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ABSTRACT

Charmonium Absorption and Charmed Hadron Production in Hadronic Reactions.

(December 2004)

Wei Liu, B.E., Tongji University;

M.S., Peking University

Chair of Advisory Committee: Dr. Che-Ming Ko

A gauged SU(4) flavor symmetric hadronic Lagrangian with empirical hadron

masses is constructed to study charmonium absorption and charmed hadron produc-

tion in hadronic reactions. For the coupling constants, empirical values are used if

available. Otherwise, they are determined from known coupling constants using the

SU(4) relations. To take into account the finite sizes of hadrons, form factors are

introduced at strong interaction vertices with empirical cutoff parameters. For J/ψ

absorption by nucleons, we have included both two- and three-body final states and

find that with a cutoff parameter of 1 GeV at interaction vertices involving charm

hadrons, the cross section is at most 5 mb and is consistent with that extracted from

J/ψ production from both photo- and proton-nucleus reactions. We have also eval-

uated the cross sections for charmed hadron production from pion and rho meson

interactions with nucleons. With the same cutoff parameter of 1 GeV at interaction

vertices, we find that these cross sections have values of a few tenths of mb and are

dominated by the s-channel nucleon pole diagram. For charmed hadron production

from proton-proton reactions, their cross sections including both two- and three-body

final states are about 1 µb at center-of-mass energy of 11.5 GeV, which is comparable

to the measured inclusive cross section in these reactions. Including photon as a U(1)

gauge particle, we have extended the model to study charmed hadron production in
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photon-proton reactions with both two- and three-body final states included. For

form factors, an overall one is introduced in each process in order to maintain the

gauge invariance of the total amplitude. Fitting the cutoff parameter in the form

factor to the measured total cross section for charmed hadron production in photon-

proton reactions at a center-of-mass energy of 6 GeV, the ratio of the cross sections

for two-body and three-body final states is consistent with available experimental

data. This result is further compared with predictions from the leading-order pertur-

bative QCD calculation. Knowledge of the cross sections for charmonium absorption

by hadrons and for charmed hadron production in hadronic reactions is essential for

understanding charm production in heavy ion collisions at the Relativistic Heavy Ion

Collider (RHIC), where a quark-gluon plasma is expected to be formed during the

initial hot dense stage.
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CHAPTER I

INTRODUCTION

Collisions between energetic nuclei from the Relativistic Heavy Ion Collider (RHIC)

at the Brookhaven National Laboratory make it possible to create in the laboratory a

hot dense matter that consists of the constituent quarks and gluons inside nucleons.

This so-called quark-gluon plasma (QGP) is believed to have existed during the first

microsecond after the Big Bang. One of the proposed signatures for the quark-gluon

plasma is the suppression of the yield of J/ψ, which is a charm-anticharm quark bound

state, resulting from Debye screening of the color force in the quark-gluon plasma

[1]. Extensive experimental and theoretical efforts have been devoted to study this

phenomenon at the Super Proton Synchrotron (SPS) at the European Laboratory

for Particle Physics (CERN) [2, 3, 4, 5, 6]. However, available experimental data on

J/ψ suppression in colliding systems ranging from pA to S+U are consistent with

the scenario that charmoniums are absorbed by target and projectile nucleons with

a cross section of about 7 mb [5]. Only in data from Pb+Pb collisions at Plab = 158

GeV/c in the NA50 experiment is there a large additional J/ψ suppression in events

with high transverse energies, which requires the introduction of other absorption

mechanisms. While there are suggestions that this anomalous suppression may be

due to the formation of QGP [7, 8], other more conventional mechanisms based on J/ψ

absorption by comoving hadrons have also been proposed as a possible explanation

[9, 10]. Since the latter depends on the values of J/ψ absorption cross sections by

hadrons, which are not known empirically, it is important to have a better knowledge

of the interactions between charmonium states and hadrons in order to understand

The journal model is Physical Review C.
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the nature of the observed anomalous charmonium suppression.

Knowledge of J/ψ absorption cross sections by hadrons is also useful in estimat-

ing the contribution of J/ψ production from charmed mesons in the hadronic matter

formed in relativistic heavy ion collisions. Since the charmed meson to J/ψ ratio in

proton-proton collisions increases with energy, it has been shown that J/ψ production

from the hadronic matter may not be negligible in heavy ion collisions at the Large

Hadronic Collider energies [11, 12]. To use J/ψ suppression as a signature for the

formation of QGP in these collisions thus requires the understanding of both J/ψ

absorption and production in hadronic matter.

Another signature suggested for the formation of QGP is enhanced production

of dileptons in the intermediate mass region (1.5 GeV< Mll < 3 GeV) from quark-

antiquark annihilation and quark-gluon interactions [13]. These dileptons are well

above the masses of light vector mesons (ρ, ω, and φ), so that contributions from low

energy hadronic processes like ππ annihilation are sufficiently suppressed. They are

also below the mass of J/ψ resonance, so that contributions from hard processes like

the Drell-Yan annihilation, which prevail in the high energy region (M> 4 GeV), in-

crease rather slowly toward smaller masses. Intermediate mass dilepton spectra have

been measured in central heavy ion collisions at SPS energy in the dimuon chan-

nel [14], and their yield were 2∼3 times more than that based on the extrapolation

of known sources from proton-induced collisions, given by primordial Drell-Yan an-

nihilation as well as semileptonic decays of associated produced D, D̄ mesons. To

conclude that this enhancement is exclusively related to the QGP effects, it is, how-

ever, important to understand other possible mechanisms that can contribute to the

production of intermediate mass dileptons, such as enhanced production of cc̄ pairs,

rescattering of D meson in hot/dense matter [15] which might generate a transverse

momentum broadening to increase the µ+µ− phase space, and enhancement of D
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meson production from secondary πN interactions in the hadronic matter [16].

Various approaches have been used in evaluating the cross section for charmo-

nium absorption by hadrons. In one approach, the quark-exchange model has been

used. An earlier study based on this model by Martins, Blaschke, and Quack [17] has

shown that the J/ψ absorption cross section σπψ by pions has a peak value of about 7

mb at Ekin ≡ √
s−mπ −mψ ≃ 0.8 GeV, but a more recent study by Wong, Swanson,

and Barnes [18] gives a peak value of only σπψ ∼ 1 mb at the same Ekin region. In the

perturbative QCD approach, Kharzeev and Satz [19] have studied the dissociation

of charmonium bound states by energetic gluons inside hadrons. They have pre-

dicted that the dissociation cross section increases monotonously with Ekin and has

a value of only about 0.1 mb around Ekin ∼ 0.8 GeV. In the third approach, meson-

exchange models based on hadronic effective Lagrangians have been used. With only

pseudoscalar-pseudoscalar-vector-meson couplings (PPV couplings), Matinyan and

Müller [20] have found σπψ ≃ 0.3 mb at Ekin = 0.8 GeV. In a later study, Haglin [21]

has included also the three-vector-meson couplings (VVV couplings) and four-point

couplings (or contact terms), and obtained much larger values of J/ψ absorption

cross sections. A similar magnitude for the J/ψ− π absorption cross section has also

been obtained in the QCD sum rules [22]. Large discrepancies in the magnitude of

σπψ (as well as σρψ) thus exist among the predictions from these three approaches,

and further theoretical studies are needed. In another effective Lagrangian approach

study [23], a meson-exchange model as in Ref. [21] has been used but the VVV and

four-point couplings in the effective Lagrangian are treated differently and also the

effect of form factors at interaction vertices has been taken into account. It is then

found that the J/ψ absorption cross sections remain appreciable after including form

factors at the interaction vertices. The values for σπψ and σρψ are roughly 7 mb and

3 mb, respectively, and are comparable to those used in phenomenological studies of
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J/ψ absorption by comoving hadrons in relativistic heavy ion collisions [9, 10, 24].

Since the cross sections for J/ψ absorption by pion and rho meson cannot be

directly measured, it is useful to find the empirical information which can constrain

their values. One such constraint is the cross section for J/ψ absorption by nucleon,

as this process can be viewed as J/ψ absorption by the virtual pion and rho meson

cloud of the nucleon. From J/ψ production in photo-nucleus reactions, the cross

section of J/ψ absorption by nucleon can be extracted, and its magnitude has been

found to be about 4 mb [25]. The J/ψ − N absorption cross section has also been

extracted from proton-nucleus collisions at proton energies from 200 to 800 GeV,

and the empirical value is about 7 mb [5]. In this dissertation, we use an effective

Lagrangian to evaluate the J/ψ absorption cross section by nucleon and find that its

magnitude is consistent with these empirical information.

Because of their large masses, open charm mesons are expected to be mostly

produced in the initial preequilibrium stage of relativistic heavy ion collisions. They

have thus been suggested as possible probes of the initial dynamics in these collisions.

Previous studies have been concentrated on the production of charm quarks from the

preequilibrium partonic matter [26, 27]. In these studies, it has been found that charm

quark production is sensitive to not only the rapidity and space correlations of initial

minijet partons but also their energy loss in the dense partonic matter. For charmed

meson production from nonpartonic matter, the only study is the one [16] based on the

Hadron-String Dynamics (HSD) [28] using hadronic cross sections obtained from the

Quark-Gluon String Model (QGSM) [29]. Allowing scatterings between the leading

quark and diquark in a baryonic string with the quark and antiquark in a mesonic

string and taking their cross sections to be the same as in meson-baryon scatterings,

this study shows that charm production is appreciable even with a small cross section

of a few µb as predicted by the QGSM. The factor of two enhancement obtained in
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this study for charmed mesons over that produced from the primary nucleon-nucleon

collisions offers a possible explanation for the observed enhancement of intermediate

mass dileptons seen in heavy ion collisions at SPS [30].

The QGSM model treats charmed meson production from pion-nucleon scatter-

ing as a process involving the exchange of the vector charm meson Regge trajectory

in t-channel. Contributions from the s and u channels are neglected. Although the u

channel is expected to be small as it involves nonplanar diagrams, which are known

to be negligible in the large Nc limit, the s channel contribution may not be small

because of the planarity of associated diagrams. To study the relative importance of

the s, t, and u channel contributions to charmed meson production in pion-nucleon

scattering, we shall use the effective hadronic Lagrangian based on the flavor SU(4)

symmetry but with empirical hadron masses. We find that the magnitude of the

cross section for charmed meson production from pion-nucleon scattering depends

sensitively on the value of the cutoff parameter at interaction vertices. Using a cut-

off parameter of 1 GeV as used previously in studying J/ψ absorption [23, 31] and

charmed meson scattering [32, 33], we find that the t channel process involving vector

charmed meson exchange indeed gives a small cross section as in QGSM and the u

channel contribution is negligible. The contribution from the s channel is, however,

appreciable, leading to a few tenth of mb for the production cross section of charmed

meson from pion-nucleon scattering. Furthermore, the model allows us to study the

cross section for charm production from the interaction of nucleons with rho mesons,

which are abundant in the initial stage of the hadronic matter in heavy ion collisions

and also have a lower threshold for charmed meson production.

To test our model we also use the same hadronic Lagrangian to evaluate charmed

hadron production from proton-proton collisions. Motivated by future experiments

at proposed accelerator facility at the German Heavy Ion Research Center [34], there
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are already studies on these reactions based on the meson-exchange model [35, 36].

However, effects due to off-shellness of exchanged mesons have been neglected in these

studies. As in our studies of J/ψ absorption by nucleon [31] and photoproduction of

J/ψ on nucleons [37], we do not make the on-shell approximation in evaluating the

charmed meson production cross section from proton-proton collisions.

We further generalize the effective hadronic Lagrangian to include the photon and

to study charmed hadron production from photon-proton reactions near threshold.

Both two-body (D̄Λc, D̄∗Λc) and three-body (DD̄N , DD̄∗N , D∗D̄N , D∗D̄∗N) final

states are included. To take into account finite hadron sizes without violating the

gauge invariance, the total amplitude of each process is multiplied by an overall form

factor of monopole form. With cutoff parameter in the form factor adjusted to fit

the measured total cross section for charmed hadron production from photon-proton

reactions at center-of-mass energy of 6 GeV [38], we find that the relative contribution

of two-body to three-body final states is consistent with that seen in experimental

data. We have also made predictions for charmed hadron production cross section

from photon-proton reactions both near threshold and at high energies. As expected,

two-body final states dominate near threshold while three-body final states become

important at high energies. However, the total cross sections at high energies are

much smaller than those measured experimentally or given by the LO perturbative

QCD as more complicated final states are not included in the hadronic approach.

Our results provide an independent test and confirmation of the usefulness of

hadronic models for determining the production and scattering cross sections of

charmed hadrons at low energies. The effective hadronic Lagrangian used in the

present study will be useful for evaluating the cross sections for other reactions in-

volving heavy flavored hadrons. These reactions can be studied at both the Japanese

Hadron facility [39] and at the GSI future accelerator [34], where both open and hid-
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den charmed hadrons can be copiously produced in proton- and antiproton-nucleus

reactions near threshold.

The dissertation is arranged as follows. The effective hadronic Lagrangian is

presented and discussed in Chapter II, which also includes a brief discussion on the

form factors that will be used in the following chapters. In Chapter III, we evaluate

the cross section for J/ψ absorption by nucleons, which is relevant to J/ψ suppression

in relativistic heavy ion collisions. The cross sections for open charm production

from secondary scatterings, i.e., meson-nucleon and nucleon-nucleon collisions, are

evaluated in Chapter IV . The results on charm photoproduction on nucleons are

given in Charter V. Finally, the summary and conclusion are presented in Chapter

VI.
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CHAPTER II

EFFECTIVE LAGRANGIAN

Since it is still difficult to study strong interaction phenomena at non-perturbative

regime using the QCD, effective theories are usually employed. In this chapter, we

introduce an effective Lagrangian that is based on the SU(4) flavor symmetry. To

take into account the symmetry breaking effects, we use empirical hadrons masses

and coupling constants if they are available. Otherwise, they are determined from

the known ones using the SU(4) relations. We also introduce form factors at the

strong interaction vertices to take take into account the effect due to final hadron

sizes. To include the electromagnetic interaction, photon is introduced into the ef-

fective Lagrangian as a U(1) gauge particle. In the following, we first start from the

more familiar SU(3)invariant effective Lagrangian for hadronic interactions involving

hadrons that are made of light u, d, and strange s quarks.

