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Abstract: We study a fully relativistic, two-body, quadratic wave equation for equal mass interacting particles. With
this equation the difficulties related to the use of the square roots in the kinetic energy operators are avoided.
An energy-dependent effective interaction, also containing quadratic potential operators, is introduced. For
pedagogical reasons, it is previously shown that a similar procedure can be also applied to the well-known
case of a one-particle Dirac equation. The relationships of our model with other relativistic approaches are
briefly discussed. We show that it is possible to write our equation in a covariant form in any reference frame.
A generalization is performed to the case of two particles with different mass. We consider some cases
of potentials for which analytic solutions can be obtained. We also study a general numerical procedure
for solving our equation taking into account the energy-dependent character of the effective interaction.
Hadronic physics represents the most relevant field of application of the present model. For this reason we
perform, as an example, specific calculations to study the charmonium spectrum. The results show that
the adopted equation is able to reproduce with good accuracy the experimental data.
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1. Introduction

stituent quark models can give a good description of the
hadronic spectra (at least of the low-lying states) if a
relativistic dynamical model is adopted. But we recall

The study of three-dimensional relativistic wave equa-
tions for bound systems is a subject of relevant interest in
atomic, nuclear and hadronic physics.

We anticipate that in the case of hadronic physics (that
will be analyzed in detail in the present paper) the con-

*E-mail: mdesanctis@unal.edu.co

that, also when studying the hyperfine corrections of the
atomic energy levels, both the contributions related to the
hadronic structure and the contributions given by the rel-
ativistic motion of the particles, must be carefully (and
simultaneously) examined, as, for example, in the case of
the so-called proton radius puzzle for the e”p and p=p
bound systems [1, 2].

The simplest (and very commonly adopted) procedure to
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construct a relativistic dynamical model is to consider, in
the Center of Mass (CM) of the system, a Hamiltonian
operator [3, 4] containing the relativistic energy terms and
the interaction operator in the form:

N
H=Y ~/pt+mi+V, (1)
i=1

where N is the number of constituents, p; and m; respec-
tively represent the momentum operator and the mass of
the i-th constituent and, finally, V' is the interaction op-
erator. Throughout the present work we shall mainly deal
with CM quantities, so that no special notation will be
used for the corresponding operators. (When studying a
generalized covariant form of our equation, a specific no-
tation will be introduced).

In particular, the momentum operators p; are always con-
strained by the CM condition, that is

N
> pi=0. )

i=1

In consequence, only N — 1 independent relative momen-
tum operators are actually used in the calculations.

In general, the interaction operator V' depends on the rel-
ative coordinates of the constituents, on their spins and
momenta. The form of the spin and momentum dependence
is specifically determined by the relativistic and retarda-
tion effects associated to the interaction.

Considering the Hamiltonian of Eq. (1), the corresponding
eigenvalue equation is:

Hlg >= M|y > )

that is usually solved by means of a variational technique.
This theoretical procedure for the study of relativistic
bound systems presents, at least, the following formal and
practical difficulties.

1. From a dynamical point of view, in Eq. (1) the
negative-energy states (that, in the context of
field theories, are transformed into free-antiparticle
states) are excluded from the model at the very be-
ginning of its formulation.

2. The insertion of the interaction V, as given in
Eq. (1), is exactly consistent only for the zero com-
ponent of a vector field. If a scalar (effective) field
is considered, as it is usually done, in particular,
for the study c¢ and bb spectra [5-8], one should
add the corresponding scalar interaction operators

to the constituent masses m; by means of the sub-
stitution that will be discussed in Section 3. How-
ever, these scalar interaction operators would ap-
pear in the square roots of the relativistic energies,
giving rise to very serious difficulties for the calcu-
lations, unless an approximate Taylor expansion of
the square roots is performed.

3. Also considering the simplest two-body case and
taking special forms for the interaction operator V,
it is not easy to find analytic solutions to Eq. (3).

4. When using standard central potentials, the asymp-
totic behavior of the corresponding wave functions
in the coordinate space cannot be determined ana-
lytically.

5. As for the variational (numerical) calculations, the
matrix elements of the interacion operator V' are
conveniently calculated by means of a basis of trial
wave functions in the coordinate space, given that
the leading terms of the interaction are usually rep-
resented by central potentials. On the other hand,
the matrix elements of the nonlocal relativistic ki-
netic terms must be calculated in the momentum
space. To this aim one has to perform the Fourier
transformation of the trial wave functions. We point
out that such transformation can be done analyti-
cally only for some specific functions. The whole
calculation requires, in any case, noticeable com-
putational efforts.

Moreover, as discussed in the previous points, the
lack of analytic solutions and the difficulty of study-
ing the asymptotic properties of the wave functions,
do not allow for a check of the obtained numerical
solutions.

