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ABSTRACT

Charmonium Absorption and Charmed Hadron Production in Hadronic Reactions.
(December 2004)
Wei Liu, B.E., Tongji University;
M.S., Peking University

Chair of Advisory Committee: Dr. Che-Ming Ko

A gauged SU(4) flavor symmetric hadronic Lagrangian with empirical hadron
masses is constructed to study charmonium absorption and charmed hadron produc-
tion in hadronic reactions. For the coupling constants, empirical values are used if
available. Otherwise, they are determined from known coupling constants using the
SU(4) relations. To take into account the finite sizes of hadrons, form factors are
introduced at strong interaction vertices with empirical cutoff parameters. For J/1)
absorption by nucleons, we have included both two- and three-body final states and
find that with a cutoff parameter of 1 GeV at interaction vertices involving charm
hadrons, the cross section is at most 5 mb and is consistent with that extracted from
J /1 production from both photo- and proton-nucleus reactions. We have also eval-
uated the cross sections for charmed hadron production from pion and rho meson
interactions with nucleons. With the same cutoff parameter of 1 GeV at interaction
vertices, we find that these cross sections have values of a few tenths of mb and are
dominated by the s-channel nucleon pole diagram. For charmed hadron production
from proton-proton reactions, their cross sections including both two- and three-body
final states are about 1 ub at center-of-mass energy of 11.5 GeV, which is comparable
to the measured inclusive cross section in these reactions. Including photon as a U(1)

gauge particle, we have extended the model to study charmed hadron production in
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photon-proton reactions with both two- and three-body final states included. For
form factors, an overall one is introduced in each process in order to maintain the
gauge invariance of the total amplitude. Fitting the cutoff parameter in the form
factor to the measured total cross section for charmed hadron production in photon-
proton reactions at a center-of-mass energy of 6 GeV, the ratio of the cross sections
for two-body and three-body final states is consistent with available experimental
data. This result is further compared with predictions from the leading-order pertur-
bative QCD calculation. Knowledge of the cross sections for charmonium absorption
by hadrons and for charmed hadron production in hadronic reactions is essential for
understanding charm production in heavy ion collisions at the Relativistic Heavy Ion
Collider (RHIC), where a quark-gluon plasma is expected to be formed during the

initial hot dense stage.
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CHAPTER I

INTRODUCTION
Collisions between energetic nuclei from the Relativistic Heavy Ion Collider (RHIC)
at the Brookhaven National Laboratory make it possible to create in the laboratory a
hot dense matter that consists of the constituent quarks and gluons inside nucleons.
This so-called quark-gluon plasma (QGP) is believed to have existed during the first
microsecond after the Big Bang. One of the proposed signatures for the quark-gluon
plasma is the suppression of the yield of .J/1, which is a charm-anticharm quark bound
state, resulting from Debye screening of the color force in the quark-gluon plasma
[1]. Extensive experimental and theoretical efforts have been devoted to study this
phenomenon at the Super Proton Synchrotron (SPS) at the European Laboratory
for Particle Physics (CERN) [2, 3, 4, 5, 6]. However, available experimental data on
J/1 suppression in colliding systems ranging from pA to S+U are consistent with
the scenario that charmoniums are absorbed by target and projectile nucleons with
a cross section of about 7 mb [5]. Only in data from Pb+PDb collisions at P, = 158
GeV/c in the NA50O experiment is there a large additional J/1 suppression in events
with high transverse energies, which requires the introduction of other absorption
mechanisms. While there are suggestions that this anomalous suppression may be
due to the formation of QGP [7, 8], other more conventional mechanisms based on J/1)
absorption by comoving hadrons have also been proposed as a possible explanation
[9, 10]. Since the latter depends on the values of J/¢) absorption cross sections by
hadrons, which are not known empirically, it is important to have a better knowledge

of the interactions between charmonium states and hadrons in order to understand

The journal model is Physical Review C.



the nature of the observed anomalous charmonium suppression.

Knowledge of J/1 absorption cross sections by hadrons is also useful in estimat-
ing the contribution of J/¢ production from charmed mesons in the hadronic matter
formed in relativistic heavy ion collisions. Since the charmed meson to J/v ratio in
proton-proton collisions increases with energy, it has been shown that .J/v production
from the hadronic matter may not be negligible in heavy ion collisions at the Large
Hadronic Collider energies [11, 12]. To use .J/v suppression as a signature for the
formation of QGP in these collisions thus requires the understanding of both J/1)
absorption and production in hadronic matter.

Another signature suggested for the formation of QGP is enhanced production
of dileptons in the intermediate mass region (1.5 GeV< M, < 3 GeV) from quark-
antiquark annihilation and quark-gluon interactions [13]. These dileptons are well
above the masses of light vector mesons (p, w, and ¢), so that contributions from low
energy hadronic processes like 77 annihilation are sufficiently suppressed. They are
also below the mass of J/1 resonance, so that contributions from hard processes like
the Drell-Yan annihilation, which prevail in the high energy region (M> 4 GeV), in-
crease rather slowly toward smaller masses. Intermediate mass dilepton spectra have
been measured in central heavy ion collisions at SPS energy in the dimuon chan-
nel [14], and their yield were 2~3 times more than that based on the extrapolation
of known sources from proton-induced collisions, given by primordial Drell-Yan an-
nihilation as well as semileptonic decays of associated produced D, D mesons. To
conclude that this enhancement is exclusively related to the QGP effects, it is, how-
ever, important to understand other possible mechanisms that can contribute to the
production of intermediate mass dileptons, such as enhanced production of c¢ pairs,
rescattering of D meson in hot/dense matter [15] which might generate a transverse

momentum broadening to increase the u™p~ phase space, and enhancement of D



meson production from secondary mN interactions in the hadronic matter [16].
Various approaches have been used in evaluating the cross section for charmo-
nium absorption by hadrons. In one approach, the quark-exchange model has been
used. An earlier study based on this model by Martins, Blaschke, and Quack [17] has
shown that the .J/1 absorption cross section oy by pions has a peak value of about 7
mb at Eyiy, = /S —my —my ~ 0.8 GeV, but a more recent study by Wong, Swanson,
and Barnes [18] gives a peak value of only o, ~ 1 mb at the same Ey;, region. In the
perturbative QCD approach, Kharzeev and Satz [19] have studied the dissociation
of charmonium bound states by energetic gluons inside hadrons. They have pre-
dicted that the dissociation cross section increases monotonously with Fy;, and has
a value of only about 0.1 mb around Fy;, ~ 0.8 GeV. In the third approach, meson-
exchange models based on hadronic effective Lagrangians have been used. With only
pseudoscalar-pseudoscalar-vector-meson couplings (PPV couplings), Matinyan and
Miiller [20] have found o,y =~ 0.3 mb at Ey;, = 0.8 GeV. In a later study, Haglin [21]
has included also the three-vector-meson couplings (VVV couplings) and four-point
couplings (or contact terms), and obtained much larger values of J/i¢ absorption
cross sections. A similar magnitude for the .J/¢ — 7 absorption cross section has also
been obtained in the QCD sum rules [22]. Large discrepancies in the magnitude of
ory (as well as 0,,) thus exist among the predictions from these three approaches,
and further theoretical studies are needed. In another effective Lagrangian approach
study [23], a meson-exchange model as in Ref. [21] has been used but the VVV and
four-point couplings in the effective Lagrangian are treated differently and also the
effect of form factors at interaction vertices has been taken into account. It is then
found that the J/1¢ absorption cross sections remain appreciable after including form
factors at the interaction vertices. The values for o,y and o0, are roughly 7 mb and

3 mb, respectively, and are comparable to those used in phenomenological studies of



J /1 absorption by comoving hadrons in relativistic heavy ion collisions [9, 10, 24].

Since the cross sections for J/1 absorption by pion and rho meson cannot be
directly measured, it is useful to find the empirical information which can constrain
their values. One such constraint is the cross section for J/v absorption by nucleon,
as this process can be viewed as J/v absorption by the virtual pion and rho meson
cloud of the nucleon. From .J/i production in photo-nucleus reactions, the cross
section of J/1 absorption by nucleon can be extracted, and its magnitude has been
found to be about 4 mb [25]. The J/¢¥ — N absorption cross section has also been
extracted from proton-nucleus collisions at proton energies from 200 to 800 GeV,
and the empirical value is about 7 mb [5]. In this dissertation, we use an effective
Lagrangian to evaluate the J/1 absorption cross section by nucleon and find that its
magnitude is consistent with these empirical information.

Because of their large masses, open charm mesons are expected to be mostly
produced in the initial preequilibrium stage of relativistic heavy ion collisions. They
have thus been suggested as possible probes of the initial dynamics in these collisions.
Previous studies have been concentrated on the production of charm quarks from the
preequilibrium partonic matter [26, 27]. In these studies, it has been found that charm
quark production is sensitive to not only the rapidity and space correlations of initial
minijet partons but also their energy loss in the dense partonic matter. For charmed
meson production from nonpartonic matter, the only study is the one [16] based on the
Hadron-String Dynamics (HSD) [28] using hadronic cross sections obtained from the
Quark-Gluon String Model (QGSM) [29]. Allowing scatterings between the leading
quark and diquark in a baryonic string with the quark and antiquark in a mesonic
string and taking their cross sections to be the same as in meson-baryon scatterings,
this study shows that charm production is appreciable even with a small cross section

of a few ub as predicted by the QGSM. The factor of two enhancement obtained in



this study for charmed mesons over that produced from the primary nucleon-nucleon
collisions offers a possible explanation for the observed enhancement of intermediate
mass dileptons seen in heavy ion collisions at SPS [30].

The QGSM model treats charmed meson production from pion-nucleon scatter-
ing as a process involving the exchange of the vector charm meson Regge trajectory
in t-channel. Contributions from the s and u channels are neglected. Although the u
channel is expected to be small as it involves nonplanar diagrams, which are known
to be negligible in the large N, limit, the s channel contribution may not be small
because of the planarity of associated diagrams. To study the relative importance of
the s, t, and u channel contributions to charmed meson production in pion-nucleon
scattering, we shall use the effective hadronic Lagrangian based on the flavor SU(4)
symmetry but with empirical hadron masses. We find that the magnitude of the
cross section for charmed meson production from pion-nucleon scattering depends
sensitively on the value of the cutoff parameter at interaction vertices. Using a cut-
off parameter of 1 GeV as used previously in studying J/¢ absorption [23, 31| and
charmed meson scattering [32, 33], we find that the ¢ channel process involving vector
charmed meson exchange indeed gives a small cross section as in QGSM and the u
channel contribution is negligible. The contribution from the s channel is, however,
appreciable, leading to a few tenth of mb for the production cross section of charmed
meson from pion-nucleon scattering. Furthermore, the model allows us to study the
cross section for charm production from the interaction of nucleons with rho mesons,
which are abundant in the initial stage of the hadronic matter in heavy ion collisions
and also have a lower threshold for charmed meson production.

To test our model we also use the same hadronic Lagrangian to evaluate charmed
hadron production from proton-proton collisions. Motivated by future experiments

at proposed accelerator facility at the German Heavy Ion Research Center [34], there



are already studies on these reactions based on the meson-exchange model [35, 36].
However, effects due to off-shellness of exchanged mesons have been neglected in these
studies. As in our studies of J/1 absorption by nucleon [31] and photoproduction of
J/v on nucleons [37], we do not make the on-shell approximation in evaluating the
charmed meson production cross section from proton-proton collisions.

We further generalize the effective hadronic Lagrangian to include the photon and
to study charmed hadron production from photon-proton reactions near threshold.
Both two-body (DA., D*A.) and three-body (DDN, DD*N, D*DN, D*D*N) final
states are included. To take into account finite hadron sizes without violating the
gauge invariance, the total amplitude of each process is multiplied by an overall form
factor of monopole form. With cutoff parameter in the form factor adjusted to fit
the measured total cross section for charmed hadron production from photon-proton
reactions at center-of-mass energy of 6 GeV [38], we find that the relative contribution
of two-body to three-body final states is consistent with that seen in experimental
data. We have also made predictions for charmed hadron production cross section
from photon-proton reactions both near threshold and at high energies. As expected,
two-body final states dominate near threshold while three-body final states become
important at high energies. However, the total cross sections at high energies are
much smaller than those measured experimentally or given by the LO perturbative
QCD as more complicated final states are not included in the hadronic approach.

Our results provide an independent test and confirmation of the usefulness of
hadronic models for determining the production and scattering cross sections of
charmed hadrons at low energies. The effective hadronic Lagrangian used in the
present study will be useful for evaluating the cross sections for other reactions in-
volving heavy flavored hadrons. These reactions can be studied at both the Japanese

Hadron facility [39] and at the GSI future accelerator [34], where both open and hid-



den charmed hadrons can be copiously produced in proton- and antiproton-nucleus
reactions near threshold.

