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Abstract

We propose a closed gauge-invariant functional flow equation for Yang–Mills theories and quantum 
gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and 
gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise 
choice of the macroscopic field and the effective average action in order to realize a closed and simple form 
of the flow equation.
© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Functional flow equations permit to interpolate continuously from the microscopic or classical 
action to the macroscopic or quantum effective action. For Yang Mills theories and quantum 
gravity local gauge symmetries play a central role. A functional renormalization approach to 
such theories should keep carefully track of gauge symmetries and resulting restrictions on the 
general form of the effective action.

The goal is to realize a gauge-invariant effective action �̄(ḡ) for a single metric gμν in gravity, 
or a single gauge potential Aμ = gμ for electromagnetism, once all fluctuations are taken into 
account. (Quantum) field equations are then obtained directly as ∂�̄/∂ḡ = K , with K an appro-
priate conserved source. These field equations are the basis for the “classical” field theories of 
gravity and electromagnetism, which are well tested by many precision observations. A similar 
gauge-invariant effective action will be formulated for Yang–Mills theories. Physical correlations 
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or Green’s functions are obtained by inverting the second functional derivative of �̄ in the space 
of physical fluctuations.

At the present stage, the formulation of functional flow equations for gauge theories has to 
deal with the problem that regularization in continuum field theories typically breaks the gauge 
symmetry, necessitating gauge fixing. Furthermore, quadratic infrared cutoff terms are usually 
not compatible with the gauge symmetry. Exact flow equations for the effective average action of 
gauge theories have been formulated in the background field formalism [1–4]. This formalism has 
been extended to quantum gravity [5]. These flow equations involve, however, two independent 
fields. The first is the expectation value of the microscopic or fluctuating field g′, over which the 
functional integral is performed,

g = 〈g′〉, (1)

while the second “background field” ḡ is used to formulate covariant derivatives for the gauge 
fixing and infrared cutoff. The effective action is only invariant under simultaneous transforma-
tions of g and ḡ.

Alternatively, one may omit the background field, which amounts to setting ḡ = 0 in the back-
ground field formalism. The effective action is no longer gauge invariant. Rather sophisticated 
approximation schemes [6,7] are needed in order to cope with the many terms contributing al-
ready in low orders of the gauge field. It has been proposed to maintain gauge symmetry by 
the use of rather complex gauge invariant regularizations [8–11] involving additional fields. Our 
present approach is more modest. Technically, it shows analogies to background gauge fixing in 
a particular “physical” gauge. We obtain, however, a gauge invariant effective action depending 
only on one macroscopic gauge field. This is achieved by employing the macroscopic field for 
the formulation of the gauge fixing and infrared regulator term. No separate background field is 
introduced. At the end, we obtain indeed a quantum effective action that is gauge invariant and 
depends on a single metric or gauge field. This can be used as the basis for general relativity and 
Maxwells equations, including corrections to these equations generated by quantum fluctuations.

In the usual “background field formalism” ḡ is considered as fixed. We propose here to replace 
the fixed background field by a macroscopic field ḡ(g), with a relation to g that is, in principle, 
computable. The macroscopic field ḡ is the argument of the gauge-invariant effective action �̄(ḡ)

which only depends now on one field. The metric or gauge field in the field equations is identified 
with ḡ. Also the flow equations describe the scale dependence of the effective action at fixed ḡ. 
Thus ḡ is the relevant field for all macroscopic considerations. (We keep here the notation ḡ for 
comparison with the background field formalism – the bar may be dropped at later stages.) The 
choice of the relation between ḡ and g = 〈g′〉 is such that a closed gauge invariant flow equation 
can be formulated for �̄(ḡ). The precise relation between g and ḡ is of secondary importance.

Approximative solutions (truncations) of previous versions of exact flow equations for gauge 
theories have been successfully used to understand various phenomena. Superconductivity or 
the abelian Higgs model has been investigated in various dimensions [2,4,12,13]. Increasingly 
sophisticated truncations in quantum chromodynamics (QCD) provide for an increasingly com-
plete analytical understanding [14–16]. Functional renormalization has addressed the running of 
the gauge coupling in various dimensions [1,3,17–19]. Applied to thermal equilibrium, with an 
effective non-perturbative (“confinement”) scale increasing with temperature, it has been advo-
cated that non-perturbative strong interaction effects should be visible in the quark gluon plasma 
even at high temperature [1,20]. (This qualitative finding has been made quantitative by compu-
tations of thermodynamic quantities in lattice gauge theories, or by the experimental observation 
of strong interaction properties in heavy ion collisions at high effective temperature.) Detailed 
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studies of the flow in the non-perturbative regime have addressed the issues of the heavy quark 
potential [21–23], gluon condensation [24,25], the gluon propagator [22,23,26] and confinement 
[27]. The comparison of flow equation results in Landau gauge with lattice simulations [26,28]
and Schwinger–Dyson equations [29,30,26,31] have added confidence in the reliability of results 
for QCD. For the electroweak interactions the crossover character of the high-temperature tran-
sition has first been advocated based on the effective three-dimensional running of couplings [3].

In quantum gravity the non-perturbative flow equations for the effective average action have 
permitted to address the asymptotic safety scenario [32] in four dimensions [5]. The correspond-
ing ultraviolet (UV) fixed point of the flow [5,33] has been seen to persist for rather extended 
truncations [34–56]. Within dilaton quantum gravity a similar UV-fixed point can be related di-
rectly to inflationary cosmology [57,58]. Despite these many striking successful applications of 
functional flow equations for gauge theories, further progress is partially hindered by the pro-
liferation of the number of invariants in the absence of a realization of gauge symmetry for a 
single gauge field. While the conceptual setting and the exactness of the flow equation is not in 
doubt, the absence of gauge symmetry or the presence of two gauge fields in the background field 
formalism makes it hard to derive series of truncations that do not rapidly become very complex.

In the background field formalism the flowing action or effective average action �(g, ḡ) is 
gauge invariant if g = 〈g′〉 and ḡ are transformed simultaneously. In contrast, gauge invariance is 
broken if only g′ and g are transformed while ḡ is held fixed. A gauge-invariant effective action 
involving only one field, �(ḡ) = �(ḡ, ḡ), can be formed if g is identified with ḡ. This object is 
in the center of many studies in the past. The exact flow equation for �(ḡ) involves, however, 
the exact propagator which is encoded in �(g, ḡ) [1]. Indeed, the inverse propagator is given by 
the second functional derivative of �(g, ḡ) with respect to g, taken at fixed ḡ. It is not directly 
related to the second functional derivative of �(ḡ). What is needed is an estimate of the shape 
and influence of

��(g, ḡ) = �(g, ḡ) − �(ḡ, ḡ). (2)

Many practical computations assume that �� can be sufficiently well described by a simple 
gauge fixing term. A reliable estimate of the effects from �� beyond such a simple ansatz is per-
haps the most important present source of uncertainty and error in the functional renormalization 
group approach to gauge theories and quantum gravity.

