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Abstract: We study a fully relativistic, two-body, quadratic wave equation for equal mass interacting particles. With
this equation the difficulties related to the use of the square roots in the kinetic energy operators are avoided.
An energy-dependent effective interaction, also containing quadratic potential operators, is introduced. For
pedagogical reasons, it is previously shown that a similar procedure can be also applied to the well-known
case of a one-particle Dirac equation. The relationships of our model with other relativistic approaches are
briefly discussed. We show that it is possible to write our equation in a covariant form in any reference frame.
A generalization is performed to the case of two particles with different mass. We consider some cases
of potentials for which analytic solutions can be obtained. We also study a general numerical procedure
for solving our equation taking into account the energy-dependent character of the effective interaction.
Hadronic physics represents the most relevant field of application of the present model. For this reason we
perform, as an example, specific calculations to study the charmonium spectrum. The results show that
the adopted equation is able to reproduce with good accuracy the experimental data.
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1. Introduction

The study of three-dimensional relativistic wave equa-tions for bound systems is a subject of relevant interest inatomic, nuclear and hadronic physics.
We anticipate that in the case of hadronic physics (thatwill be analyzed in detail in the present paper) the con-
∗E-mail: mdesanctis@unal.edu.co

stituent quark models can give a good description of thehadronic spectra (at least of the low-lying states) if arelativistic dynamical model is adopted. But we recallthat, also when studying the hyperfine corrections of theatomic energy levels, both the contributions related to thehadronic structure and the contributions given by the rel-ativistic motion of the particles, must be carefully (andsimultaneously) examined, as, for example, in the case ofthe so-called proton radius puzzle for the e−p and µ−pbound systems [1, 2].The simplest (and very commonly adopted) procedure to
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construct a relativistic dynamical model is to consider, inthe Center of Mass (CM) of the system, a Hamiltonianoperator [3, 4] containing the relativistic energy terms andthe interaction operator in the form:
H = N∑

i=1
√

p2
i +m2

i + V , (1)
where N is the number of constituents, pi and mi respec-tively represent the momentum operator and the mass ofthe i-th constituent and, finally, V is the interaction op-erator. Throughout the present work we shall mainly dealwith CM quantities, so that no special notation will beused for the corresponding operators. (When studying ageneralized covariant form of our equation, a specific no-tation will be introduced).In particular, the momentum operators pi are always con-strained by the CM condition, that is

N∑
i=1 pi = 0 . (2)

In consequence, only N − 1 independent relative momen-tum operators are actually used in the calculations.In general, the interaction operator V depends on the rel-ative coordinates of the constituents, on their spins andmomenta. The form of the spin and momentum dependenceis specifically determined by the relativistic and retarda-tion effects associated to the interaction.Considering the Hamiltonian of Eq. (1), the correspondingeigenvalue equation is:
H|ψ >= M|ψ > (3)

that is usually solved by means of a variational technique.This theoretical procedure for the study of relativisticbound systems presents, at least, the following formal andpractical difficulties.
1. From a dynamical point of view, in Eq. (1) thenegative-energy states (that, in the context offield theories, are transformed into free-antiparticlestates) are excluded from the model at the very be-ginning of its formulation.
2. The insertion of the interaction V , as given inEq. (1), is exactly consistent only for the zero com-ponent of a vector field. If a scalar (effective) fieldis considered, as it is usually done, in particular,for the study cc̄ and bb̄ spectra [5–8], one shouldadd the corresponding scalar interaction operators

to the constituent masses mi by means of the sub-stitution that will be discussed in Section 3. How-ever, these scalar interaction operators would ap-pear in the square roots of the relativistic energies,giving rise to very serious difficulties for the calcu-lations, unless an approximate Taylor expansion ofthe square roots is performed.
3. Also considering the simplest two-body case andtaking special forms for the interaction operator V ,it is not easy to find analytic solutions to Eq. (3).
4. When using standard central potentials, the asymp-totic behavior of the corresponding wave functionsin the coordinate space cannot be determined ana-lytically.
5. As for the variational (numerical) calculations, thematrix elements of the interacion operator V areconveniently calculated by means of a basis of trialwave functions in the coordinate space, given thatthe leading terms of the interaction are usually rep-resented by central potentials. On the other hand,the matrix elements of the nonlocal relativistic ki-netic terms must be calculated in the momentumspace. To this aim one has to perform the Fouriertransformation of the trial wave functions. We pointout that such transformation can be done analyti-cally only for some specific functions. The wholecalculation requires, in any case, noticeable com-putational efforts.Moreover, as discussed in the previous points, thelack of analytic solutions and the difficulty of study-ing the asymptotic properties of the wave functions,do not allow for a check of the obtained numericalsolutions.