These difficulties represent the main motivations to de-
velop, in the present work, a different approach with
the objective of constructing fully relativistic and local
constituent quark models. In more detail, the kinetic
(quadratic) terms of our equation will represent, without
approximations, the relativistic motion of the quarks. The
interaction terms will be introduced by means of standard
substitutions. Their form, of phenomenological nature, will
be chosen in order to reproduce the experimental spectra,
taking into account (as far as possible) the general sym-
metries of the underlying field theory.

We recall that the difficulties related to many aspects of
Quantum Chromo-Dynamics (QCD), in particular confine-
ment, do not allow for direct analytic calculations. In
consequence, we assume that the construction of QCD
inspired quark models, (with different phenomenological
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assumptions) represents, besides lattice investigations, a
useful method for the study of hadronic spectroscopy.

The content of the present work will be developed as out-
lined in the following.

For pedagogical reasons, in order to introduce the main
concepts (and techniques) of the present model, we shall
first revise in Section 2 the well-known case of the one-
body Dirac equation. For a special combination of a vec-
tor and a scalar potential, the original equation leads to
a Schrodinger-like equation (for the upper components of
the Dirac 4-spinor) with an energy-dependent effective
potential. In more detail, in this equation the kinetic term
is given by a local operator proportional to the square of
the relative momentum. In this way, an energy-dependent
effective interaction is introduced and the eigenvalue of
the equation is given by a quadratic function of the phys-
ical energy of the system.

Obviously, this one-body Dirac equation cannot be ap-
plied as such to the study of constituent models for
hadronic systems. For this reason, with a similar tech-
nique, we derive, in Section 3, our equation for the study
of a two-body equal-mass system. Also in this case we
obtain an energy dependent, Schrodinger-like equation in
which the kinetic term is given by a local operator propor-
tional to the square of the relative momentum. Our pro-
cedure essentially consists in writing the free equation
for the relative momentum, total energy and constituent
mass of the system, then inserting the scalar and vector
interactions by means of standard minimal substitutions.
Our model is compared with more standard approaches
based on three-dimensional reductions of the Bethe-
Salpeter Equation (BSE) [9-14] and to a very complex
procedure based on two-body Dirac equations of con-
straint dynamics [15].

Two generalizations are introduced in Section 4; in Sub-
section 4.1 a covariant version of the equation for the study
of bound systems in any reference frame is proposed; in
Subsection 4.2 the equation is also generalized to the
case of two constituents with different mass.

In Section 5 we examine some specific cases in which the
equation can be solved analytically.

Then, we consider a numerical technique to solve the
equation in the case of an arbitrary interaction. As an ex-
ample of physical relevance, in Section 6, we shall study,
with a fit procedure, the general structure of the charmo-
nium spectrum by using a definite form of the interaction.
Furthermore, by using the same method of numerical so-
lution, we shall also tentatively consider a possible intrin-
sic energy dependence of the interaction, showing that, in
this way, an improvement of the fit of the spectrum can be
obtained.

Finally, some conclusions will be drawn in Section 7.
Throughout the paper we set h = ¢ = 1.

2. The Dirac equation with a special
combination of potentials

The content of the present Section has been deeply stud-
ied by many authors. See, for example, Refs. [19-22].
Here we only present the main results in order to intro-
duce the reader to the case of two interacting particles
that will be analyzed in the next Section 3.

We recall that the Dirac equation for a free particle is
written, in the Hamiltonian form, as:

(a-p+Bmi = Ery, 4)

where E7 and p respectively represent the particle total
energy and momentum, m is its mass and a = y’y, 8 = )°
are the Dirac matrices, for which, in the present work, the
standard representation will used. In the Dirac 4-spinor

[

the Pauli spinors ¢ and x respectively represent the so-
called upper and lower components.

We now insert in Eq. (4) the interaction with a scalar
and a vector field. To this aim the following standard
replacements are made:

m—m+ Vi (5)
for the scalar field, and
Er—-Er—V,;p—>p—-V, (6)

for the vector interaction. In the present work we only take
the zero component V, of the vector interaction disregard-
ing the corresponding spatial (3-vector) part. More ex-
plicitly, we set V, = 0, considering that terms of this kind
give rise only to higher order relativistic contributions.
Furthermore, we take central interactions: Vi = Vi(r) and
V, = V(r).

With standard handling we can write the interacting Dirac
equation directly in the form of two coupled equations for
the upper and the lower components:

o -px+ Vilr)g+ (m+ Vi(r))g=Ere (7)

0 - pe+ Vilr)x — (m+ Vi(r))x = Erx, (8)
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where the Pauli matrices o have been introduced explic-
itly.