The dissertation is arranged as follows. The effective hadronic Lagrangian is
presented and discussed in Chapter II, which also includes a brief discussion on the
form factors that will be used in the following chapters. In Chapter III, we evaluate
the cross section for J/1 absorption by nucleons, which is relevant to J/1 suppression
in relativistic heavy ion collisions. The cross sections for open charm production
from secondary scatterings, i.e., meson-nucleon and nucleon-nucleon collisions, are
evaluated in Chapter IV . The results on charm photoproduction on nucleons are

given in Charter V. Finally, the summary and conclusion are presented in Chapter

VL



CHAPTER II

EFFECTIVE LAGRANGIAN
Since it is still difficult to study strong interaction phenomena at non-perturbative
regime using the QCD, effective theories are usually employed. In this chapter, we
introduce an effective Lagrangian that is based on the SU(4) flavor symmetry. To
take into account the symmetry breaking effects, we use empirical hadrons masses
and coupling constants if they are available. Otherwise, they are determined from
the known ones using the SU(4) relations. We also introduce form factors at the
strong interaction vertices to take take into account the effect due to final hadron
sizes. To include the electromagnetic interaction, photon is introduced into the ef-
fective Lagrangian as a U(1) gauge particle. In the following, we first start from the
more familiar SU(3)invariant effective Lagrangian for hadronic interactions involving

hadrons that are made of light u, d, and strange s quarks.

A. Effective Lagrangian with SU(3) flavor symmetry

In the case of SU(3) flavor symmetry, the hadronic Lagrangian for octet pseudoscalar

mesons and baryons can be written as

Lz = iTr(BPB) +Tr[(9,P)(0"Ph)

+g'Trlap(BysB + BysB)P + (1 — ap)P(BysB — BysB)],  (2.1)



where P and B denote, respectively, the 3 x 3 matrix representation of pseudoscalar

meson and baryons

0, A +
ntvw = b
B = > —%—F% n ’ (22)
=— = 2
= = -2
™ n + T
) nts T K
P — ﬁ T _%4_% KO . (23)
K- K —\/3n

In Eq.(2.1), ¢’ is the universal pseudoscalar coupling between pseudoscalar mesons
and baryons, and the parameter ap is given by D/(D 4+ F) with D and F denot-
ing, respectively, the coupling constants for the D-type Tr({B, B}P) and F-type
Tr([B, B]P) interaction Lagrangians.

Vector mesons are introduced to the hadronic model by treating them as gauge
particles, i.e., replacing the partial derivative 0, in Eq.(2.1) with the covariant deriva-

tive

9V, 1, (2.4)

0 w *
wtw oo KT
1
V = 7§ P —\p/—oi—i-% K* > (25)
K*= K*0 20

and ¢ is the universal coupling between vector mesons with baryons and pseudoscalar

mesons.
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Expanding the above interaction Lagrangian using the explicit representations

of P, V, and B, we obtain the following 7NN and p/N N interaction Lagrangians:

L.ny = —igannNyTN -7,

/CpNN = gpNNNWMFN-p_’, (26)

In the above, T is the Pauli matrices; NV, 7, and p denote, respectively, the nucleon
isospin doublet, pion and rho meson isospin triplets. The coupling constants g,nn

and g,nn are given by

1 / 3 - QOCD
NN = , =2 d = ———g.NN- 2.7
grNN 20@9 9pNN andgg NA \/§ gzNN ( )

>l

From the empirical values g.yn = 13.5, g,nn = 3.25 and ap = D/(D + F) = 0.64
[40], we obtain ¢’ = 17.28 and g = 13.0. Other coupling constants can then be related

to these two through the SU(3) relations.

B. Effective Lagrangian with SU(4) flavor symmetry

The above SU(3) effective Lagrangian can be generalized to SU(4) in order to include
hadrons consisting of the charm quark. In this case, both the 15-plet pseudoscalar
mesons and 15-plet vector mesons can be expressed by by 4 x 4 matrix, and their
interaction Lagrangians can still be written in forms similar to those in the SU(3) case.
This is, however, different for the interaction Lagrangian of the 20-plet baryons with
either pseudoscalar or vector mesons as they cannot be expressed in simple matrix
form. Instead, we use the tensor notation to express the meson-baryon interaction

Lagrangians.



1. Meson-meson interactions

11

The free Lagrangian for pseudoscalar and vector mesons in the limit of SU(4) invari-

ance can be written as

Lo=Tr (8HPT aﬂp) — %Tr (FL,F“”) :

(2.8)

where F,, = 9,V, —0,V,, and P and V denote, respectively, the properly normalized

4 x 4 pseudoscalar and vector meson matrices in SU(4) [23]:

Sl

Sl

K+
KO
2 c
o+
DT

S

K+
K*O
2 I/
—/3 +
D+

DO
D-
Dy

_ 31
V12

1)_*0
D*~
D~

_3J/Y
V12

(2.9)

To obtain the couplings between pseudoscalar mesons and vector mesons, we

introduce the minimal substitution

9,P — D,P=0,P— % V,.P]

Fo — @VV—&,VH—%[V#,%],

as in the SU(3) case. The effective Lagrangian is then given by

L —

+ %gTr (omv* [VE VI + auvf v, vi) +

o v

Lo+ %gTr (onP [P Vif] + 0Pt [P, V,))

- e ([P pv)

92

(2.10)

S (v, v v vi]) 21
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The hermiticity of P and V' reduces this to

2

L = Lo+igTk("P[PV,]) - e (IP.V,])

+ igTr (8"V” [vu,vy])+%2Tr([v#,v,,]2) . (2.12)

Since the SU(4) symmetry is explicitly broken by hadron masses, terms involving

hadron masses are added to Eq.(2.12) using the experimentally determined values.
We note that similar interaction Lagrangians for meson-meson interactions were

obtained in [21] based on the SU(4) chiral Lagrangian with vector mesons introduced

through the covariant derivative.

2.  Meson-baryon interactions

In the SU(4) quark model, baryons belong to the 20-plet states. These states can be
conveniently expressed by tensors ¢, [41], where i, v, and A run from 1 to 4, that

satisfy the conditions

Gun T Goap + O =0, Dpur = Gupn. (2.13)

For baryons without charm quarks, i.e., belonging to SU(3) octet, they are given

p = G2, n=0¢p, A= \/g(¢321 — ¢312),

T = ¢us, E0:\/5%23 X7 = ¢oas,

(1]

O = fs, I = dun (2.14)

For baryons with one charm quark, they are

0
Ej—i_ = ¢114a Ej = ¢1247 Ec = ¢224a

- =0
Zj = Qi34 :CZ¢234>
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=7 = \/§(¢413—¢431)7 HO/ \/7(¢423—¢432)

A = \/§(¢421 — Gu12), Q0 = Pz (2.15)

For baryons with two charm quarks, they are

Eit = an, EL=ur, QL= dus. (2.16)

Mesons in the SU(4) quark model belong to the 15-plet. In the tensor nota-
tions, pseudoscalar and vector mesons are expressed by Pg and Vi, respectively. For

pseudoscalar mesons, we have

™ = P, =P, '=—(P -P}),
Kt = P, K°=P)
Dt = P}, D'’=PF), D =P, D’°=P

Df = P} D; =P,

1
= —(P!+ P?—2P}
77 \/6(1 )
1
n. = ——(P!+ P+ P} —3P}). (2.17)

V12

Similarly, we have for vector mesons

1
PO = ﬁ(
K*+ — ‘/137 K*O — ‘/'237 K*— — ‘/31’ K*O ‘/;} ,

P+ = Vf: p = ‘/217 ‘/11 - ‘/22)7

D*+ — ‘/:12’ D*O — ‘/;ng D*— — ‘/'24’ D*O _ ‘/14’
D*+ — ‘/:13’ D;k— _ ‘/34’

(Vi + V5 = 21),

I = (V- 8V, (2.18)
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In tensor notations, the SU(4) invariant interaction Lagrangians between baryons
and pseudoscalar mesons as well as between baryons and vector mesons can be writ-

ten, respectively, as

Lppp = gp(ad)*aw%f)f@bﬁw + bWQW%P5¢Bw),

EVBB = gv(cgb*aml’y ' Vaﬁgbmw + d¢*aMV7 : Vfgbﬂuu)? (219)

where g, and g, are the universal baryon-pseudoscalar-meson and baryon-vector-
meson coupling constants, and a, b, ¢, and d are constants.

Writing explicitly, we obtain the following interaction Lagrangians,

1 5 - 3V 6 _ _
Lpep = Gp l (CL—b>N75?-7?N\8/_(b—a)(N75KAN75DAC)+--- ,

VA

1 5\ ~ 3v6 - —
Lvep = G [\/5 (C - 4d) N%P“NY(d — ) (N KA+ N7y, D A)
V3

+ L <—c + §d> Ry Ay + - ] . (2.20)

From the previous subsection on the SU(3) effective Lagrangian, we have the
following relation between g.nyny and gxna coupling constants in the interaction La-

grangians ET{'NN = —igﬂNNN75?N -7 and »CKNA = ’igKNAN’75AKI

3 — 2CBD
_ ~grNN 2.21
JKNA = \/5 grNN ( )

where ap = D/(D + F) ~ 0.64 [40] is related to the D- and F-type couplings.

Comparisons with the SU(4) relations in Eq. (2.20) then gives

b_ 3=8ap (2.22)
a 6—10ap '

Similarly, the g,yn and gg-na coupling constants in the interaction Lagrangians



involving vector mesons, given by

\7 =g nd "i vV = —
L,ny = gNNNOHT -, + 5 L_oghv7. 0upy)N
my

and
LN = QK*NAN%AK*7

are related by

JK*NA = _\/ggpNN-

Comparing with the SU(4) relations in Eq. (2.20) then leads to

Using Eqs. (2.22) and (2.26) in Eq.(2.20), we then have

3— QOéD
9gDNA. = TQWNN,
gpNN
JpAAe = — :/6 . gD NAe = —V3g,nN-

3. The electromagnetic interaction

15

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

The electromagnetic interaction can be included in the effective Lagrangian by intro-

ducing the Ugy(1) gauge transformation, i.e.,
1
0A, = Eﬁue,
P = ie€l@, P,

1
oV, = ie[Q,VA#—;Q@He,

(2.28)

where A, is the Ugm(1) gauge field, e is the unit of electric charge, e(x) is the U(1)

gauge parameter, and the quark charge matrix @ = diag(%, —%,

-3, 2). The La-
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grangians for meson-meson Eq.(2.12) and meson-baryon Eq.(2.19) interactions then

vary under U(1) transformation according to

0L =0Lppv +0Lpypyv + 0Lyyy +0Lyvvy +0Lppe + 0LpBE, (2.29)
where

SLppy = iTr[(0"PP — P9"P)Q|0,e,

SLevey = —STr([PVP.Q)due,

Lyyy = iTr(0"V"[Q,V,|0ue) +iTr(0"V"[V,, Qlo€) + iTr(0"0"eQ[V,, Vo)),
Lvvvy = gTT([Qa%][VM>VV)au€7

6Lppy = PY*PIe. (2.30)

To ensure gauge invariance of the total Lagrangian, we need to add the following
additional interaction Lagrangians between the photon and the pseudoscalar as well

as the vector mesons:

ﬁ,ypp = —ieTr([c?“P, P]Q)Au,

Lovpv = FTr(PVHP.QDA,.

Lyvy = —ielr(0"V"[Q,V,|A,) —ielr(0"V"[V,,QJA,) — ielr(0"A"Q[V,, V.]),
'C’yVVV - _%TT<[QJ ‘/I/] [VM7 VU)A/“
5733 = —(i)’y‘uCI)A'u, (231)

C. Form factors

To take into account the finite size of hadrons, form factors need to be introduced at
the interaction vertices. In principle, form factors can be determined from the quark

wave functions of the interacting hadrons. In practice, they are parameterized in
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terms of the momentum of the off-shell particle at the interaction vertex. Although
form factors at interaction vertices involving only light hadrons have been used exten-
sively, very little is known about those involving charmonium and charmed hadrons.
In this dissertation, we shall use the common monopole type for the form factors at
both types of interaction vertices, and they will be discussed explicitly when they

appear in our calculations.
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CHAPTER III

J/1v» ABSORPTION BY NUCLEON*
Using the effective Lagrangian introduced in previous chapter, we have evaluated
the cross section for J/i¢ absorption by nucleon in a meson-exchange model that
includes not only pseudoscalar-pseudoscalar-vector-meson couplings but also three-
vector-meson and four-point contact couplings. The result will be compared with the
empirical one extracted from J/¢) production in photo-nucleus and proton-nucleus

reactions.