A. Effective Lagrangian with SU(3) flavor symmetry

In the case of SU(3) flavor symmetry, the hadronic Lagrangian for octet pseudoscalar

mesons and baryons can be written as

Leff = iT r(B̄∂/B) + Tr[(∂µP )(∂µP †)]

+g′Tr[αD(B̄γ5B + Bγ5B̄)P + (1 − αD)P (B̄γ5B − Bγ5B̄)], (2.1)



9

where P and B denote, respectively, the 3 × 3 matrix representation of pseudoscalar

meson and baryons

B =

















Σ0
√

2
+ Λ√

6
Σ+ p

Σ− −Σ0
√

2
+ Λ√

6
n

Ξ− Ξ0 −
√

2
3
Λ

















, (2.2)

P =
1√
2

















π0
√

2
+ η√

6
π+ K†

π− − π0
√

2
+ η√

6
K0

K− K̄0 −
√

2
3
η

















. (2.3)

In Eq.(2.1), g′ is the universal pseudoscalar coupling between pseudoscalar mesons

and baryons, and the parameter αD is given by D/(D + F ) with D and F denot-

ing, respectively, the coupling constants for the D-type Tr({B, B̄}P ) and F -type

Tr([B, B̄]P ) interaction Lagrangians.

Vector mesons are introduced to the hadronic model by treating them as gauge

particles, i.e., replacing the partial derivative ∂µ in Eq.(2.1) with the covariant deriva-

tive

Dµ = ∂µ − i

2
g[Vµ, ], (2.4)

where V denotes the matrix representation of vector mesons, i.e.,

V =
1√
2

















ρ0

√
2

+ ω√
6

ρ† K∗+

ρ− − ρ0

√
2

+ ω√
6

K∗0

K∗− K̄∗0 −
√

2
3
ω

















, (2.5)

and g is the universal coupling between vector mesons with baryons and pseudoscalar

mesons.
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Expanding the above interaction Lagrangian using the explicit representations

of P , V , and B, we obtain the following πNN and ρNN interaction Lagrangians:

LπNN = −igπNNN̄γ5~τN · ~π,

LρNN = gρNNN̄γµ~τN · ~ρ, (2.6)

In the above, ~τ is the Pauli matrices; N , ~π, and ~ρ denote, respectively, the nucleon

isospin doublet, pion and rho meson isospin triplets. The coupling constants gπNN

and gρNN are given by

gπNN =
1

2αD

g′, gρNN =
g

4
, andgKNΛ =

3 − 2αD√
3

gπNN . (2.7)

From the empirical values gπNN = 13.5, gρNN = 3.25 and αD = D/(D + F ) = 0.64

[40], we obtain g′ = 17.28 and g = 13.0. Other coupling constants can then be related

to these two through the SU(3) relations.

B. Effective Lagrangian with SU(4) flavor symmetry

The above SU(3) effective Lagrangian can be generalized to SU(4) in order to include

hadrons consisting of the charm quark. In this case, both the 15-plet pseudoscalar

mesons and 15-plet vector mesons can be expressed by by 4 × 4 matrix, and their

interaction Lagrangians can still be written in forms similar to those in the SU(3) case.

This is, however, different for the interaction Lagrangian of the 20-plet baryons with

either pseudoscalar or vector mesons as they cannot be expressed in simple matrix

form. Instead, we use the tensor notation to express the meson-baryon interaction

Lagrangians.



11

1. Meson-meson interactions

The free Lagrangian for pseudoscalar and vector mesons in the limit of SU(4) invari-

ance can be written as

L0 = Tr
(

∂µP
†∂µP

)

− 1

2
Tr

(

F †
µνF

µν
)

, (2.8)

where Fµν = ∂µVν −∂νVµ, and P and V denote, respectively, the properly normalized

4 × 4 pseudoscalar and vector meson matrices in SU(4) [23]:

P =
1√
2

























π0
√

2
+ η√

6
+ ηc√

12
π+ K+ D̄0

π− − π0
√

2
+ η√

6
+ ηc√

12
K0 D−

K− K̄0 −
√

2
3
η + ηc√

12
D−

s

D0 D+ D+
s − 3ηc√

12

























,

V =
1√
2

























ρ0

√
2

+ ω′

√
6

+ J/ψ√
12

ρ+ K∗+ D̄∗0

ρ− − ρ0

√
2

+ ω′

√
6

+ J/ψ√
12

K∗0 D∗−

K∗− K̄∗0 −
√

2
3
ω′ + J/ψ√

12
D∗−

s

D∗0 D∗+ D∗+
s −3J/ψ√

12

























.(2.9)

To obtain the couplings between pseudoscalar mesons and vector mesons, we

introduce the minimal substitution

∂µP → DµP = ∂µP − ig

2
[Vµ, P ] ,

Fµν → ∂µVν − ∂νVµ − ig

2
[Vµ, Vν ] , (2.10)

as in the SU(3) case. The effective Lagrangian is then given by

L = L0 +
ig

2
Tr

(

∂µP
[

P †, V †
µ

]

+ ∂µP † [P, Vµ]
)

− g2

4
Tr

([

P †, V †
µ

]

[P, V µ]
)

+
ig

2
Tr

(

∂µV ν
[

V †
µ , V †

ν

]

+ ∂µV
†
ν [V µ, V ν ]

)

+
g2

8
Tr

(

[V µ, V ν ]
[

V †
µ , V †

ν

])

.(2.11)
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The hermiticity of P and V reduces this to

L = L0 + igTr (∂µP [P, Vµ]) − g2

4
Tr

(

[P, Vµ]2
)

+ igTr (∂µV ν [Vµ, Vν ]) +
g2

8
Tr

(

[Vµ, Vν ]
2
)

. (2.12)

Since the SU(4) symmetry is explicitly broken by hadron masses, terms involving

hadron masses are added to Eq.(2.12) using the experimentally determined values.

We note that similar interaction Lagrangians for meson-meson interactions were

obtained in [21] based on the SU(4) chiral Lagrangian with vector mesons introduced

through the covariant derivative.

2. Meson-baryon interactions

In the SU(4) quark model, baryons belong to the 20-plet states. These states can be

conveniently expressed by tensors φµνλ [41], where µ, ν, and λ run from 1 to 4, that

satisfy the conditions

φµνλ + φνλµ + φλµν = 0, φµνλ = φνµλ. (2.13)

For baryons without charm quarks, i.e., belonging to SU(3) octet, they are given

by

p = φ112, n = φ221, Λ =

√

2

3
(φ321 − φ312),

Σ+ = φ113, Σ0 =
√

2φ123 Σ− = φ223,

Ξ0 = φ331, Ξ− = φ332. (2.14)

For baryons with one charm quark, they are

Σ++
c = φ114, Σ+

c = φ124, Σ0
c = φ224,

Ξ+
c = φ134, Ξ0

c = φ234,
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Ξ+′
c =

√

2

3
(φ413 − φ431), Ξ0′

c =

√

2

3
(φ423 − φ432),

Λ+
c =

√

2

3
(φ421 − φ412), Ω0

c = φ334. (2.15)

For baryons with two charm quarks, they are

Ξ++
cc = φ441, Ξ+

cc = φ442, Ω+
cc = φ443. (2.16)

Mesons in the SU(4) quark model belong to the 15-plet. In the tensor nota-

tions, pseudoscalar and vector mesons are expressed by P α
β and V α

β , respectively. For

pseudoscalar mesons, we have

π+ = P 2
1 , π− = P 1

2 , π0 =
1√
2
(P 1

1 − P 2
2 ),

K+ = P 3
1 , K0 = P 3

2 , K− = P 1
3 , K̄0 = P 2

3 ,

D+ = P 2
4 , D0 = P 1

4 , D− = P 4
2 , D̄0 = P 4

1 ,

D+
s = P 3

4 , D−
s = P 4

3 ,

η =
1√
6
(P 1

1 + P 2
2 − 2P 3

3 ),

ηc =
1√
12

(P 1
1 + P 2

2 + P 3
3 − 3P 4

4 ). (2.17)

Similarly, we have for vector mesons

ρ+ = V 2
1 , ρ− = V 1

2 , ρ0 =
1√
2
(V 1

1 − V 2
2 ),

K∗+ = V 3
1 , K∗0 = V 3

2 , K∗− = V 1
3 , K̄∗0 = V 2

3 ,

D∗+ = V 2
4 , D∗0 = V 1

4 , D∗− = V 4
2 , D̄∗0 = V 4

1 ,

D∗+
s = V 3

4 , D∗−
s = V 4

3 ,

ω =
1√
6
(V 1

1 + V 2
2 − 2V 3

3 ),

J/ψ =
1√
12

(V 1
1 + V 2

2 + V 3
3 − 3V 4

4 ). (2.18)
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In tensor notations, the SU(4) invariant interaction Lagrangians between baryons

and pseudoscalar mesons as well as between baryons and vector mesons can be writ-

ten, respectively, as

LPBB = gp(aφ∗αµνγ5P
β
α φβµν + bψ∗αµνγ5P

β
α φβνµ),

LV BB = gv(cφ
∗αµνγ · V β

α φβµν + dφ∗αµνγ · V β
α φβνµ), (2.19)

where gp and gv are the universal baryon-pseudoscalar-meson and baryon-vector-

meson coupling constants, and a, b, c, and d are constants.

Writing explicitly, we obtain the following interaction Lagrangians,

LPBB = gp

[

1√
2

(

a − 5

4
b
)

N̄γ5~τ · ~πN
3
√

6

8
(b − a)(N̄γ5KΛN̄γ5D̄Λc) + · · ·

]

,

LV BB = gv

[

1√
2

(

c − 5

4
d
)

N̄γµρ
µN

3
√

6

8
(d − c)(N̄γµK

∗µΛ + N̄γµD̄
µ∗Λc)

+

√
3

4

(

−c +
3

2
d
)

Λ̄cγµψ
µΛc + · · ·

]

. (2.20)

From the previous subsection on the SU(3) effective Lagrangian, we have the

following relation between gπNN and gKNΛ coupling constants in the interaction La-

grangians LπNN = −igπNNN̄γ5~τN · ~π and LKNΛ = igKNΛN̄γ5ΛK̄:

gKNΛ =
3 − 2αD√

3
gπNN , (2.21)

where αD = D/(D + F ) ≈ 0.64 [40] is related to the D- and F -type couplings.

Comparisons with the SU(4) relations in Eq. (2.20) then gives

b

a
=

3 − 8αD

6 − 10αD

. (2.22)

Similarly, the gρNN and gK∗NΛ coupling constants in the interaction Lagrangians
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involving vector mesons, given by

LρNN = gρNNN̄(γµ~τ · ~ρµ +
κρ

2mN

σµν~τ · ∂µ~ρν)N (2.23)

and

LK∗NΛ = gK∗NΛN̄γµΛK̄∗, (2.24)

are related by

gK∗NΛ = −
√

3gρNN . (2.25)

Comparing with the SU(4) relations in Eq. (2.20) then leads to

d

c
=

1

2
. (2.26)

Using Eqs. (2.22) and (2.26) in Eq.(2.20), we then have

gDNΛc
=

3 − 2αD√
3

gπNN ,

gψΛcΛc
= −gρNN√

6
, gD∗NΛc = −

√
3gρNN . (2.27)

3. The electromagnetic interaction

The electromagnetic interaction can be included in the effective Lagrangian by intro-

ducing the UEM(1) gauge transformation, i.e.,

δAµ =
1

e
∂µǫ,

δP = iǫ[Q,P ],

δVµ = iǫ[Q, Vµ] +
1

g
Q∂µǫ, (2.28)

where Aµ is the UEM(1) gauge field, e is the unit of electric charge, ǫ(x) is the U(1)

gauge parameter, and the quark charge matrix Q = diag(2
3
, -1

3
, -1

3
, 2

3
). The La-
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grangians for meson-meson Eq.(2.12) and meson-baryon Eq.(2.19) interactions then

vary under U(1) transformation according to

δL = δLPPV + δLPV PV + δLV V V + δLV V V V + δLPBB + δLPBB, (2.29)

where

δLPPV = iT r[(∂µPP − P∂µP )Q]∂µǫ,

δLPV PV = −g

2
Tr([P, V µ][P,Q])∂µǫ,

δLV V V = iT r(∂µV ν [Q, Vν ]∂µǫ) + iT r(∂µV ν [Vµ, Q]∂νǫ) + iT r(∂µ∂νǫQ[Vµ, Vν ]),

δLV V V V =
g

2
Tr([Q, Vν ][V

µ, V ν)∂µǫ,

δLBBM = Φ̄γµΦ∂µǫ. (2.30)

To ensure gauge invariance of the total Lagrangian, we need to add the following

additional interaction Lagrangians between the photon and the pseudoscalar as well

as the vector mesons:

LγPP = −ieTr([∂µP, P ]Q)Aµ,

LγPPV =
eg

2
Tr([P, V µ][P,Q])Aµ,

LγV V = −ieTr(∂µV ν [Q, Vν ]Aµ) − ieTr(∂µV ν [Vµ, Q]Aν) − ieTr(∂µAνQ[Vµ, Vν ]),

LγV V V = −eg

2
Tr([Q, Vν ][V

µ, V ν)Aµ,

LγBB = −Φ̄γµΦAµ. (2.31)

C. Form factors

To take into account the finite size of hadrons, form factors need to be introduced at

the interaction vertices. In principle, form factors can be determined from the quark

wave functions of the interacting hadrons. In practice, they are parameterized in
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terms of the momentum of the off-shell particle at the interaction vertex. Although

form factors at interaction vertices involving only light hadrons have been used exten-

sively, very little is known about those involving charmonium and charmed hadrons.

In this dissertation, we shall use the common monopole type for the form factors at

both types of interaction vertices, and they will be discussed explicitly when they

appear in our calculations.
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CHAPTER III

J/ψ ABSORPTION BY NUCLEON*

Using the effective Lagrangian introduced in previous chapter, we have evaluated

the cross section for J/ψ absorption by nucleon in a meson-exchange model that

includes not only pseudoscalar-pseudoscalar-vector-meson couplings but also three-

vector-meson and four-point contact couplings. The result will be compared with the

empirical one extracted from J/ψ production in photo-nucleus and proton-nucleus

reactions.

