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Abstract: In this paper, we have worked on the possibility of setting up an Bell’s inequality violating
experiment in the context of primordial cosmology following the fundamental principles of quantum
mechanics. To set up this proposal, we have introduced a model-independent theoretical framework
using which we have studied the creation of new massive particles for the scalar fluctuations in the
presence of an additional time-dependent mass parameter. Next we explicitly computed the one-point
and two-point correlation functions from this setup. Then, we comment on the measurement
techniques of isospin breaking interactions of newly introduced massive particles and its further
prospects. After that, we give an example of the string theory-originated axion monodromy model
in this context. Finally, we provide a bound on the heavy particle mass parameter for any arbitrary
spin field.
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1. Introduction

According to the inflationary model, the primordial fluctuations which we see in CMB
(Cosmic Microwave Background) were produced by quantum mechanical effects in the early universe.
These fluctuations are the origin for the formation of large-scale structure, but the fluctuations we
observe at present are actually classical in nature. The highly-entangled quantum mechanical wave
function of the universe plays a very important role during quantum mechanical interpretation of
the required fluctuations. Hence, one can use the Hartle–Hawking wave function in de-Sitter space.
Due to this fact, quantum mechanical fluctuations can be theoretically demonstrated, and can also
be implemented in the context of primordial cosmology—if and only if we perform a cosmological
experiment using the highly-entangled quantum mechanical wave function of the universe which is
defined in inflationary period and eventually violate Bell’s inequality [1]. To describe the background
methodology, it is important to mention that in the context of quantum mechanics, Bell test experiment
can be described by the measurement of two non- commutating physical operators. These operators
are associated with two distinct locations in space-time. Thus, using same analogy in the context of
primordial cosmology, we can perform cosmological observations on two spatially separated and
causally disconnected places up to the epoch of reheating (after inflation). During these observations
we can measure the numerical values of various cosmological observables (along with cosmic variance),
and can also be computed from scalar curvature fluctuation. However, it is important to note that for
all such observations, we cannot measure the value of associated canonically conjugate momentum.
Hence, for these cosmological observables, we cannot measure the imprints of two non-commuting
operators in primordial cosmology. There is subtle point, however, which is that if these observables
satisfy the minimum requirements of decoherence effect, then we can possibly perform measurements
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from two exactly commuting cosmological observables, and therefore we will be able to design a Bell’s
inequality violating cosmological experimental setup. We know that in quantum theory, to design such
an experimental setup one has to perform a number of repeated measurements on the same object
(which in this context is the same quantum state of the universe), and therefore in such a physical
situation we can justify the appearance of each and every measurement using a single quantum state.
In the case of primordial cosmology, we can do the same thing; that is, consider two spatially-separated
portions in the sky which plays the same role of performing repeated cosmological Bell’s inequality
violating experiment using the same quantum mechanical state. Therefore, we have the advantage
of choosing the required properties of two spatially-separated portions in the sky in order to setup
Bell’s inequality violating experimental setup. It is completely possible to set up a Bell’s inequality
violating cosmological experimental setup if we can find a link which connects these non-commutating
cosmological observables and classical probability distribution function originated from model of
inflation (see Reference [2–4] for more details). In this article, we explore this possibility in detail. See
also References [5–8], where the authors have also studied various consequences of the violation of
Bell’s inequalities in other areas.

2. Bell’s Inequality and its Violation in Quantum Mechanics

John Stewart Bell in Reference [1] showed that “In a theory in which parameters are added to quantum
mechanics to determine the results of individual measurements, without changing the statistical predictions,
there must be a mechanism whereby the setting of one measuring device can influence the reading of another
instrument, however remote”. In that paper, J.S Bell gave two assumptions for his theory, which were
(1) concept of reality; and (2) concept of locality. Using these assumptions, he derived an inequality,
which is known as “Bell’s Inequality”. In this paper, he proved that “no local hidden variable theory
is compatible with quantum mechanics”. See Figure 1 for the representative setup for the spin system.
Here the operators—which are A0, B0, A1, and B1—correspond to measuring the spin, and their
eigenvalues are ±1, choosing the value of operators as:

Spin in Singlet state 

The eigen values of AO,BO,A1 and B1 is +1 or -1. 