A. J/4 absorption by nucleon via pion and rho meson exchange

Possible processes for J/1¢ absorption by nucleon involving its virtual pion and rho
meson cloud are J/YN — D*DN(D*DN), J/YN — DDN, and J/¢)N — D*D*N,
as shown by the diagrams in Fig. 1. From the effective Lagrangians of Chapter II,
the interaction Lagrangian densities that are needed for evaluating their amplitudes

can be derived, and they are given by

LNy = —iQwNNN%?N'??,

_ oL K b .
Lony = gonnNOT - P+ Pt T up)N,
Qm]v

£7TDD* = ?:gﬂ-DD*D*M’F . (D@uff — auD’]_T') —|— H.C.,

EpDD = ingD(DFé?MD — GMDFD) . ﬁu,
L,pp+ = igpp+p+[(0,D™T _zt - D*”F(?MD;) -

+ (D7 Oup” — (9“D*”7_"~ ﬁl,)l_)*“ + D™(T - ﬁ"@uD* -7 8#5”[?;)],

*Reprinted with permission from “Cross section for charmonium absorption by nucle-

ons” by W. Liu, C. M. Ko, and Z. W. Lin, 2002. Physical Review C65, 015203 1-8. 2004
by Physical Review C. Available at http://link.aps.org/abstract/PRC/v65/e015203.
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N D D N D D N D D
Tt 6 Tt Tt
D*
N J g N J g N J
(19) (1b) (1c)
N D D N D D N D D
p D p p
D
N J N Jy
(2b) (20)
N D* D* N D* D*
p p
o
N Iy N J
(32 (3b) (30)

Fig. 1. J/4 absorption by nucleon via pion and rho meson exchanges.

Lypp = igyppy*[DI,D) — (8,D)D],
Lypp = igyp-p-[*(0,D* D} — D*9,Dy)
+ (94" Dy, —4"0,D;) D™ + D™ (4" 0,D;; — 04" Dy),
Lrypps = —geyop-¥*(D;7D + DTDY) - 7,
»prDD = gpzpDD@WDFD : ﬁu,
Loypp = Ypwp-p-(' D7Dy + ' Dy 7D} — 20, D7D} - j. (3.1)
As defined in Chapter II, 7 are Pauli spin matrices, and 7 and p, denote the pion and

rho meson isospin triplet, respectively,, while D = (D° DT) and D* = (D*°, D**)

denote the pseudoscalar and vector charmed meson doublets, respectively. The J/1)
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is denoted by 1 while N represents the nucleon.

For the coupling constants, we use the empirical values g.yy = 13.5 [42], g,nn =
3.25, and k, = 6.1 [43], and grpp~ = 4.4 [20]. From the vector dominance model, we
have g,pp = gpp+p = 2.52 and gypp = gyp+p+ = 7.64 [23], as shown in Appendix
A. For the four-point coupling constants, we relate their values to the three-point

coupling constants using the SU(4) relations [23], i.e.,

9nyDD* = YxDD*9y DD, YpyDD = 2ngDngD, 9ppD*D* = JpD*D*Gop D* D* - (3.2)

The amplitudes for the first two processes in Fig. 1 are given by

R 1
M, = —ZQWNNN(Z)?))’YE)N(M)W(MM + My + M),
i Ky 1
My = g,nvN(ps3) {’Y“ + ZMU "(p1 —P3>a} N(pl)t — m%
(1 = p3)u(Pr —D3)u | /1 10 v v
X [_Q#V + ,'I;LQ <M2a + 2b + M2c)7 (33)
)

where p; and p3 are the four momenta of the initial and final nucleons, respectively.
In the above, M,, My, and M, are the amplitudes for the subprocess m) — D*D
in the top three diagrams of Fig. 1, while M} . M3, and MJ. are the amplitudes for
the subprocesses piy — DD in the middle three diagrams. The amplitude for the
third process has a similar expression as that for the second process with My , M,
and MJ, replaced, respectively, by Mj, ., Mj,, and My, which are the amplitudes for
the subprocess p¥U — D*D* in the bottom three diagrams. Expressions for these
amplitudes can be found in Ref. [23].

The cross sections for these processes with three particles in the final state can
be expressed in terms of the off-shell cross sections of the subprocesses described by

the amplitudes M, M,, and Mj. Following the method of Ref. [44] for the reaction

NN — NAK, the spin and isospin averaged differential cross sections for the first
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two processes in Fig. 1 can be written as

doyN_ND*D ginn r— Flyn(t)
dtds; 16m2sp? il )(t _ m%)zamzHD p(s1,1),
doyn_.NpD 39onN F2yn (1)
dtdsy 32m2sp? Y o (t —m2)2 [ (14 r,)"( my)

4m2 —t)?
i( - 2 ) + 4(1 + KP)HP(ZLm?V - t)] Upl/}—)DD(Slu t)? (34)

+
2my;

and the differential cross section for J/¢)N — D*D*N is similar to that for J/¢N —
DDN with 0, pp(s1,t) replaced by 0,4 pp-(s1,1).

In the above, p; is the center-of-mass momentum of J/¢ and N, t is the squared
four momentum transfer, and s; and k are, respectively, the squared invariant mass
and center-of-mass momentum of 7 and J/1 in the process J/¥N — D*DN or p
and .J/1¢ in the processes J/YN — DDN and J/¢Y)N — D*D*N. We have also
introduced form factors Frny and F,yn at the TN N and pNN vertices, respectively.

As in Ref.[44], both are taken to have the monopole form, i.e.,

A2 —m?

Al ="

(3.5)

where m is the mass of exchanged pion or rho meson, and A is a cutoff parameter.
Following Refs.[42, 43], we take A;yy = 1.3 GeV and A,yy = 1.4 GeV.

The cross sections 0., p-p(s1,t), 0p—pp(s1,t), and o, p-p-(s1,t) are the
spin and isospin averaged differential cross sections for the subprocesses mi) — D*D,
ot — DD, and p¥ — D*D* with off-shell pion or rho meson. Explicit expressions
for these cross sections can be obtained from Ref. [23] by replacing the square of pion
or tho meson masses by t. In evaluating these cross sections, we also introduce form

factors at the interaction vertices. Following Ref.[23], the form factors at three-point

t channel and u channel vertices, i.e., tDD*, pDD, pD*D*, v DD, and ¥ D*D* that
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involve heavy virtual charmed mesons, are taken to have the following form:

A2

Fy(q®) = At

(3.6)

instead of the monopole form of Eq. (3.5). In the above, q is the three momentum
transfer in the center-of-mass of ¢ and pion or rho meson.
The form factor at four-point vertices, i.e., Ty DD*, pp DD, and pyp D*D*, are

taken to be

A A3
_ 3.7
fa (A%+<q2>> <A§+<q2>>’ (3.7

where A; and Ay are the two different cutoff parameters at the three-point vertices
present in processes with the same initial and final particles, and < q? > is the
average value of the squared three momentum transfers in ¢ and u channels.

Using the same value of 1 GeV for cutoff parameters in the form factors involving
charmed mesons as in Refs. [23, 45], we have evaluated the cross sections for J/1)
absorption by nucleon, and they are shown in Fig. 2 as functions of total center-
of-mass energy. It is seen that all cross sections are less than 2 mb. Furthermore,
the cross section for J/YN — D*DN and J/1)N — D*DN (solid curve) due to
pion exchange is larger than those for J/¢)N — DDN (dashed curve) and J/¢N —
D*D*N (dotted curve) that are due to rho meson exchange.

Our result for 0;,,n_ppy is order-of-magnitude smaller than that of Ref. [46],
where this processes is viewed as the elastic scattering of a nucleon with one of the
charmed mesons from the decay of J/v. The latter cross section is then assumed to
have a constant value of 20 mb. Compared to our approach, they have neglected both
the energy dependence and the off-shell effect of the subprocess involved in J/i¢) — N
absorption to three-body final state. Also contributing to this large difference in

the cross section is the value of cutoff parameter, 3.1 GeV in Ref.[46] versus 1 GeV
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2.0 ) T j 7 T T
| —— J/IyN-->D'DN or D DN
--------- J/yN-->DDN
1' i * _*
e JIYN-->D'D'N
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E 1o} _
o |
0.5+ ]
0.0 PLS i i ity S beoepo ]
4 5 6 7 8 9
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Fig. 2. Cross section for J/1 absorption by nucleon due to the virtual pion and rho

meson cloud of the nucleon as a function of center-of-mass energy.

used here, and the different momentum dependence, i.e., four momentum transfer in
Ref.[46] while three momentum transfer in the present study. We note that the more
important processes J/¥ — D*DN(D*DN) and J/¥ — D*D*N are not considered
in Ref.[46].

B. J/4 absorption by nucleon via charmed hadron exchange

Besides absorption by the virtual pion and rho meson cloud of a nucleon, J/v can also
be absorbed by the nucleon via charmed hadron exchange in the reaction J/¢)N —

DA, and J/¢)N — D*A, shown by the diagrams in Fig. 3. These processes involve
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N\ c D N\ c D
D /\c
N J N J
(4a) (4b)
N\ c D N\ c D
D" AW
N J N J
(5a) (5b)

Fig. 3. J/v absorption by nucleon via charmed hadron exchange.

the following interaction Lagrangians:

Lpnn, = igpna.(NvsAD + DAsN),
Lpny, = gp-na(NyAD* + D*A,N),

Loan. = Guaara AP, A, (3.8)

where A, denotes the charmed baryon, that resulting from the effective Lagrangian
of Chapter II. The coupling constants gpna., gp=na., and gya.a, can be related
to known coupling constants ¢g,ny and g,yny using the SU(4) symmetry shown in

Chapter II. Using ¢g,yny = 13.5 and g,nn = 3.25, we then have gpna, = 13.5,
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gp*nA, = —9.6, and gya.a, = —1.4.
The amplitudes for these processes are given by
My, = Mfa€2m My, = beﬁmy

M5a = MéZIEQM€4V7 M5b = M&V€2M€4y. (39)
with eg, and €4, being the polarization vectors of J/i and D*, respectively, and

—— i A(p3) Vs N (p1),

My, = 2igyppgDNA.
t_mD
;4 ma

My = igpna.guaaNe(p3)V' ——57N (p1),
X,
wo A a (pl - p3)a(p1 - p3)ﬁ
M, = —g9p-na.gup-D-Ne(P3)V N (P1) |Jap — -~
D*
1
X 205" — (p2 + pa) " + 204 g™,
t - mD*
uv A ug+ Ac v
ML = gpsna.geacaNe(p3)V' =——=7"N(p1). (3.10)
u—mj,

2 are the standard

In the above, ¢ = p; — p4, and s = (p; + p2)? and t = (p; — p3)
Mendelstam variables.
The spin and isospin averaged differential cross sections for these two-body pro-

cesses are then

do A 1
ON—DA, 9
dt  Gdmsp? [ Mia + M|,
dU N—D*A. ]-
TH T Gt Moo T Ml (3.11)

where | My, + My|* and |Ms, + Ms|? can be evaluated using the software package
FORM [47].

In evaluating the amplitudes, we have again introduces monopole form factors
of Eq. (3.6) at the vertices with the cutoff parameter A = 1 GeV. The resulting cross

sections for YN — DA, and N — D*A, are shown in Fig. 4 by the dashed and
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Fig. 4. Cross section for J/1 absorption by nucleon due to charmed hadron exchange

as a function of center-of-mass energy.

solid curves, respectively. Their values are seen to be less than 1 mb. Furthermore,
0 j/pN—Dn. 18 much larger than o,y pa, due to the three vector mesons coupling,
which has been shown to increase significantly the .J/¢ — 7 absorption cross section
as well [23].

In Ref. [46], only diagram (4a) in Fig. 3 has been studied, and the result there is
about a factor of 4 larger than our cross section for J/¢%N — DA., which includes also
diagram (4b). The larger cross section in Ref. [46] is again due to both a larger cutoft
parameter of 2 GeV versus 1 GeV used here and the use of four momentum instead
of three momentum transfer in the form factors. Our total J/1) — N absorption cross

section due to charmed hadron exchange is, however, larger as we have also included
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the more important processes shown by diagrams (5a) and (5b).
C. Anomalous parity interactions

A D A D*

C C

N J W N J Y
(6) (7)

Fig. 5. J/1 absorption by nucleon via charmed meson exchange through the anoma-

lous parity interactions.

