observed events are 12 oscillated
events for water Cerenkov and 6 for the scintillator, 7 beam events for the
water Cerenkov and 6 for the scintillator and 7 background events in the
water Cerenkov and 1 for the scintillator. The number of events for antineu-
trinos are considerably smaller due to the lower flux and cross sections. The
comparison between the two detectors can be done taking into account that
for the scintillator a full simulation has not been done. Anyway with these
considerations, it is possible to observe that data doesn’t show any large
discrepancy in the final number of events, hence both detectors can suit the
requirement of this experiment.
The study of θ13 as been performed with the horn focusing π+ because it
permits to obtain neutrinos instead of antineutrinos that have larger cross
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sections and then a larger number of events. The analysis has been per-
formed with the likelihood method and expressed in the usual form of an
exclusion plot. The final results show a sensitivity on sin2(2θ13) down to
0.004 at the 90% confidence level and 0.006 at 95% confidence level, for
1 10−3 ≤ δm2

23 ≤ 2 10−3eV 2. In this δm2
23 range the present limit on sin2(2θ13)

comes from the CHOOZ experiment which has published the final analysis
with 0.02 at 90% of confidence level, hence with this experiment there could
be an improvement of about one order of magnitude in sensitivity.
The present study will be followed by a number of other investigations on
different aspects of the superbeam.
The target is still developing and it is possible to imagine an improvement
on the number of produced pion per proton. The horn geometry will be
optimized for this experiment considering a point to parallel optics. Anyway
the major uncertainty in the final neutrino flux remains in the hadron cross
sections at these energies, which is under investigation with the HARP ex-
periment.
Great attention will be devoted to the study of the oscillation parameters,
particularly the phase δ for the CP violation. In fact the big advantage in the
use of a magnetic horn is that this device is charge selective, hence changing
the polarity of the current it is possible to switch from a neutrino beam to
an antineutrino beam. Considering

P (νµ → νe) − P (ν̄µ → ν̄e)

P (νµ → νe) + P (ν̄µ → ν̄e)

it is possible to investigate CP violation in the leptonic sector. For this study
will be necessary a deeper understanding of the systematic errors on pion
production, on neutrino cross sections at these energies and on the detector
effects.
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Appendix A

Flux program

c *********************************************************************

c NEUTRINO FLUXES

c

c *********************************************************************

c Number of bins in neutrino’s energy

parameter (nbine=100)

c Data types

real*8 ProbnmP(nbine)

real*8 ProbamP(nbine)

real*8 Probne(nbine)

real*8 Probnm(nbine)

real*8 Probae(nbine)

real*8 Probam(nbine)

real*8 P(3)

real*8 ex(3)

real*8 ey(3)

real*8 ez(3)

real*8 w(3)

real*8 ux(3)

real*8 uy(3)

real*8 uz(3)

real*8 xpion(3)

real*8 pmupi(3)
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real*8 pmuvet(3)

real*8 punit(3)

real*8 null(3)

real qrndm

real*8 Mmu,Mpi,al,de

real*8 Ppi,d,pi,emustr,pmustr,dfi,dcstsm

real*8 geomp,geome,geomm

real*8 x,y,z,px,py,pz,et,ctoff,www

real*8 epi,betapi,gammap,ca,sa,enustr,enup,prb

real*8 cststm,emu,pmul,pmut,pmu,sntstr,betamu,cosr

real*8 ctsn,dprobe,dprobm,enu,a,probdkpi,probdkmu

real*8 costante,tl,tr,cstzero,fi,fizero,enuzero

integer nfile,npions

real*8 dum

real*8 gammamu,MupolT,MupolL,costheta

real*8 nmuons(nbine)