By means of Eq. (8) the lower components can be ex-
pressed in terms of upper ones as:

X = (Er +m+ Vi(r) = V(1)) ' - pg. )

Incidentally, we recall that, for calculating the nonrela-
tivistic limit, one makes the hypothesis that E; ~ m and
that 2m >> |Vi(r) — V,(r)]. In this way, the last equation
gives the approximated expression

1
~ _—@- 10
X5 0P (10)

that is replaced in Eq. (7), so that the standard
Schrodinger equation for ¢ is finally obtained.

Here we follow an exact procedure considering the fol-
lowing special choice for the potential terms:

Vi(r) = Vi(r) = %UD(r) . (11)

Replacing in Eq. (7), with standard handling the following
exact equation for ¢ is found:

[(Er +m)7'p? + Up(r)] ¢ = (Er — m)ep, (12)

where E7 + m must be nonvanishing. This equation can
be also written in an equivalent form that is more simi-
lar to a standard Schrodinger equation. To this aim, we
first subtract from the total energy the particle rest mass,
defining:

ED = ET —m. (1 3)

Then, we multiply both sides of Eq. (12) by the quantity

f(ED):1+2E—:1. (14)
Finally, introducing
Ep(Ep) = Ep - F(Ep) , (15)
Eq. (12) takes the form:
p?
|5+ Uolni(En) | 0 = enleolp . (16)

We note that the previous equation contains, in the Lh.s.
a standard, local, kinetic operator and an energy depen-
dent effective interaction term. In the r.h.s. & does not
represent the energy of the particle but is algebraically

related to this (physically relevant) quantity by means of
Egs. (14) and (15). Furthermore, after solving Eq. (16),
the lower components x can be directly obtained from the
solution ¢ by using Egs. (9) and (11).

The relevant point for the present study is that the pre-
vious equation (obtained with the special condition of
Eq. (11)), is fully relativistic, even though the kinetic term
is given by a quadratic operator.

Finally, we also highlight that, due to the same condition
of Eq. (11), no spin-orbit interaction is found. This prop-
erty could be of some interest for the study of the nucleon
spectrum.

In the following Section 3, we shall obtain a similar equa-
tion for the case of physical interest (in hadronic physics)
of two equal-mass interacting particles.

3. The two-body
quadratic equation

equal-mass

The case of two-body equal-mass systems is very rele-
vant in different areas of subatomic physics. We recall the
case of Positronium in QED and of the Deuteron in nu-
clear physics. Moreover, in hadronic physics we mention
the gg systems, in particular charmonium and Bottomo-
nium, whose properties have been conveniently studied
by means of a potential model with momentum dependent
interaction terms.

In order to introduce our equation, as first step we write
the quadratic equation for a two-body equal mass free
system in the CM reference frame:

4 [P2 + m2] |l1[}free >= M2|¢ff95‘ >, (17)

where p = p; = —p; is the CM relative momentum and
M represents the invariant mass, i.e. the CM energy of
the system. The previous equation admits positive and
negative energy solutions.

With the aim of obtaining the interacting wave equation
with the correct nonrelativistic limit, that will be explicitly
given in Eq. (25), we introduce the interaction by means
of the following standard substitutions:

m— m+ Vsz(r) (18)
and
M=M=V, (19)

disregarding, as in the case of the Dirac Equation, the
spatial part of the vector interaction.
In this way the following equation is obtained:
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4p% 4+ Am? + V2(r) + 4mV(r)
— V() £ 2MV, () ||g >= M|y > (20)

that represents the central result of the present work.
Note that, in this way, the scalar interaction Vi(r) has
been exactly introduced and does not require any approx-
imated expansion, as, on the contrary, it is necessary in
the standard treatment of Eqs. (1) and (3).

Formally the previous equation also holds for very small,
or vanishing, values of the constituent mass m, opening the
possibility of constructing light-quark constituent models.
However, in this case, the form of the interaction operators
V, and V; should be carefully studied considering their
dynamical and relativistic properties.

In any case, when developing a realistic model, a de-
pendence on the spin and momentum operators must be
introduced.

In the present preliminary study we only focus our atten-
tion on a simplified model with the interaction represented
by central potentials, i.e. with V, = V,(r) and Vi = V(r).
Obviously, this choice does not allow to reproduce some
relevant aspects of hadronic phenomenology but, on the
other hand, it can be expected that the leading contribu-
tions of the interaction operators are, in any case, repre-
sented by central potentials of this kind.

We shall now perform some algebraic transformations in
order to write the same equation in the form of an en-
ergy dependent, Schrodinger-like equation. The following
transformations can be applied only when the constituent
mass m is nonvanishing.