These difficulties represent the main motivations to de-velop, in the present work, a different approach withthe objective of constructing fully relativistic and localconstituent quark models. In more detail, the kinetic(quadratic) terms of our equation will represent, withoutapproximations, the relativistic motion of the quarks. Theinteraction terms will be introduced by means of standardsubstitutions. Their form, of phenomenological nature, willbe chosen in order to reproduce the experimental spectra,taking into account (as far as possible) the general sym-metries of the underlying field theory.We recall that the difficulties related to many aspects ofQuantum Chromo-Dynamics (QCD), in particular confine-
ment, do not allow for direct analytic calculations. Inconsequence, we assume that the construction of QCDinspired quark models, (with different phenomenological
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assumptions) represents, besides lattice investigations, auseful method for the study of hadronic spectroscopy.
The content of the present work will be developed as out-lined in the following.For pedagogical reasons, in order to introduce the mainconcepts (and techniques) of the present model, we shallfirst revise in Section 2 the well-known case of the one-body Dirac equation. For a special combination of a vec-tor and a scalar potential, the original equation leads toa Schrödinger-like equation (for the upper components ofthe Dirac 4-spinor) with an energy-dependent effectivepotential. In more detail, in this equation the kinetic termis given by a local operator proportional to the square ofthe relative momentum. In this way, an energy-dependenteffective interaction is introduced and the eigenvalue ofthe equation is given by a quadratic function of the phys-ical energy of the system.Obviously, this one-body Dirac equation cannot be ap-plied as such to the study of constituent models forhadronic systems. For this reason, with a similar tech-nique, we derive, in Section 3, our equation for the studyof a two-body equal-mass system. Also in this case weobtain an energy dependent, Schrödinger-like equation inwhich the kinetic term is given by a local operator propor-tional to the square of the relative momentum. Our pro-cedure essentially consists in writing the free equationfor the relative momentum, total energy and constituentmass of the system, then inserting the scalar and vectorinteractions by means of standard minimal substitutions.Our model is compared with more standard approachesbased on three-dimensional reductions of the Bethe-Salpeter Equation (BSE) [9–14] and to a very complexprocedure based on two-body Dirac equations of con-straint dynamics [15].Two generalizations are introduced in Section 4; in Sub-section 4.1 a covariant version of the equation for the studyof bound systems in any reference frame is proposed; inSubsection 4.2 the equation is also generalized to thecase of two constituents with different mass.In Section 5 we examine some specific cases in which theequation can be solved analytically.Then, we consider a numerical technique to solve theequation in the case of an arbitrary interaction. As an ex-ample of physical relevance, in Section 6, we shall study,with a fit procedure, the general structure of the charmo-nium spectrum by using a definite form of the interaction.Furthermore, by using the same method of numerical so-lution, we shall also tentatively consider a possible intrin-
sic energy dependence of the interaction, showing that, inthis way, an improvement of the fit of the spectrum can beobtained.

Finally, some conclusions will be drawn in Section 7.Throughout the paper we set h̄ = c = 1.
2. The Dirac equation with a special
combination of potentials
The content of the present Section has been deeply stud-ied by many authors. See, for example, Refs. [19–22].Here we only present the main results in order to intro-duce the reader to the case of two interacting particlesthat will be analyzed in the next Section 3.We recall that the Dirac equation for a free particle iswritten, in the Hamiltonian form, as:

(α · p + βm)ψ = ETψ, (4)
where ET and p respectively represent the particle totalenergy and momentum, m is its mass and α = γ0γ , β = γ0are the Dirac matrices, for which, in the present work, thestandard representation will used. In the Dirac 4-spinor

ψ = (φχ
)

the Pauli spinors φ and χ respectively represent the so-called upper and lower components.We now insert in Eq. (4) the interaction with a scalarand a vector field. To this aim the following standardreplacements are made:
m→ m+ Vs (5)

for the scalar field, and
ET → ET − Vv ; p→ p− Vv (6)

for the vector interaction. In the present work we only takethe zero component Vv of the vector interaction disregard-ing the corresponding spatial (3-vector) part. More ex-plicitly, we set Vv = 0, considering that terms of this kindgive rise only to higher order relativistic contributions.Furthermore, we take central interactions: Vs = Vs(r) and
Vv = Vv (r).With standard handling we can write the interacting Diracequation directly in the form of two coupled equations forthe upper and the lower components:

σ · pχ + Vv (r)φ + (m+ Vs(r))φ = ETφ (7)
σ · pφ + Vv (r)χ − (m+ Vs(r))χ = ETχ, (8)
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where the Pauli matrices σ have been introduced explic-itly.By means of Eq. (8) the lower components can be ex-pressed in terms of upper ones as:
χ = (ET +m+ Vs(r)− Vv (r))−1σ · pφ. (9)