integer ntotmuons

real*8 threshold

integer muonp,muonm

c Initialize probabilities arrays to zero

do 39 i=1,nbine

ProbnmP(i)=0.d0

ProbamP(i)=0.d0

Probne(i) =0.d0

Probnm(i) =0.d0

Probae(i) =0.d0

Probam(i) =0.d0

nmuons(i) =0.d0

39 continue

do 20 i=1,3

P(i) =0.d0

null(i) =0.d0

w(i) =0.d0

ux(i) =0.d0

uy(i) =0.d0

uz(i) =0.d0
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xpion(i) =0.d0

pmupi(i) =0.d0

pmuvet(i)=0.d0

punit(i) =0.d0

null(i) =0.d0

20 continue

ntotmuons=0

c Averaged muon polarization variables

sumpolp=0.d0

sumpolm=0.d0

muonp=0

muonm=0

c *******************************************************************

c System constants:

c Distance tunnel decay, detector (in m)

d=50000.d0

c Side of the detector (in m)

al=10.d0

c Tunnel radius and length (in cm)

tl=2000.d0

tr=100.d0

c *******************************************************************

c Input file

nfile=93

c Number of pions in the file

npions=999995

c Errors file:

c open(UNIT=2,FILE=’errors.20’,STATUS=’UNKNOWN’)
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c write(2,*)’This file contains the "errors" of the computation’

c open(UNIT=4,FILE=’pol100-.20’,STATUS=’UNKNOWN’)

c Greek Pi

Pi=acos(-1.d0)

c Pion and muon’s mass

Mpi=0.13956995d0

Mmu=0.105658389d0

c Energy and momentum of the muon in the centre of mass of the pion

emustr=(mpi**2+mmu**2)/(2.d0*mpi)

pmustr=(mpi**2-mmu**2)/(2.d0*mpi)

c Bins

c Number of bins in fi and in cos theta star:

nbinfi=12

nbcst=20

c Dimensions of the bins:

dfi=2.d0*Pi/nbinfi

dcstsm=2.d0/nbcst

de=2.d0/nbine

c Versor: ez (direction tunnel decay detector)

ez(1)=0.d0

ez(2)=0.d0

ez(3)=1.d0

c Normalization + useful constants (these are some costants that

c appear in the formulas so I calculate once here)

geomp=(1/(4.d0*Pi))*((al**2)/(d**2))

geome=de*((3.d0/Pi)*(al**2)*(1.d0/(d**2)))/(nbcst*nbinfi)

geomm=de*((1.d0/(2.d0*Pi))*(al**2)*(1.d0/(d**2)))/(nbcst*nbinfi)

c Read Pion datas
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c m is just a counter

m=0

c ni is the number of the event in the Monte Carlo simulation

ni=0

do while (ni.lt.npions)

read (nfile,*)ni,jp,x,y,z,px,py,pz,et,ctoff,www

c Check if the the particle is a pion + (jp=3) or a pion - (jp=4).

c If it is not go to next pion

if ((jp.ne.3).and.(jp.ne.4)) goto 1234

c Increase the pion counter

m=m+1

c Initial position of the pion (z=0)

if (x.gt.tr) then

c write(2,*)’Pion #:’,m,’events’,ni,’has x > tunnel radius’

goto 1234

endif

if (y.gt.tr) then

c write(2,*)’Pion #:’,m,’events’,ni,’has y > tunnel radius’

goto 1234

endif

xpion(1)=x

xpion(2)=y

xpion(3)=0.d0

c Initial momentum of the pion (lab frame)

P(1)=Px

P(2)=Py

P(3)=Pz

c Momentum, energy, beta, gamma of the pion

Ppi=dsqrt(Px**2+Py**2+Pz**2)

epi=et
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Betapi=ppi/epi

Gammap=epi/mpi

c If the pion is at rest, ignore it

call dvmod(p,3,dum)

if (dum.eq.0.d0) then

c write(2,*)’Pion #:’,m,’events’,ni,’is at rest’

goto 1234

endif

c Normalize the pion momentum

call dvunit(p,uz,3)

c Create the pion frame

call dcross(ez,uz,uy)

call dvunit(uy,w,3)

call ducopy(w,uy,3)

call ducopy(uy,ey,3)

c Checks if the direction uz of the pion is parallel to ez (i.e.uy=0)

call dvmod(uy,3,dum)

if (dum.eq.0.d0) then

c write(2,*)’Pion #:’,m,’events’,ni,’uz is parallel to ez ’