To this aim we first subtract from the total mass M the
masses of the constituent particles, defining:

E=M-2m. 1)

Then, dividing both sides by 4m, with standard algebraic
handling, the wave equation can be written as:

Pj + V(r)+\/(r)—i—L V2(r)
m ° v dm\ °

E

- Vf(f)) + 2va(r)]|l/f >=E(E)¢ >, (22)

where the quantity £(E) is defined as:

5(E):E-(1+%) . (23)

To avoid confusion, note that this definition has a different
functional form with respect to Ep(Ep) given in Eq. (15);
furthermore, in this case, the argument is E defined in
Eq. (21).

We now discuss some general aspects of our equation.
In the first place, we check the consistency of the model
calculating the nonrelativistic expansion of Eq. (22) in (in-
verse) powers of ¢ or, equivalently, of p/m. In this expan-
sion the nonrelativistic terms are of the order ¢® and the
relativistic corrections are of the order ¢~2.

We also point out that, in Eq. (22), the terms "—nj and,
conventionally, Vi(r), V,(r) are of the order c®. Also, the
factor 1/m that appears in the last two terms of the Lh.s.
is of the order c~2.

To obtain a Schrédinger equation plus relativistic correc-
tions, let us focus our attention on the last term of the
Lh.s., that is % V,(r), and on the quadratic energy term of
the r.h.s, that is % By replacing E , in these terms, with
an approximated expression of the order c°, we obtain a
wave equation that is correct up to the order ¢=2. Practi-
cally, we substitute E with the corresponding operator of

the orden Y, that is:

E—>p—2+V(r)+V(r) (24)
m S v -

Then, with standard handling, one finds the Schrodinger
equation plus relativistic corrections, in the form:

2 4
P P
.~ + Vi(r)+ Vi(r) — 3

- ﬁ{PZ, Vi(n}|ly >=Elg >, (25)

where now the eigenvalue E is approximated up to the
order ¢~2. In more detail, the first three terms of the Lh.s.
represent the nonrelativistic contributions of the order c°.
The fourth term is the standard relativistic correction to
the kinetic energy, of the order ¢=2. The last term, also
of the order c™2, is a momentum dependent relativistic
correction specific of the scalar interaction; in fact, it can
be also straightforwardly obtained by means of the mass
replacement of Eq. (18) in the nonrelativistic kinetic op-
erator .. Further terms of relativistic corrections would
be given by the (peculiar) adopted dynamical model also
including the spatial part of the vector potential.

In the second place, we discuss the relationship of our
model with other relativistic approaches.

In general, relativistic wave equations for bound systems
are derived performing a three-dimensional reduction of
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the BSE or, equivalently, considering, in the scattering
amplitude, the box and crossed-box fourth order Feynman
graphs. In this way a great variety of equations has been
constructed. Some examples are given in Refs. [9-14].
Obviously, for a given relativistic equation, the physical
results strictly depend on the choice of the quasipotential
that represents the interaction. In the present preliminary
work, we shall not analyze in detail this point. We only
try to reproduce, in Section 6, the general structure of the
charmonium spectrum by using phenomenological scalar
and vector potentials.

The most relevant aspect of our model, defined in Eq. (20)
is the quadratic character of of the equation that, at least
in the free limit, gives rise to positive and negative energy
solutions.

The same property is found when a three-dimensional re-
duction of the BSE is performed. Let us consider, as an
example, the analysis shown in a standard textbook [12]
for the study of positronium. By using the instantaneous
approximation for the interaction, the BSE is reduced to
a three-dimensional equation in which the CM energy of
the system (disregarding the interaction) is:

M = £2~/p? + m? . (26)

(In our notation, M stands for E and /p? + m? for w of
Ref. [12]).

Note that our quadratic model also gives the two signs
of the energy that, as shown in [12] are related to the
propagation of (++) and (——) fermionic states. In that
equation, the (+—) and (—+) states are completely sup-
pressed, while, in another (similar) relativistic model [11],
they only appear as closed-channel, virtual states. In this
way, our equation and the two models cited above do not
admit spurious solutions with M = 0, avoiding the so-
called continuum dissolution problem, discussed, for ex-
ample, in Ref. [14].

Another interesting model with quadratic kinetic operators
has been also proposed in the context of two-body Dirac
equations of constraint dynamics [15]. The authors con-
sider, for each particle, a Dirac-like equation. Then, these
equations are coupled by the interaction terms. Further-
more, in that work a detailed theoretical discussion about
the construction of relativistic equations is also given.

Concluding, we also mention that a specific aspect of our
equation consists in the presence of the quadratic interac-
tion terms V2(r) and VZ(r). In the case of small coupling
constants, their contributions would be negligible. On the
other hand, for interaction operators with strong couplings,
their effects should be carefully studied in the context of
the adopted phenomenological model.