There are also anomalous parity interactions of J/¢ with charmed mesons [45],

ie.,
Lypp = GyprDEapu (0°V°)[(0*D*)D + D(0"D*)], (3.12)

which not only introduces additional diagrams for the processes shown in Fig. 1 but
also leads to the reactions J/¢)N — DA, via D* exchange and J/¥N — D*A. via D
exchange shown by the diagrams in Fig. 5.

The amplitudes for the process J/YN — DA, and J/i)N — D*A,. are given by
M6 = Mé%m, M7 = M#V€2M€4,/, (313)

with €5, and €4, again being the polarization vectors of J/¢ and D*, respectively,
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and
% 1 prap A
Mg = —ng*DgD*NACt 2 " paa(p1 — p3)ple(ps) 1w N (p1),
D*
M;" = ing*DgDNAct m2 5“Vaﬁp2ap4ﬁ/_\c(p3)’75N(P1)- (3.14)
—mp

Because of the anomalous parity in the ¥ D* D vertex, the process J/WUN — DA,
via D* exchange does not interfere with the similar process via D exchange shown in
Fig. 3. The differential cross sections for the two anomalous processes in Fig. 5 are

given by similar expressions as Egs. (3.11) and (3.11) with

2 2
2 _ JeDeDIDNA 1 2 2 2 2 2 22
|Ms|” = D (= {4mw[2(mN +my )t —t° — (mx —my)]

+ 2(m}, —my)[(mg, +mi, —u)* — (s —my —my)’]

— [2(m3 + mi) — t](Qmi, + mic +mi —u—s)?
— t(mi, —my +s—u)’

— 2[(my —my,)? — t[dmit — (2m3, +my +m}, —u— 3)2]} : (3.15)

and

2 Q\QIJD*DQ%NAC 1
|M|* = D)

X [(md 4+ Mp. —t)* —mimp,.], (3.16)

)2 [(mN - mAc)2 - t]

where u = (p; — p4)*.

The coupling constant in the anomalous parity interaction has been determined
to be gypp- = 8.61 GeV~! from the radiative decay of D* to D using the vector
dominance model [45]. With a monopole form factor similar to Eq. (3.6) at the
D*NA. vertex and a cutoff parameter of 1 GeV, the cross sections for the reactions

J/YWN — DA, due to D* exchange and J/{)N — D*A, due to D exchange are shown
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0.15F

Fig. 6. Contribution of anomalous interactions to the cross section for J/1 absorption

by nucleon as a function of center-of-mass energy.

in Fig. 6. Their values are seen to be less than 0.15 mb, which is negligible compared
to the contributions from the normal interactions studied in A and B of this chapter.

We note that the two processes in Fig. 5 due to the anomalous interaction
have also been studied in Ref. [46]. Their coupling constant is related to ours by
g,/}DD*/mJ/w, where m /4 is the mass of J /1. Since they assume that g,pp+ = gypp =
7.64 based on an incorrect quotation from Ref. [23], the strength of the anomalous
coupling constant in their study is only 2.47 GeV~! and is about a factor of 3 smaller
than that used here. However, they have used a much larger value for gp«na, = —19
than that given by the SU(4) relation. As a result, their cross section for diagram (7)

in Fig. 5 should have a similar magnitude as ours while that of diagram (6) should be
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larger than our value. Because of the larger value of cutoff parameter of 2 GeV and
the use of four momentum transfer in the form factor, the results in Ref.[46] from the
anomalous interaction turn out to be order-of-magnitude larger than ours.

We have not included additional diagrams due to the anomalous parity inter-
actions in processes involving three-body final states shown in Fig. 1. As shown in
Ref. [45], the anomalous interaction is not important for J/¢¥ — p absorption and
increases the .J/¢ — 7 absorption cross section by only about 50%. Thus, inclusions
of processes will probably increase the J/1¢) — N absorption cross section calculated

here by less than 50%.

D. Total J/v absorption cross section by nucleon

The total J/1¢ absorption cross section by nucleon, obtained by adding the contri-
butions shown in Figs. 2 and 6 is given in Fig. 7. At low center-of-mass energies,
the cross section is dominated by the process J/¥N — D*A, while at high center-
of-mass energies, the processes J/1%N — D*DN and J/¥N — D*DN due to the
virtual pion cloud of the nucleon are most important. The total .J/v absorption cross
section is at most 5 mb and is consistent with that extracted from J/1 production

in photo-nucleus and proton-nucleus reactions.

E. Discussion

Our results are not much affected if we use the coupling constants gpya, ~ 6.7 — 7.9
and gp«na, ~ —7.5 determined from the QCD sum rules [48] instead from the SU(4)
symmetry. With these values, o,,x_pa, Will be even smaller while o _, 5+, Will be
about a factor of two larger than those shown in Fig. 4. In this case, the J/¢) — N

absorption cross section is only increased by about 1 mb. On the other hand, if the
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Fig. 7. Total cross section for .J /1) absorption by nucleon as a function of center-of-mass

energy.

cutoff parameter is taken to be A = 2 GeV at vertices involving charmed hadrons as
suggested by QCD sum rules [48], then the total J/¢» — N absorption cross section
increases to about 10 mb, which is about a factor of two larger than the empirical
value from J/1 production in photo-nucleus and proton-nucleus reactions. With this
cutoff parameter, the J/1)—m absorption cross section is also about 10 mb as shown in
Ref.[23]. Since the meson-exchange model is based on effective hadronic Lagrangians,
one can either fit the empirical J/i) — N absorption cross section by treating the
cutoff parameter as a phenomenological parameter, or use the cutoff parameter from
the QCD sum rules but with a different effective Lagrangian. In the former case, a

cutoff parameter of 1 GeV is required at the interaction vertices involving charmed
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hadrons in order to have the correct J/¢y absorption cross section. The meson-
exchange model of Ref.[23] then gives a J/¢ — 7 absorption cross section of about 3
mb, which is also consistent with that used in the comover model for .J/v suppression
in heavy ion collisions [9, 24]. In the latter case, one may follow the suggestion of
Ref.[49] to drop the nongradient pion couplings in the effective Lagrangians, as they
breaks the chiral SU(2) x SU(2) symmetry. As shown in Ref. [49], neglecting these
terms reduces the J/¢ — 7 absorption cross section by about a factor of two, leading
again to a J/i¢ — m absorption cross section similar to that in the comover model.
The J/1) — N absorption cross section obtained with such an effective Lagrangian is

expected to be reduced as well.
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CHAPTER IV

CHARMED HADRON PRODUCTION IN HADRONIC REACTIONS
The effective Lagrangian introduced in Chapter II also allows us to study charmed
hadron production in meson-nucleon and nucleon-nucleon reactions. These reactions

are relevant to charm production in relativistic heavy ion collisions at both SPS and

RHIC.

A. Charmed hadron production in meson-nucleon reactions*

D A D A D A
D I
T N T N T
(1a) (1b) (1c)
D A . D A D A .
D
)v’\l\
N N
P (2a) P (2b) P (2c)

Fig. 8. Charmed meson production from meson-nucleon scattering.

Possible processes for charmed meson production from meson-nucleon scattering
are TN — DA, and pN — DA, as shown by the diagrams in Fig. 8. For both
pion-nucleon and rho-nucleon reactions, there are ¢t channel charmed meson exchange

*Reprinted with permission from “Charm meson production from meson nucleon scat-

tering” by W. Liu and C. M. Ko, 2002. Physics Letter B533, 259-264. 2004 by Elsevier.
Available at doi:10.1016/S0370-2693(02)01661-1.
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diagrams, s channel nucleon pole diagrams, and w channel charmed baryon pole
diagrams.

Besides those interaction Lagrangians already given in Egs.(3.1) and (3.8), other
interaction Lagrangian densities that are relevant to these processes are given as

follows:

Losn — %j—mwgc, 0,7+ e,

£chAc = ngCAC/_XC’yMic ° ﬁu ‘I’ H.C.,

Lovs, = 12Nyt 50,0+ 7 S NoD). (A1)
D

The coupling constants in the above interaction Lagrangians are not known empiri-

cally, and we determine them according to the following SU(4) relations [31, 32]:

3 i 2 T e -
fona. Op JaNN | JeNN _ 745 Gey Y
mp \/g My Mx
Jrsehe _ 9D IDNA: L g 66 ey,
My V3 mp
fons. (2ap — 1>fDNAC =201 GeV™,
mp mp
2
IeZehe = T RIpNN = 3.75. 42)

In the above, fryn and fpya, are the pseudovector coupling constants in the inter-

action Lagragians

Loy = — Jann Nysy*7N - 9,7,
EDNAC = ffriVAc(N/y5/yHAcauD+auDAc’757MN) (43)
D

The frnn is related to the pseudoscalar coupling constant g,y in Eq.(3.1) by

m
NN = ——ganN > 1, 4.4
fannN 2mNg NN ( )
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where m, and my are the pion and nucleon masses, respectively.

The amplitudes for the two processes in Fig. 8 can be written as

M = My, + My + My,
My = (Mh, + Ml + Mi)e, (4.5)

where ¢, is the polarization vector of rho meson. The amplitudes Mi,, My, and M,

are for the top three diagrams in Fig. 8 and are given by

M, = _ngD*gD*NAc(Ti>aﬂ<p1 +p3)“ﬂc(p4)7”N(p2)
#[ . (pl _p3)u(p1 —p3)y]
t— sz* g#l/ m%* ’
JannIDNA i - my — gs
M = w7 aslelpby 8_722511\[ (p2),
wa Ac fDNA 2, gu
M. = W(Qélej)aﬂAcpl ﬁg (46)

while the amplitudes Mb,, Mb,, and MY, are for the bottom three diagrams, and

they are
My, = THONNGDD 00y o,y x Ay By
mp t —m?
ifDNAGNN | q,+my k
My = === £ Za Ac : . e VN ’
: I (s Rersty e (0 Hsz“ PN (o)
1/ DNS.GpSoA. f, + ms.
Mgc = L ZedPRele (2(513 )a,@Acfy X —F 5]53 (47)
mp u —

In the above, p1, p2, ps and p, denote the momenta of 7(p), N, D and A., respectively;
s=(p1+p2)? t = (p1 —p3)? and u = (p; — ps)* are the Mendelstam variables; and
¢s =p1 +p2 and gy, = p2 — ps.

The isospin- and spin-averaged differential cross sections for the two processes in
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Fig. 8 are then

do_ﬂNHDAC . 1 2
dt B 7687T5p§‘M1, ’
do > 1
pN—DA. 2
—— = — . 4.8
dt 23047rsp3’M2| (48)

The squared invariant scattering amplitudes |[M;|* and |M;|?, which include the
summation over the spins and isospins of both initial and final particles, are again
evaluated using the software package FORM [47]. In evaluating these cross sections,
we have introduced form factors at the interaction vertices. For three-point vertices,
ie., tDD* pDD, pNN, tNN, DNA., D*NA., DN, and pX.A., they are taken
to have the form [32, 33, 50]

A? A?

(4.9)

where f; is for ¢ and u channels and f, for s channel with q2 and p? being, respec-
tively, the squared three momentum transfer and squared initial three momentum
in the center-of-mass frame of the pion or rho meson and nucleon. In studying J/v
absorption in Chapter III and charmed meson scattering in Refs.[21, 23, 45] using the
same interaction Lagrangians, values for the cutoff parameter A have been taken to
be 1 or 2 GeV. We use these values for the present study as well.

We first show the results obtained with a cutoff parameter A = 1 GeV. In Fig. 9,
the cross sections for charmed meson production from meson-nucleon scattering are
given as functions of center-of-mass energy. It is seen that the cross section for the
reaction 1N — DA, (dotted curve) has a peak value of about 0.2 mb. Although, this
value is much larger than that predicted by the QGSM model [16], it is mainly due
to the s channel that involves a nucleon pole as shown by the dashed curve in Fig.

10, where the cross sections from individual amplitudes are shown. The contribution
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Fig. 9. Cross section for charmed meson production from meson-nucleon scattering as

a function of center-of-mass energy for cutoff parameter of 1 GeV.

from the ¢ channel charmed vector meson exchange (solid curve) at low center-of-mass
energy has a similar magnitude as found in QGSM, while the u channel contribution
(dotted curve) is indeed negligible as assumed in Ref. [16].

The cross section for the reaction pN — DA, from rho-nucleon scattering shown
by the solid curve in Fig. 9 is about a factor of two larger than that from pion-nucleon
scattering. The relative importance of the contributions from the s, ¢, and u channels
in this case is shown in Fig. 11. Again, the dominant contribution is from s channel,
while the ¢ and u channel contributions are much smaller.