The functional form of ��(g, ḡ) obeys various constraints which guarantee that there are 
no physical degrees of freedom beyond the ones contained in a single gauge field. An exact 
“background field identity” [1] yields a one loop type exact equation for the dependence of the 
effective action on the background field at fixed g, i.e. ∂�(g, ḡ)/∂ḡ|g . In the absence of an 
infrared cutoff (k = 0) gauge theories with gauge fixing obey exact Ward or Slavnov–Taylor 
identities. For an infrared cutoff scale k �= 0 those are violated by the infrared cutoff. Exact 
modified Ward identities [59–62] do now account for this violation of the usual Ward identities by 
effects of the infrared cutoff. The modified Ward identities can be obtained from the background 
field identity [63–65] – both sets of identities express the same physics, namely the absence of 
unphysical propagating degrees of freedom. Already in a perturbative setting these identities are 
cumbersome to handle, however, and there is very little experience how to implement these often 
rather complex identities in a non-perturbative situation.

Alternatively, one may directly compute the flow of �� by an exact flow equation [66–68]. 
Since �� involves h = g − ḡ, and h transforms homogeneously as a tensor under simultaneous 
gauge transformations of g and ḡ, possible truncations get quickly rather involved. There are 
many invariants that can be constructed from the tensor h. Keeping the dependence on h and ḡ
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unconstrained results in new relevant operators in the flow. The values of their coefficients have 
to be tuned in order to maintain consistency with the background field identity or the modified 
Ward identities. It is precisely these identities that are responsible for the absence of physical 
additional relevant couplings in the two-field formalism. Since the solutions of the identities 
are only poorly known, it is often difficult to achieve the physical tuning in a given truncation, 
resulting in potentially large errors.

In this note we propose to avoid the problems with ��(g, ḡ) altogether by the definition of a 
flowing gauge-invariant effective action �̄(ḡ) which admits a closed flow equation. This means 
that the flow generator ζk (r.h.s. of the flow equation) can be expressed as a functional of �̄(ḡ), 
typically involving the second functional derivative �̄(2)(ḡ). Since �̄(2)(ḡ) has zero modes due to 
gauge symmetry, the propagator for the physical modes has to be found by inversion on a suitably 
projected subspace. Our formalism shows some analogies with “geometric flows” [69,43,70].

In practice, computations with the proposed gauge-invariant flow equation are rather similar to 
computations in the background field formalism for a specific physical gauge. The flow equation 
retains its one-loop form. Due to the dependence of the cutoff function Rk on ḡ via covariant 
derivatives, the flow of derivatives of �̄ involves additional diagrams ∼ ∂Rk/∂ḡ. For k �= 0 the 
inverse propagator obtained from the second functional derivative of �̄[ḡ] does not equal the 
connected two-point function for the microscopic fluctuations, however.

The paper is organized as follows: In sect. 2 we describe the proposed gauge invariant flow 
equation and establish its gauge invariance. Sect. 3 derives the flow equation from a functional 
integral. In contrast to the usual formulation the partition function depends on the macroscopic 
gauge field ḡ, rendering the definition of the effective action an integro-differential functional 
equation. This issue and the consequences for the flow equation are discussed in sect. 4. In sect. 5
we describe the projection on the physical fluctuations and the notion of a physical gauge fixing 
that acts solely on the gauge fluctuations. The optimal choice of the macroscopic gauge field is 
discussed in sects. 6 and 7. Only this optimal choice permits a simple closed form of the flow 
equation. The short sect. 8 addresses the quantum field equations that are the basis for classical 
field theory. We discuss our results in sect. 9.

2. Flow of gauge-invariant effective action

We start our discussion by proposing a flow equation for a gauge invariant functional �̄k(ḡ)

that depends only on the macroscopic gauge field ḡ. This equation for the evolution with the 
infrared scale k is closed, such that specifying the “initial condition” at some ultraviolet value of 
k permits, in principle, to extract the gauge invariant effective action as the solution of the flow 
equation at k = 0, �̄(ḡ) = �̄k=0(ḡ). The first derivative of �̄ defines the field equation and the 
second the inverse propagator. If the usual relation between the two-point correlation of fluctua-
tions and the propagator holds, �̄(ḡ) is sufficient to compute the quantities of interest for gravity, 
electromagnetism or Yang–Mills theories. In a second step we will relate this flow equation to a 
functional integral and discuss if it is exact or should be considered as an approximation.

The flow equation involves the exact propagator for the physical fluctuations. It is therefore 
important to separate the physical fluctuations and the gauge fluctuations by appropriate projec-
tions. Only on the projected subspace for physical fluctuations the second functional derivative of 
�̄[ḡ] is invertible and related to the propagator of the physical fluctuations. The gauge invariant 
effective action �̄[ḡ] contains no gauge fixing term. In the space all fluctuations the second func-
tional derivative of �̄[ḡ] has zero modes and is not invertible. The projections avoid the problems 
with the zero modes.
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The proposed flow equation for the gauge-invariant effective average action �̄k(ḡ),

k∂k�̄k = ζk = πk + δk − εk, (3)

involves a contribution πk from the physical fluctuations as well as “measure contributions” δk

and εk . Only πk depends on �̄, according to

πk = 1

2
tr(k∂kR̄P GP ), (4)

with R̄P the infrared regulator for the physical fluctuations which depends on the normalization 
scale k. The trace tr contains a momentum integration such that eq. (4) takes a one loop form, as 
well as a suitable trace over Lorentz- and internal indices of the gauge fields or the metric. All 
indices, including position or momentum labels, are collectively denoted by i.