Finally, the very simple and transparent procedure that is
used to introduce the interaction can be easily generalized
in order to construct realistic constituent quark models
with relativistic interactions.

4. Relevant generalizations of the
relativistic equation

In this Section we consider two interesting generalizations
of our equation: in Subsection 4.1 a covariant version that
can be applied in any reference frame will be given; in
Subsection 4.2 a version of the equation for two particles
with different mass will be studied.

These generalizations are useful for further developments
and applications of the model but are not necessary to
understand the contents of the following parts of the pa-
per. For this reason, the uninterested reader can skip the
present Section.

4.1. The covariant form of the equation

This generalization is very relevant for the study of scat-
tering processes of bound systems and, in turn, for deter-
mining their electroweak form factors. We recall that in
these processes the bound system necessarily possesses
different momenta in the initial and final state, so that
a covariant formalism, that can be applied to a generic
reference frame, is required.

For convenience, we start this generalization by writing
Eqg. (20) of our model in the following form:

[4(p? + m?) — M*] ¢, >= WM. D¢, >, (27)

where W(M, r) collectively represents all the terms con-
taining the interaction:

WM, r) = V2(r) + 4mVi(r) — V2(r) + 2MV,(r) . (28)

To avoid confusion, we point out that the two-body CM
reference frame, represents, in present context, the rest
frame of the bound system.

We note that the relativistic transformation properties of
the momentum can be more clearly analyzed than the
transformation properties of the position operator. For
this reason we shall write our equation in the momentum
space.

As first step, we introduce the rest frame, momentum space,
wave function:

d’cM(P) =< p|ll[}CA/l > (29)
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and the momentum space interaction matrix-elements:
WM, p,p') =< plWM,rlp’" > . (30)

Recall that, in general, W(M, p, p’) depends on p, p’ only
through p?, p’> and the scalar product p - p’; in particu-
lar, for the case local interactions, that we are presently
considering, the dependence is on (p — p)?.

With the help of the previous positions, the integral equa-
tion of our model in the momentum space takes the stan-
dard form:

[4(62 + ) = M] i (p) = [ &P/ WIM, . ) (9
(31)
We now pass to a generic reference frame, where the total
4-momentum of the system is P¥ = (E,P), with E =
V P? + M?. Furthermore, the intrinsic 4-momentum in the
generic reference frame is taken as an on-shell quantity:
q" = (e(q). q) with e(q) = /q? + m?. Note that q.,, = p.
We also point out that g/ can identified with 4-momentum
of one of the two particles of the bound system.
We now express the CM invariant quantities in terms of
the 4-momenta of the generic frame:

elp) = P“Qum

and, consequently

2
p? = (P“q‘,%) —m?. (33)

where e(p) and e(p’) are given by Eq. (32).

Clearly, this procedure spoils the locality of the model
in a generic reference frame. However, in general, one
can determine the spectrum of the system and the wave
functions in the CM (performing the Fourier transformation
to momentum space), then with the help of Eq. (37) one
can obtain the wave functions in a generic frame in order
to calculate the form factors of the bound system.

4 1" —_ ’ €p) " 1 14 I n e(p
| Par = |uta = [ @ | S8 wie o am |

The same equations hold for the primed momenta, replac-
ing p with p" and g, with g Furthermore, we can write:

’ [T

L,
PP =—q qu+P“un”qu . (34)

In this way we can express the interaction matrix-elements
as a function of covariant arguments:

WM, p,p) = W(P" q" q") . (39)

We now make use of the covariant integration over q:

dq _[dp
[qg =1 (0)

so that the normalized wave function in the generic refer-
ence frame is:

vlg) = [E(”)]mw ®) (37)
D= eq| Yeu'P

with p = p(q) in the CM wave function of the r.h.s.. By us-
ing the previous results, with standard handling, Eq. (31)
is finally written in a generic reference frame as:

’

-

12
), 38
e(q,)] ¥(q) (38)

(

4.2. The case of two particles with different
mass

This second generalization is mainly relevant for the study
of D, D,, B and B, mesons, that are bound states of two
quarks with different mass. This specific aspect of the
hadronic phenomenology was thorougly studied in Ref. [7].
Here, we adapt that theoretical procedure to our relativis-
tic equation. We recall that our generalized equation can
be also used for the study of the baryon spectroscopy in
the quark-diquark model [16, 17], avoiding the use of stan-
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dard Hamiltonians with nonlocal kinetic terms. For this
study, a similar technique was also used in the framework
of other approaches [15, 18].

