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We describe a systematic framework for periodic potentials of arbitrary dimension, such as those
governing multiple axions. A novel type of alignment renders even complex theories analytically tractable.
Theories with ∼100 axions and random parameters have an exponential number of metastable vacua.
Decay from a metastable minimum can occur via a thin-wall instanton and allows for a sufficient period of
slow-roll inflation that ends in a vacuum containing axion dark matter and a cosmological constant, both
consistent with current observations. Hence, this model can reproduce many macroscopic features of our
Universe without tuned parameters.
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I. INTRODUCTION

Axionic fields arise in a number of contexts [1–3]. Like
quantized fluxes [4], theories of multiple axions [5] can
naturally accommodate the observed cosmological con-
stant. Furthermore, the unbroken discrete shift symmetry of
axions provides a natural inflaton candidate [3,6–10], and
the absence of direct detection and the issues with conven-
tional dark matter models at subgalaxy length scales have
led to a recent surge of interest in ultralight axions as dark
matter [11–15]. In this paper we demonstrate that theories
of multiple axions with a single energy scale near the
fundamental scale and no small parameters can simulta-
neously fulfill all three of these roles. These theories also
provide high energy metastable vacua that can serve as an
initial or generic state for the Universe.
The potential governing N axions θi is protected by

continuous shift symmetries θi → θi þ ci to all orders in
perturbation theory, all of which are broken by P ≥ N
leading nonperturbative effects at scales Λ4

I ∼ e−SIΛ4
UV,

where SI denotes the action of the Ith instanton. The axions
couple to each instanton through an integer charge matrix
QI , resulting in a nonperturbative potential of the form

Vnp ¼
XP
I¼1

Λ4
I ½1 − cos ðQI

jθ
j þ δIÞ� þ � � � ð1Þ

where the phases of the instantons are denoted by δI and
ellipses represent subleading terms [16].
A systematic analysis of (1) is made possible by a novel

technique that renders theories ofN axions computationally

and analytically tractable. The technique is applicable well
beyond axions, to a broad class of theories involving
degrees of freedom with discrete shift symmetries. It allows
us to efficiently identify both the exact and, crucially, the
approximate symmetries of such theories. The result is a
tool that can analyze many features of extremely complex
energy landscapes with exponentially many local minima
in polynomial time.
In this paper we present some key results, while further

details will be published elsewhere [17–19].

II. ALIGNMENT

Consider a theory with N axions θi,

L ¼ 1

2
∂θ⊤K∂θ − VnpðθÞ − V0; ð2Þ

where K is the field space metric and V0 denotes a
background vacuum energy density.
The P leading terms in the axion potential (1) are

invariant under the simple identifications QI
jθ

j ≅
QI

jθ
j þ 2π. To take advantage of this, we define the lattice

basis by promoting the arguments of all P cosines to P
independent fields ϕI , along with P − N constraints, so that
the ϕI are constrained to an N-surface Σ on which they
parametrize the original potential (1),

ϕjΣ ¼ Qθþ δ: ð3Þ
Introducing P − N Lagrange multiplier fields ν that enforce
this constraint, we see that the potential becomes

Vnp ¼
XP
I¼1

Λ4
I ½1 − cosðϕIÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡Vaux

þ ν⊤Rðϕ − δÞ: ð4Þ
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The ðP − NÞ × P matrix R is not unique; one choice
is any set of P − N linearly independent rows of the
projector P onto the orthogonal complement of Σ, P ¼
1P −QðQ⊤QÞ−1Q⊤.
The potential Vnp is simply Vaux evaluated on the

N-dimensional surface Σ defined by Rðϕ − δÞ ¼ 0
(the equations of motion for ν). This constraint surface,
illustrated in Fig. 1, slices through multiple distinct
fundamental domains of the integer lattice 2πZP on which
Vaux is periodic. Each domain of this lattice is labeled by an
integer vector n and defined by [20]

kϕ − 2πnk∞ ≤ π: ð5Þ

Introducing the P fields ϕ represents a key part of our
work because it allows us to easily identify both exact and
approximate periodicities of the physical potential. To
exhibit all symmetries of the physical potential, we define
a basis of the integer lattice 2πZP that is as aligned to the
constraint surface Σ as possible. In particular, we can
always choose N of the P integer basis vectors, Tk, to be
parallel to the constraint surface (i.e., PTk ¼ 0), while the
remaining P − N basis vectors, T∦, are as parallel as
possible (i.e., PT∦ ∼ small). More precisely, PT∦ is a
reduced basis of the rank P − N lattice generated by P,
containing the shortest vectors under the l∞-norm [21].