Figure 1. Schematic diagram of Bell’s inequality example for a spin system. Here pictures are taken
from [3].

A0 = n0.σ, A1 = n1.σ, B0 = n0.σ, B1 = n1.σ. (1)

Further considering a variable which is given by:

〈R〉 = 〈A0B0〉+ 〈A1B0〉+ 〈A0B1〉 − 〈A1B1〉 (2)

According to hidden variable theory, |〈R〉| ≤ 2. In quantum mechanics, however, the expectation
value of R can be found bigger. By squaring Equation (2), we can show that R2 = 4+ [A1, A0][B1, B0]⇒
|〈R〉| > 2, making |〈R〉| larger than 2, which violates Bell’s inequality. The question now is how to
draw the above conclusion, therefore choosing:

A0 = x.σ, A1 = y.σ, B0 = sin θ(x.σ) + cos θ(y.σ), B1 = cos θ(x.σ)− sin θ(y.σ), (3)
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we get the extra
√

2 factor for the maximal violation; i.e., |〈R〉| > 2
√

2.

3. Cosmological Bell Violating Setup

To describe the setup of Bell violating experiment in the context of cosmology, we have to start
with the quantum fluctuations, which can be treated as a time-dependent harmonic oscillator in Fourier
space, given by:

S =
∫ dη

η2

(
|∂ηφk(η)|2 − k2|φk(η)|2

)
. (4)

Therefore, to describe such quantum fluctuations in expanding space-time, we have to use the
quasi de Sitter metric, ds2 = a2(η)(−dη2 + dx2), where H is the Hubble parameter, x represents
comoving spatial coordinates, η signifies the conformal time coordinate, and a(η) = −(1 + ε)/Hη

is the scale factor, with ε = −Ḣ/H2. Noting that, here it can be easily shown that quantum theory
plays an important role in producing spatially-dependent fluctuations in terms of the scalar fields.
See Figure 2, where we have shown a comparison between a successful and an unsuccessful setup for
Bell’s inequality violation in quantum mechanics and cosmology.

  

(a)

  

(b)

Figure 2. (a) Successful vs. (b) Unsuccessful setup for Bell’s inequality violation in Quantum Mechanics
and Cosmology [4].
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We know that quantum mechanical effects are the seeds for primordial fluctuations in the early
universe. However, the fluctuations we have observed today is completely classical in nature, as
we said earlier. We know that in the theory of inflation, all such fluctuations become classical in
nature as they exit the horizon, and inside the horizon, all of them are quantum in nature. In de
Sitter space, k3 |[φk(η),η∂ηφk]| ≈ H3(ηk)3 → 0 as ηk → 0 at the end of inflation, which is the
signature of Bell inequality violation in our cosmological setup. Hence, when reheating occurs after
inflation, a classical measure can be written down, or more precisely, a classical probability distribution
function of fluctuation, as follows: ρ[φ(x)] = µ[φ(x)] = |Ψ[φ(x)]|2. Here, |Ψ[φ(x)]|2, or equivalently,
µ[φ(x)] symbolizes the classical probability distribution, which is the state of the universe at the
spatial hyper-surface where the process of reheating occurs. Here all the fluctuations can be treated
as a distribution of classical random variables. However, from the computed classical probability
distribution function ρ[φ(x)], one cannot say anything regarding the exact measurement procedure
on a quantum state. This is really a disappointing fact from the theoretical point of view, but that is
not the end of the proposal. Here it is important to mention that one can treat a measurement as a
specific unitary evolution of the combined effect of physical system as well as measuring apparatus.
Such physical states can be visualized as classical objects in the context of cosmology, and in a direct
sense are not very useful (for more detail, see References [2,3]). Here we need to follow a few steps to
overcome the difficulties [3].

• Choose a toy model of universe that will make the job easy.
• Here we are not claiming that this is the unique model of universe using which one can design

the setup.
• Since we do not have any direct observational evidence, we also cannot claim that this toy model

is our known universe. However, it may be that in the future this will be tested.
• In this toy model of the universe, we test the validity of Bell’s inequality with primordial

fluctuations.
• In this computation, massive particles with spin “s” (s = 0, 2, and >2 allowed) and additionally

“isospin” quantum number plays important role.
• We provide an example for Stringy axion which has “isospin”.
• Time dependent mass profile with dependence on “isospin” makes the job easy. Axions have

such profile.
• Such time dependence in mass profile of the massive particles (ex. axion) produces classical

perturbations on the inflaton. As a result, hot spots produced in CMB by curvature fluctuations
and all such massive particles are visible today.