Here, we start by introducing for the two particles of mass
m; (i = 1,2), their total energies E;, so that, working
in the CM reference frame, the eigenvalue equation for
noninteracting particles (that replaces Eq. (17)) takes the
form:

[2p° + m7 + m3]|rree >= [E7 + E3]] |rree >, (39)

where, also in this case, p represents the CM relative
momentum, with the standard assumption p = p; = —pa.
The interaction is introduced analogously to Egs. (18) and
(19) by means of the following substitutions:

Then, the mass of the system, i.e. its total energy in the
CM, is standardly introduced as:

M=E +E . (42)

In order to construct a three-dimensional model, the en-
ergy difference of the two particles must be fixed. To this
aim we use the following standard equation:

E}—E=mi—ms=M-(E,—E). (43)

Vs(r)
mi — m; + 2 (40) Note that for two equal-mass particles, each particle has
the same energy, that is M/2.
and By replacing the previous positions in Eq. (39), one finally
Vi (r) )
E,—- E+ 5 - (41) obtains:
|
[4p% + 2(m7 + m3) + VE(r) + 2(my + mo) Vi(r) = VI(r) + 2MV, ()] ¢ >= F(M, my, mo)|¢p >, (44)
[
with same relation of Eq. (11), that is:
(m} — m3)? 2
F(M,m1,m2)=T+M . (45)

The last two equations represent the generalization of
Eq. (20). Note that the Lhs. of Eq. (44) is now given
by the function defined in Eq. (45). The value of the mass
M can be found by applying to this specific equation the
numerical technique discussed in Section 6.

5. The study of some analytic cases

A very relevant point of our equation is the possibility of
determining analytic solutions that can be used as starting
point for the study of realistic models.

To this aim we consider, for two equal-mass constituents,
three special choices of the potentials that can allow to
solve, with relatively simple calculations, the exact equa-
tions of Section 3.

Choice 1. In this case, analogously to the one-body Dirac
equation, we shall obtain an equation similar to Eq. (16)
by taking the scalar and vector potentials satisfying the

Vs(r) = Vi(r) = 1§U(r) . (46)

With this choice Eq. (22) takes the form

2
| (144 v ws=s@m> @)

that is analogous to Eq. (16).
By introducing the effective energy-dependent mass as

p(E):(']—i—%)m, (48)

Eq. (47) can be conveniently written in the form:

2
[%-&-U(r)]w S=Elg> . (49)

We have obtained a relativistic wave equation with the
same structure of a standard two-body, equal-mass non-
relativistic Schrodinger equation, but now the factor
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u(E) introduces the energy dependence of the relativis-
tic model. In consequence, if one considers a potential
U(r) for which the corresponding wave equation can be
solved analytically, then the values of E for Eq. (49) are
obtained by replacing m with p(E) in the expression of
the nonrelativistic eigenvalues.

Let us discuss the two following examples: a Coulombic
potential plus a constant term and a harmonic oscillator
potential.

In the first case one has:

u(r) = —% +Up . (50)

Recalling the standard eigenvalues of the nonrelativistic
equation
_mB;

ENR —
" 4n?

+ U, (51)

by replacing m with p(Eg) of Eq. (48), with standard al-
gebra one finds:

-1
E,,:(—mBZ+U0)'(1+ ’35) . (52)

4n2 16n2

being n = 1,2,3.... The angular momentum quantum
number is [, with the condition [ < n — 1.
For the case of a harmonic potential

1
U(r) = skr?, (53)
2
one has the nonrelativistic energies in the form:

EQRz(N+§)w, (54)

where N = 0,1,2... and the angular momentum is [ =
N,N—2,N—4,..>0. Furthermore, w is defined as:

12
w= (%) . (55)

m

Then, replacing the mass m with py(E) of Eq. (48) one finds:

Ex\" 3

that can be easily solved numerically for En.

We point out that in the two examples discussed above
the degeneracy of the energy levels remains the same as
in the corresponding nonrelativistic cases.

Choice 2. Another possible choice is to take only a
scalar potential with a vanishing vector potential, setting
V,(r) = 0 in Egs. (20) and (22). In this case the effec-
tive interaction is not energy-dependent. One can solve
directly Eq. (20). Otherwise, Eq (22) can be solved as
a standard Schrédinger equation where the potential is
Vis(r)+ ﬁ V2(r) and the eigenvalue is €. Then, the energy
of the system is determined solving algebraically, with re-
spect to E, the quadratic Eq. (23). Choosing the sign that

gives the standard nonrelativistic limit, one has:

E:Zm[(1+i)1/2—1] : (57)

An analytic solution can be obtained for a potential with
a Coulombic behavior:

vin =2 (58)
In this case, by using a nonrelativistic result [23], it can

be found that the eigenvalues have the form:

12772
Ek,:—mB§[2k+1+[(21+1)2+4B§] ] . (99)

where the integer k = 0,1, 2, ... has been introduced and
[ < k represents the angular momentum quantum number.
Then Ey, is calculated by means of Eq. (57).