Shifts by integer combinations of the vectors Tk
i are exact

symmetries of the potential (1), while shifts by integer
combinations of the vectors ð1P −PÞT∦

a break the perio-
dicity, but by the least amount possible (see Fig. 1).
We refer to theories in which the relative angles between

the constraint surface and the aligned basis are small,
jPT∦

a j∞ ≪ 1, as “well aligned.” In addition to the N exact

symmetries, well-aligned theories have P − N approximate
shift symmetries generated by the vectors T∦

a .
When N ≫ 1, the determinant of Q⊤Q is large, so the

denominators of the rational numbers appearing in the
projector P are typically large. If these numbers were
irrational, the angles would be arbitrarily small, and hence
generically all the angles are small when N ≫ 1 and P is
not too large. In general, Minkowski’s theorem provides an
upper bound on the smallest angle [22]. We have verified
numerically that, with large N, even theories with sparse
charge matrices are generically very well aligned, so long
as P is somewhat smaller than 2N.
The phases δ in (4) indicate the relative offset of the

origin of the lattice basis from the constraint surface, and
deserve some discussion. Clearly we can eliminate N of the
P phases by continuous shifts of the axions. Furthermore,
we can perform discrete shifts of ϕ to set the P − N
remaining phases to zero within some finite accuracy. This
corresponds to choosing the lattice point closest to the
constraint surface to be the origin of the lattice basis.
Hence, in well-aligned theories, we can reduce the phases
to zero within good accuracy. In fact, small phases are
necessary for the lattice and kinetic alignment mechanisms
of [23,24]; therefore, our new effect justifies these pre-
viously discussed varieties of axion alignment.
Let us apply this technology to find vacua. Wherever the

constraint surface is close to the center of a fundamental
domain, a quadratic expansion of the auxiliary potential
yields the vacuum locations

ϕvac;m ¼ 2πð1P − ΔÞT∦mþOðΔT∦mÞ2: ð6Þ
Here

Δ ¼ diagðΛ−1
I ÞR⊤ðRdiagðΛ−1

I ÞR⊤Þ−1R;

m is an integer (P − N)-vector, and 1P − Δ is the (generally
nonorthogonal) projector onto the constraint surface which
yields approximate vacua of the on-shell potential. The
quadratic approximation is valid as long as the vacuum is
well inside a fundamental domain.
Vacua outside the region of validity of the quadratic

expansion can be found by numerically minimizing (4). In
general this is very time consuming for exponentially large
numbers of vacua, but the tools developed above allow us
to overcome this difficulty. We can select a small but
representative set of all the vacua by sampling fundamental
domains that have nonvanishing overlap with the constraint
surface, while ensuring that the domains in the sample are
not related by shift symmetries (approximate or exact).
Hence, our approach allows for a reliable statistical analysis
of theories that may have vastly more vacua than could
conceivably be sampled individually.
Although our qualitative conclusions hold more gener-

ally [17–19], let us illustrate the power of our approach
with the simplest example of equal scales ΛI ¼ Λ and P ¼
N þ 1 nonperturbative terms. Assuming that the entries of

