
SIMULATING THE LHC COLLIMATION SYSTEM WITH THE ACCELE-
RATOR PHYSICS LIBRARY MERLIN, AND LOSS MAP RESULTS

J.G. Molson∗, R.B. Appleby, M. Serluca, A. Toader
The University of Manchester and the Cockcroft Institute, UK

R.J. Barlow, University of Huddersfield, UK

Abstract
We present large scale simulations of the LHC colli-

mation system using the MERLIN code for calculations
of loss maps, currently using up to 1.5 × 109 halo parti-
cles. In the dispersion suppressors following the collima-
tion regions, protons that have undergone diffractive inter-
actions can be lost into the cold magnets. This causes ra-
diation damage and could possibly cause a magnet quench
in the future with higher stored beam energies. In order
to correctly simulate the loss rates in these regions, a high
statistics physics simulation must be created that includes
both accurate beam physics, and an accurate description of
the scattering of a 7 TeV proton in bulk materials. The
current version includes the ability to simulate new pos-
sible materials for upgraded collimators, and advances to
beam-collimator interactions, including proton-nucleus in-
teractions using the Donnachie-Landshoff Regge-Pomeron
scattering model. Magnet alignment and field errors are
included, in addition to collimator jaw alignment errors,
and their effects on the beam losses are systematically es-
timated. Collimator wakefield simulations are now fully
parallel via MPI, and many other speed enhancements have
been made.

INTRODUCTION
The LHC is a superconducting 7 TeV proton-proton col-

lider with a high nominal stored beam energy (360MJ)
and a low quench limit on the superconducting magnets(
4.5mW/cm

3
)

[1]. To protect the machine from this
high stored energy, the LHC is equipped with an efficient
collimation system to collimate halo particles and prevent
quenching, in addition to reducing the background at the
experimental regions and preventing radiation damage to
sensitive electronics. There exist two collimation regions
- one in interaction region 7 (IR7) which contains a series
of betatron collimators for transverse collimation. The pri-
mary collimators in this regions are the aperture restriction
in the machine. In IR3 there is a region of beam dispersion
to perform momentum collimation.

Of critical importance are regions known as the disper-
sion suppressors, which match the long straight section
(LSS) optics to the periodic optics of the arcs. In these
regions, the dispersion rises rapidly, and any protons that
have undergone any interactions in the collimators that
causes them to lose momentum may be lost in a localised
region, see Figure 4. Due to this, one must have an accurate

∗ james.molson@hep.manchester.ac.uk

simulation of the accelerator optics, the machine physical
aperture, and the scattering physics of a proton inside a col-
limator jaw.

Merlin is a C++ accelerator physics library [2] initially
developed for the ILC beam delivery system [3, 4], then
later extended to model the ILC damping rings. Merlin has
been extended to be used for large scale proton collimation
simulations, with the aim of providing an accurate simula-
tion of the Large Hadron Collider (LHC) collimation sys-
tem, and any future upgrades. In this paper we describe
the developments of the Merlin code to enable study of the
LHC collimation system and present beam loss maps for
2012 running.

THE MERLIN ACCELERATOR PHYSICS
LIBRARY

The Merlin library consists of a large number of classes
designed to simulate a particle accelerator, and any addi-
tional systems required. The classes can be split into three
main categories.

The AcceleratorModel and associated classes deal with
the creation and storage of an accelerator lattice. The lat-
tice is stored as a series of AcceleratorComponent classes,
which contain information about each element. Different
types of accelerator component are child classes of the
main AcceleratorComponent class. These contain point-
ers to classes describing specific properties of the ele-
ment: EMField describes any electromagnetic fields inside
the element, AcceleratorGeometry describes any geomet-
ric transforms that the element has undergone, Aperture
describes the experimental beam pipe, and WakePotentials
describe any wake fields that exist for this element class.
Input can take place via multiple methods: the direct cre-
ation and addition of elements, via the MAD-X [5] TFS
output (MADInterface), or tape format (XTFFInterface),
both of which create an AcceleratorModel as output.