uy(1)=0.d0

uy(2)=1.d0

uy(3)=0.d0

ey(1)=0.d0

ey(2)=1.d0

ey(3)=0.d0

end if

c Pion frame

call dcross(uy,uz,ux)

call dvunit(ux,w,3)

call ducopy(w,ux,3)

c Lab frame

call dcross(ey,ez,ex)
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call dvunit(ex,w,3)

call ducopy(w,ex,3)

c Neutrinos from the Pions

c To go into the detector the neutrino must have an angle in the lab

c equal to the Pion angle (lab frame)

c Angle from the neutrino trajectory and the ez axis of the lab

ca=(pz/ppi)

sa=dsqrt(1.d0-ca**2)

c Energy of the neutrino in the center of mass of the pion (2 body

c decay so the energy is fixed)

c enustr=.0297917

enustr=(mpi**2-mmu**2)/(2.d0*mpi)

c Boost of the energy from the pion frame to the lab frame

enup=gammap*enustr*(1.d0+betapi*((betapi-ca)/(betapi*ca-1.d0)))

c Calculate the number of the bin occupated by the neutrino (lab frame)

iep=int(enup/de)+1

c Decay tunnel effect

probdkpi=0.d0

call probdkm(tl,tr,p,xpion,null,probdkpi,probdkmu,1)

c Calculates the probability to reach the detector

prb=geomp*((1.d0-(betapi**2))/(betapi*ca-1.d0)**2)*probdkpi

c Put the probability (like a weight) in the right bin of energy

if (jp.eq.3) probnmP(iep)=probnmP(iep)+prb

if (jp.eq.4) probamP(iep)=probamP(iep)+prb

c Muons from the pion

c To calculate the probability I sample the sphere in

c cos(theta star), fi
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c I generate a random number to start cos theta star this should avoid

c big statistical errors

cstzero=(2.d0*rndm(qrndm))/nbcst

c Loop in cos theta star (pion decay)

do 50 ibcst=1,nbcst

cststm=-1.d0+cstzero+(ibcst-1)*dcstsm

c Muon’s energy in the lab frame (depends on cos theta star)

Emu=Gammap*Emustr+Betapi*Gammap*Pmustr*cststm

c Longitudinal momentum

Pmul=Betapi*Gammap*Emustr+Gammap*Pmustr*cststm

sntstr=dsqrt(dabs(1.d0-(cststm**2)))

c Transverse momentum (obviously no boost)

Pmut=Pmustr*sntstr

Pmu=dsqrt(Pmul**2+Pmut**2)

betamu=Pmu/Emu

gammamu=emu/mmu

c Muon Polarization

MupolT=((gammap*betapi)/(gammamu*betamu))*sntstr

threshold=-(pmustr/(betapi*emustr))

c Sign of longitudinal polarization

MupolL=dsqrt(1.d0-(MupolT**2))

c For mu+

if ((jp.eq.3).and.(cststm.gt.threshold)) MupolL=-MupolL

if ((jp.eq.3).and.(cststm.lt.threshold)) MupolL=MupolL

c For mu-

if ((jp.eq.4).and.(cststm.gt.threshold)) MupolL=MupolL

if ((jp.eq.4).and.(cststm.lt.threshold)) MupolL=-MupolL

c I generate a random number for the start of fi this should avoid
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c big statistical errors

fizero=2.d0*Pi*rndm(qrndm)

c LOOP IN FI

do 70 ifi=1,nbinfi

fi=(ifi-1)*dfi+fizero

c Fi is periodic of 2*Pi

if (fi.gt.2.d0*Pi) fi=fi-2.d0*Pi

c Muon momentum in the boosted frame (lab frame) but with axis

c parallels to pion axis

pmupi(1)=pmut*cos(fi)

pmupi(2)=pmut*sin(fi)

pmupi(3)=pmul

c Muon momentum in the decay tunnel - detector frame (lab frame) with

c the correct axis

pmuvet(1)=pmupi(1)*ux(1)+pmupi(2)*uy(1)+pmupi(3)*uz(1)