The propagator matrix GP for the physical fluctuations obeys the projection properties 
PGP = GP P T = GP , with projector P = P 2. The same holds for R̄P = P TR̄P = R̄P P . The 
projector is defined such that it projects on the physical fluctuations. It annihilates the infinitesi-
mal gauge variations of the variable ḡ according to

δξ ḡ = (1 − P)δξ ḡ , P δξ ḡ = 0. (5)

(Here ḡ is considered as a vector with index i, e.g. ḡi = Az
μ(x) or similar. Correspondingly, 

P, ḠP and R̄P are matrices.)
The projector is a given functional of the macroscopic field ḡ, determined uniquely by the 

action of gauge transformations on ḡ. For the example of non-abelian gauge theories the projector 
reads [1]

Pμ
ν = δν

μ − P̄μ
ν, P̄μ

ν = DμD−2Dν, (6)

with Dμ the covariant derivative in the adjoint representation involving the macroscopic field 
ḡ = Āμ, and D2 = DρDρ . For quantum gravity the projector again involves covariant derivatives 
and therefore depends on ḡ. It is discussed in ref. [71].

We define the projected second derivative of �̄ by

�̄
(2)
P = P T�̄(2)P , �̄(2)ij = ∂2�̄

∂ḡi∂ḡj

. (7)

The quantity �̄(2)
P + R̄P is invertible on the space of physical fluctuations. We define the propa-

gator GP as the inverse of �̄(2)
P in the projected space of physical fluctuations,

(
�̄

(2)
P + R̄P

)
GP = P T. (8)

Thus GP is computable in terms of �̄, and the flow equation (3), (4) is closed. Without the 
projection on physical fluctuations the matrix �̄(2) is not invertible due to the presence of gauge 
modes and the gauge invariant construction of the propagator (8) would not be possible.

The measure contributions are fixed functions of suitable differentiable operators. In a gauge 
fixed version they account for the contribution from gauge fluctuations and the Faddeev Popov 
determinant for a “physical gauge fixing”. For Yang–Mills theories one has

δk − εk = −1
tr
{
k∂kRgf (DS)

(
DS + Rgf (DS)

)−1
}
, (9)
2
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with DS = −DμDμ and Rgf a suitable infrared cutoff function. The covariant derivative Dμ is 
formed with the macroscopic gauge field ḡ, such that δk − εk is gauge invariant. This part of 
the flow can be computed independently of the precise form of �̄k and its possible truncations. 
The main differences of the proposed flow equation (3) as compared to the exact flow equation 
for scalars or fermions is the projection on physical fluctuations and the related presence of a 
measure contribution.

A gauge-invariant effective action obeys

∂�̄

∂ḡ
= ∂�̄

∂ḡ
P, (10)

such that

δξ �̄ = ∂�̄

∂ḡ
P δξ ḡ = 0. (11)

We want to show that πk is gauge invariant, e.g. ∂πk/∂ḡ = (∂πk/∂ḡ)P . Gauge invariance is then 
preserved by the flow. If one starts with a gauge invariant functional �� at some scale k = �, the 
effective average action �k remains gauge invariant for all k < �.

For this purpose we first note that �̄(2) in eq. (7) transforms homogeneously as a symmetric 
tensor (e.g. rank four for gravity, rank two and adjoint in internal space for Yang–Mills theories). 
The projectors involve covariant derivatives and transform as tensors as well. This implies that 
�̄

(2)
P in eq. (7) transforms as a tensor. We choose R̄P to have the same tensor transformation as 

�̄
(2)
P . This is straightforward if one uses covariant derivatives depending on ḡ for its construction. 

From eq. (8) one infers that the projected propagator GP transforms as a tensor as well, consistent 
with a correlation function of field fluctuations. Finally, the derivative k∂kRk also transforms as 
a tensor, and the r.h.s of eq. (4) is therefore gauge invariant.

More in detail, one can convince oneself that the gauge variation of the projector does not 
contribute. Formally, one may write

R̄P = P TR̄P, GP = PGP T, (12)

and gauge variation of πk could receive contributions from

δξP = �P . (13)

From the projector properties P = P 2 = P 3 one derives for �P the relation

�P = P̄�P P + P�P P̄ , P̄ = 1 − P. (14)

As a consequence of the structure of (4) the factor P̄ in �P always gets multiplied by P , and 
with P̄ P = 0 we conclude that the gauge variation �P does not contribute.

For Yang–Mills theories the relevant differential operators are explicitly known. Both δk and 
εk are traces of functions of D2. Similarly, the IR cutoff for the physical fluctuations R̄P is a 
function of the covariant operator

(D)μ
ν = −D2δν

μ + DμDν + 2iF ν
μ, (15)

where Fν
μ is the contraction of the field strength Fzν

μ with the generator Tz in the adjoint repre-
sentation. For Dν Fμν = 0 it obeys PD = DP = D. For gravity the explicit form of projected 
differential operators is not known for arbitrary background fields. For a large class of interesting 
backgrounds the classification of physical fluctuations remains nevertheless rather simple [71].
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More generally, explicit knowledge or use of the non-local projectors is often not needed for 
practical computations. Typically, �̄(2) automatically satisfies the projection property in eq. (7), 
and similar for R̄. Solutions for GP obeying eq. (8) can be found without the need of explicit 
knowledge of P . For example, �̄(2)

P and GP are often both proportional to P = P T, such that 
only trP is needed for eq. (4). The trace is typically known, given simply by the number of 
physical degrees of freedom. Furthermore, the projection onto GP can also be realized by adding 
“by hand” a “physical gauge fixing term” with infinite coefficient 1/α. Inversion of the second 
functional derivative of the effective action in presence of this physical gauge fixing projects onto 
GP , with all other components of the inverse of �(2) vanishing ∼ α.

If the solution of the proposed gauge-invariant flow equation belongs to the same universality 
class as usual gauge theories, explicit knowledge of the microscopic formulation of the gauge-
invariant effective average action �̄ is actually not needed. We could use the flow equation (3)
for an “ERGE-regularization” of a non-abelian gauge theory or quantum gravity. A derivation 
of the flow equation (3) from a functional integral is, nevertheless, relevant for several issues. 
For a functional integral the conditions for the description of a unitary quantum field theory (e.g. 
Osterwalder–Schrader positivity) are well established. Furthermore, the functional integral for-
mulation of �̄k(ḡ) makes the connection of the proposed flow equation to other formulations of 
gauge theories more apparent. This will also shed light on the choice of the measure contribu-
tions δk − εk . For a given microscopic functional integral formulation we can also address the 
question if eq. (3) is exact or if it is some type of approximation. If exact, the functional integral 
can be viewed as a formal solution of the differential flow equation. The remainder of this note 
will discuss the functional integral representation of �̄k(ḡ).