A. J/ψ absorption by nucleon via pion and rho meson exchange

Possible processes for J/ψ absorption by nucleon involving its virtual pion and rho

meson cloud are J/ψN → D∗D̄N(D̄∗DN), J/ψN → DD̄N , and J/ψN → D∗D̄∗N ,

as shown by the diagrams in Fig. 1. From the effective Lagrangians of Chapter II,

the interaction Lagrangian densities that are needed for evaluating their amplitudes

can be derived, and they are given by

LπNN = −igπNNN̄γ5~τN · ~π,

LρNN = gρNNN̄(γµ~τ · ~ρµ +
κρ

2mN

σµν~τ · ∂µ~ρν)N,

LπDD∗ = igπDD∗D∗µ~τ · (D̄∂µ~π − ∂µD̄~π) + H.c.,

LρDD = igρDD(D~τ∂µD̄ − ∂µD~τD̄) · ~ρµ,

LρD∗D∗ = igρD∗D∗ [(∂µD
∗ν~τD̄∗

ν − D∗ν~τ∂µD̄
∗
ν) · ~ρµ

+ (D∗ν~τ · ∂µ~ρν − ∂µD
∗ν~τ · ~ρν)D̄

∗µ + D∗µ(~τ · ~ρν∂µD̄
∗
ν − ~τ · ∂µ~ρνD̄∗

ν)],

0*Reprinted with permission from “Cross section for charmonium absorption by nucle-
ons” by W. Liu, C. M. Ko, and Z. W. Lin, 2002. Physical Review C65, 015203 1-8. 2004
by Physical Review C. Available at http://link.aps.org/abstract/PRC/v65/e015203.

weiliu
0*
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D * D * D * D * D * D *

D D D

J/ J/ J/

π π π

ρ ρ ρ
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ψ ψ ψ

(2a) (2b) (2c)

(1a) (1b) (1c)

(3a) (3b) (3c)

Fig. 1. J/ψ absorption by nucleon via pion and rho meson exchanges.

LψDD = igψDDψµ[D∂µD̄) − (∂µD)D̄],

LψD∗D∗ = igψD∗D∗ [ψµ(∂µD
∗νD̄∗

ν − D∗ν∂µD̄
∗
ν)

+ (∂µψ
νD∗

ν − ψν∂µD
∗
ν)D̄

∗µ + D∗µ(ψν∂µD
∗
ν − ∂µψ

νD̄∗
ν),

LπψDD∗ = −gπψDD∗ψµ(D∗
µ~τD̄ + D~τD̄∗

µ) · ~π,

LρψDD = gρψDDψµD~τD̄ · ~ρµ,

LρψD∗D∗ = gρΨD∗D∗(ψνD∗
ν~τD̄∗

µ + ψνD∗
µ~τD̄∗

ν − 2ψµD
∗ν~τD̄∗

ν) · ~ρµ. (3.1)

As defined in Chapter II, ~τ are Pauli spin matrices, and π and ρ, denote the pion and

rho meson isospin triplet, respectively,, while D = (D0, D+) and D∗ = (D∗0, D∗+)

denote the pseudoscalar and vector charmed meson doublets, respectively. The J/ψ
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is denoted by ψ while N represents the nucleon.

For the coupling constants, we use the empirical values gπNN = 13.5 [42], gρNN =

3.25, and κρ = 6.1 [43], and gπDD∗ = 4.4 [20]. From the vector dominance model, we

have gρDD = gρD∗D∗ = 2.52 and gψDD = gψD∗D∗ = 7.64 [23], as shown in Appendix

A. For the four-point coupling constants, we relate their values to the three-point

coupling constants using the SU(4) relations [23], i.e.,

gπψDD∗ = gπDD∗gψDD, gρψDD = 2gρDDgψDD, gρψD∗D∗ = gρD∗D∗gψD∗D∗ . (3.2)

The amplitudes for the first two processes in Fig. 1 are given by

M1 = −igπNNN̄(p3)γ5N(p1)
1

t − m2
π

(M1a + M1b + M1c),

M2 = gρNNN̄(p3)
[

γµ + i
κρ

2mN

σαµ(p1 − p3)α

]

N(p1)
1

t − m2
ρ

×
[

−gµν +
(p1 − p3)µ(p1 − p3)ν

m2
ρ

]

(M ν
2a + M ν

2b + M ν
2c), (3.3)

where p1 and p3 are the four momenta of the initial and final nucleons, respectively.

In the above, M1a, M1b, and M1c are the amplitudes for the subprocess πψ → D∗D̄

in the top three diagrams of Fig. 1, while M ν
2a, M ν

2b, and M ν
2c are the amplitudes for

the subprocesses ρψ → DD̄ in the middle three diagrams. The amplitude for the

third process has a similar expression as that for the second process with M ν
2a, M ν

2b,

and M ν
2c replaced, respectively, by M ν

3a, M ν
3b, and M ν

3c, which are the amplitudes for

the subprocess ρΨ → D∗D̄∗ in the bottom three diagrams. Expressions for these

amplitudes can be found in Ref. [23].

The cross sections for these processes with three particles in the final state can

be expressed in terms of the off-shell cross sections of the subprocesses described by

the amplitudes M1, M2, and M3. Following the method of Ref. [44] for the reaction

NN → NΛK, the spin and isospin averaged differential cross sections for the first
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two processes in Fig. 1 can be written as

dσψN→ND∗D̄

dtds1

=
g2

πNN

16π2sp2
i

k
√

s1(−t)
F 2

πNN(t)

(t − m2
π)2

σπψ→D∗D̄(s1, t),

dσψN→NDD̄

dtds1

=
3g2

ρNN

32π2sp2
i

k
√

s1

F 2
ρNN(t)

(t − m2
ρ)

2

[

4(1 + κρ)
2(−t − 2m2

N)

+ κ2
ρ

(4m2
N − t)2

2m2
N

+ 4(1 + κρ)κρ(4m
2
N − t)

]

σρψ→DD̄(s1, t), (3.4)

and the differential cross section for J/ψN → D∗D̄∗N is similar to that for J/ψN →

DD̄N with σρψ→DD̄(s1, t) replaced by σρψ→D∗D̄∗(s1, t).

In the above, pi is the center-of-mass momentum of J/ψ and N , t is the squared

four momentum transfer, and s1 and k are, respectively, the squared invariant mass

and center-of-mass momentum of π and J/ψ in the process J/ψN → D∗D̄N or ρ

and J/ψ in the processes J/ψN → DD̄N and J/ψN → D∗D̄∗N . We have also

introduced form factors FπNN and FρNN at the πNN and ρNN vertices, respectively.

As in Ref.[44], both are taken to have the monopole form, i.e.,

F1(t) =
Λ2 − m2

Λ2 − t
, (3.5)

where m is the mass of exchanged pion or rho meson, and Λ is a cutoff parameter.

Following Refs.[42, 43], we take ΛπNN = 1.3 GeV and ΛρNN = 1.4 GeV.

The cross sections σπψ→D∗D̄(s1, t), σρψ→DD̄(s1, t), and σρψ→D∗D̄∗(s1, t) are the

spin and isospin averaged differential cross sections for the subprocesses πψ → D∗D̄,

ρψ → DD̄, and ρΨ → D∗D̄∗ with off-shell pion or rho meson. Explicit expressions

for these cross sections can be obtained from Ref. [23] by replacing the square of pion

or rho meson masses by t. In evaluating these cross sections, we also introduce form

factors at the interaction vertices. Following Ref.[23], the form factors at three-point

t channel and u channel vertices, i.e., πDD∗, ρDD, ρD∗D∗, ψDD, and ψD∗D∗ that
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involve heavy virtual charmed mesons, are taken to have the following form:

F2(q
2) =

Λ2

Λ2 + q2
, (3.6)

instead of the monopole form of Eq. (3.5). In the above, q is the three momentum

transfer in the center-of-mass of ψ and pion or rho meson.

The form factor at four-point vertices, i.e., πψDD∗, ρψDD, and ρψD∗D∗, are

taken to be

f4 =

(

Λ2
1

Λ2
1+ < q2 >

) (

Λ2
2

Λ2
2+ < q2 >

)

, (3.7)

where Λ1 and Λ2 are the two different cutoff parameters at the three-point vertices

present in processes with the same initial and final particles, and < q2 > is the

average value of the squared three momentum transfers in t and u channels.

Using the same value of 1 GeV for cutoff parameters in the form factors involving

charmed mesons as in Refs. [23, 45], we have evaluated the cross sections for J/ψ

absorption by nucleon, and they are shown in Fig. 2 as functions of total center-

of-mass energy. It is seen that all cross sections are less than 2 mb. Furthermore,

the cross section for J/ψN → D∗D̄N and J/ψN → D̄∗DN (solid curve) due to

pion exchange is larger than those for J/ψN → DD̄N (dashed curve) and J/ψN →

D∗D̄∗N (dotted curve) that are due to rho meson exchange.

Our result for σJ/ψN→DD̄N is order-of-magnitude smaller than that of Ref. [46],

where this processes is viewed as the elastic scattering of a nucleon with one of the

charmed mesons from the decay of J/ψ. The latter cross section is then assumed to

have a constant value of 20 mb. Compared to our approach, they have neglected both

the energy dependence and the off-shell effect of the subprocess involved in J/ψ −N

absorption to three-body final state. Also contributing to this large difference in

the cross section is the value of cutoff parameter, 3.1 GeV in Ref.[46] versus 1 GeV
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Fig. 2. Cross section for J/ψ absorption by nucleon due to the virtual pion and rho

meson cloud of the nucleon as a function of center-of-mass energy.

used here, and the different momentum dependence, i.e., four momentum transfer in

Ref.[46] while three momentum transfer in the present study. We note that the more

important processes J/Ψ → D∗D̄N(D̄∗DN) and J/Ψ → D∗D̄∗N are not considered

in Ref.[46].

B. J/ψ absorption by nucleon via charmed hadron exchange

Besides absorption by the virtual pion and rho meson cloud of a nucleon, J/ψ can also

be absorbed by the nucleon via charmed hadron exchange in the reaction J/ψN →

D̄Λc and J/ψN → D̄∗Λc shown by the diagrams in Fig. 3. These processes involve
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Fig. 3. J/ψ absorption by nucleon via charmed hadron exchange.

the following interaction Lagrangians:

LDNΛc
= igDNΛc

(N̄γ5ΛcD̄ + DΛ̄cγ5N),

LD∗NΛc
= gD∗NΛc

(N̄γµΛcD̄
∗µ + D∗µΛ̄cγµN),

LΨΛcΛc
= gψΛcΛc

Λ̄cγ
µψµΛc, (3.8)

where Λc denotes the charmed baryon, that resulting from the effective Lagrangian

of Chapter II. The coupling constants gDNΛc
, gD∗NΛc

, and gψΛcΛc
can be related

to known coupling constants gπNN and gρNN using the SU(4) symmetry shown in

Chapter II. Using gπNN = 13.5 and gρNN = 3.25, we then have gDNΛc
= 13.5,
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gD∗NΛc
= −5.6, and gψΛcΛc

= −1.4.

The amplitudes for these processes are given by

M4a = Mµ
4aε2µ, M4b = Mµ

4bε2µ,

M5a = Mµν
5a ε2µε4ν , M5b = Mµν

5b ε2µε4ν . (3.9)

with ε2µ and ε4µ being the polarization vectors of J/ψ and D∗, respectively, and

Mµ
4a = 2igψDDgDNΛc

1

t − m2
D

pµ
4 Λ̄c(p3)γ5N(p1),

Mµ
4b = igDNΛc

gψΛcΛc
Λ̄c(p3)γ

µ q/ + mΛc

u − m2
Λc

γ5N(p1),

Mµν
5a = −gD∗NΛc

gψD∗D∗Λ̄c(p3)γ
αN(p1)

[

gαβ − (p1 − p3)α(p1 − p3)β

m2
D∗

]

× 1

t − m2
D∗

[2pν
2g

βµ − (p2 + p4)
βgµν + 2pµ

4g
βν ],

Mµν
5b = gD∗NΛc

gψΛcΛc
Λ̄c(p3)γ

µ q/ + mΛc

u − m2
Λc

γνN(p1). (3.10)

In the above, q = p1 − p4, and s = (p1 + p2)
2 and t = (p1 − p3)

2 are the standard

Mendelstam variables.

The spin and isospin averaged differential cross sections for these two-body pro-

cesses are then

dσψN→D̄Λc

dt
=

1

64πsp2
i

|M4a + M4b|2,

dσψN→D̄∗Λc

dt
=

1

64πsp2
i

|M5a + M5b|2, (3.11)

where |M4a + M4b|2 and |M5a + M5b|2 can be evaluated using the software package

FORM [47].

In evaluating the amplitudes, we have again introduces monopole form factors

of Eq. (3.6) at the vertices with the cutoff parameter Λ = 1 GeV. The resulting cross

sections for ψN → D̄Λc and ψN → D̄∗Λc are shown in Fig. 4 by the dashed and
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Fig. 4. Cross section for J/ψ absorption by nucleon due to charmed hadron exchange

as a function of center-of-mass energy.

solid curves, respectively. Their values are seen to be less than 1 mb. Furthermore,

σJ/ψN→D̄∗Λc
is much larger than σJ/ψN→D̄Λc

due to the three vector mesons coupling,

which has been shown to increase significantly the J/ψ − π absorption cross section

as well [23].

In Ref. [46], only diagram (4a) in Fig. 3 has been studied, and the result there is

about a factor of 4 larger than our cross section for J/ψN → D̄Λc, which includes also

diagram (4b). The larger cross section in Ref. [46] is again due to both a larger cutoff

parameter of 2 GeV versus 1 GeV used here and the use of four momentum instead

of three momentum transfer in the form factors. Our total J/ψ−N absorption cross

section due to charmed hadron exchange is, however, larger as we have also included
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the more important processes shown by diagrams (5a) and (5b).

C. Anomalous parity interactions

Λ Λ
c c

D D

N NJ/ J/

*

D * D

(6) (7)
ψ ψ

Fig. 5. J/ψ absorption by nucleon via charmed meson exchange through the anoma-

lous parity interactions.

There are also anomalous parity interactions of J/ψ with charmed mesons [45],

i.e.,

LψD∗D = gψD∗Dεαβµν(∂
αψβ)[(∂µD̄∗ν)D + D̄(∂µD∗ν)], (3.12)

which not only introduces additional diagrams for the processes shown in Fig. 1 but

also leads to the reactions J/ψN → D̄Λc via D∗ exchange and J/ψN → D̄∗Λc via D

exchange shown by the diagrams in Fig. 5.