pmuvet(2)=pmupi(1)*ux(2)+pmupi(2)*uy(2)+pmupi(3)*uz(2)

pmuvet(3)=pmupi(1)*ux(3)+pmupi(2)*uy(3)+pmupi(3)*uz(3)

c Tunnel Decay effect

probdkmu=0.d0

call probdkm(tl,tr,p,xpion,pmuvet,probdkpi,probdkmu,2)

c The neutrino angle

call dvunit(pmuvet,punit,3)

call dvdot(punit,ez,3,cosr)

c The same angle in the muon frame (muon decay)

ctsn=(betamu-cosr)/((betamu*cosr)-1.d0)

c Angle between the neutrino momentum vector and muon direction

costheta=ctsn

c Number of occupated bins

nboc=int(Emu/de)+1
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c I generate a random number for enu’s middle of the bin

enuzero=rndm(qrndm)

c LOOP IN NEUTRINO ENERGY

ie=0

do 60 ie=1,nboc

dprobe=0.d0

dprobm=0.d0

enu=emu-((ie-enuzero)*de)

c FORMULAS

c This is just to semplify the formula

a=(2.d0*enu/emu)*(1.d0/(1.d0+betamu*ctsn))

if (a.gt.1.d0) then

c write(2,*)’Pion #:’,m,’event:’,ni,

c + ’MU cos(theta*)=’,cststm,’fi=’,fi,’Enu*’,enu,

c + ’"a">1’

goto 60

endif

if (a.lt.0.d0) then

c write(2,*)’Pion #:’,m,’event:’,ni,

c + ’MU cos(theta*)=’,cststm,’fi=’,fi,’Enu*’,enu,

c + ’"a"<0’

goto 60

endif

c Formulas without Polarization

c dprobe=geome*(a**2-a**3)*(a/enu)*((1.d0-(betamu**2))/

c + ((betamu*cosr-1.d0)**2))*probdkmu

c dprobm=geomm*(3.d0*a**2-2.d0*a**3)*(a/enu)*

c + ((1.d0-(betamu**2))/((betamu*cosr-1.d0)**2))*probdkmu

c Formulas with Polarization

if (jp.eq.3) then
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dprobe=geome*((a**2-a**3)-(MupolL*(a**2-a**3)*costheta))*

+ (a/enu)*((1.d0-(betamu**2))/((betamu*cosr-1.d0)**2))*probdkmu

dprobm=geomm*((3.d0*a**2-2.d0*a**3)-

+ (MupolL*(a**2-2.d0*a**3)*costheta))*(a/enu)*

+ ((1.d0-(betamu**2))/((betamu*cosr-1.d0)**2))*probdkmu

endif

if (jp.eq.4) then

dprobe=geome*((a**2-a**3)+(MupolL*(a**2-a**3)*costheta))*

+ (a/enu)*((1.d0-(betamu**2))/((betamu*cosr-1.d0)**2))*probdkmu

dprobm=geomm*((3.d0*a**2-2.d0*a**3)+

+ (MupolL*(a**2-2.d0*a**3)*costheta))*(a/enu)*

+ ((1.d0-(betamu**2))/((betamu*cosr-1.d0)**2))*probdkmu

endif

c Put the probability in the right energy bin

if (jp.eq.3) then

Probne(nboc-ie+1)=Probne(nboc-ie+1)+dprobe

Probam(nboc-ie+1)=Probam(nboc-ie+1)+dprobm

end if

if (jp.eq.4) then

Probae(nboc-ie+1)=Probae(nboc-ie+1)+dprobe

Probnm(nboc-ie+1)=Probnm(nboc-ie+1)+dprobm

end if

60 continue

c End loop in neutrino energy

70 continue

c End loop in fi
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50 continue

c End loop in cos theta star

c On-line output

write(*,*)m,ni

1234 end do

c End of the main loop

c Costant (normalization) to transform probability into fluxes

c

c 10^(16-6+7)

c

c 10^16 protons/second

c 10^6 protons to produce pions

c 10^7 second/year

costante=1.d17

c OUTPUT

write(*,*)’Writing output files’

open(UNIT=1,FILE=’fluxpol100+.20’,STATUS=’UNKNOWN’)

open(UNIT=3,FILE=’muondistr100+.20’,STATUS=’UNKNOWN’)

do 300 ie=1,nbine

write(1,*)ie,(ie*de),probnmP(ie)*costante,probamP(ie)*costante,

+probne(ie)*costante,probam(ie)*costante,probae(ie)*costante,

+probnm(ie)*costante

write(3,*)(ie*de),nmuons(ie)