Incidentally, we recall that, for calculating the nonrela-tivistic limit, one makes the hypothesis that ET ' m andthat 2m >> |Vs(r)−Vv (r)|. In this way, the last equationgives the approximated expression
χ ' 12mσ · pφ (10)

that is replaced in Eq. (7), so that the standardSchrödinger equation for φ is finally obtained.Here we follow an exact procedure considering the fol-lowing special choice for the potential terms:
Vs(r) = Vv (r) = 12UD(r) . (11)

Replacing in Eq. (7), with standard handling the followingexact equation for φ is found:
[(ET +m)−1p2 + UD(r)]φ = (ET −m)φ, (12)

where ET + m must be nonvanishing. This equation canbe also written in an equivalent form that is more simi-lar to a standard Schrödinger equation. To this aim, wefirst subtract from the total energy the particle rest mass,defining:
ED = ET −m. (13)

Then, we multiply both sides of Eq. (12) by the quantity
F (ED) = 1 + ED2m . (14)

Finally, introducing
ED(ED) = ED · F (ED) , (15)

Eq. (12) takes the form:
[

p22m + UD(r)F (ED)]φ = ED(ED)φ . (16)
We note that the previous equation contains, in the l.h.s.a standard, local, kinetic operator and an energy depen-dent effective interaction term. In the r.h.s. ED does notrepresent the energy of the particle but is algebraically

related to this (physically relevant) quantity by means ofEqs. (14) and (15). Furthermore, after solving Eq. (16),the lower components χ can be directly obtained from thesolution φ by using Eqs. (9) and (11).The relevant point for the present study is that the pre-vious equation (obtained with the special condition ofEq. (11)), is fully relativistic, even though the kinetic termis given by a quadratic operator.Finally, we also highlight that, due to the same conditionof Eq. (11), no spin-orbit interaction is found. This prop-erty could be of some interest for the study of the nucleonspectrum.In the following Section 3, we shall obtain a similar equa-tion for the case of physical interest (in hadronic physics)of two equal-mass interacting particles.
3. The two-body equal-mass
quadratic equation
The case of two-body equal-mass systems is very rele-vant in different areas of subatomic physics. We recall thecase of Positronium in QED and of the Deuteron in nu-clear physics. Moreover, in hadronic physics we mentionthe qq̄ systems, in particular charmonium and Bottomo-nium, whose properties have been conveniently studiedby means of a potential model with momentum dependentinteraction terms.In order to introduce our equation, as first step we writethe quadratic equation for a two-body equal mass freesystem in the CM reference frame:

4 [p2 +m2] |ψfree >= M2|ψfree >, (17)
where p = p1 = −p2 is the CM relative momentum and
M represents the invariant mass, i.e. the CM energy ofthe system. The previous equation admits positive andnegative energy solutions.With the aim of obtaining the interacting wave equationwith the correct nonrelativistic limit, that will be explicitlygiven in Eq. (25), we introduce the interaction by meansof the following standard substitutions:

m→ m+ Vs(r)2 (18)
and

M → M − Vv (r) , (19)
disregarding, as in the case of the Dirac Equation, thespatial part of the vector interaction.In this way the following equation is obtained:
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[4p2 + 4m2 + V 2
s (r) + 4mVs(r)

− V 2
v (r) + 2MVv (r)]|ψ >= M2|ψ > (20)

that represents the central result of the present work.Note that, in this way, the scalar interaction Vs(r) hasbeen exactly introduced and does not require any approx-imated expansion, as, on the contrary, it is necessary inthe standard treatment of Eqs. (1) and (3).Formally the previous equation also holds for very small,or vanishing, values of the constituent massm, opening thepossibility of constructing light-quark constituent models.However, in this case, the form of the interaction operators
Vv and Vs should be carefully studied considering theirdynamical and relativistic properties.In any case, when developing a realistic model, a de-pendence on the spin and momentum operators must beintroduced.In the present preliminary study we only focus our atten-tion on a simplified model with the interaction representedby central potentials, i.e. with Vv = Vv (r) and Vs = Vs(r).Obviously, this choice does not allow to reproduce somerelevant aspects of hadronic phenomenology but, on theother hand, it can be expected that the leading contribu-tions of the interaction operators are, in any case, repre-sented by central potentials of this kind.We shall now perform some algebraic transformations inorder to write the same equation in the form of an en-ergy dependent, Schrödinger-like equation. The followingtransformations can be applied only when the constituentmass m is nonvanishing.To this aim we first subtract from the total mass M themasses of the constituent particles, defining:

E = M − 2m . (21)
Then, dividing both sides by 4m, with standard algebraichandling, the wave equation can be written as:[

p2
m + Vs(r) + Vv (r) + 14m

(
V 2
s (r)

− V 2
v (r))+ E2mVv (r)

]
|ψ >= E (E)|ψ >, (22)

where the quantity E (E) is defined as:
E (E) = E ·

(1 + E4m
)
. (23)