The amplitudes for the process J/ψN → D̄Λc and J/ψN → D̄∗Λc are given by

M6 = Mµ
6 ε2µ, M7 = Mµν

7 ε2µε4ν , (3.13)

with ε2µ and ε4ν again being the polarization vectors of J/ψ and D∗, respectively,
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and

Mµ
6 = −gψD∗DgD∗NΛc

1

t − m2
D∗

εµναβp2α(p1 − p3)βΛ̄c(p3)γνN(p1),

Mµν
7 = igψD∗DgDNΛc

1

t − m2
D

εµναβp2αp4βΛ̄c(p3)γ5N(p1). (3.14)

Because of the anomalous parity in the ΨD∗D vertex, the process J/ΨN → D̄Λc

via D∗ exchange does not interfere with the similar process via D exchange shown in

Fig. 3. The differential cross sections for the two anomalous processes in Fig. 5 are

given by similar expressions as Eqs. (3.11) and (3.11) with

|M6|2 =
g2

ψD∗Dg2
D∗NΛc

12

1

(t − m2
D∗)2

{

4m2
ψ[2(m2

N + m2
Λc

)t − t2 − (m2
Λc

− m2
N)2]

+ 2(m2
Λc

− m2
N)[(m2

ψ + m2
Λc

− u)2 − (s − m2
N − m2

ψ)2]

− [2(m2
N + m2

Λc
) − t](2m2

ψ + m2
Λc

+ m2
N − u − s)2

− t(m2
Λc

− m2
N + s − u)2

− 2[(mN − mΛc
)2 − t][4m2

ψt − (2m2
ψ + m2

N + m2
Λc

− u − s)2]
}

, (3.15)

and

|M7|2 =
g2
ΨD∗Dg2

DNΛc

6

1

(t − m2
D)2

[(mN − mΛc
)2 − t]

× [(m2
ψ + M2

D∗ − t)2 − m2
ψm2

D∗ ], (3.16)

where u = (p1 − p4)
2.

The coupling constant in the anomalous parity interaction has been determined

to be gψDD∗ = 8.61 GeV−1 from the radiative decay of D∗ to D using the vector

dominance model [45]. With a monopole form factor similar to Eq. (3.6) at the

D∗NΛc vertex and a cutoff parameter of 1 GeV, the cross sections for the reactions

J/ψN → DΛc due to D∗ exchange and J/ψN → D∗Λc due to D exchange are shown
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Fig. 6. Contribution of anomalous interactions to the cross section for J/ψ absorption

by nucleon as a function of center-of-mass energy.

in Fig. 6. Their values are seen to be less than 0.15 mb, which is negligible compared

to the contributions from the normal interactions studied in A and B of this chapter.

We note that the two processes in Fig. 5 due to the anomalous interaction

have also been studied in Ref. [46]. Their coupling constant is related to ours by

gψDD∗/mJ/ψ, where mJ/ψ is the mass of J/ψ. Since they assume that gψDD∗ = gψDD =

7.64 based on an incorrect quotation from Ref. [23], the strength of the anomalous

coupling constant in their study is only 2.47 GeV−1 and is about a factor of 3 smaller

than that used here. However, they have used a much larger value for gD∗NΛc
= −19

than that given by the SU(4) relation. As a result, their cross section for diagram (7)

in Fig. 5 should have a similar magnitude as ours while that of diagram (6) should be
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larger than our value. Because of the larger value of cutoff parameter of 2 GeV and

the use of four momentum transfer in the form factor, the results in Ref.[46] from the

anomalous interaction turn out to be order-of-magnitude larger than ours.

We have not included additional diagrams due to the anomalous parity inter-

actions in processes involving three-body final states shown in Fig. 1. As shown in

Ref. [45], the anomalous interaction is not important for J/ψ − ρ absorption and

increases the J/ψ − π absorption cross section by only about 50%. Thus, inclusions

of processes will probably increase the J/ψ − N absorption cross section calculated

here by less than 50%.

D. Total J/ψ absorption cross section by nucleon

The total J/ψ absorption cross section by nucleon, obtained by adding the contri-

butions shown in Figs. 2 and 6 is given in Fig. 7. At low center-of-mass energies,

the cross section is dominated by the process J/ψN → D̄∗Λc while at high center-

of-mass energies, the processes J/ψN → D∗D̄N and J/ψN → D̄∗DN due to the

virtual pion cloud of the nucleon are most important. The total J/ψ absorption cross

section is at most 5 mb and is consistent with that extracted from J/ψ production

in photo-nucleus and proton-nucleus reactions.

E. Discussion

Our results are not much affected if we use the coupling constants gDNΛc
∼ 6.7− 7.9

and gD∗NΛc
∼ −7.5 determined from the QCD sum rules [48] instead from the SU(4)

symmetry. With these values, σψN→D̄Λc
will be even smaller while σψN→D̄∗Λc

will be

about a factor of two larger than those shown in Fig. 4. In this case, the J/ψ − N

absorption cross section is only increased by about 1 mb. On the other hand, if the
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Fig. 7. Total cross section for J/ψ absorption by nucleon as a function of center-of-mass

energy.

cutoff parameter is taken to be Λ = 2 GeV at vertices involving charmed hadrons as

suggested by QCD sum rules [48], then the total J/ψ − N absorption cross section

increases to about 10 mb, which is about a factor of two larger than the empirical

value from J/ψ production in photo-nucleus and proton-nucleus reactions. With this

cutoff parameter, the J/ψ−π absorption cross section is also about 10 mb as shown in

Ref.[23]. Since the meson-exchange model is based on effective hadronic Lagrangians,

one can either fit the empirical J/ψ − N absorption cross section by treating the

cutoff parameter as a phenomenological parameter, or use the cutoff parameter from

the QCD sum rules but with a different effective Lagrangian. In the former case, a

cutoff parameter of 1 GeV is required at the interaction vertices involving charmed
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hadrons in order to have the correct J/ψN absorption cross section. The meson-

exchange model of Ref.[23] then gives a J/ψ − π absorption cross section of about 3

mb, which is also consistent with that used in the comover model for J/ψ suppression

in heavy ion collisions [9, 24]. In the latter case, one may follow the suggestion of

Ref.[49] to drop the nongradient pion couplings in the effective Lagrangians, as they

breaks the chiral SU(2) × SU(2) symmetry. As shown in Ref. [49], neglecting these

terms reduces the J/ψ − π absorption cross section by about a factor of two, leading

again to a J/ψ − π absorption cross section similar to that in the comover model.

The J/ψ − N absorption cross section obtained with such an effective Lagrangian is

expected to be reduced as well.
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CHAPTER IV

CHARMED HADRON PRODUCTION IN HADRONIC REACTIONS

The effective Lagrangian introduced in Chapter II also allows us to study charmed

hadron production in meson-nucleon and nucleon-nucleon reactions. These reactions

are relevant to charm production in relativistic heavy ion collisions at both SPS and

RHIC.

A. Charmed hadron production in meson-nucleon reactions*

D D D

D D D

N N N

N N N

N

D

D

π π π

ρ ρ ρ

Λ Λ Λ

Λ Λ Λ

Σ

Σ

c c c

c cc

c

c

*

N

(1a) (1b) (1c)

(2a) (2b) (2c)

Fig. 8. Charmed meson production from meson-nucleon scattering.

Possible processes for charmed meson production from meson-nucleon scattering

are πN → D̄Λc and ρN → D̄Λc as shown by the diagrams in Fig. 8. For both

pion-nucleon and rho-nucleon reactions, there are t channel charmed meson exchange

0*Reprinted with permission from “Charm meson production from meson nucleon scat-
tering” by W. Liu and C. M. Ko, 2002. Physics Letter B533, 259-264. 2004 by Elsevier.
Available at doi:10.1016/S0370-2693(02)01661-1.

weiliu
0*
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diagrams, s channel nucleon pole diagrams, and u channel charmed baryon pole

diagrams.

Besides those interaction Lagrangians already given in Eqs.(3.1) and (3.8), other

interaction Lagrangian densities that are relevant to these processes are given as

follows:

LπΣcΛc
=

fπΣcΛc

mπ

Λ̄cγ
5γµ~Σc · ∂µ~π + H.c.,

LρΣcΛc
= gρΣcΛc

Λ̄cγ
µ~Σc · ~ρµ + H.c.,

LDNΣc
=

fDNΣc

mD

(N̄γ5γ
µ~τ · ~Σc∂µD̄ + ~τ · ~̄Σcγ5γ

µN∂µD). (4.1)

The coupling constants in the above interaction Lagrangians are not known empiri-

cally, and we determine them according to the following SU(4) relations [31, 32]:

fDNΛc

mD

=
3 − 2αD√

3

fπNN

mπ

≃ fπNN

mπ

= 7.18 GeV−1,

fπΣcΛc

mπ

= 2
αD√

3

fDNΛc

mD

≃ 2.66 GeV−1,

fDNΣc

mD

= (2αD − 1)
fDNΛc

mD

= 2.01 GeV−1,

gρΣcΛc
=

2√
3
gρNN ≃ 3.75. (4.2)

In the above, fπNN and fDNΛc
are the pseudovector coupling constants in the inter-

action Lagragians

LπNN = −fπNN

mπ

N̄γ5γ
µ~τN · ∂µ~π,

LDNΛc
=

fDNΛc

mD

(N̄γ5γ
µΛc∂µD + ∂µD̄Λ̄cγ5γ

µN). (4.3)

The fπNN is related to the pseudoscalar coupling constant gπNN in Eq.(3.1) by

fπNN =
mπ

2mN

gπNN ≃ 1, (4.4)
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where mπ and mN are the pion and nucleon masses, respectively.

The amplitudes for the two processes in Fig. 8 can be written as

M1 = M1a + M1b + M1c,

M2 = (Mµ
2a + Mµ

2b + Mµ
2c)εµ, (4.5)

where εµ is the polarization vector of rho meson. The amplitudes M1a,M1b and M1c

are for the top three diagrams in Fig. 8 and are given by

M1a = −gπDD∗gD∗NΛc
(τ i)αβ(p1 + p3)

µΛ̄c(p4)γ
νN(p2)

× 1

t − m2
D∗

[gµν −
(p1 − p3)µ(p1 − p3)ν

m2
D∗

],

M1b =
fπNNfDNλc

mDmπ

(τ i)αβΛ̄c(p4)p/3 ×
mN − q/s

s − m2
N

p/1N(p2),

M1c =
fπΣcΛc

fDNΛc

mπmD

(2δijτ
j)αβΛ̄cp/1 ×

mΣc
− q/u

u − m2
λc

p/3N, (4.6)

while the amplitudes Mµ
2a,Mµ

2b, and Mµ
2b are for the bottom three diagrams, and

they are

Mµ
2a =

−ifDNΛc
gρDD

mD

(τ i)αβ(2p3 − p1)
µ × Λ̄cγ5

p/1 − q/3

t − m2
D

N,

Mµ
2b =

ifDNΛc
gρNN

mD

(τ i)αβΛ̄cγ5p/3

q/s + mN

s − m2
N

(γµ + i
kρ

2mN

σνµp1ν)N(p2),

Mµ
2c =

ifDNΣc
gρΣcΛc

mD

(2δijτ
j)αβΛ̄cγ

µ × q/u + mΣc

u − m2
Σc

γ5p/3N. (4.7)

In the above, p1, p2, p3 and p4 denote the momenta of π(ρ), N , D̄ and Λc, respectively;

s = (p1 + p2)
2, t = (p1 − p3)

2, and u = (p1 − p4)
2 are the Mendelstam variables; and

qs = p1 + p2 and qu = p2 − p3.

The isospin- and spin-averaged differential cross sections for the two processes in
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Fig. 8 are then

dσπN→D̄Λc

dt
=

1

768πsp2
i

|M1|2,

dσρN→D̄Λc

dt
=

1

2304πsp2
i

|M2|2. (4.8)

The squared invariant scattering amplitudes |M1|2 and |M2|2, which include the

summation over the spins and isospins of both initial and final particles, are again

evaluated using the software package FORM [47]. In evaluating these cross sections,

we have introduced form factors at the interaction vertices. For three-point vertices,

i.e., πDD∗, ρDD, ρNN , πNN , DNΛc, D∗NΛc, DNΣc, and ρΣcΛc, they are taken

to have the form [32, 33, 50]

f1 =
Λ2

Λ2 + q2
, f2 =

Λ2

Λ2 + p2
i

. (4.9)

where f1 is for t and u channels and f2 for s channel with q2 and p2
i being, respec-

tively, the squared three momentum transfer and squared initial three momentum

in the center-of-mass frame of the pion or rho meson and nucleon. In studying J/ψ

absorption in Chapter III and charmed meson scattering in Refs.[21, 23, 45] using the

same interaction Lagrangians, values for the cutoff parameter Λ have been taken to

be 1 or 2 GeV. We use these values for the present study as well.

We first show the results obtained with a cutoff parameter Λ = 1 GeV. In Fig. 9,

the cross sections for charmed meson production from meson-nucleon scattering are

given as functions of center-of-mass energy. It is seen that the cross section for the

reaction πN → D̄Λc (dotted curve) has a peak value of about 0.2 mb. Although, this

value is much larger than that predicted by the QGSM model [16], it is mainly due

to the s channel that involves a nucleon pole as shown by the dashed curve in Fig.

10, where the cross sections from individual amplitudes are shown. The contribution
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Fig. 9. Cross section for charmed meson production from meson-nucleon scattering as

a function of center-of-mass energy for cutoff parameter of 1 GeV.

from the t channel charmed vector meson exchange (solid curve) at low center-of-mass

energy has a similar magnitude as found in QGSM, while the u channel contribution

(dotted curve) is indeed negligible as assumed in Ref. [16].

The cross section for the reaction ρN → D̄Λc from rho-nucleon scattering shown

by the solid curve in Fig. 9 is about a factor of two larger than that from pion-nucleon

scattering. The relative importance of the contributions from the s, t, and u channels

in this case is shown in Fig. 11. Again, the dominant contribution is from s channel,

while the t and u channel contributions are much smaller.

The magnitude of charmed meson production cross sections depends strongly

on the value of the cutoff parameter. If we use a larger value of Λ = 2 GeV as
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Fig. 10. Contributions from t, s, and u channels to the cross section for charmed

meson production from pion-nucleon scattering as functions of center-of-mass

energies with cutoff parameter Λ = 1 GeV.

suggested by the QCD sum rules [48], these cross sections are increased by an order

of magnitude. On the other hand, their values are reduced by more than an order

of magnitude if a smaller value of Λ = 0.5 GeV is used. We note that to reproduce

the empirical cross section for kaon production from pion-nucleon scattering, i.e.,

πN → KΛ, using the same SU(4) invariant Lagrangian at the Born approximation

requires Λ ∼ 0.4 GeV. Because of the smaller sizes of charmed hadrons, we expect,

however, that the cutoff parameter at interaction vertices involving these particles

should have a larger value than at those involving strange hadrons. Using Λ = 1 GeV

for charmed meson production thus seems reasonable.