Choice 3. Finally, we consider an interaction with a vector
potential and a vanishing scalar potential, taking V(r) =
0. In this case Eq. (20) can be conveniently written in the
following form

2
2+t s= |5 =0 s o0

that is formally equivalent to a standard one-body Klein-
Gordon equation in which the energy is replaced by M/2

and the zero component of the vector potential potential
by V,(r)/2.
An analytic solution can be found [24] for a Coulombic
interaction:

B
Vi) =—=" (61)
it has the form:
—12
2
Mn[ =2m |1 + Bv 12 >
4[n—l—1§+ ((1+g)2—%5) ]
(62)

with the integer n = 1,2, 3, ... and the angular momentum
quantum number [ < n —1.
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6. A numerical application to the
charmonium spectrum

In order to show a possible application of our model to a
real physical system for which the relativistic effects are
usually considered relevant, we now study, as an exam-
ple, the general structure of the charmonium spectrum. By
using, for the interaction, only central potentials, we shall
not take into account the effects related to the spin-spin,
spin-orbit and tensor interaction. These corrective contri-
butions, that are extremely relevant for a detailed study of
charmonium spectroscopy [5-8], can be introduced pertur-
batively carefully considering the Lorentz transformation
properties of the interaction operators.

The aim of the following analysis is only to demonstrate
that our relativistic equation, with a local kinetic opera-
tor, can adequately reproduce the main structure of the
charmonium spectrum for the low-lying resonances. No
attempt is made here to study the details of this spectrum
given by the corrective contributions nor to determine the
quantum numbers of all the experimentally observed res-
onances.

More precisely, we shall reproduce a limited set of well-
established resonances, neglecting the mass splittings due
to the corrective contributions of the interaction. Follow-
ing the standard quark model assignments for the reso-
nance quantum numbers, we consider the S-wave states
with radial excitation number n = 1,2, 3. For the P-wave
states we take n = 1,2. The values of the masses (to be
reproduced) for these resonances have been taken, for ex-
ample, from Ref. [25]. For the D-wave states, we consider
the resonances with n = 1,2; in this case we directly try
to reproduce the experimental values of the masses [26] of
the ¢ resonances at 3.773 GeV and 4.153 GeV.

We now describe the specific numerical method for study-
ing the charmonium spectrum by means of the energy-
dependent relativistic model introduced in this work. To
be definite, we shall refer, in the following, to the general
Eq. (22) but the same method can be straightforwardly
adapted to Eq. (49) of the Choice 1 and also, with mi-
nor changes, to Eq. (44) for the case of constituents with
different mass.

Our numerical method schematically consists in the fol-
lowing three steps.

First, we recall that, in the CM, a two-body stan-
dard Schrédinger equation can be solved by means of
a diagonalization-minimization procedure (DMP), that is
by diagonalizing the Hamiltonian matrix in a basis of or-
thonormal trial wave functions. Furthermore, the dimen-
sional parameter, on which the trial wave functions de-
pend, is also varied and the minimization procedure is
repeated, until the minimum value of the ground state en-

ergy is found.
The radial wave functions of the variational basis [27] used
in the present work have the following form:

1/2
] s'121%2(s) exp(—s/2) |
(63)

where T is the variational dimensional parameter and s =

Rul) = 5 | oo e
=B | TR+ 3+ n)

r/F is introduced as an adimensional argument. Finally,
the [2%2(s) represent the standard Laquerre polynomials,
being n the radial quantum number and [ the anqular
momentum quantum number.

Second, for a given form of the potentials V;(r) and V,(r),
we can find the approximate eigenvalues & associated to
the Lh.s. operator of Eq. (22) by means of the previously
described DMP. With respect to this point, we note that
in Eq. (22), the Lh.s. operator depends on the energy E.
Furthermore, the r.h.s. eigenvalue is a function of E, that
is £ = £(E), as given by Eq. (23).

In consequence, varying the numerical value of E in the
Lhs., we find the corresponding values of £ solving the
equation by means of the DMP, until the numerical value
found for £ is equal to the rh.s. function E(E) of Eq. (23).
The value of E for which this equality is found represents
the numerical solution for the energy of the system. lts
mass is obviously given by M = E + 2m.

As anticipated, we incidentally point out that exactly the
same procedure can be applied to solve Eq. (44) for two
particles with different mass. In this case one has to apply
the DMP to the Lh.s., that in this case depends on M, until
one finds the same numerical value for F(M, m{, m;) in the
r.h.s. of that equation.