To avoid confusion, note that this definition has a differentfunctional form with respect to ED(ED) given in Eq. (15);furthermore, in this case, the argument is E defined inEq. (21).
We now discuss some general aspects of our equation.In the first place, we check the consistency of the modelcalculating the nonrelativistic expansion of Eq. (22) in (in-verse) powers of c or, equivalently, of p/m. In this expan-sion the nonrelativistic terms are of the order c0 and therelativistic corrections are of the order c−2.We also point out that, in Eq. (22), the terms p2

m and,conventionally, Vs(r), Vv (r) are of the order c0. Also, thefactor 1/m that appears in the last two terms of the l.h.s.is of the order c−2.To obtain a Schrödinger equation plus relativistic correc-tions, let us focus our attention on the last term of the
l.h.s., that is E2mVv (r), and on the quadratic energy term ofthe r.h.s., that is E24m . By replacing E , in these terms, withan approximated expression of the order c0, we obtain awave equation that is correct up to the order c−2. Practi-cally, we substitute E with the corresponding operator ofthe orden c0, that is:

E → p2
m + Vs(r) + Vv (r) . (24)

Then, with standard handling, one finds the Schrödingerequation plus relativistic corrections, in the form:[
p2
m + Vs(r) + Vv (r)− p44m3
− 14m2 {p2, Vs(r)}]|ψ >= E |ψ >, (25)

where now the eigenvalue E is approximated up to theorder c−2. In more detail, the first three terms of the l.h.s.represent the nonrelativistic contributions of the order c0.The fourth term is the standard relativistic correction tothe kinetic energy, of the order c−2. The last term, alsoof the order c−2, is a momentum dependent relativisticcorrection specific of the scalar interaction; in fact, it canbe also straightforwardly obtained by means of the massreplacement of Eq. (18) in the nonrelativistic kinetic op-erator p2
m . Further terms of relativistic corrections wouldbe given by the (peculiar) adopted dynamical model alsoincluding the spatial part of the vector potential.

In the second place, we discuss the relationship of ourmodel with other relativistic approaches.In general, relativistic wave equations for bound systemsare derived performing a three-dimensional reduction of
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the BSE or, equivalently, considering, in the scatteringamplitude, the box and crossed-box fourth order Feynmangraphs. In this way a great variety of equations has beenconstructed. Some examples are given in Refs. [9–14].Obviously, for a given relativistic equation, the physicalresults strictly depend on the choice of the quasipotentialthat represents the interaction. In the present preliminarywork, we shall not analyze in detail this point. We onlytry to reproduce, in Section 6, the general structure of thecharmonium spectrum by using phenomenological scalarand vector potentials.The most relevant aspect of our model, defined in Eq. (20)is the quadratic character of of the equation that, at leastin the free limit, gives rise to positive and negative energysolutions.The same property is found when a three-dimensional re-duction of the BSE is performed. Let us consider, as anexample, the analysis shown in a standard textbook [12]for the study of positronium. By using the instantaneous
approximation for the interaction, the BSE is reduced toa three-dimensional equation in which the CM energy ofthe system (disregarding the interaction) is:

M = ±2√p2 +m2 . (26)
(In our notation, M stands for E and √p2 +m2 for ω ofRef. [12]).Note that our quadratic model also gives the two signsof the energy that, as shown in [12], are related to thepropagation of (++) and (−−) fermionic states. In thatequation, the (+−) and (−+) states are completely sup-pressed, while, in another (similar) relativistic model [11],they only appear as closed-channel, virtual states. In thisway, our equation and the two models cited above do notadmit spurious solutions with M = 0, avoiding the so-called continuum dissolution problem, discussed, for ex-ample, in Ref. [14].Another interesting model with quadratic kinetic operatorshas been also proposed in the context of two-body Diracequations of constraint dynamics [15]. The authors con-sider, for each particle, a Dirac-like equation. Then, theseequations are coupled by the interaction terms. Further-more, in that work a detailed theoretical discussion aboutthe construction of relativistic equations is also given.
Concluding, we also mention that a specific aspect of ourequation consists in the presence of the quadratic interac-tion terms V 2

v (r) and V 2
s (r). In the case of small couplingconstants, their contributions would be negligible. On theother hand, for interaction operators with strong couplings,their effects should be carefully studied in the context ofthe adopted phenomenological model.