The magnitude of charmed meson production cross sections depends strongly

on the value of the cutoff parameter. If we use a larger value of A = 2 GeV as
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Fig. 10. Contributions from ¢, s, and u channels to the cross section for charmed

meson production from pion-nucleon scattering as functions of center-of-mass

energies with cutoff parameter A =1 GeV.

suggested by the QCD sum rules [48], these cross sections are increased by an order
of magnitude. On the other hand, their values are reduced by more than an order
of magnitude if a smaller value of A = 0.5 GeV is used. We note that to reproduce
the empirical cross section for kaon production from pion-nucleon scattering, i.e.,
N — KA, using the same SU(4) invariant Lagrangian at the Born approximation
requires A ~ 0.4 GeV. Because of the smaller sizes of charmed hadrons, we expect,
however, that the cutoff parameter at interaction vertices involving these particles
should have a larger value than at those involving strange hadrons. Using A = 1 GeV

for charmed meson production thus seems reasonable.
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Fig. 11. Same as Fig. 10 for the cross section of charmed meson production from

rho-nucleon scattering.

Since our cross sections for charmed meson production are much larger than that

given by the QGSM model, they would lead to too large an enhancement of charmed

meson production if used during the initial string stage of heavy ion collisions as in

Ref. [16]. On the other hand, more reasonable results for charmed hadron production

are expected if these cross sections are used only for collisions between mesons and

baryons in the hadronic matter.

B. Charmed hadron production in proton-proton reactions™

*Reprinted with permission from “Charm production from proton-proton collisions”
by Wei Liu, Che Ming Ko and Su Houng Lee 2003. Nuclear Physics A728, 457-470. 2004

by Elsevier. Available at doi:10.1016/j.nuclphysa.2003.09.011.
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Possible reactions for charmed hadron production in proton-proton collisions near

threshold are pp — D°pA} and pp — D*°pA}. In the following, we discuss their

contributions separately.

P DO A,
™ | D*O
) P
(1a)
[} DO N,
p0 DO
) P
(2a)
N, DO P
DO [ Ne
) p
(3a)
N DO p

T
T

(4a)

P ] P ]
(1b) (1c)
[} DO A,
p° P
P o]
(2b) (20)
N, DO o)
DO
ZC
P ]
(3b)
A DO p
D* ©
ZC
P ]

(4b)

Fig. 12. Charmed hadron production from pp — D°pA7.

Diagrams for the reaction pp — D°pA} are shown in Fig. 12. They involve

the exchange of pion ((la) — (1¢)), rho meson ((2a) — (2¢)), D ((3a) — (3b)), and

D* ((4a) — (4b)). With the interaction Lagrangians given in Eqgs.(3.1) and (4.1), the



41

amplitudes for the four processes are given by

My = —ig.nnp(p3)Vsp(P1) (Mg + My + M),

1
t —m?2

_ . KR
My = g,nnp(ps) [7“ - zﬁaa“ D1 _pS)a:| p(p1)

N
(pl _p3) (pl _p3)l/ v v v

X [_guu + :”L% t— mlz)( 2a + M2b + M20)7
Ms = igDNAc/_\c(p:?,)vsp(Pl)t 5 (Msa + May),
My = gpnaAe(ps)V'p(p1) [—gw + (1 _p3)“2(p1 _pi”)”]

mD*
1
X (M, + M), (4.10)

t — mp-
where p; and ps are, respectively, four momenta of initial and final baryons on the left
side of a diagram, and ¢t = (p; —p3)? is the square of nucleon momentum transfer. The
amplitudes M;,, My, and M;. are for the subprocesses 7°p — DA}, p°p — DPAT,
D% — D7, and D*°p — D°p involving exchanged virtual mesons, and they are

given explicitly by

1 ki — k3)f(ky — k3)” | ~
Mis = —9apDgp*NA. 55 (k1 + k3), |9 — (b1 = o) 2( 1= k) Ayp,
1 -
My = genngpna,———5 Ae(mn — kb — Fy)p,
Sl - mN
1 -
Mlc = gﬂ'ACEchNEC mAc(k2 - k?) - mzc)p7
. 1 =
Mb, = igpNa.gppD 55 (2k3 — k)*AAp,
q° —mp
1 - K
roo= 1 —— AA m(“z’paﬁ“k>,
% IpNNIDNA - a Ay (Fy + fy +mn) (7" + oy 8P
. -
Mbe = igpns.gpns. 5 A" (Ky — 5 +mx)7’p,
u — mzc
1 _
Msa = g%)NAcﬁp(kl + Fy — ma)p,
S1 mAc

1
Mz, = ghyn,———5 D(fy — 3 — ma,)p,
DNA 2 P2~

c
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. 1 _
ha = 19DNAIDNA. 721?75(}61 + /éz + ma)Yp,
S1 = My,

. 1 _
Y = 19p-NAIDNA.——5 DV (i — Ky + ma )Y p. (4.11)
u— my,

Here, k1 and k3 are momenta of initial and final mesons, while k5 and k4 are momenta
of initial and final baryons in the two-body subprocesses; and ¢* = (k; — k3)? is the
square of meson momentum transfer.

There is no interference between amplitudes involving exchange of pseudoscalar
and vector mesons. Interferences between amplitudes involving exchange of pion and
D meson as well as those between rho meson and D* are unimportant due to the large
mass difference between light and heavy mesons. Neglecting these interferences, the
total cross section for the reaction pp — D°pA} is then given by the sum of the cross
sections for the four processes in Fig. 12 and can be expressed in terms of off-shell cross
sections for the subprocesses 7°p — DA}, p°% — D°AF, D% — D, and D*%p —
D%p. Following the method of Ref. [37] for the reaction J/¢)N — D(D*)D(D*)N, the

spin-averaged differential cross section for the reaction pp — D°pA} can be written

as
do,  mo A+ 2 1
p—DopAS 9NN
dtds, ~ 16m2sp? k\/§<_t)maﬂ0pHD0Ai (s1,1),
by 4(1+ K, (=t = 2m3)
32m2sp? ¥ (t — m2)? o N
4m2 —t)?
+ z% +4(1 + Kp)k,(4m3y — t)] O-pOpHDOAC*<Sla t),
N
IbNa ) 1
+ Tomrag VAt (= ma Pl s ey ooy, 1)
39%)*NAC 1 )
* 327m2sp? o1 (t —m3.)? [_4t +4(my, —my)” — 8my, my

2(my —mj, — t)(mky —mj, +1)
+ S :
M-
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2((mAC — mN)2 + t)t

+ 2
mpx

O'D*opHDop(Sl,t). (412)

In the above, p; is the center-of-mass momentum of two initial protons, ¢ is the
squared four momentum transfer of exchanged meson, s is the squared center-of-mass
energy, and s; and k are, respectively, the squared invariant mass and center-of-mass
momentum of exchanged meson and the nucleon in the subprocesses. We have also
included a factor of two to take into account contributions from interchanging two
initial protons.

Since the charmed hadron production cross sections is sensitive to the value
of cutoff parameters in the form factors at interaction vertices involving virtual
charmed mesons and baryons, it is necessary to constraint this cutoff parameter em-
pirically. Without exclusive cross sections available for charmed hadron production
from proton-proton scattering, we resort to strange hadron production. Using the
same hadronic model for kaon production from the reaction pp — KTpA, this reac-
tion can be described by similar diagrams in Fig.12 for the reaction pp — D°pA7f
with D% and A, replaced by KT and A, respectively, in the final states. Also, the
exchanged D in diagrams (3a) and (3b) as well as D% in diagrams (4a) and (4b)
are replaced by K and K™, respectively, while intermediate off-shell charmed baryons
are replaced by strange baryons. With empirical coupling constants g,xx+ = 3.25
and g,k = 3.25, as well as others determined via SU(3) relations [51], the measured
cross section can be reproduced with a cutoff parameter A = 0.42 GeV in the form
factors Fy(q?) at vertices involving virtual strange mesons and baryons, as shown in
Fig.13.

Assuming that the same cutoff parameter A = 0.42 GeV is applicable at vertices
involving virtual charmed mesons and baryons in charmed hadron production from

proton-proton reactions, resulting cross sections for the reaction pp — D°pA, from the
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Fig. 13. Cross section for kaon production from the reaction pp — KTpA with cutoff
parameter A = 0.42 GeV in the form factors at interaction vertices involving
exchange of strange mesons. Filled circles are experimental data taken from
Ref.[52]

four possible processes of pion (solid curve), rho (dashed curve), D (dotted curve), and
D* (dash-dotted curve) exchanges as functions of center-of-mass energy are shown in
Fig.14. It is seen that contributions from light meson exchange are more important
than those from heavy meson exchange. Although we consider diagrams (la) and
(2a) in Fig.12 as exchange of pion and rho meson, respectively, they actually involve
exchange of heavy D* and D mesons in the subprocess 7%p — D°A} and p% — DA},
respectively. Our results that main contributions to the reaction pp — pD°A} are

due to exchange of light mesons are not inconsistent with conclusions in Ref.[35] that
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this reaction is dominated by heavy D meson exchange.

= =
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o (ub)

______
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Fig. 14. Cross sections for charmed hadron production from the reaction pp — D°pA7
due to pion (solid curve), rho meson (dashed curve), D (dotted curve), and
D* (dash-dotted curve).

To see the relative contributions from s, ¢, and u channel diagrams in Fig.12,
we show in Fig.15 the partial cross sections due to diagrams (1a), (1b), and (1c). It
is seen that the ¢ channel diagram (la) dominates charmed hadron production cross
section at high energies while the s channel diagram (1b) is most important near
threshold. The contribution from the u channel diagram (1c) is much smaller than
those from other two diagrams. Except near threshold, our results are thus similar
to those found in Ref. [35], which uses the on-shell approximation for the subprocess

7p — DPAYF and does not include s and u channel diagrams.
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Fig. 15. Partial cross sections for pp — D%pA} due to contributions from different

channels.
2. pp— D*Oij

For charmed hadron production from proton-proton collisions with D**pA in the
final state, relevant diagrams are shown in Fig. 16. As for the reaction pp — D**pA},
this reaction can proceed through pion, rho meson, D, and D* exchanges. Amplitudes
for the four processes obtained with the interaction Lagrangians given in Egs.(3.1)

and (4.1) are given by

Ms = —ig.nnD(p3)Ysp(p1) (M5, + M5, + M5, )eq

—m2
t—mz

_ Ky g
Ms = g,nnD(p3) P i Lo (p1 — p3)a| P(P1)
my
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Fig. 16. Charmed hadron production from pp — D**pA7.
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. 1 a
M7 = ZgDNACAc(P:s)%p(pl)W( erM?b)Gw

t—mp
Mg = gD*NAc/_\c(p:a)’Y”p(pl)
(pl _pS) (pl _p3)l/ 1 vo vo
| PR L M, 413

where p; and p3 are again, respectively, four momenta of initial and final baryons on
the left side of a diagram and €, denotes the polarization vector of D* meson in final

state.



Expressions for individual amplitudes can be written as follows:
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. 1 _
M5, = —igzpp-gpNA, 55 (2k1 — k3)"Asp,
q —mp
. 1 _
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be = ignncs. gD Ns. Ay (Ky — 5 + ms )V,
U —ms,
v 1 (k1 —ks)a(k1 —ks3)g | = 4
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M, = igpnagpna.—— DYk + Ky +ma ),
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M7, = igpNA.gD*NA. 5P
u—mjy,

v (Ky — Fy + ma)Vp,
14 ]‘ — UV
My = ghena,——5 07" (F, + k5 +ma)V"p,
S1 — mAc
14 1 — v
Mg, = 912:)*NAC — Py (ks — s+ ma )V p.
u—my,

(4.14)

As in the case of charmed hadron production from the reaction pp — D°pA},

total cross section for the reaction pp — D*pA} can be expressed in terms of off-shell

cross sections for the subprocesses 7% — D*°AY, p°p — DA}, D% — D*%p, and

D*% — D*%p. In this case, the spin averaged differential cross section is

dtds, ~ 1672sp? 51 (t — m72r)207r0p—>D*0Aj 51,t),

39§NN ) )

327r28p?k\/§(t —m2)? [4(1 + k) (=t — 2my)
(4m3; —t)?
iQNT + 4(1 + I{p)/{p(ﬁlmif — t) O-pOpHD*OAj(Sh t)
N

@k [—t + (my — )ﬂé I
1677'2sz2 \/871 mn ma. (t . mZD)QO-DOPHD*Op S1,
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- mN)2 — 8mpy,my
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Fig. 17. Cross sections for charmed hadron production from pp — D*'pA} due to

pion (solid curve), rho meson (dashed curve), D (dotted curve), and D*

(dash-dotted curve).

