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Demonstration of a cryocooler conduction-cooled superconducting 
radiofrequency cavity operating at practical cw accelerating gradients
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We demonstrate practical accelerating gradients on a superconducting radiofrequency (SRF) accelerator cavity with
cryocooler conduction cooling, a cooling technique that does not involve the complexities of the conventional liquid
helium bath. A single cell 650 MHz Nb3Sn cavity coupled using high purity aluminum thermal links to a 4 K pulse
tube cryocooler, generated accelerating gradients up to 6.6 MV/m at 100% duty cycle. The operation was carried out
with the cavity-cryocooler assembly in a simple vacuum vessel, completely free of circulating liquid cryogens. We
anticipate that this simple cryocooling technique will make the SRF technology accessible to accelerator researchers
with no access to full-stack helium cryogenic systems. Furthermore, the technique can lead to SRF based compact
sources of high average power electron beams for environmental and industrial applications.

Electron irradiation is a proven technique for environmen-
tal protection applications such as the treatment of indus-
trial/municipal wastewater, flue gases, sewage sludge, etc. and
has been demonstrated on several pilot scale projects1. For
electron irradiation to be competitive on the large scale with
existing treatment methods, electron beam (e-beam) sources
capable of providing beam energy of 1−10 MeV, megawatt-
class average beam power, and high wall-plug efficiency
(>50%) are needed2. The sources must also be robust, re-
liable, and have turn-key operation to be viable in the harsh
environment expected around these applications2. Compact
sources requiring smaller footprints that lower the infrastruc-
ture cost may also be preferred.

E-beam sources using superconducting radiofrequency
(SRF) cavities as the beam accelerator can meet several of
the above requirements. A meter-long or even a shorter struc-
ture of standard niobium cavities3 or of low-dissipation Nb3Sn
cavities4, both of which easily generate accelerating gradients
>10 MV/m, can be an electron source with the desired beam
energy. The low surface resistance of SRF cavities reduces
their surface losses and provides high efficiency transfer of
the input RF power to the beam, which can help to achieve
the wall-plug efficiency target. The low surface resistance also
facilitates constructing cavities with a larger aperture and al-
lows RF operation with 100% duty cycle (continuous wave
or cw mode), both of which are favorable for generating and
efficiently transporting beams of very high average power.
SRF cavities, however, need operation at cryogenic temper-
atures and are conventionally cooled by immersion in baths of
liquid helium held near 2−4.5 K. The cryogenic infrastruc-
ture5 needed for compressing, liquefying, distributing, recov-
ering, and storing helium as well as expert cryogenic opera-
tors6 needed for oversight run counter to the robustness, high
reliability, compactness, and turn-key operation desired in in-
dustrial settings.

An approach to simplify the helium cryogenic infrastruc-
ture and reduce its footprint is to integrate a closed-cycle 4 K
cryocooler into an SRF cryomodule and recondense in-situ the
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boil-off helium gas produced by the cavity dynamic heat dissi-
pation. Although this compact and operationally simpler cool-
ing scheme, as implemented at the JAERI FEL7, was shown to
work reliably over year-long periods, it still relies on a liquid
helium bath, leading to some undesirable requirements: (1) a
separate helium cryosystem/liquid inventory for initially fill-
ing the cryomodule, (2) rigorous pressure vessel and relief de-
sign of the cryomodule as it contains a bath of liquid helium,
and (3) fairly large helium gas compressors and a storage sys-
tem to recover the helium during warm-up.

Conduction cooling an SRF cavity by directly connecting
to a closed-cycle cryocooler with a thermally conductive link
will eliminate the need for the conventional helium bath. This
elimination leads to dramatic simplification of the accelera-
tor: (1) a liquid helium inventory, a helium recovery/storage
system, and a helium pressure vessel and relief design is
no longer needed, (2) the cryogenics becomes very reliable
(commercial 4 K cryocoolers have mean time between main-
tenance of >20000 hrs (2.3 years)8), safe (no liquid helium
safety and oxygen deficiency hazards), and simple to operate
(cryocoolers turn on/off with push of a button), and (3) sig-
nificantly reduced footprint as well as added option of porta-
bility because all of the cryogenics is integrated into the cry-
omodule. Following its conceptualization9 in 2015, conduc-
tion cooling of SRF cavities has been studied albeit only by
means of computer simulations. Previous work is limited to
understanding its feasibility based on multiphysics (electro-
magnetic and thermal) simulations10,11 and a design of an
e-beam accelerator using a conduction cooled SRF cavity12.
A program to demonstrate practical accelerating gradients on
conduction cooled SRF cavities began at Fermilab in 2016. In
this letter we present experimental results from this program,
demonstrating a cw accelerating gradients up to 6.6 MV/m on
a single cell SRF cavity.