39

4 5 6
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

__

ρN-->DΛ
c

u

t

s

 

 

σ
 (

m
b

)

s1/2 (GeV)

Fig. 11. Same as Fig. 10 for the cross section of charmed meson production from

rho-nucleon scattering.

Since our cross sections for charmed meson production are much larger than that

given by the QGSM model, they would lead to too large an enhancement of charmed

meson production if used during the initial string stage of heavy ion collisions as in

Ref. [16]. On the other hand, more reasonable results for charmed hadron production

are expected if these cross sections are used only for collisions between mesons and

baryons in the hadronic matter.

B. Charmed hadron production in proton-proton reactions*

0*Reprinted with permission from “Charm production from proton-proton collisions”
by Wei Liu, Che Ming Ko and Su Houng Lee 2003. Nuclear Physics A728, 457-470. 2004
by Elsevier. Available at doi:10.1016/j.nuclphysa.2003.09.011.

weiliu
0*
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Possible reactions for charmed hadron production in proton-proton collisions near

threshold are pp → D̄0pΛ+
c and pp → D̄∗0pΛ+

c . In the following, we discuss their

contributions separately.

1. pp → D̄0pΛ+
c

c Λ ΛΛ c c
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c Λ ΛΛ c c
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Fig. 12. Charmed hadron production from pp → D̄0pΛ+
c .

Diagrams for the reaction pp → D̄0pΛ+
c are shown in Fig. 12. They involve

the exchange of pion ((1a) − (1c)), rho meson ((2a) − (2c)), D ((3a) − (3b)), and

D∗ ((4a) − (4b)). With the interaction Lagrangians given in Eqs.(3.1) and (4.1), the
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amplitudes for the four processes are given by

M1 = −igπNN p̄(p3)γ5p(p1)
1

t − m2
π

(M1a + M1b + M1c),

M2 = gρNN p̄(p3)
[

γµ + i
κρ

2mN

σαµ(p1 − p3)α

]

p(p1)

×
[

−gµν +
(p1 − p3)µ(p1 − p3)ν

m2
ρ

]

1

t − m2
ρ

(Mν
2a + Mν

2b + Mν
2c),

M3 = igDNΛc
Λ̄c(p3)γ5p(p1)

1

t − m2
D

(M3a + M3b),

M4 = gD∗NΛc
Λ̄c(p3)γ

µp(p1)

[

−gµν +
(p1 − p3)µ(p1 − p3)ν

m2
D∗

]

× 1

t − m2
D∗

(Mν
4a + Mν

4b), (4.10)

where p1 and p3 are, respectively, four momenta of initial and final baryons on the left

side of a diagram, and t = (p1−p3)
2 is the square of nucleon momentum transfer. The

amplitudes Mia, Mib, and Mic are for the subprocesses π0p → D̄0Λ+
c , ρ0p → D̄0Λ+

c ,

D̄0p → D̄0p+, and D̄∗0p → D̄0p involving exchanged virtual mesons, and they are

given explicitly by

M1a = −gπDD∗gD∗NΛc

1

q2 − m2
D∗

(k1 + k3)µ

[

gµν − (k1 − k3)
µ(k1 − k3)

ν

m2
D∗

]

Λ̄cγνp,

M1b = gπNNgDNΛc

1

s1 − m2
N

Λ̄c(mN − k/1 − k/2)p,

M1c = gπΛcΣc
gDNΣc

1

u − m2
Σc

Λ̄c(k/2 − k/3 − mΣc
)p,

Mµ
2a = igDNΛc

gρDD
1

q2 − m2
D

(2k3 − k1)
µΛ̄cγ

5p,

Mµ
2b = igρNNgDNΛc

1

s1 − m2
N

Λ̄cγ
5(k/1 + k/2 + mN)

(

γµ + i
κρ

2mN

σβµk1β

)

p,

Mµ
2c = igρΛcΣc

gDNΣc

1

u − m2
Σc

Λ̄cγ
µ(k/2 − k/3 + mΣc

)γ5p,

M3a = g2
DNΛc

1

s1 − m2
Λc

p̄(k/1 + k/2 − mΛc
)p,

M3b = g2
DNΛc

1

u − m2
Λc

p̄(k/2 − k/3 − mΛc
)p,
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Mµ
4a = igD∗NΛc

gDNΛc

1

s1 − m2
Λc

p̄γ5(k/1 + k/2 + mΛc
)γµp,

Mµ
4b = igD∗NΛc

gDNΛc

1

u − m2
Λc

p̄γµ(k/2 − k/3 + mΛc
)γ5p. (4.11)

Here, k1 and k3 are momenta of initial and final mesons, while k2 and k4 are momenta

of initial and final baryons in the two-body subprocesses; and q2 = (k1 − k3)
2 is the

square of meson momentum transfer.

There is no interference between amplitudes involving exchange of pseudoscalar

and vector mesons. Interferences between amplitudes involving exchange of pion and

D meson as well as those between rho meson and D∗ are unimportant due to the large

mass difference between light and heavy mesons. Neglecting these interferences, the

total cross section for the reaction pp → D̄0pΛ+
c is then given by the sum of the cross

sections for the four processes in Fig. 12 and can be expressed in terms of off-shell cross

sections for the subprocesses π0p → D̄0Λ+
c , ρ0p → D̄0Λ+

c , D̄0p → D̄0p, and D̄∗0p →

D̄0p. Following the method of Ref. [37] for the reaction J/ψN → D(D∗)D̄(D̄∗)N , the

spin-averaged differential cross section for the reaction pp → D̄0pΛ+
c can be written

as

dσpp→D̄0pΛ+
c

dtds1

=
g2

πNN

16π2sp2
i

k
√

s1(−t)
1

(t − m2
π)2

σπ0p→D̄0Λ+
c
(s1, t),

+
3g2

ρNN

32π2sp2
i

k
√

s1
1

(t − m2
ρ)

2

[

4(1 + κρ)
2(−t − 2m2

N)

+ κ2
ρ

(4m2
N − t)2

2m2
N

+ 4(1 + κρ)κρ(4m
2
N − t)

]

σρ0p→D̄0Λ+
c
(s1, t),

+
g2

DNΛc

16π2sp2
i

k
√

s1[−t + (mN − mΛc
)2]

1

(t − m2
D)2

σD̄0p→D̄0p(s1, t)

+
3g2

D∗NΛc

32π2sp2
i

k
√

s1
1

(t − m2
D∗)2

[

−4t + 4(mΛc
− mN)2 − 8mΛc

mN

+
2(m2

N − m2
Λc

− t)(m2
N − m2

Λc
+ t)

m2
D∗
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+
2((mΛc

− mN)2 + t)t

m2
D∗

]

σD̄∗0p→D̄0p(s1, t). (4.12)

In the above, pi is the center-of-mass momentum of two initial protons, t is the

squared four momentum transfer of exchanged meson, s is the squared center-of-mass

energy, and s1 and k are, respectively, the squared invariant mass and center-of-mass

momentum of exchanged meson and the nucleon in the subprocesses. We have also

included a factor of two to take into account contributions from interchanging two

initial protons.

Since the charmed hadron production cross sections is sensitive to the value

of cutoff parameters in the form factors at interaction vertices involving virtual

charmed mesons and baryons, it is necessary to constraint this cutoff parameter em-

pirically. Without exclusive cross sections available for charmed hadron production

from proton-proton scattering, we resort to strange hadron production. Using the

same hadronic model for kaon production from the reaction pp → K+pΛ, this reac-

tion can be described by similar diagrams in Fig.12 for the reaction pp → D̄0pΛ+
c

with D0 and Λc replaced by K+ and Λ, respectively, in the final states. Also, the

exchanged D̄0 in diagrams (3a) and (3b) as well as D̄0∗ in diagrams (4a) and (4b)

are replaced by K and K∗, respectively, while intermediate off-shell charmed baryons

are replaced by strange baryons. With empirical coupling constants gπKK∗ = 3.25

and gρKK = 3.25, as well as others determined via SU(3) relations [51], the measured

cross section can be reproduced with a cutoff parameter Λ = 0.42 GeV in the form

factors F2(q
2) at vertices involving virtual strange mesons and baryons, as shown in

Fig.13.

Assuming that the same cutoff parameter Λ = 0.42 GeV is applicable at vertices

involving virtual charmed mesons and baryons in charmed hadron production from

proton-proton reactions, resulting cross sections for the reaction pp → D̄0pΛc from the
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Fig. 13. Cross section for kaon production from the reaction pp → K+pΛ with cutoff

parameter Λ = 0.42 GeV in the form factors at interaction vertices involving

exchange of strange mesons. Filled circles are experimental data taken from

Ref.[52]

four possible processes of pion (solid curve), rho (dashed curve), D (dotted curve), and

D∗ (dash-dotted curve) exchanges as functions of center-of-mass energy are shown in

Fig.14. It is seen that contributions from light meson exchange are more important

than those from heavy meson exchange. Although we consider diagrams (1a) and

(2a) in Fig.12 as exchange of pion and rho meson, respectively, they actually involve

exchange of heavy D∗ and D mesons in the subprocess π0p → D̄0Λ+
c and ρ0p → D̄0Λ+

c ,

respectively. Our results that main contributions to the reaction pp → pD̄0Λ+
c are

due to exchange of light mesons are not inconsistent with conclusions in Ref.[35] that
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this reaction is dominated by heavy D meson exchange.
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Fig. 14. Cross sections for charmed hadron production from the reaction pp → D̄0pΛ+
c

due to pion (solid curve), rho meson (dashed curve), D (dotted curve), and

D∗ (dash-dotted curve).

To see the relative contributions from s, t, and u channel diagrams in Fig.12,

we show in Fig.15 the partial cross sections due to diagrams (1a), (1b), and (1c). It

is seen that the t channel diagram (1a) dominates charmed hadron production cross

section at high energies while the s channel diagram (1b) is most important near

threshold. The contribution from the u channel diagram (1c) is much smaller than

those from other two diagrams. Except near threshold, our results are thus similar

to those found in Ref. [35], which uses the on-shell approximation for the subprocess

πp → D̄0Λ+
c and does not include s and u channel diagrams.
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Fig. 15. Partial cross sections for pp → D̄0pΛ+
c due to contributions from different

channels.

2. pp → D̄∗0pΛ+
c

For charmed hadron production from proton-proton collisions with D̄∗0pΛ+
c in the

final state, relevant diagrams are shown in Fig. 16. As for the reaction pp → D̄∗0pΛ+
c ,

this reaction can proceed through pion, rho meson, D, and D∗ exchanges. Amplitudes

for the four processes obtained with the interaction Lagrangians given in Eqs.(3.1)

and (4.1) are given by

M5 = −igπNN p̄(p3)γ5p(p1)
1

t − m2
π

(Mα
5a + Mα

5b + Mα
5c)ǫα

M6 = gρNN p̄(p3)
[

γµ + i
κρ

2mN

σαµ(p1 − p3)α

]

p(p1)
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Fig. 16. Charmed hadron production from pp → D̄∗0pΛ+
c .

×
[

−gµν +
(p1 − p3)µ(p1 − p3)ν

m2
ρ

]

1

t − m2
ρ

(Mνα
6a + Mνα

6b + Mνα
6c )ǫα,

M7 = igDNΛc
Λ̄c(p3)γ5p(p1)

1

t − m2
D

(Mα
7a + Mα

7b)ǫα,

M8 = gD∗NΛc
Λ̄c(p3)γ

µp(p1)

×
[

−gµν +
(p1 − p3)µ(p1 − p3)ν

m2
D∗

]

1

t − m2
D∗

(Mνα
8a + Mνα

8b )ǫα, (4.13)

where p1 and p3 are again, respectively, four momenta of initial and final baryons on

the left side of a diagram and ǫα denotes the polarization vector of D∗ meson in final

state.
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Expressions for individual amplitudes can be written as follows:

Mµ
5a = −igπDD∗gDNΛc

1

q2 − m2
D

(2k1 − k3)
µΛ̄cγ5p,

Mµ
5b = −igπNNgD∗NΛc

1

s1 − m2
N

Λ̄cγ
µ(k/1 + k/2 + mN)γ5p,

Mµ
5c = igπΛcΣc

gD∗NΣc

1

u − m2
Σc

Λ̄cγ
5(k/2 − k/3 + mΣc

)γµp,

Mµν
6a = gD∗NΛc

gρD∗D∗

1

q2 − m2
D∗

[

gαβ − (k1 − k3)α(k1 − k3)β

m2
D∗

]

Λ̄cγ
αp

× [2kν
1g

βµ − (k1 + k3)
βgµν + 2kµ

3 gβν ],

Mµν
6b = gρNNgD∗NΛc

1

s1 − m2
N

Λ̄cγ
ν(k/1 + k/2 + mN)

(

γµ + i
κρ

2mN

σβµk1β

)

p,

Mµν
6c = gρΛcΣc

gD∗NΣc

1

u − m2
Σc

Λ̄cγ
µ(k/2 − k/3 + mΣc

)γνp.