The ParticleTracker and associated classes deal with
the transport of particles along the accelerator optical lat-
tice, including stepping between elements, and within in-
dividual elements, whilst applying additional physics pro-
cesses at appropriate locations. These create integrator sets
for tracking, and individual integrators can be overridden
for selected class types, e.g. crab cavities. The Parti-
cleTracker takes as its input a ParticleBunch class, and a
Beamline, where the ParticleBunch can be one of many
different types, e.g. gaussian, flat and ring amongst others.
The Beamline is a subsection of an AcceleratorModel, and
bunches can be passed between multiple trackers, allowing

MOABC3 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

12C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

02 Particle Tracking and Map Methods



situations such as the transfer between different accelera-
tors to be simulated.

A series of BunchProcess classes exist to apply addi-
tional physics within elements. These can include wake-
fields, collimation, synchrotron radiation, and others. Tem-
plates exist for such classes, and it is straightforward for
new users to add additional physics of their choice via this
method, without having to adjust other parts of the library.

This modular design allows a user to use as much or as
little of the library as they wish. In addition, if one wishes
to investigate additional physics relevant to their accelera-
tor system, a new tracking code does not need to be written,
but simply a new BunchProcesses class can be created. An
example simulation run is shown in Figure 1.

Figure 1: An example logical flow of a Merlin run.

LHC LOSS MAPS RESULTS
Merlin is used to simulate the 2012 as-built optics of the

LHC in order to generate loss maps. These can be used to
define the maximum possible safe beam current, and indi-
cate areas which may need additional collimators or shield-
ing. The first stage of this calculation is the construction
of an accurate optical model of the LHC in Merlin. The
machine optics are generated by MAD-X and are used as
the input to Merlin. Inside Merlin, the LatticeFunctions
class calculates beam parameters using Merlin’s integra-
tors. A comparison between Merlin and MAD-X of the
β-functions and the linear dispersion is shown in Figure 2,
and excellent agreement is found in all regions of the ma-
chine.

Loss maps can be generated using different optics con-
figurations, e.g. the β-function at the interaction points
(β∗), beam crossing angles, and so on. The Collimation-
Process simulates all proton-collimator interactions and
performs all aperture checking. If a proton undergoes an in-
elastic interaction or touches the beam pipe it is considered
lost. If this takes place, the particle is removed from the
bunch and the location at which this takes place is recorded.
This can be done at any desired longitudinal accuracy, and
by default a bin size of 10cm is used.

Figure 2: A comparison of optics between MAD-X and
Merlin showing the β-functions and dispersion in IR5. Ex-
cellent agreement is found for both this region and the en-
tire ring.

Figures 3 and 4 show the example loss map for 2012,
4 TeV running conditions for beam 1. A horizontal beam
halo (a ring in x, x′ normalized phase space, 0 in y, y′) is
used, which is then transformed into physical coordinate
space. The initial impact parameter with the collimator can
be adjusted, and in this case 1µm is used. Beam is injected
at the closest (primary) collimators in IR7, and tracked for
200 turns.

Figure 3: An example collimation loss map for 4 TeV 2012
running conditions. The initial simulated beam halo is a
purely horizontal halo.

The loss map variable plotted is cleaning inefficiency
around the ring, defined as:

η =
nabs

∆s× ntotal

where η is the inefficiency, ∆s is the bin size, nabs is the
loss count in that bin, and ntotal is the total number of
losses.

As can be seen, the highest loss locations are in the col-
limation regions, specifically the IR7 betatron collimation

Proceedings of ICAP2012, Rostock-Warnemünde, Germany MOABC3

02 Particle Tracking and Map Methods

ISBN 978-3-95450-116-8

13 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Figure 4: A zoom of the 4 TeV 2012 running conditions
loss map focusing on the betatron collimation region in IR7
allowing the losses in the dispersion suppressor to be seen.
The horizontal dispersion is also shown as the green line.

region. Figure 4 shows a zoom of this region. Here the
effect of dispersion can be seen on the losses. Protons are
lost in cold regions following the collimation region, which
is minimised in the design.