FIG. 1. Top: Constraint surface along with the lattice 2πZP

(gray dots). Arrows show the aligned basis vectors Tk and T∦.
Bottom: Axion potential. Distinct fundamental domains are
numbered and shaded.
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Q are independent and identically distributed, we typically

find jΔT∦j ∼ det jQj−1, where jQj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Q⊤Q

p
. This allows

us to determine the vacuum energies in the quadratic
approximation

Vvac;m ≈
1

2
Λ4

�
2πm

det jQj
�

2

þ V0; m ∈ Z: ð7Þ

The quadratic expansion is valid well within the funda-
mental domains (5), which gives an estimate of the number
of vacua m≲ det jQj. At large N the determinant of jQj
becomes extremely large, det jQj ≈ σP−1Q

ffiffiffiffiffi
P!

p
, where σQ

denotes the r.m.s. value of the entries of Q [25]. These
estimates are valid in the universal regime, where at least a
fraction ≳3=N of the charge matrix entries are nonvanish-
ing [26,27]. Therefore, even at moderately large N we find
a vast number of minima whose locations and vacuum
energy densities are given by (6) and (7). For example, with
N ¼ 200 and σ2Q ¼ 2=3 we easily identified 10165 distinct
vacua on a desktop computer. If V0 ∼ −Λ4, this includes
many minima with energies consistent with the observed
vacuum energy of our Universe [4].
The highest vacuum in this simple example has an

energy density Vvac;max ≈ 0.14 × PΛ4, well below the mean
of the potential PΛ4. Within the quadratic approximation,
the vacua are distributed as 1=

ffiffiffiffi
V

p
, which yields a median

vacuum energy density of roughly Vvac;max=4. Neighboring
vacua are easily identified in the lattice basis, typically lie at
very different levels, and are separated by potential barriers
of height ≳Λ.
When the number of large nonperturbative effects

grows at fixed σQ, alignment eventually fails. However, in
this regime we can switch to an approximate description in
termsof an isotropicGaussian randomfieldwhose correlation
functions match that of the axion potential. Again, typical
vacuum energies are well below the mean potential [17,28].

III. VACUUM TRANSITIONS

Vacuum transitions are important for at least two
reasons. First, we should check whether they destabilize
typical minima—that is, whether the decay rate is faster
than the Hubble rate. This condition is most stringent for
vacua with very low vacuum energy (such as those
compatible with our Universe). Second, eternal inflation
in a metastable minimum with relatively large vacuum
energy is a compelling choice for the initial condition and/
or generic state of our Universe (for instance [29,30]).
Tunneling from such a minimum naturally sets up initial
conditions for inflation [31]. If a sufficient number of
e-folds of slow-roll inflation follows and the field trajectory
ends in a minimum with very small vacuum energy—both
of which are possible in these theories, and both of which
are required by the criterion that galaxies are not exponen-
tially rare [31–34]—this would account for much of the
expansion history of our Universe.

The vacuum decay rate between vacua A and B in the
thin-wall, no gravity approximation is given by ΓBA ∼ e−jBj,
where

B ¼ 27π2σ4

2ðVB − VAÞ3
ð8Þ

and σ is the tension of the wall. A sufficient condition
for stability on gigayear time scales is very roughly
Γtotal < 10−10

3

, where Γtotal includes a sum over ≲3P
neighboring vacua. To estimate the decay rate, we need to
take the kinetic terms in (2) into account. The canonically
normalized charge matrix is QK−1=2, and we denote its
smallest singular value by qmin. The mass scale q−1min is the
largest relevant scale of features in the axion potential. Due to
isotropy, the tunneling path between generic neighbors is
roughly q−1min=

ffiffiffiffi
P

p
, and so this provides a weak bound on the

parameters of the theory: Λ4 ≪ 103 × q−4min=P
3. In the

interesting parameter regime (e.g., P3 ∼ 106, q−1min ∼Mpl,
Λ ∼ 10−2Mpl) a vast number of vacua are extremely stable
(see also [35]).
In general there is a tension between thin-wall vacuum

decays that require V00 ≫ H2, and a sustained period of
inflation that demands V 00 ≪ H2 [36]. In the multiaxion
models at hand, however, the hierarchies in the singular
values of the canonically normalized charge matrix render
the field space highly anisotropic, and these theories generi-
cally accommodate thin-wall vacuum transitions in bubbles
that subsequently inflate in an open Friedmann-Lemaitre-
Robertson-Walker (FLRW) cosmology. We give an example
in Fig. 2 (note that the kinetic energy gained by the inflaton
after tunneling does not cause the field to overshoot the
inflationary plateau, for reasons explained in [31]).