3. Flow equation from functional integral

We will next discuss the emergence of the flow equation from a microscopic functional inte-
gral formulation [72]. We investigate here a continuum formulation with gauge fixing and do not 
address the relation of this continuum formulation to possible discrete (lattice) gauge invariant 
formulations. Starting from a particular physical background gauge fixing we derive the flow 
equation (3) in two steps. For the first step we keep an arbitrary field ḡ independent of g = 〈g′〉. 
This closely follows ref. [1]. In the second step we choose a suitable relation between ḡ and 
g which relates the macroscopic field ḡ to a nonlinear function of the expectation value of the 
microscopic field g′.

Our starting point is the usual functional integral for the partition function in presence of a 
background field ḡ,

Z(L, ḡ) =
∫

Dg′Mk(g
′, ḡ) exp

{−S(g′) − Sgf(g
′, ḡ) − �Sk(g

′, ḡ) + LTg′}, (16)

W(L, ḡ) = lnZ(L, ḡ).

The microscopic field g′ may be considered as a generalized vector g′
i , with indices i includ-

ing space or momentum labels, Lorentz indices μ, indices for the representations of the gauge 
group z, and labels for different species. For the example of a pure Yang–Mills gauge theory g′
stands for the gauge fields A′z

μ(x), while for quantum gravity it denotes the microscopic metric 
g′

μν(x). The corresponding sources are denoted by L, LTg′ = Lig′
i .

The microscopic action is given by S(g′), while the background field appears in the gauge 
fixing term Sgf(g

′, ḡ) and the infrared cutoff term �Sk . The factor



C. Wetterich / Nuclear Physics B 931 (2018) 262–282 269
Mk = M(g′, ḡ)Ek(ḡ) (17)

contains the Faddeev–Popov determinant M and an associated regulator Ek [1], with

εk(ḡ) = tr
{

ln k∂kEk(ḡ)
}
. (18)

This defines the measure contribution εk in (3). The infrared cutoff term �Sk(g
′, ḡ) vanishes 

for k = 0. In this limit (16) becomes the standard setting for a gauge theory with background 
gauge fixing. For k → ∞ the infrared cutoff should remove the fluctuation contributions such 
that �̄k→∞(ḡ) = S(ḡ). We discuss more details below.

As usual, one may define an effective action by a Legendre transform at fixed ḡ

�̃(g, ḡ) = −W(L, ḡ) + LTg, (19)

with g and L related by

g = ∂W(L, ḡ)

∂L
= 〈g′〉, L = ∂�̃(g, ḡ)

∂g
. (20)

For suitable choices of Sgf and �Sk the effective action (19) is invariant under simultaneous 
gauge transformations of g and ḡ. This is usually called “background gauge symmetry”, while 
“microscopic gauge transformations” only transform g′, and therefore g, leaving ḡ fixed. The 
effective action �̃ is not invariant under microscopic gauge transformations.

As the key idea of this note we employ here a macroscopic field ḡ(g) which depends on the 
expectation value g, rather than a fixed value. Since ḡ(g) and g do not transform independently, 
a distinction between background gauge transformations and microscopic gauge transformations 
is no longer possible. All fields g′, g and ḡ(g) transform under a single gauge transformation. 
Inserting ḡ(g) in �̃(g, ḡ) yields an effective action that only depends on one field. As indepen-
dent variable we choose the macroscopic field ḡ, with g expressed in terms of ḡ by inverting 
ḡ(g). The use of ḡ(g) in the gauge fixing and infrared cutoff terms transmutes the defining equa-
tion for W into an integro-differential equation. Now ∂W/∂L appears in the gauge-fixing term, 
�Sk and Mk through ḡ(g) = ḡ(∂W/∂L). We will see, however, that there is no need to solve 
this integro-differential equation explicitly. We emphasize that the definition of �̃(g, ḡ) is the 
Legendre transform of W(L, ḡ) at fixed ḡ. One could define a different object as the Legendre 
transform of W(L) = W

(
L, ḡ(L)

)
. This is not what we use here.

An exact flow equation for �̃(g, ḡ) can be derived [1] by varying the infrared cutoff term in 
eq. (16) which should be at most quadratic in the microscopic field g′,

�Sk(g
′, ḡ) = 1

2
(g′ − ḡ)TRk(ḡ)(g′ − ḡ). (21)

The cutoff function Rk is assumed to vanish for k → 0 and to diverge in the limit k → ∞. We 
may write Rk = knrk with dimensionless rk typically depending on ratios of suitable differen-
tial operators D over the appropriate power of k, D/km. (For gauge fields and scalars in four 
dimensions one has n = m = 2 and D will contain second covariant derivatives formed with 
the background field ḡ.) We require that rk vanishes fast for large |D/km|, such that �Sk only 
affects the long distance modes. For small |D/km| we assume that rk approaches a constant. In 
the presence of the IR-cutoff W and �̃ depend on the scale k. For k → 0 the cutoff vanishes and 
�̃k=0 is the quantum effective action where all fluctuation contributions are included. For k → ∞
the fluctuations are cut off and therefore not yet included in �̃k. For an appropriate choice of Rk

the saddle point approximation becomes valid, such that �̃k→∞ = S + Sgf + �Sk . In a slight 
modification of the usual treatment the cutoff (21) acts directly on the fluctuations g′ − ḡ.
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The flow of W(L, ḡ) with k is given by the exact flow equation at fixed L and ḡ,

∂kW(L, ḡ) − εk(ḡ) = −1

2
〈∂k�Sk〉

= −1

2
Str

{
∂kRk(G

′ + h · h)
}
,

(22)

with connected correlation function

G′
ij = 〈g′

ig
′
j 〉c = 〈g′

ig
′
j 〉 − 〈g′

i〉〈g′
j 〉, (23)

and

(h · h)ij = hihj , h = g − ḡ = 〈g′〉 − ḡ. (24)

(The minus sign in the supertrace Str for fermions arises from the permutation of Grassmann 
variables.) Performing the Legendre transform (19) at fixed ḡ results in the flow of the effective 
action at fixed g and ḡ

∂k�̃(g, ḡ) = 1

2
Str

{
∂kR(G′ + h · h} − εk(ḡ). (25)

By virtue of the relation

�̃(2) G′ = 1, �̃(2)ij = ∂2�̃(g, ḡ)

∂gi∂gj

, (26)

the flow equation for �̃(g, ḡ) is closed in the two-field formalism.
Defining

�k(g, ḡ) = �̃k(g, ḡ) − 1

2
hTRk(ḡ)h, (27)

the second functional derivative obeys

�̃(2) = �(2) + R, G′ = (�(2) + R)−1, (28)

and

∂k� = 1

2
Str(∂kRG′) − εk. (29)

Eq. (29) has a one-loop form, with regulator Rk appearing in the propagator G′ according to (28). 
For k → 0 or h → 0 the expressions for �̃ and � coincide.