The elliptical single-cell niobium cavity used for the
present work has the following parameters: resonance fre-
quency 650 MHz, accelerating length, Lacc = 0.23 m, shape
factor, G = 270 Ω, and normalized shunt impedance, r/Q =
156 Ω. For conduction cooling, niobium rings (SRF grade,
RRR>300) were welded to the two elliptical half-cells as il-
lustrated in Fig. 1. The cavity surface was prepared by re-
moving 120 µm via electropolishing (EP), 3 hour 800 ◦C vac-
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FIG. 1. Preparation of a single cell 650 MHz niobium cavity
for conduction-cooling: niobium conduction rings electron-beam
welded to the cavity near its equator (left) and a 5N aluminum ther-
mal link14 connecting the cavity to the 4 K stage of a cryocooler
(right). All the bolted thermal contacts were prepared as described
in our prior report15. The cavity was coated with Nb3Sn on the RF
surface before cryogenic testing.

uum furnace treatment, 20 µm light EP, and high pressure
rinse with ultra-pure water. After initial performance evalu-
ation, the cavity inner surface was coated with a thin layer
of Nb3Sn, grown via vapor diffusion13, to enable low dissi-
pation operation4 at temperatures near 4.5 K. The cavity was
then cooled in 4.4 K liquid helium in the Fermilab Vertical
Test Stand (VTS) to obtain a baseline of quality factor, Q0 vs.
cw accelerating gradient, Eacc. The cavity was then warmed,
removed from the VTS, and prepared for conduction cooling
without disturbing the inner vacuum.

A thermal conduction link of 5N aluminum (purity
>99.999%) was designed14 and machined out of stock plates,
chemically cleaned to remove surface oxide, and bolted to
the cavity niobium rings following the procedure developed in
our prior work15. The procedure involves interposing a 4 mil
thick foil of indium between the niobium and aluminum plates
and pressing the contact with 2 kN force applied by a silicon
bronze screw, a brass nut, and stainless steel Belleville disc
springs. The other termination of the thermal link was bolted
to the 4 K stage of a pulse tube cryocooler. The cavity-thermal
link assembly was then installed on a test setup16 (conduction-
cooled test setup or CCTS) recently developed at Fermilab.
This setup is comprised of a vacuum vessel, a magnetic shield
(an enclosure with <10 mG background), a thermal radia-
tion shield, and a Cryomech PT420 two-stage pulse tube cry-
ocooler (rated to provide cooling of 2 W @ 4.2 K with 55 W
@ 45 K). A new RF power source was also developed that
is capable of feeding up to 10 W @ 650 MHz of cw power
to the cavity, measuring the forward, reflected and transmitted
powers, and locking the source frequency to the instantaneous
resonance frequency of the cavity during cryogenic RF op-
eration. For recording temperature of the cavity-cryocooler
assembly, the cavity carried four cryogenic thermometers af-
fixed to the niobium rings and the cryocooler carried one cryo-

genic thermometer on its 4 K stage. The cavity temperature
referred to in this letter is the average of the four cavity ther-
mometer readings.

Three RF tests were performed including one with liquid
helium (baseline) and two with cryocooler conduction cool-
ing. Fig. 2 shows the cavity quality factor, Q0 vs. cw acceler-
ating gradient, Eacc (both accurate to within 10%), determined
using standard cavity measurement procedure17. Test 1 was
carried out in the Fermilab VTS with liquid helium and wit-
nessed carefully controlled conditions viz. a background mag-
netic field of ∼2 mG and slow/uniform cooldown with rate
of 0.1 K/min through the Nb3Sn superconducting transition
temperature18 of 18 K. Both these factors reduce the resid-
ual surface resistance of Nb3Sn, which enhances the Q0 of
the cavity13. During the RF measurements, the cooling power
of the helium bath was regulated using a vapor pumping sys-
tem so that the cavity remained isothermal at ∼4.4 K over the
range of Eacc. Test 1 recorded Q0 of 3x1010 at Eacc of 1 MV/m
and Q0 of 4x109 at Eacc of 10 MV/m. The highest gradient of
∼12 MV/m recorded in Test 1 was limited by RF power.