Finally, the very simple and transparent procedure that isused to introduce the interaction can be easily generalizedin order to construct realistic constituent quark modelswith relativistic interactions.
4. Relevant generalizations of the
relativistic equation
In this Section we consider two interesting generalizationsof our equation: in Subsection 4.1 a covariant version thatcan be applied in any reference frame will be given; inSubsection 4.2 a version of the equation for two particleswith different mass will be studied.These generalizations are useful for further developmentsand applications of the model but are not necessary tounderstand the contents of the following parts of the pa-per. For this reason, the uninterested reader can skip thepresent Section.
4.1. The covariant form of the equation
This generalization is very relevant for the study of scat-tering processes of bound systems and, in turn, for deter-mining their electroweak form factors. We recall that inthese processes the bound system necessarily possessesdifferent momenta in the initial and final state, so thata covariant formalism, that can be applied to a genericreference frame, is required.For convenience, we start this generalization by writingEq. (20) of our model in the following form:

[4(p2 +m2)−M2] |ψCM >= W (M, r)|ψCM >, (27)
where W (M, r) collectively represents all the terms con-taining the interaction:
W (M, r) = V 2

s (r) + 4mVs(r)− V 2
v (r) + 2MVv (r) . (28)

To avoid confusion, we point out that the two-body CMreference frame, represents, in present context, the rest
frame of the bound system.We note that the relativistic transformation properties ofthe momentum can be more clearly analyzed than thetransformation properties of the position operator. Forthis reason we shall write our equation in the momentumspace.As first step, we introduce the rest frame, momentum space,wave function:

ψCM (p) =< p|ψCM > (29)
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and the momentum space interaction matrix-elements:
W (M,p,p′) =< p|W (M, r)|p′ > . (30)

Recall that, in general, W (M,p,p′) depends on p, p′ onlythrough p2, p′2 and the scalar product p · p′; in particu-lar, for the case local interactions, that we are presentlyconsidering, the dependence is on (p− p′)2.With the help of the previous positions, the integral equa-tion of our model in the momentum space takes the stan-dard form:
[4(p2 +m2)−M2]ψCM (p) = ∫ d3p′W (M,p,p′)ψCM (p′) .(31)We now pass to a generic reference frame, where the total4-momentum of the system is Pµ = (E,P), with E =√
P2 +M2. Furthermore, the intrinsic 4-momentum in thegeneric reference frame is taken as an on-shell quantity:

qµ = (ε(q),q) with ε(q) =√q2 +m2. Note that qCM = p.We also point out that qµ can identified with 4-momentumof one of the two particles of the bound system.We now express the CM invariant quantities in terms ofthe 4-momenta of the generic frame:
ε(p) = Pµqµ

1
M (32)

and, consequently
p2 = (Pµqµ

1
M

)2
−m2 . (33)

The same equations hold for the primed momenta, replac-ing p with p′ and qµ with q′µ . Furthermore, we can write:
p · p′ = −qµq′µ + PµqµPνq′ν

1
M2 . (34)

In this way we can express the interaction matrix-elementsas a function of covariant arguments:
W (M,p,p′) = W̄ (Pµ, qµ, q′µ) . (35)

We now make use of the covariant integration over q:
∫ d3q
ε(q) . . . =

∫ d3p
ε(p) . . . (36)

so that the normalized wave function in the generic refer-ence frame is:
ψ(q) = [ ε(p)

ε(q)
]1/2

ψCM (p) , (37)
with p = p(q) in the CM wave function of the r.h.s.. By us-ing the previous results, with standard handling, Eq. (31)is finally written in a generic reference frame as:

[ 4
M2 (Pµqµ)2 −M2]ψ(q) = ∫ d3q′

[
ε(p)
ε(q)

]1/2
W̄ (Pµ, qµ, q′µ) [ ε(p′)ε(q′)

]1/2
ψ(q′), (38)

where ε(p) and ε(p′) are given by Eq. (32).

Clearly, this procedure spoils the locality of the modelin a generic reference frame. However, in general, onecan determine the spectrum of the system and the wavefunctions in the CM (performing the Fourier transformationto momentum space), then with the help of Eq. (37) onecan obtain the wave functions in a generic frame in orderto calculate the form factors of the bound system.

4.2. The case of two particles with different
mass

This second generalization is mainly relevant for the studyof D, Ds, B and Bs mesons, that are bound states of twoquarks with different mass. This specific aspect of thehadronic phenomenology was thorougly studied in Ref. [7].Here, we adapt that theoretical procedure to our relativis-tic equation. We recall that our generalized equation canbe also used for the study of the baryon spectroscopy inthe quark-diquark model [16, 17], avoiding the use of stan-
227

Brought to you by | CERN library
Authenticated

Download Date | 10/4/17 1:57 PM



A relativistic wave equation with a local kinetic operator and an energy-dependent effective interaction for the study of hadronic systems

dard Hamiltonians with nonlocal kinetic terms. For thisstudy, a similar technique was also used in the frameworkof other approaches [15, 18].Here, we start by introducing for the two particles of mass
mi (i = 1, 2), their total energies Ei, so that, workingin the CM reference frame, the eigenvalue equation fornoninteracting particles (that replaces Eq. (17)) takes theform:
[2p2 +m21 +m22] |ψfree >= [E21 + E22 ]] |ψfree >, (39)

where, also in this case, p represents the CM relativemomentum, with the standard assumption p = p1 = −p2.The interaction is introduced analogously to Eqs. (18) and(19) by means of the following substitutions:
mi → mi + Vs(r)2 (40)

and
Ei → Ei + Vv (r)2 . (41)