4. Macroscopic field

We will investigate a suitable choice of the macroscopic field ḡ(g) and a suitable definition of 
a gauge-invariant effective action �̄(ḡ) such that the propagator GP for the physical fluctuations 
can be expressed in terms of �̄, typically involving the second functional derivative �̄(2). This 
will produce the closed form (3) for the evolution equation of the gauge-invariant effective action. 
The exact flow equation (29) has been derived for an arbitrary background field ḡ kept fixed. We 
want to translate this to a macroscopic field that is a function of g, ḡ = ḡk(g). Here we have 
indicated that the relation between ḡ and g may depend on k.
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Insertion of ḡ(g) defines an effective action �̃(g) that only depends on one argument

�̃(g) = �̃
(
g, ḡ(g)

)
. (30)

If the relation between ḡ and g is compatible with infinitesimal gauge transformations, i.e.

ḡ(g + δξg) = ḡ + δξ ḡ, δξ ḡ = ∂ḡ

∂g
δξg = P̄ δξ ḡ, (31)

the effective action �̃(g) is gauge invariant. This follows from the gauge invariance of �̃(g, ḡ)

under the simultaneous transformation of g and ḡ, with

δξ �̃(g, ḡ) = ∂�̃

∂g
δξg + ∂�̃

∂ḡ
δξ ḡ = 0 (32)

implying

δξ �̃(g) = ∂�̃

∂g
(g, ḡ)δξ g + ∂�̃

∂ḡ

∂ḡ

∂g
δξg = 0. (33)

This argument extends to a gauge-invariant effective action �̄ which is related to �̃ by subtraction 
of a suitable gauge-invariant piece, similar to (27). Replacing the argument g by ḡ, i.e. inserting 
g(ḡ), yields the gauge invariant action �̄(ḡ).

A simple choice corresponding to the background field formalism would be the identification

ḡ(g) = g. (34)

The resulting effective action �̃(g) is gauge invariant. However, the first derivative of �̃(g) pro-
duces no longer the source [1],

∂�̃

∂g
= ∂�̃(g, ḡ)

∂g
+ ∂�̃(g, ḡ)

∂ḡ

∂ḡ

∂g
= L + κ, (35)

with

κ = ∂�̃(g, ḡ)

∂ḡ

∂ḡ

∂g
. (36)

The matrix of second derivatives contains a generalized “gauge fixing correction”

Qij = ∂2�̃(g, ḡ)

∂gi∂gj

− ∂2�̃(g)

∂gi∂gj

. (37)

This gauge fixing contribution appears in the exact flow equation (29) for �(g) = �(g, g). Since 
Q cannot be expressed in terms of �(g) the flow of �(g) is no longer given by a closed equa-
tion [1]. It involves the generating functional �̃(g, ḡ) with two arguments, which has to be 
determined by some assumption or approximation. This is one of the main uncertainties in the 
present use of approximations to the flow equation.

The choice of ḡ(g) is not unique, however. We will investigate a suitable choice such that 
the flow equation for the gauge-invariant effective action �̄(ḡ) becomes closed. If �̄ is gauge 
invariant its second derivative has zero eigenvalues. The propagator G′ in the flow equation 
(29) can therefore not be given by the inverse of �̄(2) for k → 0. We will separate the “physical 
fluctuations” and “gauge fluctuations” by suitable projections. On the projected space of physical 
fluctuations �̄(2) will become invertible and we will express GP by the inverse of (�̄(2) + R) on 
this projected subspace, according to eq. (8). The physical fluctuations will contribute the term 
πk in the flow equation (3), while the gauge fluctuations are responsible for δk.
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5. Projection on physical fluctuations

The “macroscopic fluctuations” h = g − ḡ can be split into “physical fluctuations” f and 
“gauge fluctuations” a,

h = g − ḡ = f + a. (38)

The gauge fluctuations a obey

P(ḡ)a = 0, a = (
1 − P(ḡ)

)
h. (39)

On the other hand, P(ḡ) projects on the “physical fluctuations”,

f = P(ḡ)h. (40)

For infinitesimal h the gauge variation of g at fixed ḡ can be expressed as an inhomogeneous 
transformation of h,

δ̂h = P̄ (ḡ + h)δξ (ḡ + h) = P̄ (ḡ)δξ (ḡ) + δhh. (41)

The inhomogeneous part only affects the gauge fluctuations a,

δinha = P̄ (ḡ)δξ (ḡ), (42)

while f transforms as a tensor according to the homogeneous part δhf . Infinitesimal gauge 
fluctuations a can therefore be viewed as the result of an infinitesimal gauge transformation 
acting only on g.

Let us write �(g, ḡ), as defined in eq. (27), in the form

�(g, ḡ) = �̂(g, ḡ) + �gf(g, ḡ). (43)

We assume that the “gauge fixing term” �gf is quadratic in the gauge fluctuations a

�gf(g, ḡ) = 1

2α
aTQ̄(ḡ)a. (44)

We will take the limit α → 0 and assume that �̂ remains finite in this limit. It will be important 
that no terms independent of a or linear in a diverge for α → 0. This selects a particular class of 
gauge fixing terms that are quadratic in a. Due to the divergence for α → 0 the term (44) is the 
dominant contribution to ��(g, ḡ) as defined by eq. (2).