For Test 2, the cavity was cooled conductively using the
cryocooler to below 4 K, with a slow cooldown rate of
0.03 K/min through the Nb3Sn transition temperature. Al-
though the magnetic shield of the CCTS provided a back-
ground of ∼10 mG, we later found that some stainless-steel
disc springs on the thermal link had residual field as high as
30 G. The slow cooldown in such high magnetic field is ex-
pected to trap the flux in the Nb3Sn layer, causing the cavity
Q0 to degrade significantly. A Q0 of 6x109 at Eacc of 1 MV/m
was recorded in Test 2, which is five times smaller than in
Test 1. Limited by the power output of the RF source, the
cavity sustained maximum Eacc of ∼5.5 MV/m during Test
2. For Test 3, magnetically cleaner disc springs with resid-
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FIG. 2. Cavity quality factor, Q0 vs. accelerating gradient, Eacc mea-
sured on a single cell, Nb3Sn coated, 650 MHz niobium SRF cavity.
The data uncertainty is <10%. Test 1 used a helium bath cooled cav-
ity at 4.4 K, in Fermilab Vertical Test Stand with background mag-
netic field of 2 mG. In Tests 2 and 3, the cavity was conduction-
cooled with a 2 W @ 4.2 K pulse tube cryocooler. The improvement
in Test 3 resulted from the reduction of magnetic field around the
cavity when magnetic disc springs (residual ∼30 G) were replaced
with relatively cleaner disc springs (residual <1 G).
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ual of <1 G were installed on the thermal link. The cavity
showed noticeable improvement: Q0 of 1010 was measured at
Eacc of 1 MV/m and the cavity sustained maximum Eacc of
∼6.6 MV/m, limited again by the RF power source.

We note in Fig. 2, a distinction between the Q0 vs. Eacc data
measured with liquid helium and cryocooler conduction cool-
ing. As previously mentioned, the helium bath temperature
control system in the VTS (Test 1) held the cavity isothermal
over the range of Eacc, yielding a Q0 vs. Eacc curve at the near-
constant temperature of ∼4.4 K. In the CCTS, however, there
was no temperature regulation system on the cryocooler. So
as heat dissipation in the cavity increased with the increase in
Eacc, the steady state temperature of the cavity increased as
well. The color gradient in the data for Test 2 and Test 3 re-
flects this effect. Thus, unlike Test 1, the Q0 vs. Eacc data from
Test 2 and Test 3 do not correspond to a fixed cavity tempera-
ture but rather have the cavity temperature vary from ∼4 K to
∼7 K depending on the Eacc.

Fig. 3 presents a graphical summary of the present findings
in terms of the cavity temperature, dissipated power, and the
corresponding cw accelerating gradient. The plot is divided
into two regions by the cryocooler load curve, accounted for
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FIG. 3. Dissipated power vs. temperature for the 650 MHz Nb3Sn
single cell cavity under study compared with the PT420 cryocooler
load curve. The load curve accounts for the 0.8 W heat leak prevail-
ing during measurements. Observed notable cw gradients with con-
duction cooling (with their current limits) marked on the graph are:
3.4 MV/m at ∼4.4 K (cooling capacity) and 6.6 MV/m at ∼7.2 K
(RF power). A Q0 of ∼3x1010 at 4.4 K is needed to achieve
10 MV/m with conduction cooling. An improved Nb3Sn coating
has already attained this Q0 in a recent test19 in the Fermilab VTS.
For comparison, the niobium cavity before Nb3Sn coating produced
2 MV/m cw in 4.4 K liquid helium (VTS), which is the limit achiev-
able with the cryocooler at this temperature. Producing higher Eacc
required more cooling power (6 W at 4.4 K to get to 4 MV/m cw)
or a higher Q0 operation (at 2 K to produce 10 MV/m cw), both not
attainable with the cryocooler.

the 0.8 W heat leak prevailing during the measurements. cw
operation is not possible with the cryocooler in the shaded re-
gion because here the dissipated power exceeds the cryocooler
capacity at a given temperature. For instance, the operation at
10 MV/m cw at 4.4 K with ∼7.2 W of dissipation lies in this
region. The unshaded region allows cw operation with the
cryocooler. At 4.4 K, conduction cooling produced a mod-
est Eacc of ∼3.4 MV/m, limited by the cryocooling capacity
at this temperature as well as due to the degraded Q0 from
flux trapping. However, with the increase in the cryocooling
capacity with temperature, the cavity at ∼7.2 K generated an
Eacc of ∼6.6 MV/m. This suggests that the attainable Eacc is
not limited by the cryocooler cooling capacity at ∼4.4 K and a
significantly larger Eacc can be generated by letting the system
operate warmer than ∼4.4 K.