Using coupling constants and cutoff parameters introduced previously, we have

evaluated the cross section for the reaction pp — D*pAF. In Fig. 17, we show

contributions from pion (solid curve), rho meson (dashed curve), D (dotted curve),

and D* (dash-dotted curve) exchanges as functions of center-of-mass energy. As for
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the reaction pp — D°pA7, light meson exchanges are more important than those from
heavy meson exchanges. However, the contribution from rho exchange is larger than
that from pion exchange, which is opposite to that in the reaction pp — DA}, as a
result of the couplings involving three vector mesons, which are absent in the latter

reaction.

3. Total cross section

The total cross section for charmed hadron production from proton-proton collisions
is shown in Fig.18 as a function of center-of-mass energy (solid curve). It’s value
at center-of-mass energy of 11.5 GeV is about 1 ub and is within the uncertainty of
measured inclusive charmed hadron production cross section, which is about 2 ub
as shown by solid circles with error bar [53]. The cross section decreases as energy
drops and is about 1 nb at 40 MeV above threshold. Also shown in Fig.18 are the
cross section for the reactions pp — pD°A} (dashed curve) and pp — pD*°A} (dotted
curve), and it is seen that the former is somewhat larger than the latter.

The cutoff parameter A = 0.42 GeV at interaction vertices involving virtual
charmed hadrons is obtained from fitting strange hadron production with similar
hadronic interaction Lagrangians and form factors. Since charmed hadrons have
smaller sizes than those of strange hadrons, harder form factors with larger cutoff
parameters are expected at their interaction vertices. To see how the results obtained
here are affected by the cutoff parameter, we show in Fig.18 by dash-dotted curve
the total cross section for charmed hadron production from proton-proton reactions
using A = 1 GeV. It is seen that the resulting cross section is almost two order of
magnitude larger than that given by A = 0.42 GeV and deviates strongly from the
experimental data. Within our present model for charmed hadron production, a large

cutoff parameter at interaction vertices involving charmed hadrons is thus excluded.
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It is worthy to mention that we have not considered in the present study final
states involving 37 instead A} as the cross sections for such reactions are expected
to be much smaller due to both larger ¥ than A} masses and smaller gpyy, and

gp+Ny, coupling constants than gpya, and gp-nya, coupling constants.
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Fig. 18. Cross sections for charmed hadron production from proton-proton collisions.
Dashed and dotted curves are for pp — pD°AF and pp — pD* A}, respec-
tively, while the total cross section is shown by the solid curve. The threshold
energy s refers to that of the reaction pp — pD°A}. Experimental data are
shown by filled circles [53]. Also shown by dash-dotted curve is the total cross
section obtained with cutoff parameter A = 1.0 GeV in contrast with other

curves which are based on A = 0.42 GeV.
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CHAPTER V

CHARMED HADRON PRODUCTION FROM PHOTON-PROTON
REACTIONS*
In this chapter, the cross section for photoproduction of charmed hadrons from pro-
tons is studied using the effective Lagrangian introduced in Chapter II. Photon-
hadron interactions are usually described by the vector dominance model, i.e., the
photon couples to hadrons via vector mesons such as rho, omega, phi, and J/v. For a
real photon, including all allowed vector mesons is equivalent to coupling the photon
directly to hadrons with strengths given by their electric charges. In this study, we
adopt this picture for describing production of charmed hadrons from reactions be-
tween protons and real photons. In these reactions, the final state can involve either
two particles (DA., D*A,.) or three particles (DDN, DD*N, D*DN, D*D*N). In the
following, we discuss them separately and also compare the results with predictions

from leading-order perturbative QCD calculations.

A. Two-body final states

For photoproduction of charmed hadrons from protons near threshold, the final states
are dominated by two particles. Possible reactions are yp — DA} and vp — D*OAF
as shown by diagrams in Fig. 19. Additional interaction Lagrangians needed to

evaluate the cross sections for these reactions besides those given in Eq.(4.1) are:
‘C'yNN = —QAMN’}/M[(l + Tg)/Q]N,

*Reprinted with permission from “Charm production from photon-proton reactions in
a hadronic model” by W. Liu, S. H. Lee, and C. M. Ko, 2003. Nuclear Physics A724,
375-390. 2004 by Elsevier. Available at doi:10.1016/S0375-9474(03)01573-2.
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Fig. 19. Photoproduction of charmed hadrons from protons with two-body final states.
‘CVAcAc = —GA'u[_\C"yMAC. (51)

Amplitudes for the two reactions yp — DA} and yp — D*°AF in Fig. 19 can

be written, respectively, as

My = (M, + Mly)eay,
My = (MY + MY e es,, (5.2)

where €5, and €3, are polarization vectors of v and D*, respectively. The amplitudes
M MY, Ma,, and Mb, are for the four diagrams in Fig. 19, and they are given

explicitly by

1

My, = —69DNACS_—2]\0(173)75@1 + Py + mn)Y*N(p1),
N
1
MYy = —egpva.———5De(Pa)V" (b — by +ma )V N(p1),
U —my_
v . ]' A v
My = iegpnne 5 Ne(p3)" (B + Do + mn )y N(py),
N
v - 1 A v
by = ZGQD*NAcmAc(m)V“(Zﬁl — Py +ma )Y N(p1). (5.3)
—m3

In the above, pi, pa, p3, and py denote the four momenta of p, v, A}, and D°(D*9),

respectively, while s = (p; + p2)? and u = (p1 — ps)*.
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The differential cross sections for the two reactions are then

do; 1 9
U —— VH LI N R 5.4

cm
with pon denoting the photon momentum in center-of-mass system.

To account for finite sizes of hadrons, form factors need to be introduced at
strong interaction vertices. To maintain gauge invariance, we take these form factors
to be the same, i.e., an overall form factor is multiplied to the total amplitude of each
process, as in Ref.[54] for photoproduction of pion on the nucleon. The overall form
factor is taken to have a monopole form, i.e.,

A2

Fy(q®) = At

(5.5)

with q denoting the three momentum of photon in center-of-mass system. This is dif-
ferent from the one used in Ref.[54], where the center-of-mass momentum of produced
pion is used in the form factor. Because of the large threshold for photoproduction
of charmed hadrons, the off-shellness of p in the s-channel or A} in the wu-channel
is thus proportional to the photon momentum rather than the momentum of pro-
duced charmed meson. We choose the cutoff parameter A = 0.75 GeV to reproduce
the measured cross section for photoproduction of charmed hadrons from protons at
center-of-mass energy of 6 GeV [55], as shown below.

Cross sections for the reactions yp — DPAF (solid curve) and yp — D*AF
(dashed curve) are shown in Fig. 20 as functions of total center-of-mass energy.
It is seen that they have similar magnitude with a peak value of about 19 nb for

vp — D°A} and about 23 nb for yp — D*OAT.
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Fig. 20. Cross sections for photoproduction of charmed hadrons from protons as func-

tions of center-of-mass energy: vp — DA} (solid curve) and yp — D*°AF
(dashed curve).

B. Three-body final states

As energy increases, three-body final states become important for charmed hadron
production from photon-proton reactions, and the possible reactions are yp — Dt D* " p,
vp — D~D**p, vp — DTDn, yp — D°D**n, yp — D*D7p, yp — DtDn,
vp — D*TD*"p, and yp — D** D*n. The lowest-order diagrams for the first four re-
actions are shown in Fig. 21. These involve charmed vector and pseudoscalar mesons
in final states and the exchange of pion in intermediate states. Shown in Figs. 22

and 23 are the lowest order diagrams for the other four reactions, which involve two



D¥~ D¥ D*~ D+ D*~ D+ D¥~ D+ D*~ D*
T[O
T[() D+ T[O T[O p
D - P
TTO
p Y P Y P Y P y p y
(a) 3b) &) Gd) (o)
D** D- D**+ D- D** D- D¥+ D~ D** D-
T[O
m°| D- 0 0 p
D* + p
TTO
p Y P Y P Y P y p y
(4a) (4b) (4¢c) (4d) (4e)
n D*0 D+ n D*0 D+ n D*0 D+ n D*0 D+
T[+
.
nt| D* T P
p Y p Y p Y p y
(5a) (5b) (5¢) (5d)
n D* *+ BO n D** BO n D** 60 n D** BO
T[+
+ +
Tt Tt p
D* +
p Y P Y P y

(6a)

(6¢)

(6d)

o6

Fig. 21. Photoproduction of charmed hadrons (D*D or DD*) from protons involving

pion exchange.

charmed pseudoscalar mesons or two charmed vector mesons in final states and the

exchange of rho mesons in intermediate states.

To evaluate the cross sections for these reactions, we need the following interac-

tions Lagrangians besides those given in Eqs.(3.1), (3.8), and (4.1):

ieA"[DQO,D — (8,D)QD],

»CvDD -
Loppe = ie|AH(9,D"QD: — D¥Qd,D;)

+ (8,4"D; — AY9,D;)QD™ + D*Q(AY9, D7 — 9,A" D7),
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Fig. 22. Photoproduction of charmed hadrons (D D) from protons involving rho meson

exchange.

Laypp- = —egrpp-A"(D}(27Q — Q7)D + D(2Q7 — FQ)DZ) - T
'Cp'yDD = engDAMD(FQ + QF)D ’ ﬁ/u

Ep’yD*D* — eng*D* (AVD;’;<27?Q - QF)DZ

+ A'D;(27Q — Q7)D;, — A,D*(27Q — Q7)D;) - p. (5.6)

In the above, @) is the diagonal charge operator with diagonal elements equal to 0
and -1.

Diagrams in Figs. 21, 22, and 23 can be separated into two types; one in which
the photon is coupled to mesons such as the first three diagrams (denoted by (ia)
to (ic) with i=3 to 10), and the other in which the photon is coupled directly to
either the incoming or outgoing proton. As shown in Section E of this Chapter,
contributions from the latter type are much smaller than those from the first type

of diagrams and are neglected in following calculations. As a result, results obtained
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Fig. 23. Photoproduction of charmed hadrons (D*D*) from protons involving rho me-

son exchange.

in present study for charmed production with three-body final states violate slightly
the gauge invariance. We note that diagrams of first type are similar to those for
J /1 absorption by nucleons, which can be interpreted as absorption by virtual pions
and rho mesons from nucleons. Here, they can be considered as charmed hadron
production from interactions of photons with virtual mesons from the proton.

The amplitudes for the four reactions in Fig. 21 are given by

| _ 1
M; = —wngNN(ps)’YsN(pl)m(Mm + My, + M), (5.7)

™

with ¢ = 3 to 6, while amplitudes for the four reactions in Figs. 22 and 23 can be

written as
M; = ag,nnN(ps) [v" +it o™ (p1 — ps) ] N(p1) !
I r 2m “ t— mg
(pl - p3) (Pl - Ps)u v v v
P
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with j = 7 to 10. In the above, p; and p3 are four momenta of initial and final
nucleons, respectively; and ¢ = (p; — p3)?. The coefficient a is 1 and /2, respectively,
for neutral and charged pion or rho meson couplings to protons.

The three amplitudes M;,, M;;,, and M, represent the subprocess vy — D*D in

Fig. 21. Explicitly, they are:

M3a = M4a
1
= egrpp-(—2k1 + k3)" 5 (k1 — k3 + k4)"e3u€00,
t_ mD
Mz, = My
1 (k1 — ka)a (k1 — ka)g
= —egopp(—k) — k) ———— | gug —
egx=pp~(—k1 4)u—m2D* Jap m2.

X [(—k’g — kg)ﬁg“” —+ (—kl + ]{2 —+ k4)”gﬁ“ + (kl -+ kg — k4)"gﬁ”]€3u€2m

M3c = M4C
= egerD*gMVE?;qum
1
M5a = \/ﬁengD*(_zkl + k3)# 2 (kl o k3 + k4>y(€3“€2w
t - mD
1
Mz, = —V2egrpp-(2k1 + k2)" — . (k1 4 k2 + k1) esuean,
Ms. = 2\/§€9nDD*9W€3u52V>
1 ki —kq)a(ky — Kk
Mg, = —\/iegﬂDD*(—lﬁ _ k4)a72 Gag — (k1 1) 2( 1 1)
U — Mp« Mp-

X [(—/{72 — kg)ﬁg“” + (—k’l -+ kg + k4)”gﬁ“ + (k'l + kg — k4)“gﬁ”]€3#€2y,

M, = V2egnpp-(2ki + k2) —— (k1 + ko + ka)l'esuean,

v
5 —ms;

Mg, = —\/éegnDD*gW€3p€2u, (5'9)

where k; denotes the momentum of particle ¢ of each subprocess, and ¢, and ¢, are
polarization vectors of D* and ~, respectively. We choose the convention that particles
1 and 2 represent initial-state particles while particles 3 and 4 represent final-state

ones on the left and right sides of a diagram.
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Although the #DD* interaction Lagrangian in Eq.(5.6) breaks chiral symmetry
due to nonderivative pion coupling, the sum M;, + M;, + M, fulfills the chiral con-
straint for processes 3, 4, and 6 in Fig. 21, i.e., it vanishes at the soft pion limit. This
is due to cancellations between non-chiral contributions from diagrams involving D*
exchange and contributions from diagrams involving 7D D*~y four point interactions
as shown in Appendix B. Such effect was first found in studying .J/v absorption by pi-
ons [49]. Using the equation of motion for D* meson, it was shown that the non-chiral
piece of mDD* interaction Lagrangian leads to an effective 7D D*J /1 four point in-
teraction, which cancels the 7D D*J /1 four point interaction in the Lagrangian when
mysy — 0 (see Appendix C). Unfortunately, the chiral constraint is not satisfied for
process b in Fig. 21 as it does not involve D*-exchange. It thus remains a challenge
to construct an effective Lagrangian for the interactions between heavy mesons and
pions, that has the correct soft pion limit.