Lattices have been generated in MAD-X which involve
both field and alignment errors on dipole, quadrupole and
sextupole magnets, to allow the effects of any lattice errors
on losses to be estimated. These error configurations are
then corrected using the available corrector circuits in the
optical model. Collimators are aligned to the un-errored
reference orbit, and then both the magnet errors are added,
followed by corrections. Loss maps are generated in this
configuration and it is found that as long as corrections
are applied there is little quantitative difference to the loss
maps generated. This includes both the locations of lost
protons and the magnitude of losses.

UPDATED SCATTERING PHYSICS
In order to more accurately simulate the losses in the

cold dispersion suppressor regions, more accurate simu-
lation physics must be used over the current generation
of codes. New models of proton-proton interactions have
been developed, with the aim of expanding these to proton-
nucleus interactions. Focus has been on two types of scat-
tering, elastic and single diffractive scattering taking into
account both theoretical considerations and experimental
high energy physics data. Elastic interactions will give an
angular kick to the outgoing proton, increasing the size of
the beam halo, with the possibility of the proton exiting
the dynamic aperture [6]. Single diffractive interactions
can allow a proton to exit with an angular kick, and an
energy loss [7]. This energy loss will move the outgoing
proton away from the reference momentum, hence on entry
to a dispersive region, they will undergo large orbit excur-
sions, and collide with the accelerator beam pipe. Since the
fits to these cross sections are mathematically highly com-
plicated, it is faster computationally to pre-generate these
distributions in an array, and interpolate them as required.

The updated scattering physics will be described in a future
publication.

OTHER ENHANCEMENTS
New materials, such as composites are now supported.

Since Merlin is a C++ library, this is enabled via creating
a new material class which inherits from the base mate-
rial class, and specific access functions that are defined as
virtual can be overridden. For example GetdEdx() will re-
turn the mean energy loss for the material mixture, whereas
GetElasticCrossSection() will return the cross section for a
randomly chosen nucleus within the material (weighted de-
pending on the material composition). The same function
calls are used for both a pure element, and material mix-
tures in order to model novel collimation materials.

Wakefield calculations are now fully parallel due to a
parallel bunch moment calculation. Previously, particles
were transferred between threads to a single node, where
the wakefield calculation took place. Particles were then re-
distributed. This gave a speed increase over single threaded
operation since standard tracking could take place in paral-
lel. It is not the most efficient method, since a large quantity
of bandwidth is required to transfer particles, and whilst
this calculation takes place, CPU cores sit idle. Now the
mean and standard deviation are calculated in parallel (for
bunch slicing), and data is shared via a call to the Allreduce
function.

CONCLUSION
In conclusion, the accelerator physics code Merlin has

been extended in many areas to make detailed studies of the
LHC collimation system and calculate halo loss maps. The
loss maps have been produced for 2012 4 TeV running, and
Merlin is ready to be used for studies of the LHC upgraded
collimation system.

ACKNOWLEDGEMENTS
We wish to thank A. Donnachie for his assistance with

the scattering physics and allowing usage of his models,
and the CERN LHC collimation group for many interesting
discussions.

REFERENCES
[1] O. Brüning et. al. “LHC Design Report” 2004

[2] http://merlin-pt.sourceforge.net/

[3] D. Krücker and F. Poirier and N. Walker, “Merlin-based start-
to-end simulations of luminosity stability for the ILC” PAC
2007, THPAN023

[4] F. Poirier and D. Krücker and N. Walker, “An ILC main
linac simulation package based on Merlin” EPAC 2006, MO-
PLS065

[5] http://mad.web.cern.ch/mad/

[6] A. Donnachie and P.V. Landshoff, “Elastic Scattering at the
LHC” arXiv:1112.2485v1 [hep-ph]

[7] A. Donnachie and P.V. Landshoff, “Soft diffraction dissocia-
tion” arXiv:hep-ph/0305246v1

MOABC3 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

14C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

02 Particle Tracking and Map Methods