IV. INFLATION

The implementation of inflation purely within effective
field theories is famously tentative at best: physics above
the cutoff can spoil an inflationary trajectory or destabilize
the theory altogether. Despite this limitation it is still
instructive to consider the cosmological observables that
would arise in the absence of any such effects.
Shift symmetries provide for some of the most compel-

ling, radiatively stable models of inflation [3] that can be

FIG. 2. Equal potential contours over a two-dimensional slice
containing two vacua. The dashed line denotes the boundary of
the fundamental domain. This allows for Coleman–de Luccia
tunneling from a false vacuum to an inflationary slope.
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embedded in string theory [37]. Most notable are variants
of assisted inflation that exploit multiple axion shift
symmetries to ensure the super-Planckian field space
diameters required for large-field inflation, Dinf ≳Mpl
[6,7,38]. While the invariant diameters for single axions
are sub-Planckian when the perturbative expansion is well
controlled [39], axions are numerous in typical flux
compactifications and generically allow for collective field
space diameters that significantly exceed the ranges of the
individual axions via kinetic and lattice alignment [27,40].
In lattice coordinates, the relevant boundaries of typical
fundamental domains roughly correspond to a P-hypercube
that has no special orientation with respect to the least
massive axion, which thus is well aligned with one of the
numerous diagonals. This observation generalizes the
phenomenon of kinetic alignment [24,27] and generically
yields an axion diameter as large as [17]

Dinf ∼ 2π
ffiffiffiffi
P

p
q−1min; ð9Þ

which can exceed the field ranges of each individual axion
by far if P is large (kinetic alignment) and/or the singular
value of the charge matrix is small (lattice alignment).
We can comprehensively sample the inflationary dynam-

ics by marginalizing over the chargesQ and phases δ of the
instantons, the kinetic matrix K, and the constant energy
density V0. Since we are only interested in vacua that satisfy
the selection bias constraint of (almost) vanishing cosmo-
logical constant we can marginalize over V0 by considering
only those values that ensure a vanishing energy density at
the vacuum reached at the end of inflation. The tools
developed above provide us with a representative sample of
all vacua, so by considering all initial conditions that can
terminate in that vacuum we find a representative collection
of all possible cosmological histories.
We study the classical dynamics by solving the equations

of motion for the fields and the Friedmann equation for the
scale factor of a homogeneous FLRWcosmology, discarding
any solution inconsistent with our selection bias [41,42].
Whenever the single field, slow-roll approximation is valid
throughout the evolution [43], the scale of inflation, tensor-
to-scalar ratio, and spectral index, respectively, are given by

Einf ≈ 0.01 × r1=4Mpl; r ≈ 16ϵ; ns ≈ 1 − 2η − 4ϵ;

ð10Þ
where ϵ ¼ − _H=H2 is the first, and η ¼ Φ̈ · ek=j _ΦjH is the
second slow-roll parameter projected onto the tangent of the
trajectory ek. All quantities should be evaluated at horizon
exit. The single field approximation is valid when the
acceleration transverse to the field velocity and nonadiabatic
particle and/or string interactions are negligible [44–48].
To study inflation in our model, we sample the trajecto-

ries leading into each vacuum, with V0 chosen in each case
so that the vacuum has zero energy. We discard any
trajectories with less than 60 e-folds of inflation. We find

two qualitatively different regimes. Whenever inflation
proceeds over a super-Planckian distance within one single
fundamental domain, as is the case in the aligned axion
inflation scenario discussed in [23,24,27,49], we find a
lower bound of r≳ 0.07, and the single field approximation
is valid. In generic theories (assuming roughly constant
ΛI), the vacua are very low compared to the mean of the
axion potential and therefore downward vacuum transitions
can only source this regime.
However, when inflation proceeds at typical scales of the