For the second functional derivative the gauge fixing term contributes a term that diverges for 
α → 0,

�
(2)
gf = 1

α

(
1 − P T(ḡ)

)
Q̄(ḡ)

(
1 − P(ḡ)

)
. (45)

The infrared cutoff is taken to contain a part R̄k for the physical fluctuations as well as a cutoff 
for the gauge fluctuations ∼ Rk,gf,

Rk = R̄k(ḡ) + 1

α

(
1 − P T(ḡ)

)
Rk,gf (ḡ)

(
1 − P(ḡ)

)
, (46)

such that the second functional derivative of �̃ obeys

�̃(2) = �̂(2) + R̄k + 1
(1 − P T)(Q̄ + Rgf)(1 − P). (47)
α
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We next decompose �̃(2) into four blocks corresponding to the different projections with P
or P̄ = (1 − P) from left or right. The propagator G can be decomposed similarly and one finds 
from eqs. (26), (47) for α → 0

G = GP + α Gl, GP = PGP T. (48)

Here GP is the inverse of �̃(2)
P on the projected subspace

�̃
(2)
P GP = P T, �̃

(2)
P = P T(�̂(2) + R̄)P . (49)

The piece α Gl vanishes for α → 0, and we observe that �(2)
gf and Rgf do not contribute to �̃(2)

P .
In the limit α → 0 the flow equation (29) consists of a part involving GP and a gauge contri-

bution δk(ḡ),

k∂k�(g, ḡ) = 1

2
Str(k∂kR̄GP ) + δk − εk, (50)

with

δk = 1

2
tr

{
k∂kRgf(1 − P)(Q̄ + Rgf)

−1(1 − P T)
}
. (51)

The gauge contribution arises from multiplication of α−1∂kRgf with the appropriate projection 
of α Gl . It depends on ḡ via P, Q̄ and Rgf, but is does not involve �̂. This defines the measure 
contribution δk in eq. (3). We observe that for α → 0 only �̃(2)

P and the second term ∼ 1/α in 

eq. (47) enter in the flow equation (50). The parts in �̃(2) − �̃
(2)
P that do not diverge for α → 0

are projected out and do not influence the flow. We also observe that the leading part in �� is 
given by �gf in eq. (44) for all k. All contributions to the flow are finite for α → 0 and therefore 
cannot change the divergent part ∼ 1/α. Furthermore, the r.h.s. of the flow equation contains no 
term that diverges for α → 0. As a consequence, one has ∂t (1/α) = bα with finite bα , such that 
∂tα = −bα α2 has a fixed point for α = 0 [21,22]. Our gauge-fixing condition is not changed by 
the flow. All terms induced by the flow in the sector of gauge fluctuations are subleading and 
give vanishing contributions to πk , δk and εk for α → 0.

We are finally interested in the flow of �̄(ḡ), which is related to �
(
g(ḡ), ḡ

)
by a suitable 

subtraction. We will choose ḡ(g) such that a(g) = 0. Then ḡ(g) is determined by specifying 
f (ḡ). Both δk and εk involve only ḡ. For the contribution πk of the physical fluctuations one 
needs the evaluation of the first term in eq. (50) by inserting g = ḡ +f (ḡ). Furthermore, the flow 
at fixed ḡ has to take into account that the relation between g and ḡ may depend on k. This flow 
equation for �̄(ḡ) will be closed if we can find a suitable choice of ḡ(g) such that �̂(2) can be 
expressed in terms of �̄(ḡ) and its functional derivatives. Then GP can be expressed in terms of 
�̄ by solving eq. (49).

The particular form of the gauge fixing term (44) is crucial for our construction. One may add 
other terms that do no diverge for α → 0, but there should be no term linear in a that diverges 
for α → 0. Correspondingly, we employ a particular “physical gauge fixing” in the microscopic 
formulation (16)

Sgf(g
′, g) = 1

2α
a′T Q̄(ḡ)a′, (52)

where

a′ = (
1 − P(ḡ)

)
(g′ − ḡ). (53)
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For α → 0 the saddle point approximation becomes exact in the sector of the gauge fluctuations 
and one infers the leading gauge fixing term in eqs. (43), (44).

For the example of Yang–Mills theories (52) is realized by background gauge fixing in Landau 
gauge

�gf = 1

2α

∫
x

GzG∗
z , Gz = (

Dμ(A′
μ − Āμ)

)z
, (54)

with covariant derivative Dμ formed with the macroscopic field Āμ. With

Q̄ = −DμDν, DS = −DρDρ, (55)

and infrared cutoff for gauge fluctuations Rgf(Q̄), one obtains

δk = 1

2
tr

{
k∂kRgf(Q̄)

(
Q̄ + Rgf(Q̄)

)−1
}

= 1

2
tr

{
k∂kRgf(DS)

(
DS + Rgf(DS)

)−1
}
.

(56)

For the Faddeev–Popov determinant,

M = det
( − Dμ(Ā)Dμ(A′)

)
= det

(
DS + iDμ(A′

μ − Āμ)
) (57)

we may choose in eq. (17) the regularization

Ek = det
(
DS + Rgf(DS)

)
Det(DS)

. (58)

This results in

εk = 2δk. (59)

As advocated, DS in Ek and therefore Ek and εk are fixed expressions of ḡ. We assume a similar 
type of regularization for quantum gravity. This contrasts with the alternative of introducing 
ghosts and regularizing the ghost propagator. In the formulation with ghosts the flow of the 
effective action for coupled gauge fields and ghosts has to be followed. The induced higher order 
ghost interactions enhance the complexity of the problem. We find it worthwhile to explore the 
possibility to regularize the Faddeev–Popov determinant by a fixed ḡ-dependent factor Ek .

6. Choice of macroscopic field

We next use the freedom in the precise choice of the macroscopic field ḡ(g) in order to obtain 
a closed flow equation for a suitably defined gauge-invariant effective action �̄(ḡ). The main 
idea is to express the propagator for physical fluctuations GP in terms of the second functional 
derivative �̄(2). This will determine the choice of ḡ(g) and the precise definition of �̄(ḡ).

Let us define

�̄(ḡ) = �
(
g = ḡ + f (ḡ), ḡ

) − C(ḡ)

= �̂(g = ḡ + f (ḡ), ḡ) − C(ḡ),
(60)

for some suitably chosen f (ḡ) and C(ḡ). This amounts to the choice a(ḡ) = 0 or ḡ(g) = g −
f

(
ḡ(g)

)
. The second derivative of �̄(ḡ) becomes
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(�̄(2))ij = ∂2�̄(ḡ)

∂ḡi∂ḡj

= (�̂(2))ij (g = ḡ + f, ḡ) + Bij − ∂2C

∂ḡi∂ḡj

. (61)

The term Bij arises from derivatives of �(g, ḡ) with respect to ḡ, as well as from ∂gi/∂ḡj =
δ
j
i + ∂fi/∂ḡj ,

Bij = Sij + ∂�̂

∂gm

∂2fm

∂ḡi∂ḡj

+ (�̂(2))mn

(
δi
m

∂fn

∂ḡj

+ δ
j
n

∂fm

∂ḡi

+ ∂fm

∂ḡi

∂fn

∂ḡj

)
. (62)