Mµ
7a = igDNΛc

gD∗NΛc

1

s1 − m2
Λc

p̄γµ(k/1 + k/2 + mΛc
)γ5p,

Mµ
7b = igDNΛc

gD∗NΛc

1

u − m2
Λc

p̄γ5(k/2 − k/3 + mΛc
)γµp,

Mµν
8a = g2

D∗NΛc

1

s1 − m2
Λc

p̄γν(k/1 + k/2 + mΛc
)γµp,

Mµν
8b = g2

D∗NΛc

1

u − m2
Λc

p̄γµ(k/2 − k/3 + mΛc
)γνp. (4.14)

As in the case of charmed hadron production from the reaction pp → D̄0pΛ+
c ,

total cross section for the reaction pp → D̄∗0pΛ+
c can be expressed in terms of off-shell

cross sections for the subprocesses π0p → D̄∗0Λ+
c , ρ0p → D̄∗0Λ+

c , D̄0p → D̄∗0p, and

D̄∗0p → D̄∗0p. In this case, the spin averaged differential cross section is

dσpp→D̄0pΛc

dtds1

=
g2

πNN

16π2sp2
i

k
√

s1(−t)
1

(t − m2
π)2

σπ0p→D̄∗0Λ+
c
(s1, t),

+
3g2

ρNN

32π2sp2
i

k
√

s1
1

(t − m2
ρ)

2

[

4(1 + κρ)
2(−t − 2m2

N)

+ κ2
ρ

(4m2
N − t)2

2m2
N

+ 4(1 + κρ)κρ(4m
2
N − t)

]

σρ0p→D̄∗0Λ+
c
(s1, t)

+
g2

DNΛc

16π2sp2
i

k
√

s1[−t + (mN − mΛc
)2]

1

(t − m2
D)2

σD̄0p→D̄∗0p(s1, t)
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+
3g2

D∗NΛc

32π2sp2
i

k
√

s1
1

(t − m2
D∗)2

[

−4t + 4(mΛc
− mN)2 − 8mΛc

mN

+
2(m2

N − m2
Λc

− t)(m2
N − m2

Λc
+ t)

m2
D∗

+
2((mΛc

− mN)2 + t)t

m2
D∗

]

σD̄∗0p→D̄∗0p(s1, t). (4.15)
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Fig. 17. Cross sections for charmed hadron production from pp → D̄∗0pΛ+
c due to

pion (solid curve), rho meson (dashed curve), D (dotted curve), and D∗

(dash-dotted curve).

Using coupling constants and cutoff parameters introduced previously, we have

evaluated the cross section for the reaction pp → D̄∗0pΛ+
c . In Fig. 17, we show

contributions from pion (solid curve), rho meson (dashed curve), D (dotted curve),

and D∗ (dash-dotted curve) exchanges as functions of center-of-mass energy. As for
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the reaction pp → D̄0pΛ+
c , light meson exchanges are more important than those from

heavy meson exchanges. However, the contribution from rho exchange is larger than

that from pion exchange, which is opposite to that in the reaction pp → D̄0Λ+
c , as a

result of the couplings involving three vector mesons, which are absent in the latter

reaction.

3. Total cross section

The total cross section for charmed hadron production from proton-proton collisions

is shown in Fig.18 as a function of center-of-mass energy (solid curve). It’s value

at center-of-mass energy of 11.5 GeV is about 1 µb and is within the uncertainty of

measured inclusive charmed hadron production cross section, which is about 2 µb

as shown by solid circles with error bar [53]. The cross section decreases as energy

drops and is about 1 nb at 40 MeV above threshold. Also shown in Fig.18 are the

cross section for the reactions pp → pD̄0Λ+
c (dashed curve) and pp → pD̄∗0Λ+

c (dotted

curve), and it is seen that the former is somewhat larger than the latter.

The cutoff parameter Λ = 0.42 GeV at interaction vertices involving virtual

charmed hadrons is obtained from fitting strange hadron production with similar

hadronic interaction Lagrangians and form factors. Since charmed hadrons have

smaller sizes than those of strange hadrons, harder form factors with larger cutoff

parameters are expected at their interaction vertices. To see how the results obtained

here are affected by the cutoff parameter, we show in Fig.18 by dash-dotted curve

the total cross section for charmed hadron production from proton-proton reactions

using Λ = 1 GeV. It is seen that the resulting cross section is almost two order of

magnitude larger than that given by Λ = 0.42 GeV and deviates strongly from the

experimental data. Within our present model for charmed hadron production, a large

cutoff parameter at interaction vertices involving charmed hadrons is thus excluded.
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It is worthy to mention that we have not considered in the present study final

states involving Σ+
c instead Λ+

c as the cross sections for such reactions are expected

to be much smaller due to both larger Σ+
c than Λ+

c masses and smaller gDNΣc
and

gD∗NΣc
coupling constants than gDNΛc

and gD∗NΛc
coupling constants.
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Fig. 18. Cross sections for charmed hadron production from proton-proton collisions.

Dashed and dotted curves are for pp → pD̄0Λ+
c and pp → pD̄∗0Λ+

c , respec-

tively, while the total cross section is shown by the solid curve. The threshold

energy s0 refers to that of the reaction pp → pD̄0Λ+
c . Experimental data are

shown by filled circles [53]. Also shown by dash-dotted curve is the total cross

section obtained with cutoff parameter Λ = 1.0 GeV in contrast with other

curves which are based on Λ = 0.42 GeV.
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CHAPTER V

CHARMED HADRON PRODUCTION FROM PHOTON-PROTON

REACTIONS*

In this chapter, the cross section for photoproduction of charmed hadrons from pro-

tons is studied using the effective Lagrangian introduced in Chapter II. Photon-

hadron interactions are usually described by the vector dominance model, i.e., the

photon couples to hadrons via vector mesons such as rho, omega, phi, and J/ψ. For a

real photon, including all allowed vector mesons is equivalent to coupling the photon

directly to hadrons with strengths given by their electric charges. In this study, we

adopt this picture for describing production of charmed hadrons from reactions be-

tween protons and real photons. In these reactions, the final state can involve either

two particles (D̄Λc, D̄∗Λc) or three particles (DD̄N , DD̄∗N , D∗D̄N , D∗D̄∗N). In the

following, we discuss them separately and also compare the results with predictions

from leading-order perturbative QCD calculations.

A. Two-body final states

For photoproduction of charmed hadrons from protons near threshold, the final states

are dominated by two particles. Possible reactions are γp → D̄0Λ+
c and γp → D̄∗0Λ+

c

as shown by diagrams in Fig. 19. Additional interaction Lagrangians needed to

evaluate the cross sections for these reactions besides those given in Eq.(4.1) are:

LγNN = −eAµN̄γµ[(1 + τ3)/2]N,

0*Reprinted with permission from “Charm production from photon-proton reactions in
a hadronic model” by W. Liu, S. H. Lee, and C. M. Ko, 2003. Nuclear Physics A724,
375-390. 2004 by Elsevier. Available at doi:10.1016/S0375-9474(03)01573-2.

weiliu
0*
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Fig. 19. Photoproduction of charmed hadrons from protons with two-body final states.

LγΛcΛc
= −eAµΛ̄cγµΛc. (5.1)

Amplitudes for the two reactions γp → D̄0Λ+
c and γp → D̄∗0Λ+

c in Fig. 19 can

be written, respectively, as

M1 = (Mµ
1a + Mµ

1b)ε2µ,

M2 = (Mµν
2a + Mµν

2b )ε2µε3ν , (5.2)

where ǫ2µ and ǫ3ν are polarization vectors of γ and D̄∗0, respectively. The amplitudes

Mµ
1a, Mµ

1b, M2a, and Mµ
2b are for the four diagrams in Fig. 19, and they are given

explicitly by

Mµ
1a = −egDNΛc

1

s − m2
N

Λ̄c(p3)γ
5(p/1 + p/2 + mN)γµN(p1),

Mµ
1b = −egDNΛc

1

u − m2
Λc

Λ̄c(p3)γ
µ(p/1 − p/4 + mΛc

)γ5N(p1),

Mµν
2a = iegD∗NΛc

1

s − m2
N

Λ̄c(p3)γ
ν(p/1 + p/2 + mN)γµN(p1),

Mµν
2b = iegD∗NΛc

1

u − m2
Λc

Λ̄c(p3)γ
µ(p/1 − p/4 + mΛc

)γνN(p1). (5.3)

In the above, p1, p2, p3, and p4 denote the four momenta of p, γ, Λ+
c , and D̄0(D̄∗0),

respectively, while s = (p1 + p2)
2 and u = (p1 − p4)

2.
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The differential cross sections for the two reactions are then

dσi

dt
=

1

256πsp2
cm

|Mi|2|F2(q
2)|2, (5.4)

with pcm denoting the photon momentum in center-of-mass system.

To account for finite sizes of hadrons, form factors need to be introduced at

strong interaction vertices. To maintain gauge invariance, we take these form factors

to be the same, i.e., an overall form factor is multiplied to the total amplitude of each

process, as in Ref.[54] for photoproduction of pion on the nucleon. The overall form

factor is taken to have a monopole form, i.e.,

F2(q
2) =

Λ2

Λ2 + q2
, (5.5)

with q denoting the three momentum of photon in center-of-mass system. This is dif-

ferent from the one used in Ref.[54], where the center-of-mass momentum of produced

pion is used in the form factor. Because of the large threshold for photoproduction

of charmed hadrons, the off-shellness of p in the s-channel or Λ+
c in the u-channel

is thus proportional to the photon momentum rather than the momentum of pro-

duced charmed meson. We choose the cutoff parameter Λ = 0.75 GeV to reproduce

the measured cross section for photoproduction of charmed hadrons from protons at

center-of-mass energy of 6 GeV [55], as shown below.

Cross sections for the reactions γp → D̄0Λ+
c (solid curve) and γp → D̄∗0Λ+

c

(dashed curve) are shown in Fig. 20 as functions of total center-of-mass energy.

It is seen that they have similar magnitude with a peak value of about 19 nb for

γp → D̄0Λ+
c and about 23 nb for γp → D̄∗0Λ+

c .
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Fig. 20. Cross sections for photoproduction of charmed hadrons from protons as func-

tions of center-of-mass energy: γp → D̄0Λ+
c (solid curve) and γp → D̄∗0Λ+

c

(dashed curve).

B. Three-body final states

As energy increases, three-body final states become important for charmed hadron

production from photon-proton reactions, and the possible reactions are γp → D+D∗−p,

γp → D−D∗+p, γp → D+D̄∗0n, γp → D̄0D∗+n, γp → D+D−p, γp → D+D̄0n,

γp → D∗+D∗−p, and γp → D∗+D̄∗0n. The lowest-order diagrams for the first four re-

actions are shown in Fig. 21. These involve charmed vector and pseudoscalar mesons

in final states and the exchange of pion in intermediate states. Shown in Figs. 22

and 23 are the lowest order diagrams for the other four reactions, which involve two
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Fig. 21. Photoproduction of charmed hadrons (D∗D̄ or DD̄∗) from protons involving

pion exchange.

charmed pseudoscalar mesons or two charmed vector mesons in final states and the

exchange of rho mesons in intermediate states.

To evaluate the cross sections for these reactions, we need the following interac-

tions Lagrangians besides those given in Eqs.(3.1), (3.8), and (4.1):

LγDD = ieAµ[DQ∂µD̄ − (∂µD)QD̄],

LγD∗D∗ = ie[Aµ(∂µD
∗νQD̄∗

ν − D∗νQ∂µD̄
∗
ν)

+ (∂µA
νD∗

ν − Aν∂µD
∗
ν)QD̄∗µ + D∗µQ(Aν∂µD

∗
ν − ∂µA

νD̄∗
ν ],
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Fig. 22. Photoproduction of charmed hadrons (DD̄) from protons involving rho meson

exchange.

LπγDD∗ = −egπDD∗Aµ(D∗
µ(2~τQ − Q~τ)D̄ + D(2Q~τ − ~τQ)D̄∗

µ) · ~π,

LργDD = egρDDAµD(~τQ + Q~τ)D̄ · ~ρµ,

LργD∗D∗ = egρD∗D∗(AνD∗
ν(2~τQ − Q~τ)D̄∗

µ

+ AνD∗
µ(2~τQ − Q~τ)D̄∗

ν − AµD
∗ν(2~τQ − Q~τ)D̄∗

ν) · ~ρµ. (5.6)

In the above, Q is the diagonal charge operator with diagonal elements equal to 0

and -1.

Diagrams in Figs. 21, 22, and 23 can be separated into two types; one in which

the photon is coupled to mesons such as the first three diagrams (denoted by (ia)

to (ic) with i=3 to 10), and the other in which the photon is coupled directly to

either the incoming or outgoing proton. As shown in Section E of this Chapter,

contributions from the latter type are much smaller than those from the first type

of diagrams and are neglected in following calculations. As a result, results obtained
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Fig. 23. Photoproduction of charmed hadrons (D∗D̄∗) from protons involving rho me-

son exchange.

in present study for charmed production with three-body final states violate slightly

the gauge invariance. We note that diagrams of first type are similar to those for

J/ψ absorption by nucleons, which can be interpreted as absorption by virtual pions

and rho mesons from nucleons. Here, they can be considered as charmed hadron

production from interactions of photons with virtual mesons from the proton.

The amplitudes for the four reactions in Fig. 21 are given by

Mi = −iagπNNN̄(p3)γ5N(p1)
1

t − m2
π

(Mia + Mib + Mic), (5.7)

with i = 3 to 6, while amplitudes for the four reactions in Figs. 22 and 23 can be

written as

Mj = agρNNN̄(p3)
[

γµ + i
κρ

2mN

σαµ(p1 − p3)α

]

N(p1)
1

t − m2
ρ

×
[

−gµν +
(p1 − p3)µ(p1 − p3)ν

m2
ρ

]

(M ν
ja + M ν

jb + M ν
jc), (5.8)
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with j = 7 to 10. In the above, p1 and p3 are four momenta of initial and final

nucleons, respectively; and t = (p1 − p3)
2. The coefficient a is 1 and

√
2, respectively,

for neutral and charged pion or rho meson couplings to protons.