300 continue

close(UNIT=1)

close(UNIT=3)

write(*,*)’END!’

c

c Close error file
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c close(UNIT=2)

100 end

c Calculates muon and pion decay probabilities for a pi->mu decay

c in a tunnel of length z0 and radius r0

c if idptc=1 looks only at the pion

c Coordinates in the lab frame.

c----------------------------------------------------------------------

subroutine probdkm

+(tunnel_length,tunnel_radius,ppi,xpi,pmu,probpi,probmu,idptc)

c----------------------------------------------------------------------

real*8 tunnel_length,tunnel_radius

real*8 dprobmu

real*8 ppi(3),xpi(3),xpin(3),pmu(3),upi(3),umu(3)

real*8 ampi,ammu,ctpi,ctmu,appi,apmu,path0pi,path0mu

real*8 probpi,probmu,ap,param,r0,z0,pathpi,bp,cp,xfin,yfin,zfin

real*8 dl,a,b,c,pat,xmufin,ymufin,zmufin,tlambda,pathmu

integer nsteps,idptc

c Units are cm and GeV.

ampi=0.13956995d0

ammu=0.105658398d0

ctpi=780.45d0

ctmu=65865.d0

r0= tunnel_radius

z0= tunnel_length

call dvmod(ppi,3,appi)

call dvmod(pmu,3,apmu)

path0pi=ctpi*appi/ampi

path0mu=ctmu*apmu/ammu
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call dvunit(ppi,upi,3)

call dvunit(pmu,umu,3)

probpi=0.d0

probmu=0.d0

c First the pion

call dvdot(upi,upi,2,ap)

if (ap.eq.0.d0) then

param=z0/upi(3)

pathpi=z0

goto 378

endif

call dvdot(upi,xpi,2,bp)

call dvdot(xpi,xpi,2,cp)

cp=cp-r0**2

if ((bp*bp-ap*cp).lt.0.d0) then

probpi=0.d0

write(*,*)’sqrt<0 pi’

goto 357

endif

param=(-bp+dsqrt(bp*bp-ap*cp))/ap

c Pion on the walls

if (param*upi(3).le.z0) then

xfin=upi(1)*param+xpi(1)

yfin=upi(2)*param+xpi(2)

zfin=upi(3)*param

endif

c Pion on the end plate

if (param*upi(3).gt.z0) then

param=z0/upi(3)

xfin=upi(1)*param+xpi(1)

yfin=upi(2)*param+xpi(2)

zfin=z0

endif
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c and the path available for decay

pathpi=dsqrt((xfin-xpi(1))**2+(yfin-xpi(2))**2+(zfin-xpi(3))**2)

c now the probability that the pion decays

378 probpi=1.d0-dexp(-pathpi/path0pi)

386 if (idptc.eq.1) goto 357

c Now the muon. I have to do a step integration

c arbitrarily chose 10cm steps

nsteps=int(param/10.d0)+1

dl=param/nsteps

c I calculate A which will remain through the loop

call dvdot(umu,umu,2,a)

do istep=1,nsteps

pat=dl*(istep-0.5d0)

xpin(1)=xpi(1)+upi(1)*pat

xpin(2)=xpi(2)+upi(2)*pat

xpin(3)=xpi(3)+upi(3)*pat

if (a.eq.0.d0) then

xmufin=xpin(1)

ymufin=xpin(2)

zmufin=z0

goto 234

endif
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call dvdot(xpin,umu,2,b)

call dvdot(xpin,xpin,2,c)