The amplitudes Mj,, M7, and M7, are those for the subprocesses vp — DD and

vp — D*D* in Figs. 22 and 23, and they are given explicitly by

1
M'l;a == —6ngD(k’1 — 2]6’3)“72(/?1 — k3 -+ k4)y€2,/,
1
= —eg,npp(—k1 + 2kq)* 5 (—k1 — ks + kq)"ea,
Ml;c = QengDgMVEQw
1
Mga - \/ﬁengD(kjl - 2/{73)# 5 (kl — ks + k?4)y€2,,,
t - mD
1
b = V2egp[(—2ky — k2)" 9" + (k1 + 2k2)" g™ + (ky — kQ)agW]m
P
k ko)o(k k
m,
Mgc - _\/EengDgMV€2m
1
M, = egppep[(—k1 — k3)* g™ + (21 — ks) g + (2ks — k)" g™

2
t—mps
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kv —k a ki —k w Bv vw v Bw
[gaﬁ k) 2( - 3)ﬂ] [—2k5 9% + (ks + ka) g™ — 2k} g™
mpx«
€2E30E 4w,
1
eGpp+p+[(—2k1 4 ka)? g™ + (k1 + ka)*g" + (k1 — 2k4)"' g™ ——5—
U —m3.
bt — k) (ky — k ) o
[gaﬁ L) 2( - 4)ﬂ] [(—ky — k3)’g" + 2k59% + 2k g™
mD*
EwE3NE 4w,
eng*D*(guAguw +}guwgVA__>29uugAw)€2V
€31 4w,
Vﬁé a pA A ap W a 1
cgpp-p-[(=hk1 = k3) 9" + (2k1 — ks) g™ + (2ks — k1)"g™] — 5
—mb,.
kv —k a ki —k v vw v Bw
[gaﬁ - (ky ) 2( ! 3)5] [—kagjgﬁ + (ko + k4)ﬂg — 2]{:496 ]
mD*
EwE3NE 4w,
14 o (077 (e} 4 1
V2eg,pep+ [(—2k1 — k2)"g"" + (k1 + 2k2)" g™ + (k1 — ka)*g" —

(k1 + ka2)al(k1 + k2)s

2
m

[gaﬁ — 1 [—2k3 g™ + 2k5 6% + (ky — k3)P g™
E2E30E 4w

~V2egop-p+(9"9" = 29"9" + 9" g)

€20E3\E4u- (5.10)

The cross sections for reactions with three particles in the final state can be

expressed in terms of the off-shell cross sections for subprocesses involving two par-

ticles in the final state. Following the method of Ref. [44] for studying the reaction

pp — pAK™, differential cross sections for the four reactions yp — D*D(DD*)N in

Fig. 21 can be written as

40 DD ag? (1))
yp—D*D(DD*)N 9xNN

= =k —t)— t), (5.11
o /i () (s1,8), (5.11)

(t _ mgr)z 0-')/7r—>D*D(DD*)
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while those for the two reactions yp — DDN in Fig. 22 are

1900 3ag, F(1)P
LwoDDN - OTIpNN g - DAL T4 24 o2
dtds, 64m2sp2 \/871(75 — m%)Q [ (1+r,)"( my)

ﬁi%# +4(1+ /ip)/ip(élm?v — t)] 0 ppp(51,t). (5.12)
N
In the above, s; and k are, respectively, squared invariant mass and center-of-mass
momentum of 7 and v in the subprocess ym — D*D(D*D) or of p and ~ in the
subprocesses vp — DD and yp — D*D*. Cross sections for these subprocesses
are obtained from the amplitudes in Eqgs.(5.9) and (5.10) using the software package
FORM [47] to evaluate the summation over polarizations of both initial and final
particles. The differential cross sections for the two reactions yp — D*D*N in Fig.
23 are similar to those for yp — DDN with 0.,—pp(s1,t) replaced by 0., p«p«(51,1).
We have introduced in Eqgs.(5.11) and (5.12) form factors Fryy and F,nyy at
7NN and pN N vertices, respectively, to take into account finite sizes of hadrons. As

in Chapter IIT and Ref.[31], both are taken to have the following monopole form:

A2 —m?

FO ="

(5.13)

where m is the mass of exchanged pion or rho meson, and A is a cutoff parameter with
values Axyy = 1.3 GeV and A,yn = 1.4 GeV. We have also introduced an overall
dipole form factor for the two-body subprocesses yw — D*D(DD*), vp — DD,
and yp — D*D* as in Section A for the reactions yp — DA} and vp — D*OA}.
The same cutoff parameter A = 0.75 GeV is used in this form factor for evaluating
the cross sections for charmed hadron production from photon-proton reactions with
three-body final states.

The cross section for the reaction yp — D*D(DD*)N is given by the sum of the

cross sections for the four processes in Fig. 21, which are obtained by integrating
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Fig. 24. Cross sections for photoproduction of charmed hadrons from protons with
three particles in the final states: yp — D*DN(DD*N) (solid curve),
vp — DDN (dotted curve), and vp — D*D*N (dashed curve).

Eq.(5.11) over t and s;. Similarly, one can obtain from Eq.(5.12) the cross sections
for the reactions yp — DDN and vp — D*D*N, shown respectively, in Figs. 22 and
23. Results for these cross sections are shown in Fig. 24 by the solid, dotted, and
dashed curves, respectively, for the reactions yp — D*DN(DD*N), yp — DDN,
and yp — D*D*N. It is seen that the reaction yp — D*DN(DD*N) has the largest
cross section with a peak value of about 57 nb, while the reaction vp — DDN has
the smallest cross section of only about 1 nb. The larger cross sections for reactions
with charmed vector meson in the final state is due to presence of interaction vertices

involving three vector mesons, which have a stronger momentum dependence than
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vertices with fewer number of vector mesons, leading thus to a larger strength at high

energies.

C. Total cross section

100 —————
| — total

o (nb)

Fig. 25. Total (solid curve) and partial (dotted curve for two-body final states and
dashed curve for three-body final states) cross sections for charmed hadron

production in photon-proton reactions as functions of center-of-mass energy.

The total cross section for photoproduction of charmed hadrons from protons is
given by the sum of the cross sections for two-body and three-body final states. In
Fig. 25, we show the total cross section (solid curve) together with those for two-
body final states (dotted curve) and three-body final states (dashed curve). It is seen

that two-body final states involving A. and charmed meson dominate at low energy,
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while three-body final states involving nucleon as well as charmed and anticharmed
meson pair are more important at high energies. The two have comparable magnitude
around center-of-mass energy of about 5.7 GeV. As in the experimental data at 6 GeV

[55], two-body final states constitute about 33% of the total cross section.

D. Charm photoproduction from protons in perturbative QCD

Charm production from photon-proton reactions can also be estimated using the
leading-order perturbative QCD [56, 57, 58]. As shown in Appendix D, the cross

section in this approach is given by

oP(v) = /21 dx 0" (vx)g(x), (5.14)

m2 /v
where m, is the charm quark mass, g(z) is the gluon distribution function in protons,
and v = p - p, with p and p, being the momenta of incoming proton and photon.
The cross section 079(w) is for charm-anticharm quark production from leading order

photon-gluon scattering, i.e.,

) oImasa 4 Am?  8m2\, 1—4/1— 2%
0T w) = ”M—z[(” e ”ff)log
9 w w w 1+ 1_%
4m? 4m?
— <1+ w2> - } (5.15)

where w? = 2p, - p, with the gluon momentum denoted by p,.

Using m. = 1.3 GeV and the leading order MRST 2001 parameterization of the
gluon distribution function in protons [59], we have calculated the cross section for
charm photoproduction from protons using the LO QCD formula, and the result is
shown by the dashed curve in Fig. 26. Also shown are the cross section from the
hadronic model (solid curve) and available experimental data (open circles) [55]. We

see that the LO QCD result reproduces the data at 6 GeV and at higher energies.
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Fig. 26. Cross sections for charm production from photon-proton reactions in the
hadronic model (solid curve) and the pQCD approach (dashed curve). The

experimental data [55] are shown by open circles.

The QCD prediction below 6 GeV falls well below that from the effective hadronic
model. It is known that the QCD formula for photoproduction of heavy quarks
works best when momenta involved in the process are larger than the heavy quark
mass m.. Below this momentum and near threshold energy, large logarithms appear
in the perturbative QCD approach and spoil its convergence [60]. At low energies,
our phenomenological hadronic approach is expected to be more reliable as the cross
section is dominated by two-body final states with no additional contribution to cause
any large correction. On the other hand, results from the hadronic model at higher

energies fall short of experimental data. This is expected because contributions from
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four-body final states and from exchange of heavier mesons become important as
energy increases. For higher energies, perturbative QCD calculations should be a
more efficient way for determining the cross section for charm photoproduction than

adding more complicated processes to the phenomenological hadronic model.

E. Contributions from photon-proton couplings

10§ T T T T T T T T T

— y-meson coupling
------- y-proton coupling

|
o
T
1

Fig. 27. Cross sections for charmed hadron production in photoproton reactions due to
photon coupling directly to protons (diagram (3d) in Fig. 21, dashed curve)
and to mesons (diagrams (3a)-(3c) in Fig. 21, solid curve). No form factors

are included in these results.

In the present study, the cross sections for charmed hadron production from

photon-proton reactions with three particles in the final state are obtained without
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contributions from diagrams involving photons coupled directly to external protons.
These diagrams are needed to preserve gauge invariance in each process. Their con-
tributions are small compared to those from diagrams with photons coupled only
to mesons. This is due to the s-channel nucleon propagator (1/(s —m3%/)) in these
diagrams, which suppresses their amplitudes more than the t-channel heavy meson
propagator in other diagrams as a result of the large photon energy needed to pro-
duce the charmed and anticharmed meson pair. In the following, we demonstrate
this effect by comparing the contribution from diagram (3d) with that from diagrams
(3a)-(3c) in Fig. 21.
The amplitude for diagram (3d) in Fig. 21 can be written as

1

M = iQGQWNNngD* (S — m%v)(t _ mgr)]j(pi;)/ygl(pl + pZ + mN),yup(pl)E,upfy)eV

= 2g7rDD*M2pg€l/7 (516)

where p1, p3, pa, and ps are the momenta of initial and final nucleons, photon, and

charmed meson, respectively. The cross section due to this diagram alone is given by

do \/S1 2
= r 1
dtds,  25672sp? (MalT(s1), (5.17)

where s; is the invariant mass of D™ D*™ pair, and I'(s1) is the decay width of the
off-shell pion to D and D*~.