The three amplitudes Mia, Mib, and Mic represent the subprocess γπ → D∗D̄ in

Fig. 21. Explicitly, they are:

M3a = M4a

= egπDD∗(−2k1 + k3)
µ 1

t − m2
D

(k1 − k3 + k4)
νε3µε2ν ,

M3b = M4b

= −egπDD∗(−k1 − k4)
α 1

u − m2
D∗

[

gαβ − (k1 − k4)α(k1 − k4)β

m2
D∗

]

× [(−k2 − k3)
βgµν + (−k1 + k2 + k4)

νgβµ + (k1 + k3 − k4)
µgβν ]ε3µε2ν ,

M3c = M4c

= egπDD∗gµνε3µε2ν ,

M5a =
√

2egπDD∗(−2k1 + k3)
µ 1

t − m2
D

(k1 − k3 + k4)
νε3µε2ν ,

M5b = −
√

2egπDD∗(2k1 + k2)
ν 1

s − m2
π

(k1 + k2 + k4)
µε3µε2ν ,

M5c = 2
√

2egπDD∗gµνε3µε2ν ,

M6a = −
√

2egπDD∗(−k1 − k4)
α 1

u − m2
D∗

[

gαβ − (k1 − k4)α(k1 − k4)β

m2
D∗

]

× [(−k2 − k3)
βgµν + (−k1 + k2 + k4)

νgβµ + (k1 + k3 − k4)
µgβν ]ε3µε2ν ,

M6b =
√

2egπDD∗(2k1 + k2)
ν 1

s − m2
π

(k1 + k2 + k4)
µε3µε2ν ,

M6c = −
√

2egπDD∗gµνε3µε2ν , (5.9)

where ki denotes the momentum of particle i of each subprocess, and εµ and εν are

polarization vectors of D∗ and γ, respectively. We choose the convention that particles

1 and 2 represent initial-state particles while particles 3 and 4 represent final-state

ones on the left and right sides of a diagram.
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Although the πDD∗ interaction Lagrangian in Eq.(5.6) breaks chiral symmetry

due to nonderivative pion coupling, the sum Mia + Mib + Mic fulfills the chiral con-

straint for processes 3, 4, and 6 in Fig. 21, i.e., it vanishes at the soft pion limit. This

is due to cancellations between non-chiral contributions from diagrams involving D∗

exchange and contributions from diagrams involving πDD∗γ four point interactions

as shown in Appendix B. Such effect was first found in studying J/ψ absorption by pi-

ons [49]. Using the equation of motion for D∗ meson, it was shown that the non-chiral

piece of πDD∗ interaction Lagrangian leads to an effective πDD∗J/ψ four point in-

teraction, which cancels the πDD∗J/ψ four point interaction in the Lagrangian when

mJ/ψ → 0 (see Appendix C). Unfortunately, the chiral constraint is not satisfied for

process 5 in Fig. 21 as it does not involve D∗-exchange. It thus remains a challenge

to construct an effective Lagrangian for the interactions between heavy mesons and

pions, that has the correct soft pion limit.

The amplitudes M ν
ja, M ν

jb, and M ν
jc are those for the subprocesses γρ → DD̄ and

γρ → D∗D̄∗ in Figs. 22 and 23, and they are given explicitly by

Mµ
7a = −egρDD(k1 − 2k3)

µ 1

t − m2
D

(k1 − k3 + k4)
νε2ν ,

Mµ
7b = −egρDD(−k1 + 2k4)

µ 1

u − m2
D

(−k1 − k3 + k4)
νε2ν ,

Mµ
7c = 2egρDDgµνε2ν ,

Mµ
8a =

√
2egρDD(k1 − 2k3)

µ 1

t − m2
D

(k1 − k3 + k4)
νε2ν ,

Mµ
8b =

√
2egρDD[(−2k1 − k2)

νgµα + (k1 + 2k2)
µgαν + (k1 − k2)

αgµν ]
1

s − m2
ρ

×
[

gαβ − (k1 + k2)α(k1 + k2)β

m2
ρ

]

(k3 − k4)
βε2ν ,

Mµ
8c = −

√
2egρDDgµνε2ν ,

Mµ
9a = egρD∗D∗ [(−k1 − k3)

αgµλ + (2k1 − k3)
λgαµ + (2k3 − k1)

µgαλ]
1

t − m2
D∗
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×
[

gαβ − (k1 − k3)α(k1 − k3)β

m2
D∗

]

[−2kω
2 gβν + (k2 + k4)

βgνω − 2kν
4g

βω]

× ε2νε3λε4ω,

Mµ
9b = egρD∗D∗ [(−2k1 + k4)

ωgαµ + (k1 + k4)
αgµω + (k1 − 2k4)

µgαω]
1

u − m2
D∗

×
[

gαβ − (k1 − k4)α(k1 − k4)β

m2
D∗

]

[(−k2 − k3)
βgνλ + 2kλ

2gβν + 2kν
3g

βλ]

× ε2νε3λε4ω,

Mµ
9c = egρD∗D∗(gµλgνω + gµωgνλ − 2gµνgλω)ε2ν

× ε3λε4ω,

Mµ
10a =

√
2egρD∗D∗ [(−k1 − k3)

αgµλ + (2k1 − k3)
λgαµ + (2k3 − k1)

µgαλ]
1

t − m2
D∗

×
[

gαβ − (k1 − k3)α(k1 − k3)β

m2
D∗

]

[−2kω
2 gβν + (k2 + k4)

βgνω − 2kν
4g

βω]

× ε2νε3λε4ω,

Mµ
10b = −

√
2egρD∗D∗ [(−2k1 − k2)

νgµα + (k1 + 2k2)
µgαν + (k1 − k2)

αgµν ]
1

s − m2
ρ

×
[

gαβ − (k1 + k2)α(k1 + k2)β

m2
ρ

]

[−2kλ
4gβω + 2kω

3 gβλ + (k4 − k3)
βgλω]

× ε2νε3λε4ω,

Mµ
10c = −

√
2egρD∗D∗(gµλgνω − 2gµωgνλ + gµνgλω)

× ε2νε3λε4ω. (5.10)

The cross sections for reactions with three particles in the final state can be

expressed in terms of the off-shell cross sections for subprocesses involving two par-

ticles in the final state. Following the method of Ref. [44] for studying the reaction

pp → pΛK+, differential cross sections for the four reactions γp → D∗D̄(DD̄∗)N in

Fig. 21 can be written as

dσγp→D∗D̄(DD̄∗)N

dtds1

=
ag2

πNN

32π2sp2
cm

k
√

s1(−t)
|F (t)|2

(t − m2
π)2

σγπ→D∗D̄(DD̄∗)(s1, t), (5.11)
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while those for the two reactions γp → DD̄N in Fig. 22 are

dσγp→DD̄N

dtds1

=
3ag2

ρNN

64π2sp2
cm

k
√

s1
|F (t)|2

(t − m2
ρ)

2

[

4(1 + κρ)
2(−t − 2m2

N)

+ κ2
ρ

(4m2
N − t)2

2m2
N

+ 4(1 + κρ)κρ(4m
2
N − t)

]

σγρ→DD̄(s1, t). (5.12)

In the above, s1 and k are, respectively, squared invariant mass and center-of-mass

momentum of π and γ in the subprocess γπ → D∗D̄(D̄∗D) or of ρ and γ in the

subprocesses γρ → DD̄ and γρ → D∗D̄∗. Cross sections for these subprocesses

are obtained from the amplitudes in Eqs.(5.9) and (5.10) using the software package

FORM [47] to evaluate the summation over polarizations of both initial and final

particles. The differential cross sections for the two reactions γp → D∗D̄∗N in Fig.

23 are similar to those for γp → DD̄N with σγρ→DD̄(s1, t) replaced by σγρ→D∗D̄∗(s1, t).

We have introduced in Eqs.(5.11) and (5.12) form factors FπNN and FρNN at

πNN and ρNN vertices, respectively, to take into account finite sizes of hadrons. As

in Chapter III and Ref.[31], both are taken to have the following monopole form:

F (t) =
Λ2 − m2

Λ2 − t
, (5.13)

where m is the mass of exchanged pion or rho meson, and Λ is a cutoff parameter with

values ΛπNN = 1.3 GeV and ΛρNN = 1.4 GeV. We have also introduced an overall

dipole form factor for the two-body subprocesses γπ → D∗D̄(DD̄∗), γρ → DD̄,

and γρ → D∗D̄∗ as in Section A for the reactions γp → D̄0Λ+
c and γp → D̄∗0Λ+

c .

The same cutoff parameter Λ = 0.75 GeV is used in this form factor for evaluating

the cross sections for charmed hadron production from photon-proton reactions with

three-body final states.

The cross section for the reaction γp → D∗D̄(DD̄∗)N is given by the sum of the

cross sections for the four processes in Fig. 21, which are obtained by integrating
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Fig. 24. Cross sections for photoproduction of charmed hadrons from protons with

three particles in the final states: γp → D∗D̄N(DD̄∗N) (solid curve),

γp → DD̄N (dotted curve), and γp → D∗D̄∗N (dashed curve).

Eq.(5.11) over t and s1. Similarly, one can obtain from Eq.(5.12) the cross sections

for the reactions γp → DD̄N and γp → D∗D̄∗N , shown respectively, in Figs. 22 and

23. Results for these cross sections are shown in Fig. 24 by the solid, dotted, and

dashed curves, respectively, for the reactions γp → D∗D̄N(DD̄∗N), γp → DD̄N ,

and γp → D∗D̄∗N . It is seen that the reaction γp → D∗D̄N(DD̄∗N) has the largest

cross section with a peak value of about 57 nb, while the reaction γp → DD̄N has

the smallest cross section of only about 1 nb. The larger cross sections for reactions

with charmed vector meson in the final state is due to presence of interaction vertices

involving three vector mesons, which have a stronger momentum dependence than
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vertices with fewer number of vector mesons, leading thus to a larger strength at high

energies.

C. Total cross section
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Fig. 25. Total (solid curve) and partial (dotted curve for two-body final states and

dashed curve for three-body final states) cross sections for charmed hadron

production in photon-proton reactions as functions of center-of-mass energy.

The total cross section for photoproduction of charmed hadrons from protons is

given by the sum of the cross sections for two-body and three-body final states. In

Fig. 25, we show the total cross section (solid curve) together with those for two-

body final states (dotted curve) and three-body final states (dashed curve). It is seen

that two-body final states involving Λc and charmed meson dominate at low energy,
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while three-body final states involving nucleon as well as charmed and anticharmed

meson pair are more important at high energies. The two have comparable magnitude

around center-of-mass energy of about 5.7 GeV. As in the experimental data at 6 GeV

[55], two-body final states constitute about 33% of the total cross section.

D. Charm photoproduction from protons in perturbative QCD

Charm production from photon-proton reactions can also be estimated using the

leading-order perturbative QCD [56, 57, 58]. As shown in Appendix D, the cross

section in this approach is given by

σγp(ν) =
∫ 1

2m2
c
/ν

dx σγg(νx)g(x), (5.14)

where mc is the charm quark mass, g(x) is the gluon distribution function in protons,

and ν = p · pγ with p and pγ being the momenta of incoming proton and photon.

The cross section σγg(ω) is for charm-anticharm quark production from leading order

photon-gluon scattering, i.e.,

σγg→c̄c(ω) =
2παsα

9

4

ω2

[(

1 +
4m2

ω2
− 8m2

c

ω4

)

log
1 −

√

1 − 4m2
c

ω2

1 +
√

1 − 4m2
c

ω2

−
(

1 +
4m2

c

ω2

)

√

1 − 4m2
c

ω2

]

, (5.15)

where ω2 = 2pg · pγ with the gluon momentum denoted by pg.

Using mc = 1.3 GeV and the leading order MRST 2001 parameterization of the

gluon distribution function in protons [59], we have calculated the cross section for

charm photoproduction from protons using the LO QCD formula, and the result is

shown by the dashed curve in Fig. 26. Also shown are the cross section from the

hadronic model (solid curve) and available experimental data (open circles) [55]. We

see that the LO QCD result reproduces the data at 6 GeV and at higher energies.
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Fig. 26. Cross sections for charm production from photon-proton reactions in the

hadronic model (solid curve) and the pQCD approach (dashed curve). The

experimental data [55] are shown by open circles.

The QCD prediction below 6 GeV falls well below that from the effective hadronic

model. It is known that the QCD formula for photoproduction of heavy quarks

works best when momenta involved in the process are larger than the heavy quark

mass mc. Below this momentum and near threshold energy, large logarithms appear

in the perturbative QCD approach and spoil its convergence [60]. At low energies,

our phenomenological hadronic approach is expected to be more reliable as the cross

section is dominated by two-body final states with no additional contribution to cause

any large correction. On the other hand, results from the hadronic model at higher

energies fall short of experimental data. This is expected because contributions from
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four-body final states and from exchange of heavier mesons become important as

energy increases. For higher energies, perturbative QCD calculations should be a

more efficient way for determining the cross section for charm photoproduction than

adding more complicated processes to the phenomenological hadronic model.

E. Contributions from photon-proton couplings
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Fig. 27. Cross sections for charmed hadron production in photoproton reactions due to

photon coupling directly to protons (diagram (3d) in Fig. 21, dashed curve)

and to mesons (diagrams (3a)-(3c) in Fig. 21, solid curve). No form factors

are included in these results.

In the present study, the cross sections for charmed hadron production from

photon-proton reactions with three particles in the final state are obtained without
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contributions from diagrams involving photons coupled directly to external protons.

These diagrams are needed to preserve gauge invariance in each process. Their con-

tributions are small compared to those from diagrams with photons coupled only

to mesons. This is due to the s-channel nucleon propagator (1/(s − m2
N)) in these

diagrams, which suppresses their amplitudes more than the t-channel heavy meson

propagator in other diagrams as a result of the large photon energy needed to pro-

duce the charmed and anticharmed meson pair. In the following, we demonstrate

this effect by comparing the contribution from diagram (3d) with that from diagrams

(3a)-(3c) in Fig. 21.

The amplitude for diagram (3d) in Fig. 21 can be written as

M = i2egπNNgπDD∗

1

(s − m2
N)(t − m2

π)
p̄(p3)γ5(p/1 + p/2 + mN)γµp(p1)εµp

ν
5εν

≡ 2gπDD∗M2p
ν
5εν , (5.16)

where p1, p3, p2, and p5 are the momenta of initial and final nucleons, photon, and

charmed meson, respectively. The cross section due to this diagram alone is given by

dσ

dtds1

=

√
s1

256π2sp2
cm

|M2|2Γ(s1), (5.17)

where s1 is the invariant mass of D+D∗− pair, and Γ(s1) is the decay width of the

off-shell pion to D+ and D∗−.

The cross section due to the s−channel diagram (3d) in Fig. 21 involving photon

coupling directly to protons is shown by the dashed curve in Fig. 27 together with

that due to photon coupling to mesons (diagrams (3a)-(3c) in Fig. 21) shown by

the solid curve. Form factors are neglected in these results as we are only interested

in their relative magnitude. It is seen that contributions from diagrams with direct

photon-proton couplings are more than two orders of magnitude smaller than those
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from diagrams with photon coupled to mesons. These diagrams can thus be safely

neglected in calculating the cross section for charmed hadron production from photon-

proton reactions.
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CHAPTER VI

SUMMARY

In this dissertation, we have introduced an effective Lagrangian based on the SU(4)

flavor symmetry. To take into account the symmetry breaking effects due to the

larger masses of hadrons consisting of charm quarks, we have used the empirical

hadron masses and coupling constants. For coupling constants that are unknown

empirically, their values are, however, determined from the known ones using the

SU(4) relations. We have also included form factors at the strong interaction vertices

to take in to account the finite sizes of hadrons. This model has been used to evaluate

the cross sections for a number of reactions involving charmed hadrons production,

such as J/ψ absorption by nucleon, charmed hadron production in meson-nucleon

and proton-proton reactions, and photoproduction of charmed hadrons from protons.