Here we define for the ḡ-dependence of �̂ at fixed g

σ i(g, ḡ) = ∂�̂(g, ḡ)

∂ḡi

, (63)

and

Sij = ∂σ i

∂ḡj

+ ∂σ j

∂gi

+ ∂σ i

∂gj

+ ∂σ j

∂gm

∂fm

∂ḡi

+ ∂σ i

∂gm

∂fm

∂ḡj

. (64)

All quantities are evaluated for g = ḡ + f (ḡ), a(ḡ) = 0.
There is a certain freedom in the choice of f (ḡ) and C(ḡ). The only requirement is that 

f (ḡ) transforms as a tensor and C(ḡ) is gauge invariant, and that P TBP can be expressed as 
a functional of �̄. A possible simple choice determines f (ḡ) by a solution of the differential 
equation

Pi
l

(
Bij − ∂2C

∂ḡi∂ḡj

)
Pj

k = 0. (65)

This allows us to replace �̂(2) by �̄(2) in (49) and therefore to close the flow equation. The 
solution of eq. (65) depends on C(ḡ). Our aim is a simultaneous choice of f (ḡ) and C(ḡ) such 
that the flow equation remains simple.

The flow equation (50) holds for fixed g and ḡ. For the flow of �̄ at fixed ḡ we have to take 
into account that the solution g(ḡ) according to eq. (65) will depend on k. With the definition 
(60) one finds for the flow of �̄ at fixed ḡ

k∂k�̄(ḡ) = 1

2
Str(k∂kR̄GP ) + δk(ḡ) − εk(ḡ) + Ak(ḡ) − k∂kC(ḡ), (66)

with

Ak(ḡ) = ∂�(g, ḡ)

∂g
k∂kf (ḡ). (67)

Here ∂�(g, ḡ)/∂g has to be evaluated for fixed ḡ at g(ḡ) = ḡ + f (ḡ), and we employ ∂kg|ḡ =
∂kf . A possible simple choice employs

k∂kC = A. (68)

Then the two last terms in eq. (66) vanish. This realizes the flow equation (3), (4), (8). The system 
of eqs. (65), (68) determines both f (ḡ) and C(ḡ). It is rather complex. Fortunately, there is no 
need to solve this system in practice. It is sufficient to realize that a solution exists. Neither σ nor 
f or C enter explicitly the proposed gauge-invariant flow equation. A choice of ḡ(g) for which 
eqs. (65) and (68) hold for a suitable C(ḡ) will be called “optimal macroscopic field”.
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7. Optimal macroscopic field

We want to argue in favor of the existence of solutions to the system of equations (65) and 
(68). For σ i = 0 eqs. (65) and (68) have the simple solution

f (ḡ) = 0, C(ḡ) = 0. (69)

This shows that non-zero f and C are related to the ḡ-dependence of �̂(g, ḡ) at fixed g, and 
therefore to the ḡ-dependence of W(L, ḡ) at fixed L in (16). The gauge fixing term does not 
contribute for a = 0. Its contribution to the second derivative (45) would be projected out in 
eq. (65), and we have already defined �̂(2) without a contribution from the gauge fixing term. 
The ḡ-dependence relevant for σ i can therefore only arise from �Sk(g

′, ḡ) and

SFP (g′, ḡ) = − lnMk(g
′, ḡ). (70)

For a better understanding of σ i we need an expression for the ḡ-dependence of �̂, which 
follows from the ḡ-dependence of W . The ḡ-dependence of W(L, ḡ) obeys

∂

∂ḡi

W(L, ḡ) = −〈 ∂

∂ḡi

(�Sk + SFP + Sgf)〉. (71)

With

∂�̃

∂ḡi |g
= −∂W

∂ḡi |L
(72)

one obtains

σ i = 〈 ∂

∂ḡi

(�Sk + SFP )〉 − 1

2
fm

∂

∂ḡi

R̄mnfn + R̄mifi = σ i
R + σ i

FP , (73)

σ i
R = 1

2
Str

{
∂R̄

∂ḡi

GP

}
.

The regularized Faddeev–Popov determinant typically involves some operator D̃, Mk = det(D̃), 
such that

σ i
FP =

〈
∂

∂ḡi

SFP

〉
= −

〈
tr

{(
∂

∂ḡi

D̃
)
D̃−1

}〉
. (74)

For Yang–Mills theories and k = 0 the contribution of σ i
FP to the projected B in (65) may vanish 

for a suitable choice of the gauge fixing, but we have not yet investigated this issue.
The part σ i

R is proportional to ∂R̄/∂ḡi . It therefore vanishes for k = 0 where R̄ = 0. On the 
other hand, for large k the cutoff function R̄ approaches a k-dependent constant. In this limit σ i

R

vanishes again. Thus σ i
R only plays a role in the range where typical differential operators are of 

a similar size as the appropriate power of k.
For small σ i we can solve the system of differential equations (65) and (68) iteratively. We 

split

C = C0 + C1, C0(ḡ) = ∂�(g, ḡ)

∂gi

fi, (75)

with C1 obeying

γk =
(

k∂k

∂�(g, ḡ)
)

fi + k∂kC1(ḡ) = 0. (76)

∂gi
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For B −C
(2)
0 we observe that the second derivative of C0 cancels the last term in eq. (62) and the 

two last terms in eq. (64). We define

�Blk
P = Pi

l

{
S̃ij + �̂(2)im ∂fm

∂ḡj

+ 1

2
�̂(2)mn ∂fm

∂ḡi

∂fm

∂ḡj

− 1

2

∂2C1

∂ḡi∂ḡj

+ (i ↔ j)

}
Pj

k,

(77)

with

S̃ij = 1

2

∂σ i

∂ḡj

+ ∂σ i

∂gj

− 1

2

∂2σ i

∂ḡj ∂gm

fm, (78)

such that the condition (65) reads �BP = 0.
In lowest order we consider σ and f as small quantities in which we linearize. One obtains 

�BP = 0 for

∂fm

∂ḡj

= −(ĜP )mk

(
∂σ k

∂gj

+ 1

2

∂σ k

∂ḡj
− 1

2

∂2C1

∂ḡk∂ḡj

)
, (79)

where

ĜP P T�̄(2)P = P. (80)

We may start with C1 = 0, compute fm by solving the linear differential equation (79) with 
suitable initial conditions, then determine C1 for this solution from γk = 0, and iterate. From the 
linear solution higher order terms in f and σ can again be determined iteratively.