Third, by using the solution procedure described above,
a fit is performed on the free parameters of the model,
minimizing the quantity:

=Y (Mg = M) (64)

nl

where equal weights have been assigned to all the char-
monium resonances. The values of M:,” have been taken
according to the criteria discussed at the beginning of this
Section. In this way the numerical values of the parame-
ters that appears in Vi(r) and V,(r) can be determined by
the fit.

In detail, we point out that, after some trials, an interac-
tion with equal vector and scalar contributions, as given by
Eqg. (46), was chosen to reproduce the charmonium spec-
trum. Furthermore, the potential U(r) has been taken in
the following form:

(65)

U(r) = Uy [1 - i]

el 4«
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We note that the potential U(r) of the previous expression
is vanishing for r = 0 and tends to the finite value Uy as
r — oo. For this reason, that potential is not intended to
reproduce confinement.

It depends on four free parameters: U, the adimensional
parameters x and p, and the length r,, related to the
width of the potential.

Moreover, in order to reproduce the short distance behav-
ior of the strong c¢ interaction, we have also introduced
a Coulombic vector potential, in the standard form:

Ve =% (66)

where a; represents the strong effective adimensional cou-
pling constant. The contributions of this interaction are
calculated perturbatively.

We now show the numerical results of the calculation.
Previously, we point out that two different strategies have
been followed to assign the value of the charm quark mass
me.

In model a, we fix the interval for m. according to standard
theoretical arguments for the current quark masses [26],
that is m, = 1.275 £ 0.025 GeV.

In model b, assuming that the constituent quark masses
can be different from the current ones, we leave m. as a
free parameter that is determined by the fit.

The results for M, of the two models are given in the
columns model a and model b of Table 1. The obtained
values for x? are also shown in the last line of the ta-
ble. As it could be expected, model b gives slightly better
results than model a.

The values of the parameters of the two models, that are
determined by the fit, are shown in the first two columns
of Table 2.

Finally, as a test of applicability for our numerical solu-
tion technique, we also study a possible intrinsic energy-
dependence of the interaction. Physically, effects of this
kind may be produced by the suppression of the mesonic
degrees of freedom of the interaction fields [28]. We intro-
duce the model c replacing U in Eq. (65) in the following
way:

Us — Ug = Up + AE?, (67)

with Up in GeV and A in GeV™". In this model we fix the
variation range of m. as in model a. The other parameters
have the same meaning of the corresponding quantities
of model a and model b. The results are shown in the
columns labelled as model c of Tables 1 and 2. A slight
improvement of x? is obtained.

Table 1. Values of M, (GeV) given by mode! a, model b and mode/
¢ and the corresponding experimental values.

>

[l a b c exp

3.07  3.06 3.07 3.07
3.68  3.67 3.67 3.67
406 4.07 405 4.04
350 350 351 353
394 394 393 393
377 377 377 377
413 414 413 415
x> 0.0019 0.0018 0.00085

N =N =W N =
N N|[—= 2|0 © O

Table 2. Values of the parameters of model a, model b and model ¢
determined by the fit.

a b c
me(GeV) 1255 1219  1.264
Up(GeV) 2028 2226 -
Oo(Gev) - - 2,027
AGev) - - -0.0139
K -0.1048 -0.00235 -0.1061
rw(fm) 1211 1210 1.209
p 1481 1329  1.481
as 0.0930 0.0836 0.1976

7. Conclusions and perspectives

In this work we have studied a relativistic model for com-
posite systems with two equal-mass constituents, also
generalizing the same model to the case of two particles
with different mass. The model contains a local kinetic op-
erator. More precisely, this operator is quadratic in the
relative momentum so that a Schrédinger-like wave equa-
tion can be constructed. This equation is considerably
easier to solve than other nonlocal relativistic equations.
As specific aspects of the present model, we note that
quadratic potential terms are introduced; furthermore, for
vector interactions, the effective potential contains an
energy-dependent term and, also, the eigenvalue of our
Schrodinger-like wave equation is algebraically related
to the physical energy of the system.

For some central potentials of special form, the analytic
solutions have been easily obtained. Otherwise, the lo-
cality of the kinetic operator allows to find the numerical
solutions without performing the Fourier transformation of
the wave functions to the momentum space.

A numerical method for solving our energy-dependent, lo-
cal, wave equation has been developed.

As an example, a successful general description of the
charmonium spectrum is obtained.
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The model can be formally used to construct quark mod-
els with low-mass constituents, carefully considering the
dynamical properties determined by the interaction terms.
To this aim, spin-spin, spin-orbit and tensor interactions
must be first consistently introduced.
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