The cross section due to the s—channel diagram (3d) in Fig. 21 involving photon
coupling directly to protons is shown by the dashed curve in Fig. 27 together with
that due to photon coupling to mesons (diagrams (3a)-(3c) in Fig. 21) shown by
the solid curve. Form factors are neglected in these results as we are only interested
in their relative magnitude. It is seen that contributions from diagrams with direct

photon-proton couplings are more than two orders of magnitude smaller than those
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from diagrams with photon coupled to mesons. These diagrams can thus be safely
neglected in calculating the cross section for charmed hadron production from photon-

proton reactions.
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CHAPTER VI

SUMMARY
In this dissertation, we have introduced an effective Lagrangian based on the SU(4)
flavor symmetry. To take into account the symmetry breaking effects due to the
larger masses of hadrons consisting of charm quarks, we have used the empirical
hadron masses and coupling constants. For coupling constants that are unknown
empirically, their values are, however, determined from the known ones using the
SU(4) relations. We have also included form factors at the strong interaction vertices
to take in to account the finite sizes of hadrons. This model has been used to evaluate
the cross sections for a number of reactions involving charmed hadrons production,
such as J/1¢ absorption by nucleon, charmed hadron production in meson-nucleon
and proton-proton reactions, and photoproduction of charmed hadrons from protons.
The cross section for charmonium absorption by nucleon is found to be about 5
mb, which is consistent with that extracted from .J/v¢ production in photo-nucleus
and proton-nucleus reactions and comparable with other theoretical approaches or
models. The cross sections for charmed hadron production are about a few hundred
b in meson-nucleon reactions and about 1ub in proton-proton reactions at center-
of-mass energy of 11.5 GeV. The latter is comparable to available experimental data.
Including photon as a U(1) gauge particle, the effective Lagrangian has been used to
evaluate the cross section for charmed hadron photoproduction on protons, and its
value is about 70 nb at center-of-mass energy of 5.7 GeV with two-body final states
constituting about 33% of the total cross section as in experimental data. Knowledge
on the cross sections for charmonium absorption and charmed hadron production are
useful for understanding the mechanism of observed charmonium suppression and for

studying charm production in relativistic heavy ion collisions.
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Although an effective Lagrangian similar to ours can be obtained from an SU(4)
chiral Lagrangian, our effective Lagrangian violates chiral symmetry due to the terms
with derivative operator acting on heavy meson fields instead of the pion field. Also,
the heavy quark symmetry reflected in the approximately degenerate masses of pseu-
doscalar (D, B) and vector (B, B*) heavy mesons has been shown to be useful for
studying the decays of heavy hadrons and their interactions [61]. It will be of interest
to improve our effective Lagrangian approach by including both the chiral symmetry
and the heavy quark symmetry.

The effective Lagrangians used in our dissertation can be extended to study
the production of exotic pentaquark baryons, which have recently attracted much
attention as a result of the experimental discovery of the ©7(1540) particle from the
invariant mass spectrum of K*tn or K% in nuclear reactions induced by photons
[62, 63] or kaons [64]. The extracted mass of about 1.54 GeV and width of less
than 21-25 MeV are consistent with those of the pentaquark baryon ©F consisting of
uudds quarks predicted in the chiral soliton model [65]. Its existence has also been
verified recently in the constituent quark model [66, 67] and the QCD sum rules [68].
Although the spin and isospin of ©% are predicted to be 1/2 and 0, respectively, those
of the one detected in experiments are not yet determined. Studies have therefore
been carried out to predict its decay branching ratios based on different assignments of
its spin and isospin [69, 70]. Including the coupling of ©F with both KN and K*N in

our effective Lagrangians, one can then evaluate the cross sections for the production

of exotic pentaquark ©F and/or other exotic pentaquark baryons =} (uussd)and

=5~ (ddssu) in reactions induced by photons [71, 72, 73], nucleons, pions, and kaons
[74] on nucleon targets. One can also determine their yield in relativistic heavy
ion collisions by taking into account their production from the initial quark-gluon

plasma and the effects due to subsequent hadronic absorption and regeneration [75].
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These studies will be useful in understanding not only the production mechanism of
pentaquark baryons but also their properties. They may also provide the possibility

of understanding the dynamics of hadronization of the quark-gluon plasma.
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APPENDIX A
VECTOR MESON DOMINANCE MODEL

For some coupling constants in our effective Lagrangians, their values can be
determined from the Vector Meson Dominance (VMD) model. In this model, the
virtual photon in the process e” DT — e~ D% is coupled to vector mesons p, w, and
J/1p, which are then coupled to the charmed meson. At zero momentum transfer, the
following relation holds:

3 Jv gvotp- _ (A1)

2
Vepway W

In the above, vy is the photon-vector-meson mixing amplitude and can be de-
termined from the vector meson partial decay width to ete™, i.e.,

2

ay?
Tyo, = 2V A2
v 3m3, (A-2)

with the fine structure constant o = €?/4w. The relative signs of 7y/’s can be deter-
mined from the hadronic electromagnetic current expressed in terms of quark currents
[76]. Since the virtual photon sees the charge of charm quark in the charmed meson

through the ¥ DD coupling, we have the following relations:

- 2 - wIw - 1
’ngdJD;'D = Ze, ’}/png;'D + Twd [;+D = —e. (A?))
my, 3 ms me, 3

Similarly, one has, from the process e~ D? — e~ DO,

5 2 5 w 3 2
L}gwgom = e, ,ypng;DO + 0 g“’ZODO = ——e. (A.4)
my, 3 ms mg, 3

Using 9pDp+D- = —Y,popo = YpDD;, YwD+D- = YG,popo = YwDD; and 9yD+D- =
p.
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Jypopo = gypp from isospin symmetry, we then have

2 1 w 2
7¢g1lJ2DD = Ze 7p9p2DD T %QWQDD — e, - Vpgpfp I Twd 2DD — _Ze (AB)
my, 3 ms mZ, 3 ms mZ, 3

J,From the above equations, we obtain the following coupling constants:
9pDD = 2.52 , guDD = —2.84 y QDD = 7.64 . (A6)

We note that in Ref.[20] the same VMD relations for g,pp and g,pp as our Eq. (A.5)
are used but slightly different values, i.e., g,pp = 2.8 and gypp = 7.7, are obtained.

Equations similar to Eq. (A.5) can be written for kaons and pions in order to
obtain gyxx and gy.r. The resulting coupling constants, multiplied by the corre-
sponding prefactors in the following SU(4) relations, are given in the parentheses for

comparison:

V6
gpﬂ-ﬂ(5.04) = 2ngK(5O4> = QQpDD(5O4) = 79¢DD(936) . (A?)

We note that |gyrr| is 6.06 if it is determined from the p meson decay width to two
pions. It is seen that the predicted values differ only slightly from the above SU(4)
relation except the coupling constant g,pp. This may indicate a sizable uncertainty

in the ¥ DD coupling.
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APPENDIX B

CHIRAL SYMMETRY CONSTRAINT

In this appendix, we give an example on how the chiral symmetry constraint

is fulfilled in the process yp — D* D*p. For diagrams (3a)-(3c) in Fig.21, their

amplitudes are

1
M3z, = egrpp+(—2ky + k3)* 5 (k1 — ks + k4)”£3y€2u7
t - mD
o 1 (k1 — ka)a(k1 — ka)p
Mz, = —egrpp-(—Fk1 — ka) u_—mgm Gap — m2,
X [(—kg — kg)ﬁglw + (—]fl + kz + k4>ugﬁu(k1 + k'?, - k4)ugﬂy]€3p€2l/a
M3c = egﬂDD*ng‘giS,ugZzz- <B1)

In soft pion limit, i.e., k{' = 0, we have

M?)a

Mgy,

M3c

1
€9ﬂDD*(—2k1)“m(/ﬁ + ka) 3,89, = 0,
D
1 (k1 — ka)a(kr — kydg
goaﬂ -

(07
€gdrDD* /f4

u—mb. m3).

[(—ka — k3) g + kg™ — Kl g™ |eauenn,

| (s — )2 (ks — By)
—egTrDD*u_—%[(kzl - kl)ﬂ - 1 1m%* ! B]

(ko + k’3)ﬁgw€3u€2u
(ky — k1) (ko + k3)?

v
€9dr DD~ 2 gM €3ucav
mD*
2 2
my — M3 _ uv

€9xDD*— 5 9 E3u€2v = —€GxDD*9  E3uEow

mD*

v
engD*g” <C33,u€21/- <B2)

It is thus easy to see that M3z, + Mg, + M3. = 0 in the chiral limit although the

Lagrangian L£,pp+ we used in calculation violates chiral symmetry due to the term

coupled to non-gradient pion field.
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APPENDIX C
CHIRAL SYMMETRY

The SU(4) flavor symmetric effective Lagrangian in our model contains terms
with nongradient pion couplings that violate chiral symmetry as first pointed out in
Ref.[49]. This can be seen as follows.

For the 7D D* coupling, we have two alternative forms, i.e.,

£h o = ;ngD* ((DFD™ — D*7D) - 0,7

~ (8,DFD™ — D*79,D) - 7], (C.1)
and
LY. = igepp (DFD™ — D*#7D) 8,7, (C.2)

with the first one violating chiral symmetry. The Lagrangians in Egs. (C.1) and (C.2)

can be related by performing an integration by parts in the last term in Eq.(C.1), i.e.,
1 _ _
£ 0 = L5 + Sgrpp- (DFOD™ = ,D7D) - 7 (C.3)

The above result indicates that the two forms of the 7D D* coupling would be equiv-
alent if the condition 9,D** = 9,D** = ( holds, which is the case for on-mass shell
vector mesons. However, this condition is not valid in the presence of interactions, and
hence that Eqgs. (C.1) and (C.2) correspond to different dynamical hypotheses. The
difference can, however, be absorbed by an effective contact term that is proportional

t0 grpD*gsp+p- (M5 /M. — 1) and vanishes in the SU(4) limit.
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APPENDIX D
LEADING-ORDER PQCD CROSS SECTION FOR vP — CC

In this appendix, we give the details on the evaluation of the cross section for
the reaction yp — c¢ in the leading-order perturbation QCD approach.

Based on the field equation
(0F — V) Au(z) = Qce(ey,0), (D.1)
the cross section for photoproton production of charm quarks can be written as
Nis _ 1
0" (V) = oy (y +p — cC) = 2—ImTM, (D.2)
v

where v = p,, - p, and

T = (Quefs Y e = - &Ly (D.3)
W = i [ dae™ (plTle()ye(x)e(0)y"e(0)]p). (D.4)

Evaluating the current-current correlation function IIf; in above equation using

the operator product expansion (OPE), i.e
I (p, q =Y C,A,v" + Higher dim. op, (D.5)

leads to the dispersion relation

/V OO W N () = I(n)A,, (D.6)

I/TL

with vy = $((mp + ma,)* — m}%) and I(n) = —(Q.c)*rC, /4.

In Eq.(D.5), C/s are the Wilson coefficients and A/ s are the matrix elements
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defined by

"2 (p|FY, Dy - Ey o) = (P Ppy - - — Trace terms) A, (D.7)

apl

with F, denoting the gluon field strength tensor. The A, can be expressed in terms

of the gluon distribution function inside the nucleon G(z,Q%), i.e.,
dv 9
Au=2 [ SarGla, Q). (D.8)

The Wilson coefficients can be determined by considering the process vg — c¢c.
In this case, |p) in Eq.(D.7) is replaced by a gluon state with momentum ¢ and color
a, i.e., |g(q),a). This leads to A, = 2 and the following relation between the Wilson
coefficients and the cross section for the reaction vg — cc:

1 oo dy

-5 n
2Vgl/

I(n) a(v), (D.9)

with v, = 2m2.

The cross section 079(v) can be calculated in pQCD as given in
Eq.(5.15).

In terms of the Mellin and inverse Mellin transformations

_ 1
F(n) = d—xx”F(x),
0o X
F I R D.10
(@) = 3= [ " dnFm)a, (D.10)

one can further derive the generalized convolution relations

F(n) = r"G(n)H(n)

Flz) = /; e (2) ) (D.11)

/r Z rz

This can be shown as follows:

F(z) = ! /aaﬂoop(n)x”dn

271 Ja—ico
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1 atioo 14 14
= —/ dnx’"/ —yy”G(y)/ —ZZ”H(z)
a 0 0

27 Ja—ico y z
_ %/ﬂaj:odn/l dy/1 dz (%)n%G(y)H(Z)

- L / dy [z () e i ()] Gl ce)
_ /dy [la=6(y-2) Gwn)

_ /()dz;G(;) H(z)

_ /; =16 (£) Heo). (D.12)

z
In the above, we have used the following relations: n = a+1b, ¢ {ln (yz—z)] =ydé(y—7%),
and 0 <y=7%2<1.

Let v = 1y /y and v,/z on the left and right hand sides of Eq.(D.6), respectively,
we then have

1t 1d
ﬁ/ dyy™ 2o <@> = 1/ dzz""2079 (Vg) o n G(z).(D.13)
Yy 0 Y Vg™ 0

z i

Changing n — 1 to n gives

1 "o d
[ (2) = (2) [ (2) [ 26 010
0 Y Vg 0 z/Jo x

Applying Eq.(D.11), we have

1
o™ (M)) :/ / d—xaw (I/Ox> G(x)x, (D.15)
Yy yvg/vo T Yy

which can be rewritten as
1
o™ (v) = dxo" (ve)G(z). (D.16)

vg /v

Finally, setting v, = 2m?2 and we get

oM (v) = /21 dro"(va)G(x). (D.17)

m2 /v
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