The cross section for charmonium absorption by nucleon is found to be about 5

mb, which is consistent with that extracted from J/ψ production in photo-nucleus

and proton-nucleus reactions and comparable with other theoretical approaches or

models. The cross sections for charmed hadron production are about a few hundred

µb in meson-nucleon reactions and about 1µb in proton-proton reactions at center-

of-mass energy of 11.5 GeV. The latter is comparable to available experimental data.

Including photon as a U(1) gauge particle, the effective Lagrangian has been used to

evaluate the cross section for charmed hadron photoproduction on protons, and its

value is about 70 nb at center-of-mass energy of 5.7 GeV with two-body final states

constituting about 33% of the total cross section as in experimental data. Knowledge

on the cross sections for charmonium absorption and charmed hadron production are

useful for understanding the mechanism of observed charmonium suppression and for

studying charm production in relativistic heavy ion collisions.
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Although an effective Lagrangian similar to ours can be obtained from an SU(4)

chiral Lagrangian, our effective Lagrangian violates chiral symmetry due to the terms

with derivative operator acting on heavy meson fields instead of the pion field. Also,

the heavy quark symmetry reflected in the approximately degenerate masses of pseu-

doscalar (D, B) and vector (B, B∗) heavy mesons has been shown to be useful for

studying the decays of heavy hadrons and their interactions [61]. It will be of interest

to improve our effective Lagrangian approach by including both the chiral symmetry

and the heavy quark symmetry.

The effective Lagrangians used in our dissertation can be extended to study

the production of exotic pentaquark baryons, which have recently attracted much

attention as a result of the experimental discovery of the Θ+(1540) particle from the

invariant mass spectrum of K+n or K0p in nuclear reactions induced by photons

[62, 63] or kaons [64]. The extracted mass of about 1.54 GeV and width of less

than 21-25 MeV are consistent with those of the pentaquark baryon Θ+ consisting of

uudds̄ quarks predicted in the chiral soliton model [65]. Its existence has also been

verified recently in the constituent quark model [66, 67] and the QCD sum rules [68].

Although the spin and isospin of Θ+ are predicted to be 1/2 and 0, respectively, those

of the one detected in experiments are not yet determined. Studies have therefore

been carried out to predict its decay branching ratios based on different assignments of

its spin and isospin [69, 70]. Including the coupling of Θ+ with both KN and K∗N in

our effective Lagrangians, one can then evaluate the cross sections for the production

of exotic pentaquark Θ+ and/or other exotic pentaquark baryons Ξ+
5 (uussd̄)and

Ξ−−
5 (ddssū) in reactions induced by photons [71, 72, 73], nucleons, pions, and kaons

[74] on nucleon targets. One can also determine their yield in relativistic heavy

ion collisions by taking into account their production from the initial quark-gluon

plasma and the effects due to subsequent hadronic absorption and regeneration [75].
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These studies will be useful in understanding not only the production mechanism of

pentaquark baryons but also their properties. They may also provide the possibility

of understanding the dynamics of hadronization of the quark-gluon plasma.
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APPENDIX A

VECTOR MESON DOMINANCE MODEL

For some coupling constants in our effective Lagrangians, their values can be

determined from the Vector Meson Dominance (VMD) model. In this model, the

virtual photon in the process e−D+ → e−D+ is coupled to vector mesons ρ, ω, and

J/ψ, which are then coupled to the charmed meson. At zero momentum transfer, the

following relation holds:

∑

V =ρ,ω,ψ

γV gV D+D−

m2
V

= e. (A.1)

In the above, γV is the photon-vector-meson mixing amplitude and can be de-

termined from the vector meson partial decay width to e+e−, i.e.,

ΓV ee =
αγ2

V

3m3
V

, (A.2)

with the fine structure constant α = e2/4π. The relative signs of γV ’s can be deter-

mined from the hadronic electromagnetic current expressed in terms of quark currents

[76]. Since the virtual photon sees the charge of charm quark in the charmed meson

through the ψDD coupling, we have the following relations:

γψgψD+D−

m2
ψ

=
2

3
e,

γρgρD+D−

m2
ρ

+
γωgωD+D−

m2
ω

=
1

3
e. (A.3)

Similarly, one has, from the process e−D0 → e−D0,

γψgψD0D̄0

m2
ψ

=
2

3
e,

γρgρD0D̄0

m2
ρ

+
γωgωD0D̄0

m2
ω

= −2

3
e. (A.4)

Using gρD+D− = −gρD0D̄0 = gρDD, gωD+D− = gωD0D̄0 = gωDD, and gψD+D− =
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gψD0D̄0 = gψDD from isospin symmetry, we then have

γψgψDD

m2
ψ

=
2

3
e,

γρgρDD

m2
ρ

+
γωgωDD

m2
ω

=
1

3
e, − γρgρDD

m2
ρ

+
γωgωDD

m2
ω

= −2

3
e. (A.5)

¿From the above equations, we obtain the following coupling constants:

gρDD = 2.52 , gωDD = −2.84 , gψDD = 7.64 . (A.6)

We note that in Ref.[20] the same VMD relations for gρDD and gψDD as our Eq. (A.5)

are used but slightly different values, i.e., gρDD = 2.8 and gψDD = 7.7, are obtained.

Equations similar to Eq. (A.5) can be written for kaons and pions in order to

obtain gV KK and gV ππ. The resulting coupling constants, multiplied by the corre-

sponding prefactors in the following SU(4) relations, are given in the parentheses for

comparison:

gρππ(5.04) = 2gρKK(5.04) = 2gρDD(5.04) =

√
6

2
gψDD(9.36) . (A.7)

We note that |gρππ| is 6.06 if it is determined from the ρ meson decay width to two

pions. It is seen that the predicted values differ only slightly from the above SU(4)

relation except the coupling constant gψDD. This may indicate a sizable uncertainty

in the ψDD coupling.
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APPENDIX B

CHIRAL SYMMETRY CONSTRAINT

In this appendix, we give an example on how the chiral symmetry constraint

is fulfilled in the process γp → D∗−D+p. For diagrams (3a)-(3c) in Fig.21, their

amplitudes are

M3a = egπDD∗(−2k1 + k3)
µ 1

t − m2
D

(k1 − k3 + k4)
νε3µε2ν ,

M3b = −egπDD∗(−k1 − k4)
α 1

u − m2
D∗

[

gαβ − (k1 − k4)α(k1 − k4)β

m2
D∗

]

× [(−k2 − k3)
βgµν + (−k1 + k2 + k4)

νgβµ(k1 + k3 − k4)
µgβν ]ε3µε2ν ,

M3c = egπDD∗gµνε3µε2ν . (B.1)

In soft pion limit, i.e., kµ
1 = 0, we have

M3a = egπDD∗(−2k1)
µ 1

t − m2
D

(k1 + k4)
νε3µε2ν = 0,

M3b = egπDD∗kα
4

1

u − m2
D∗

[

gαβ − (k1 − k4)α(k1 − k)4β

m2
D∗

]

× [(−k2 − k3)
βgµν + kν

4g
βµ − kµ

4 gβν ]ε3µε2ν ,

= −egπDD∗

1

u − m2
D∗

[(k4 − k1)β − (k4 − k1)
2(k4 − k1)β

m2
D∗

]

× (k2 + k3)
βgµνε3µε2ν

= egπDD∗

(k4 − k1)β(k2 + k3)
β

m2
D∗

gµνε3µε2ν

= egπDD∗

m2
2 − m2

3

m2
D∗

gµνε3µε2ν = −egπDD∗gµνε3µε2ν

M3c = egπDD∗gµνε3µε2ν . (B.2)

It is thus easy to see that M3a + M3b + M3c = 0 in the chiral limit although the

Lagrangian LπDD∗ we used in calculation violates chiral symmetry due to the term

coupled to non-gradient pion field.
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APPENDIX C

CHIRAL SYMMETRY

The SU(4) flavor symmetric effective Lagrangian in our model contains terms

with nongradient pion couplings that violate chiral symmetry as first pointed out in

Ref.[49]. This can be seen as follows.

For the πDD∗ coupling, we have two alternative forms, i.e.,

L(I)
πDD∗ =

i

2
gπDD∗

[(

D̄~τD∗µ − D̄∗µ~τD
)

· ∂µ~π

−
(

∂µD̄~τD∗µ − D̄∗µ~τ∂µD
)

· ~π
]

, (C.1)

and

L(II)
πDD∗ = igπDD∗

(

D̄~τD∗µ − D̄∗µ~τD
)

· ∂µ~π , (C.2)

with the first one violating chiral symmetry. The Lagrangians in Eqs. (C.1) and (C.2)

can be related by performing an integration by parts in the last term in Eq.(C.1), i.e.,

L(I)
πDD∗ = L(II)

πDD∗ +
i

2
gπDD∗

(

D̄~τ∂µD
∗µ − ∂µD̄∗µ~τD

)

· ~π . (C.3)

The above result indicates that the two forms of the πDD∗ coupling would be equiv-

alent if the condition ∂µD
∗µ = ∂µD̄

∗µ = 0 holds, which is the case for on-mass shell

vector mesons. However, this condition is not valid in the presence of interactions, and

hence that Eqs. (C.1) and (C.2) correspond to different dynamical hypotheses. The

difference can, however, be absorbed by an effective contact term that is proportional

to gπDD∗gφD∗D∗(m2
φ/m

2
D∗ − 1) and vanishes in the SU(4) limit.
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APPENDIX D

LEADING-ORDER PQCD CROSS SECTION FOR γP → CC̄

In this appendix, we give the details on the evaluation of the cross section for

the reaction γp → cc̄ in the leading-order perturbation QCD approach.

Based on the field equation

(∂2
t −∇2)Aµ(x) = Qce(c̄γµc), (D.1)

the cross section for photoproton production of charm quarks can be written as

σγN(ν) ≡ σtot(γ + p → cc̄) =
1

2ν
ImTi,i, (D.2)

where ν = pp · pγ and

Ti,i = (Qce)
2 1

2

∑

pol

ǫµ(λ)Πµνǫ
ν(λ) = −(Qce)

2

2
Πµ

µ, (D.3)

Πµ
µ = i

∫

d4xeiqx〈p|T [c̄(x)γµc(x)c̄(0)γµc(0)]|p〉. (D.4)

Evaluating the current-current correlation function Πµ
µ in above equation using

the operator product expansion (OPE), i.e.,

Πµ
µ(p, q) =

∑

CnAnν
n + Higher dim. op, (D.5)

leads to the dispersion relation

∫ ∞

ν0

dν

νn
σγN(ν) = I(n)An, (D.6)

with ν0 = 1
2
((mD + mΛc

)2 − m2
N) and I(n) = −(Qce)

2πCn/4.

In Eq.(D.5), C ′
ns are the Wilson coefficients and A′

ns are the matrix elements
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defined by

in−2〈p|F a
αµ1

Dµ2
· · ·F a

µnα|p〉 = (pµ1
pµ2

· · · − Trace terms)An, (D.7)

with F a
µν denoting the gluon field strength tensor. The An can be expressed in terms

of the gluon distribution function inside the nucleon G(x,Q2
eff), i.e.,

An = 2
∫ dx

x
xnG(x,Q2

eff ). (D.8)

The Wilson coefficients can be determined by considering the process γg → cc̄.

In this case, |p〉 in Eq.(D.7) is replaced by a gluon state with momentum q and color

a, i.e., |g(q), a〉. This leads to An = 2 and the following relation between the Wilson

coefficients and the cross section for the reaction γg → cc̄:

I(n) =
1

2

∫ ∞

νg

dν

νn
σγg(ν), (D.9)

with νg = 2m2. The cross section σγg(ν) can be calculated in pQCD as given in

Eq.(5.15).

In terms of the Mellin and inverse Mellin transformations

F̄ (n) =
∫ 1

0

dx

x
xnF (x),

F (x) =
1

2πi

∫ a+i∞

a−i∞
dnF̄ (n)x−n, (D.10)

one can further derive the generalized convolution relations

F̄ (n) = rnḠ(n)H̄(n)

F (x) =
∫ 1

x/r

dz

z
G

(

x

rz

)

H(z). (D.11)

This can be shown as follows:

F (x) =
1

2πi

∫ a+i∞

a−i∞
F̄ (n)x−ndn
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=
1

2πi

∫ a+i∞

a−i∞
dnx−n

∫ 1

0

dy

y
ynG(y)

∫ 1

0

dz

z
znH(z)

=
1

2πi

∫ a+i∞

a−i∞
dn

∫ 1

0
dy

∫ 1

0
dz

(

yz

x

)n 1

zy
G(y)H(z)

=
1

2π

∫ ∞

−∞
db

∫ 1

0
dy

∫ 1

0
dz

(

yz

x

)a 1

zy
exp

[

ibln
(

yz

x

)]

G(y)H(z)

=
∫ 1

0
dy

∫ 1

0
dz

1

z
δ

(

y − x

z

)

G(y)H(z)

=
∫ 1

0
dz

1

z
G

(

x

z

)

H(z)

=
∫ 1

x
dz

1

z
G

(

x

z

)

H(z). (D.12)

In the above, we have used the following relations: n = a+ ib, δ
[

ln
(

yz
z

)]

= yδ(y− x
z
),

and 0 < y = x
z

< 1.

Let ν = ν0/y and νg/z on the left and right hand sides of Eq.(D.6), respectively,

we then have

1

νn−1
0

∫ 1

0
dyyn−2σγN

(

ν0

y

)

=
1

νn−1
g

∫ 1

0
dzzn−2σγg

(

νg

z

) ∫ 1

0

dx

x
xnG(x).(D.13)

Changing n − 1 to n gives

∫ 1

0
dyyn−1σγN

(

ν0

y

)

=

(

ν0

νg

)n
∫ 1

0
dzzn−1σγg

(

νg

z

) ∫ 1

0

dx

x
xn+1G(x). (D.14)

Applying Eq.(D.11), we have

σγN

(

ν0

y

)

=
∫ 1

yνg/ν0

dx

x
σγg

(

ν0x

y

)

G(x)x, (D.15)

which can be rewritten as

σγN(ν) =
∫ 1

νg/ν
dxσγg(νx)G(x). (D.16)

Finally, setting νg = 2m2
c and we get

σγN(ν) =
∫ 1

2m2
c
/ν

dxσγg(νx)G(x). (D.17)
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