c=c-r0**2

if (B*B-A*C.lt.0.d0) then

dprobmu=0.d0

write(*,*)’sqrt<0 mu’

goto 412

end if

tlambda=(-B+dsqrt(B*B-A*C))/A

c on the walls

if ((tlambda*umu(3)+xpin(3)).le.z0) then

xmufin=umu(1)*tlambda+xpin(1)

ymufin=umu(2)*tlambda+xpin(2)

zmufin=umu(3)*tlambda+xpin(3)

endif

c on the end plate

if ((tlambda*umu(3)+xpin(3)).gt.z0) then

tlambda=z0/umu(3)

xmufin=upi(1)*tlambda+xpin(1)

ymufin=upi(2)*tlambda+xpin(2)

zmufin=z0

endif

234 pathmu=dsqrt((xmufin-xpin(1))**2+(ymufin-xpin(2))**2+

+ (zmufin-xpin(3))**2)

c The muon decay probability is now integrated

dprobmu=(1.d0-dexp(-pathmu/path0mu))

+ * dl/path0pi*(dexp(-pat/path0pi))
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412 probmu=probmu+dprobmu

enddo

357 return

end

c Simple subroutines for double precision array algebra

subroutine ducopy(a,b,n)

real*8 a(n),b(n)

integer n,i

do 10 i=1,n

b(i)=a(i)

10 enddo

return

end

subroutine dcross(a,b,c)

real*8 a(3),b(3),c(3)

c(1)=a(2)*b(3)-a(3)*b(2)

c(2)=-a(1)*b(3)+a(3)*b(1)

c(3)=a(1)*b(2)-a(2)*b(1)

return

end

subroutine dvunit(a,b,n)

real*8 a(n),b(n),m,c

integer i,n

c=0.D0

do 10 i=1,n

c=c+a(i)**2

10 enddo

m=dsqrt(c)

do 20 i=1,n

b(i)=a(i)/m

20 enddo

return
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end

subroutine dvdot(a,b,n,ris)

real*8 a(n),b(n),dot,ris

integer n,i

dot=0.D0

do 10 i=1,n

dot=dot+a(i)*b(i)

10 continue

ris=dot

return

end

subroutine dvmod(a,n,ris)

real*8 a(n),b,ris

integer n,i

b=0.D0

do 10 i=1,n

b=b+a(i)**2

10 enddo

ris=dsqrt(b)

return

end
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Oscillations program

c*********************************************************************

c NEUTRINO MIXING

c

c*********************************************************************

parameter (nbine=100)

complex*16 R(3,3),T(3,3),VR(3,3),W(3),MR(3,3)

complex*16 HV(3,3),VRT(3,3),HA(3,3),M(3,3)

complex*16 mass11,mass22,mass33

real*8 t12,t13,t23,d,pi,E,L

real*8 tg12,tg13,tg23,dg,Eposc

real*8 Amat,dmass12,dmass23,p

real*8 po(3,3)

integer j,ie

real*8 nmP,amP,ne,am,ae,nm

real*8 onm,oam,one,oae,mne,mam,mae,mnm

real*8 de,signal,noise,aie

c Energy bin dimension

de=2.d0/nbine

c Greek Pi

pi=acos(-1.d0)

c Parameters:

c Mixing angles in degrees

147
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tg12=31.71d0

tg13=2.87d0

tg23=45.d0

c CP violating phase in degrees

dg=0.d0

c Detector scale fluxes ar calculated with a 1kton detector 10x10 m^2

c In this analysis it has been used 40kton detector 34^34 m^2(1156m^2)

rescale=(34.d0)*(34.d0)/(100.d0)

c Neutrino energy

E=.250d0

c Decay tunnel - Detector distance

L=130.d0

c Neutrino masses SQUARED (eV)

c Mezzetto

mass33=(0.00330,0.d0)

mass22=(0.00010d0,0.d0)

mass11=(0.00005d0,0.d0)