Then, the mass of the system, i.e. its total energy in theCM, is standardly introduced as:

M = E1 + E2 . (42)

In order to construct a three-dimensional model, the en-ergy difference of the two particles must be fixed. To thisaim we use the following standard equation:

E21 − E22 = m21 −m22 = M · (E1 − E2) . (43)

Note that for two equal-mass particles, each particle hasthe same energy, that is M/2.By replacing the previous positions in Eq. (39), one finallyobtains:
[4p2 + 2(m21 +m22) + V 2

s (r) + 2(m1 +m2)Vs(r)− V 2
v (r) + 2MVv (r)] |ψ >= F (M,m1, m2)|ψ > , (44)

with
F (M,m1, m2) = (m21 −m22)2

M2 +M2 . (45)
The last two equations represent the generalization ofEq. (20). Note that the l.h.s. of Eq. (44) is now givenby the function defined in Eq. (45). The value of the mass
M can be found by applying to this specific equation thenumerical technique discussed in Section 6.
5. The study of some analytic cases
A very relevant point of our equation is the possibility ofdetermining analytic solutions that can be used as startingpoint for the study of realistic models.To this aim we consider, for two equal-mass constituents,three special choices of the potentials that can allow tosolve, with relatively simple calculations, the exact equa-tions of Section 3.
Choice 1. In this case, analogously to the one-body Diracequation, we shall obtain an equation similar to Eq. (16)by taking the scalar and vector potentials satisfying the

same relation of Eq. (11), that is:
Vs(r) = Vv (r) = 12U(r) . (46)

With this choice Eq. (22) takes the form[
p2
m + (1 + E4m

)
U(r)] |ψ >= E (E)|ψ > (47)

that is analogous to Eq. (16).By introducing the effective energy-dependent mass as
µ(E) = (1 + E4m

)
m , (48)

Eq. (47) can be conveniently written in the form:[
p2
µ(E) + U(r)] |ψ >= E |ψ > . (49)

We have obtained a relativistic wave equation with thesame structure of a standard two-body, equal-mass non-relativistic Schrödinger equation, but now the factor
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µ(E) introduces the energy dependence of the relativis-tic model. In consequence, if one considers a potential
U(r) for which the corresponding wave equation can besolved analytically, then the values of E for Eq. (49) areobtained by replacing m with µ(E) in the expression ofthe nonrelativistic eigenvalues.Let us discuss the two following examples: a Coulombicpotential plus a constant term and a harmonic oscillatorpotential.In the first case one has:

U(r) = −βur + U0 . (50)
Recalling the standard eigenvalues of the nonrelativisticequation

ENR
n = −mβ2

u4n2 + U0 , (51)
by replacing m with µ(EB) of Eq. (48), with standard al-gebra one finds:

En = (−mβ2
u4n2 + U0

)
·
(1 + β2

u16n2
)−1

, (52)
being n = 1, 2, 3..... The angular momentum quantumnumber is l, with the condition l ≤ n− 1.For the case of a harmonic potential

U(r) = 12kr2 , (53)
one has the nonrelativistic energies in the form:

ENR
N = (N + 32

)
ω , (54)

where N = 0, 1, 2... and the angular momentum is l =
N,N − 2, N − 4, ... ≥ 0. Furthermore, ω is defined as:

ω = (2k
m

)1/2
. (55)

Then, replacing the mass m with µ(E) of Eq. (48) one finds:
EN ·

(1 + EN4m
)1/2 = (N + 32

)
ω (56)

that can be easily solved numerically for EN .We point out that in the two examples discussed abovethe degeneracy of the energy levels remains the same asin the corresponding nonrelativistic cases.

Choice 2. Another possible choice is to take only ascalar potential with a vanishing vector potential, setting
Vv (r) = 0 in Eqs. (20) and (22). In this case the effec-tive interaction is not energy-dependent. One can solvedirectly Eq. (20). Otherwise, Eq (22) can be solved asa standard Schrödinger equation where the potential is
Vs(r)+ 14mV 2

s (r) and the eigenvalue is E . Then, the energyof the system is determined solving algebraically, with re-spect to E , the quadratic Eq. (23). Choosing the sign thatgives the standard nonrelativistic limit, one has:
E = 2m[(1 + Em

)1/2
− 1] . (57)

An analytic solution can be obtained for a potential witha Coulombic behavior:
Vs(r) = −βsr . (58)