There seems to be no obstruction to find solutions to eq. (79). Typically, a particular solu-
tion will involve an initial condition that we may take as f (ḡ0) = 0 for some suitably chosen 
configuration ḡ = ḡ0. Linearization in f is then expected to be valid for ḡ in the vicinity of ḡ0. 
These arguments do not constitute a proof that a solution of eqs. (65), (68) exists for arbitrary 
k and ḡ, even though this seems rather likely. A proof may be tried by starting at k → ∞ with 
C = 0, f = 0, and computing the flow of these quantities by imposing the conditions (65), (68). 
If this solution breaks down the flow equation (3) is only an approximation, and we address the 
form of possible corrections in the discussion in sect. 9. In a certain sense we use the freedom in 
the choice of ḡ(g) and C(ḡ) in order to bring the form of an exact flow equation as close as pos-
sible to the form (3). We stress again that the whole construction is only possible for a particular 
class of “physical gauge fixings”.

8. Quantum field equation

For a given choice of f (ḡ) and C(ḡ) we can introduce a source J̄ by

∂�̄

∂ḡ
= J̄ . (81)

Gauge invariance of �̄ implies

P TJ̄ = J̄ . (82)

This amounts to the usual conservation of J̄ . There is no need, however, that J̄ T equals pre-
cisely the projected “microscopic source” J T = LTP . The choice of ḡ(g) determines the precise 
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relation between J̄ and J . The exact “quantum field equation” (81) is the basis of the use of 
macroscopic field equations for gravity or electromagnetism, i.e. for general relativity and elec-
trodynamics as “classical field theories”. The appropriate “quantum definition” of the energy 
momentum tensor or the electromagnetic current is given by their coupling in the quantum ef-
fective action �̄, as defined by eq. (82).

9. Discussion

We propose a closed flow equation for the effective action of gauge theories that only involves 
one macroscopic gauge field – instead of separate fields for the expectation value of fluctuations 
and background field. Gauge invariance is maintained by this flow. This flow equation will be 
useful if �̄ remains simple enough such that meaningful truncations can be devised and the 
“initial value” at large k can be controlled. In particular, this concerns the locality properties 
of �̄. The locality properties of �̄ have to be found by practical computations for given models 
with gauge symmetry.

In particular, a gauge invariant effective action only involves the physical (“transverse”) fluc-
tuations around a given solution of the field equations. There is no propagator for the gauge 
(“longitudinal”) fluctuations. Therefore no separate “longitudinal gluon mass” (or similar object 
in gravity) exists. A non-local mass term for gluons remains possible, however, induced by terms 
of the type ∼ Fμνf (−D2)Fμν , with D2 a suitable differential operator acting on the physical 
fluctuations. Only a detailed computation can answer if our approach is useful to understand the 
infrared behavior of Yang–Mills theories.

The simple form of the proposed gauge invariant flow equations hinges on the mere existence 
of a solution of eqs. (65), (68). (The precise form of the solution does not matter.) If not, the 
gauge invariant flow equation will contain a “correction term”, ζk = πk + δk − εk − γk , with γk

defined by eq. (76), as well as a correction in the propagator equation (8),(
�̄

(2)
P + R̄P + �BP

)
GP = P (T ), (83)

with �BP given by eq. (77). If solutions for f (ḡ) and C(ḡ) with γk = 0, �BP = 0 exist, as 
suggested by our discussion above, the flow equation (3), (4), (8), (9) is exact. If not, the proposed 
invariant flow equation can be still be used as an approximation, with errors ∼ f . (The error can 
be minimized by the choice of optimal f and C.)

Depending on the choice of f (ḡ) and C(ḡ) several versions of closed gauge-invariant flow 
equations for �̄(ḡ) can be constructed. It is sufficient that �BP and γk can be expressed in terms 
of �̄(ḡ). Besides gauge invariance, a simple structure and, in particular, a sufficiently local form 
of �̄ are needed for devicing useful truncations. It is possible that a compromise with nonzero 
�BP and γk is advantageous for locality properties, even if solutions with �BP = 0, γk = 0
exist.

In practice, the non-local projections inherent in our approach are often not needed explicitly. 
The projections can be implemented by adding “by hand” a suitable “physical gauge fixing”. 
In view of this, our approach argues in favor of the use of a particular “physical gauge fixing” 
that only acts on gauge fluctuations. For Yang–Mills theories this is realized by Landau gauge, 
e.g. (54) with α → 0. For precise computations it may be advantageous from the point of view of 
locality properties of �̄ to follow explicitly the flow of a ghost sector, computing the measure term 
εk from the contribution of the ghost fluctuations to the flow of the effective action, evaluated at 
nonzero gauge field Āμ and vanishing ghost fields. Many computations of this type have been 
performed in the past in the background field formalism. They have neglected in practice the 
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correction terms [1] arising in the two-field formalism. We argue that this neglection can be 
justified. For α → 0 the gauge fixed flow equation, as employed so far, turns out to be identical 
to the projected flow equation (3), (4), (8), (9). Only the precise status of the macroscopic field Āμ

differs from the expectation value of the microscopic field if fμ �= 0.
In quantum gravity the “physical gauge fixing”

Sgf = 1

2α

∫
x

√
ḡ

(
Dμh′

μν

)2
, h′

μν = g′
μν − ḡμν, (84)

involves the covariant derivative Dμ formed with the macroscopic metric ḡμν , and we take α →
0. This gauge fixing is purely quadratic in the gauge fluctuations. It has been advocated as the 
“physical gauge fixing” in ref. [71], and used in practical computations in ref. [51]. Unfortunately, 
the algebraic complexity for this gauge is somewhat higher than for more popular gauges used 
in practical computations so far. These other gauges do not obey our criteria for the decoupling 
of gauge fluctuations. Corrections to simple truncations in the two-field formalism may therefore 
be substantial and are difficult to control [66–68]. We suggest to use the gauge fixing (84) and to 
employ the projected flow equation (3), (4), (8). We hope that this helps to put the understanding 
of asymptotic safety in quantum gravity on a solid basis.

Note added

Since the first version of this work the proposed flow equation has been used in quantum 
gravity [73,74] and for Yang–Mills theories [75]. For the simple truncations employed there, no 
complications from the non-locality of projectors arose. A truncation for Yang–Mills theories 
based on an effective action ∼ Fμν Fμν produces the one-loop β-function for the running gauge 
coupling as well as 5/6 of the two-loop coefficient. In this simple local truncation the flow of the 
gluon propagator contains no mass term.
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