c dm21^2=5 10^-5

c dm31^2=3.25 10^-3

c dm32^2=3.2 10^-3

c Matter effect

Amat=0.d0

c----------------------------------------------------------------------

c Mixing angles in radiants

t12=(tg12/180.d0)*pi

t13=(tg13/180.d0)*pi

t23=(tg23/180.d0)*pi

c CP violating phase in radiants

d=(dg/180.d0)*pi
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c Fill rotation matrix

call UROT(t12,t13,t23,d,R)

c Fill Mass matrix

call MASSA(mass11,mass22,mass33,M)

call HCONJ(R, T)

call PRODOTTO(M,R,MR)

call PRODOTTO(T,MR,HV)

call SOMMA(HV,Amat,HA)

c Eigenvalues Eigenvectors

call VALVET(HA,W,VRT)

call HCONJ(VRT,VR)

open(UNIT=1,FILE=’flux40130100+.20’,STATUS=’OLD’)

open(UNIT=2,FILE=’fluxosc100+.20’,STATUS=’UNKNOWN’)

do 100 i=1,2000

read(1,*)aie,E,nmP, amP, ne, am, ae, nm

E=E-(de/2.01d0)

call POSC(R,T,W,L,E,po)

nmP=nmP*rescale*(130.d0**2)/L**2

amP=amP*rescale*(130.d0**2)/L**2

ne =ne *rescale*(130.d0**2)/L**2

am =am *rescale*(130.d0**2)/L**2

ae =ae *rescale*(130.d0**2)/L**2

nm =nm *rescale*(130.d0**2)/L**2

onm=(nmP+nm)*po(2,2)+ne*po(1,2)

signal=(nmP+nm)*po(2,1)

noise=ne*po(1,1)

one=ne*po(1,1)+(nmP+nm)*po(2,1)

onm=(nm+nmP)*po(2,3)

oam=(amP+am)*po(2,2)+ae*po(1,2)
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oae=ae*po(1,1)+(amP+am)*po(2,1)

write(2,*)aie,E,nmP,amP,ne,am,ae,nm,signal,noise

100 continue

close(UNIT=2)

close(UNIT=1)

1234 end

c---------------------------------------------------------------------

c SUBROUTINES

c Hermitian conjugation of (3 x 3) complex matrix

SUBROUTINE HCONJ(A, AHC)

complex*16 A(3,3),AHC(3,3)

n=3

do 20 j = 1, n

do 30 k = 1, n

AHC(j,k) = dconjg(A(k,j))

30 continue

20 continue

return

end

c Fill mass matrix

SUBROUTINE MASSA(mass11,mass22,mass33,M)

complex*16 M(3,3),mass11,mass22,mass33

M(1,1)= mass11

M(2,2)= mass22

M(3,3)= mass33

M(1,2) = (0.d0,0.d0)

M(1,3) = (0.d0,0.d0)

M(2,1) = (0.d0,0.d0)

M(2,3) = (0.d0,0.d0)

M(3,1) = (0.d0,0.d0)

M(3,2) = (0.d0,0.d0)

return

end
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c Oscillation probability

SUBROUTINE POSC(VR,VRT,W,L,E,po)

complex*16 VR(3,3),VRT(3,3),W(3),poc(3,3)

real*8 E,L,po(3,3),wr(3)

complex*16 E1,L1

integer n,alpha,beta

n = 3

do 22 beta = 1, n

do 33 alpha = 1, n

po(alpha,beta)=0.d0

poc(alpha,beta)=0.d0

do 64 i = 1, n

do 73 j = 1, n

poc(alpha,beta)=VR(alpha,i)*VRT(i,beta)*VR(beta,j)*

+ VRT(j,alpha)*exp(-(0.d0,1.d0)*2.d0*(W(i)-W(j))*1.27d0*L/E)

+ +poc(alpha,beta)

73 continue

64 continue

po(alpha,beta) = DREAL(poc(alpha,beta))