In this case, by using a nonrelativistic result [23], it canbe found that the eigenvalues have the form:
Ekl = −mβ2

s

[2k + 1 + [(2l+ 1)2 + 4β2
s

]1/2]−2
, (59)

where the integer k = 0, 1, 2, ... has been introduced and
l ≤ k represents the angular momentum quantum number.Then Ekl is calculated by means of Eq. (57).
Choice 3. Finally, we consider an interaction with a vectorpotential and a vanishing scalar potential, taking Vs(r) =0. In this case Eq. (20) can be conveniently written in thefollowing form

[
p2 +m2] |ψ >= [M2 − Vv (r)2

]2
|ψ >, (60)

that is formally equivalent to a standard one-body Klein-Gordon equation in which the energy is replaced by M/2and the zero component of the vector potential potentialby Vv (r)/2.An analytic solution can be found [24] for a Coulombicinteraction:
Vv (r) = −βvr ; (61)it has the form:

Mnl = 2m
1 + β2

v4 [n− l− 12 + ((l+ 12 )2 − β2v4
)1/2]2


−1/2

,

(62)with the integer n = 1, 2, 3, ... and the angular momentumquantum number l ≤ n− 1.
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6. A numerical application to the
charmonium spectrum
In order to show a possible application of our model to areal physical system for which the relativistic effects areusually considered relevant, we now study, as an exam-ple, the general structure of the charmonium spectrum. Byusing, for the interaction, only central potentials, we shallnot take into account the effects related to the spin-spin,spin-orbit and tensor interaction. These corrective contri-
butions, that are extremely relevant for a detailed study ofcharmonium spectroscopy [5–8], can be introduced pertur-batively carefully considering the Lorentz transformationproperties of the interaction operators.The aim of the following analysis is only to demonstratethat our relativistic equation, with a local kinetic opera-tor, can adequately reproduce the main structure of thecharmonium spectrum for the low-lying resonances. Noattempt is made here to study the details of this spectrumgiven by the corrective contributions nor to determine thequantum numbers of all the experimentally observed res-onances.More precisely, we shall reproduce a limited set of well-established resonances, neglecting the mass splittings dueto the corrective contributions of the interaction. Follow-ing the standard quark model assignments for the reso-nance quantum numbers, we consider the S-wave stateswith radial excitation number n = 1, 2, 3. For the P-wavestates we take n = 1, 2. The values of the masses (to bereproduced) for these resonances have been taken, for ex-ample, from Ref. [25]. For the D-wave states, we considerthe resonances with n = 1, 2; in this case we directly tryto reproduce the experimental values of the masses [26] ofthe ψ resonances at 3.773 GeV and 4.153 GeV.We now describe the specific numerical method for study-ing the charmonium spectrum by means of the energy-dependent relativistic model introduced in this work. Tobe definite, we shall refer, in the following, to the generalEq. (22) but the same method can be straightforwardlyadapted to Eq. (49) of the Choice 1 and also, with mi-nor changes, to Eq. (44) for the case of constituents withdifferent mass.Our numerical method schematically consists in the fol-lowing three steps.
First, we recall that, in the CM, a two-body stan-dard Schrödinger equation can be solved by means ofa diagonalization-minimization procedure (DMP), that isby diagonalizing the Hamiltonian matrix in a basis of or-thonormal trial wave functions. Furthermore, the dimen-
sional parameter, on which the trial wave functions de-pend, is also varied and the minimization procedure isrepeated, until the minimum value of the ground state en-

ergy is found.The radial wave functions of the variational basis [27] usedin the present work have the following form:
Rnl(r) = 1

r̄3/2
[

n!Γ(2l+ 3 + n)
]1/2

slL2l+2
n (s) exp(−s/2) ,(63)where r̄ is the variational dimensional parameter and s =

r/r̄ is introduced as an adimensional argument. Finally,the L2l+2
n (s) represent the standard Laguerre polynomials,being n the radial quantum number and l the angularmomentum quantum number.

Second, for a given form of the potentials Vs(r) and Vv (r),we can find the approximate eigenvalues E associated tothe l.h.s. operator of Eq. (22) by means of the previouslydescribed DMP. With respect to this point, we note thatin Eq. (22), the l.h.s. operator depends on the energy E .Furthermore, the r.h.s. eigenvalue is a function of E , thatis E = E (E), as given by Eq. (23).In consequence, varying the numerical value of E in the
l.h.s., we find the corresponding values of E solving theequation by means of the DMP, until the numerical valuefound for E is equal to the r.h.s. function E (E) of Eq. (23).The value of E for which this equality is found representsthe numerical solution for the energy of the system. Itsmass is obviously given by M = E + 2m.As anticipated, we incidentally point out that exactly thesame procedure can be applied to solve Eq. (44) for twoparticles with different mass. In this case one has to applythe DMP to the l.h.s., that in this case depends on M , untilone finds the same numerical value for F (M,m1, m2) in the
r.h.s. of that equation.
Third, by using the solution procedure described above,a fit is performed on the free parameters of the model,minimizing the quantity:

χ2 =∑
nl

(
Mtheor

nl −Mexp
nl
)2 , (64)

where equal weights have been assigned to all the char-monium resonances. The values of Mexp
nl have been takenaccording to the criteria discussed at the beginning of thisSection. In this way the numerical values of the parame-ters that appears in Vs(r) and Vv (r) can be determined bythe fit.In detail, we point out that, after some trials, an interac-tion with equal vector and scalar contributions, as given byEq. (46), was chosen to reproduce the charmonium spec-trum. Furthermore, the potential U(r) has been taken inthe following form:

U(r) = U0
[1− 1 + κ

e( r
rw )p + κ

]
. (65)
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We note that the potential U(r) of the previous expressionis vanishing for r = 0 and tends to the finite value U0 as
r →∞. For this reason, that potential is not intended toreproduce confinement.It depends on four free parameters: U0, the adimensionalparameters κ and p, and the length rw , related to thewidth of the potential.Moreover, in order to reproduce the short distance behav-ior of the strong cc̄ interaction, we have also introduceda Coulombic vector potential, in the standard form:

V C
v (r) = −43 αsr , (66)

where αs represents the strong effective adimensional cou-pling constant. The contributions of this interaction arecalculated perturbatively.We now show the numerical results of the calculation.Previously, we point out that two different strategies havebeen followed to assign the value of the charm quark mass
mc .In model a, we fix the interval for mc according to standardtheoretical arguments for the current quark masses [26],that is mc = 1.275± 0.025 GeV.In model b, assuming that the constituent quark massescan be different from the current ones, we leave mc as afree parameter that is determined by the fit.The results for Mnl of the two models are given in thecolumns model a and model b of Table 1. The obtainedvalues for χ2 are also shown in the last line of the ta-ble. As it could be expected, model b gives slightly betterresults than model a.The values of the parameters of the two models, that aredetermined by the fit, are shown in the first two columnsof Table 2.Finally, as a test of applicability for our numerical solu-tion technique, we also study a possible intrinsic energy-dependence of the interaction. Physically, effects of thiskind may be produced by the suppression of the mesonicdegrees of freedom of the interaction fields [28]. We intro-duce the model c replacing U0 in Eq. (65) in the followingway:

U0 → UE = Ū0 + λE2 , (67)
with Ū0 in GeV and λ in GeV−1. In this model we fix thevariation range of mc as in model a. The other parametershave the same meaning of the corresponding quantitiesof model a and model b. The results are shown in thecolumns labelled as model c of Tables 1 and 2. A slightimprovement of χ2 is obtained.

Table 1. Values of Mnl (GeV) given by model a, model b and model
c and the corresponding experimental values.

n l a b c exp1 0 3.07 3.06 3.07 3.072 0 3.68 3.67 3.67 3.673 0 4.06 4.07 4.05 4.041 1 3.50 3.50 3.51 3.532 1 3.94 3.94 3.93 3.931 2 3.77 3.77 3.77 3.772 2 4.13 4.14 4.13 4.15
χ2 0.0019 0.0018 0.00085

Table 2. Values of the parameters of model a, model b and model c
determined by the fit.

a b c

mc(GeV) 1.255 1.219 1.264
U0(GeV) 2.028 2.226 -
Ū0(GeV) - - 2.027
λ(GeV−1) - - -0.0139
κ -0.1048 -0.00235 -0.1061
rw (fm) 1.211 1.210 1.209
p 1.481 1.329 1.481
αs 0.0930 0.0836 0.1976

7. Conclusions and perspectives
In this work we have studied a relativistic model for com-posite systems with two equal-mass constituents, alsogeneralizing the same model to the case of two particleswith different mass. The model contains a local kinetic op-erator. More precisely, this operator is quadratic in therelative momentum so that a Schrödinger-like wave equa-tion can be constructed. This equation is considerablyeasier to solve than other nonlocal relativistic equations.As specific aspects of the present model, we note thatquadratic potential terms are introduced; furthermore, forvector interactions, the effective potential contains anenergy-dependent term and, also, the eigenvalue of ourSchrödinger-like wave equation is algebraically relatedto the physical energy of the system.For some central potentials of special form, the analyticsolutions have been easily obtained. Otherwise, the lo-cality of the kinetic operator allows to find the numericalsolutions without performing the Fourier transformation ofthe wave functions to the momentum space.A numerical method for solving our energy-dependent, lo-cal, wave equation has been developed.As an example, a successful general description of thecharmonium spectrum is obtained.
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The model can be formally used to construct quark mod-els with low-mass constituents, carefully considering thedynamical properties determined by the interaction terms.To this aim, spin-spin, spin-orbit and tensor interactionsmust be first consistently introduced.
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