potential, much more diverse features in the potential are
encountered, such as hilltops and saddle points (see also
[50–53]). Even in very simple theories, we observed a wide
range of ns and values of r as low as r ∼ 10−4, but we
speculate that much lower values of r are possible in more
complex models. The single field approximation breaks
down for some trajectories and it is not clear whether
nonadiabatic perturbations decay by the end of inflation to
allow for a simple treatment. These results motivate a future
study of the multifield dynamics and perturbations. The
corresponding initial conditions can be sourced by upward
transitions or other mechanisms (e.g., [54,55]). Note that
while ns and r are independent of the overall scale of the
potential, the power spectrum depends on the scale, and so
to match observation, trajectories with smaller rmust occur
in models with correspondingly smaller values for the ΛI .
A single multiaxion theory can accommodate a very

diverse set of inflationary trajectories with significantly
different cosmological observables. This finding highlights
the necessity of a detailed understanding of inflationary
initial conditions to satisfy even the most basic prerequi-
sites for definite predictions in multiaxion theories.

V. DARK MATTER

IfQ is not full rank, the leading potential (1) leaves at least
one of the fields (Φlight) with an unbroken continuous shift
symmetry. It is generally believed that theories of quantum
gravity do not permit continuous global symmetries, so there
should exist a subleading instanton with action SG that
breaks the continuous shift symmetry by a term
VG ∼M4

ple
−SG cosðΦlight=flightÞ. A typical axion decay con-

stant of the leading nonperturbative term isflight ≈
ffiffiffiffiffiffiffiffi
π=8

p
fN ,

where f2N denotes the largest eigenvalue of the field space
metricK [56]. A natural guess for SG is provided by theweak
gravity conjecture [57], which asserts that no gauge inter-
action is weaker than gravity [58]. Extending this conjecture
to axions provides an upper bound on the action, SG ≲
Mpl=fN [59,60]. The bound is approximately saturated by
Euclidean wormholes that couple to N axions, for which
SG ≈

ffiffiffiffiffiffiffiffiffi
3πN

p
Mpl=2fN [56,61,62]. This allows us to estimate

the mass of the lightest axion:

mlight ≈
M2

pl

flight
e−SG=2:

BACHLECHNER, ECKERLE, JANSSEN, and KLEBAN PHYS. REV. D 98, 061301 (2018)

061301-4



Amass of roughly 10−22 eV has the virtue that it ameliorates
the problems conventional CDM models have at sub-kpc
scales by suppressing structure below the Compton wave-
lengthm−1

light [11–13]. ChoosingN ∼ 100 and flight ≈ .04Mpl

yields mlight ≈ 10−22 eV. Remarkably, with these numbers
axion misalignment generates roughly the correct dark
matter abundance:

Ωaxion ∼ 0.2 ×

�
flight
.04Mpl

�
2
�

mlight

10−22 eV

�
1=2

: ð11Þ

The eigenvalue fN ∼ flight is typically related to the
smallest singular value of the charge matrix by q−1min ≲ NfN.
The typical diameter of the fundamental domain is roughly
Dinf ≲ 2πP1=2q−1min (9) [17,27]. Hence, with P ≈ N ≈ 100

multiaxion models can accommodate both Planckian field
space diameters Dinf ∼Mpl and light axions that reproduce
the observed dark matter abundance Ωaxion ∼ 0.1. We
provide a detailed discussion of reheating in [18,19].
It is something of a miracle that this analysis gives

parameters with the correct range of values to both give the
correct dark matter abundance and help solve this problem
(see also [12,13]). Given this surprising observation, one

may be led to speculate that dark matter could be related to
nonperturbative gravitational physics.
The combination of this “fuzzy” dark matter and high-

scale inflation can lead to an overproduction of isocurvature
modes. Avoiding this probably requires r≲ few × 10−4

(see, for instance, [14,15]). Values of r this small appear for
inflationary trajectories even in the simple P ¼ N þ 1
model discussed above, and we expect larger P − N to
provide even more diversity.
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