Fig. 3 also highlights that reaching practical cw gradients
with a pure niobium cavity may not be feasible with the cry-
ocooler. We show representative gradients obtained in the
VTS on the cavity before coating with Nb3Sn. An Eacc only
up to 2 MV/m at 4.4 K lies within the range of the cryocooler
capacity at this temperature. Achieving higher gradients ei-
ther needed more cooling capacity (∼6 W at 4.4 K to reach
4 MV/m) or higher Q0 operation at colder temperature (2 K
to produce 10 MV/m cw), both of which are out of the cry-
ocooler cooling range.

The Eacc of ∼6.6 MV/m over Lacc = 0.23 m equals an en-
ergy gain of ∼1.5 MeV. This clearly makes our existing con-
figuration of one-cell cavity with one-cryocooler practicable
for treatment of industrial flue gas12. The attainable Eacc with
one cryocooler can be pushed up by improving the Q0 of our
cavity. The ongoing efforts for Nb3Sn coating optimization
have already produced a Q0 of ∼3x1010 at 10 MV/m cw on
a similar 650 MHz single-cell cavity19 in the Fermilab VTS.
The corresponding dissipation of ∼1.1 W at 4.4 K is now in
the regime of cryocooler conduction cooling as marked in
Fig. 3. Replicating this performance with conduction cool-
ing requires improvements to the magnetic hygiene of our
CCTS. These improvements are currently underway includ-
ing complete replacement of stainless steel disc springs with
those made of non-magnetic beryllium copper.

Large SRF accelerators for basic research (for example,
LCLS-II20) that use hundreds of cavities require kilowatt-
level refrigeration at liquid helium temperatures. We em-
phasize that cryocooler conduction cooling may not be eco-
nomical for such large-scale cooling demand simply due to
the lower efficiency of the cryocoolers: a large helium cry-
oplant requires ∼0.4–0.8 kW(electrical)/W(cooling) while a
cryocooler typically requires >10 kW(electrical)/W(cooling).
However, it can be an enabler for a new class of compact,
small-scale SRF accelerators, a concept of which is illustrated
in Fig. 4. Here we envision a 10 MeV e-beam source com-
prising of a meter-long 5-cell21 650 MHz SRF cavity gener-
ating 10 MV/m cw. With ∼6–7 W of dissipation at 4.4 K,
the cavity can be conduction-cooled using four two-stage cry-
ocoolers each of 2 W capacity. The thermal radiation shield
can be maintained near 40–50 K, by conduction cooling to the
warmer stages of the cryocoolers, resulting into a completely
liquid cryogen-free, standalone SRF machine. Design efforts
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FIG. 4. CAD rendering of a compact, meter-long e-beam accelerator
showing the components.

for a suitable components for such a machine viz. an input RF
power coupler22 and an electron source23 are currently under-
way.

In this letter we introduced the method to cool an SRF cav-
ity to cryogenic temperatures by conductively coupling to a
closed-cycle 4 K cryocooler. The method when adopted in
an SRF accelerator will eliminate the conventional cavity liq-
uid helium bath and offer compactness, robustness, reliabil-
ity, and turn-key cryogenic operation, making the accelerator
attractive for industrial settings. A 650 MHz Nb3Sn single-
cell cavity generated cw accelerating gradient of ∼6.6 MV/m
(electron energy gain of 1.5 MeV) with Q0 of 4x109 when
cooled using a 2 W @ 4.2 K pulse tube cryocooler. Con-
tinued work targets to further improve Q0 to push the Eacc
beyond 10 MV/m, develop conduction-cooling for multi-cell
SRF cavities, study potential cavity microphonics resulting
from cryocooler vibration, and subsequently develop a com-
pact SRF accelerator as a source for 1−10 MeV energy, high
average power e-beams for industrial and environmental ap-
plications.
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