33 continue

22 continue

1000 return

end

c Product of complex matrixes

SUBROUTINE PRODOTTO(A,B,P)

complex*16 A(3,3),B(3,3),P(3,3)

n = 3

P(1,1) = 0.d0

P(1,2) = 0.d0

P(1,3) = 0.d0

P(2,1) = 0.d0
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P(2,2) = 0.d0

P(2,3) = 0.d0

P(3,1) = 0.d0

P(3,2) = 0.d0

P(3,3) = 0.d0

do 100 k = 1, n

do 102 i = 1, n

do 103 j = 1, n

P(i,k) = DREAL(A(i,j))*DREAL(B(j,k))

+ - DIMAG(A(i,j))*DIMAG(B(j,k))

+ + (0.d0,1.d0)*(DREAL(A(i,j))*DIMAG(B(j,k))

+ + DIMAG(A(i,j))*DREAL(B(j,k))) + P(i,k)

103 continue

102 continue

100 continue

return

end

SUBROUTINE SOMMA(d,Amat,S)

complex*16 A(3,3),d(3,3),S(3,3)

real*8 Amat

A(1,1) = Amat*(1.d0,0.d0)

A(1,2) = (0.d0,0.d0)

A(1,3) = (0.d0,0.d0)

A(2,1) = (0.d0,0.d0)

A(2,2) = (0.d0,0.d0)

A(2,3) = (0.d0,0.d0)

A(3,1) = (0.d0,0.d0)

A(3,2) = (0.d0,0.d0)

A(3,3) = (0.d0,0.d0)

n = 3

do 20 k = 1, n

do 30 j = 1, n

S(k,j) = (1.d0,0.d0)*(DREAL(d(k,j)) + DREAL(A(k,j)))

+ +(0.d0,1.d0)*DIMAG(D(k,j)) + DIMAG(A(k,j))

30 continue

20 continue

return
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end

c Fill rotation complex matrix

SUBROUTINE UROT(t12,t13,t23,d,R)

real*8 t12,t13,t23,d

real*8 theta12, theta13, theta23, delta

real*8 ur(3,3),ui(3,3)

complex*16 R(3,3)

n = 3

ur(1,1) = cos(t12)*cos(t13)

ui(1,1) = 0.d0

ur(1,2) = sin(t12)*cos(t13)

ui(1,2) = 0.d0

ur(1,3) = sin(t13)*cos(d)

ui(1,3) = -sin(t13)*sin(d)

ur(2,1) = -sin(t12)*cos(t23)-(cos(t12)*sin(t23)*sin(t13))*cos(d)

ui(2,1) = -(cos(t12)*sin(t23)*sin(t13))*sin(d)

ur(2,2) = cos(t12)*cos(t23)-(sin(t12)*sin(t23)*sin(t13))*cos(d)

ui(2,2) = -(sin(t12)*sin(t23)*sin(t13))*sin(d)

ur(2,3) = sin(t23)*cos(t13)

ui(2,3) = 0.d0

ur(3,1) = sin(t12)*sin(t23)-(cos(t12)*cos(t23)*sin(t13))*cos(d)

ui(3,1) = -(cos(t12)*cos(t23)*sin(t13))*sin(d)

ur(3,2) = -sin(t23)*cos(t12)-(sin(t12)*cos(t23)*sin(t13))*cos(d)

ui(3,2) = -(sin(t12)*cos(t23)*sin(t13))*sin(d)

ur(3,3) = cos(t23)*cos(t13)

ui(3,3) = 0.d0

do 3 l = 1, n

do 4 m = 1, n

R(l,m) = ur(l,m)+(0.d0,1.d0)*ui(l,m)

4 continue

3 continue

return

end
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c W eigenvalues from the smallest to the biggest

c VR correspondig eigenvectors

SUBROUTINE VALVET(HA,W,VR)

complex*16 A(3,3), HA(3,3)

complex*16 VL(3,3),VR(3,3),WORK(12),W(3),MR(3,3)

complex*16 VRO(3,3),WO(3)

real*8 RWORK(9),E,L,Wabs(3)

real*8 costb, costa,y

integer index(3), n

character*1 JOBVL, JOBVR

n = 3

JOBVL = ’N’

JOBVR = ’V’

call ZGEEV(JOBVL,JOBVR,3,HA,3,W,VL,3,VR,3,WORK,12,RWORK,INFO)

1000 return

end
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