4. Role of Massive New Particles

In this section, we discuss the explicit role of massive particles in the context of Bell’s inequality
violation in cosmology. Here it is important to note that all the massive particles have the few
characteristics to violate Bell’s inequality: (A) Particle pair creation (Bell pair) is required to produce
hot and cold spots in CMB; (B) Particle mass should have a time-dependent profile. Growing mass
profile is usually preferred. However, sometimes other behavior is also important, depending on
the specific mathematical structure of the mass profile; (C) Heavy fields become heavy at early and
late times, but in an intermediate time scale where inflation occurs, it behaves like a light field;
(D) Each massive particle pair is created in “isospin” singlet manner. This is required for measurement
in the detectors. Time dependence of the inflation give rise to a time-dependent mass m(η). In

the present context, we consider three mass profiles as a toy model: (A) m2/H2 = γ
(

η
η0
− 1
)2

+ δ;

(B) 2m2/m2
0 =

[
1− tanh

( ρ
H ln(−Hη)

)]
; and (C) m2/m2

0 = sech2 ( ρ
H ln(−Hη)

)
. See Figure 3, where

we have shown the behaviour of all the toy models of mass profile for massive particles with conformal
time scale. The equation of motion for the massive field is [3].

h′′k +

{
c2

Sk2 +

(
m2

H2 −
[

ν2 − 1
4

])
1
η2

}
hk = 0, (5)
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whereas, in the quasi de Sitter case, the parameter ν can be written as ν = 3
2 + ε+ η

2 + s
2 , where

η and s are defined as η = ε̇
Hε , s = ċS

HcS
. Here WKB approximation is approximately valid for the

mode function hk solution. If we solve the equation of motion for the heavy fields, then we can
have the solution for the fluctuations, where it is assumed that the variation in time in heavy field
mass parameter is very slow. For a case which is dependent on time, it is possible depending on the
mathematical structure of the heavy field mass parameter m(η). In the standard WKB approximation,
the total solution is:

hk(η) = [D1uk(η) + D2ūk(η)] . (6)

η0=1

η0=2

η0=3

-6 -4 -2 0 2 4 6
0

1

2

3

4

η

m
2
/H
2

Heavy field mass profile for A

(a)

ρ/H=1

ρ/H=2

ρ/H=3

-3 -2 -1 0 1 2 3
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1
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3

4

η

m
2
/H
2

Heavy field mass profile for B

(b)
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1.0

η
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Heavy field mass profile for C

(c)

Figure 3. Toy model mass profiles for massive particles. (a) Mass profile for A with γ = 1 and δ = 1; (b)

Mass profile for B with m2
0

2H2 = 1; (c) Mass profile for C with m2
0

H2 = 1. Here pictures are taken from [3].

Here, uk(η) and ūk(η) are defined as:

uk(η) =
1√

2p(η)
exp

[
i
∫ η

dη′p(η
′
)

]
, ūk(η) =

1√
2p(η)

exp
[
−i
∫ η

dη′p(η
′
)

]
, (7)

where total solution for hk is given in terms of two linearly independent solutions. Here the

new conformal time-dependent factor p(η) is defined as p(η) =

√{
c2

Sk2 +
(

m2

H2 −
[
ν2 − 1

4

])
1
η2

}
,

which we have used in our calculation, where D1 and D2 are two arbitrary integration constants, and
these constants depend on the initial condition during WKB approximation at early and late time
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scales. In our context, these constants D1 and D2 can be identified with the Bogoliubov coefficient in
momentum space,

D1 = β(k) =
R
T =

∫ 0

−∞
dη

(
p
′
(η)
)2

4p3(η)
exp

[
2i
∫ η

−∞
dη
′
p(η

′
)

]
, (8)

D2 = α(k) =
1
T =

√
1 + |β(k)|2 eiφ, (9)

whereR and T represent the reflection and transmission coefficient, respectively. Further, one can also
compute the number of produced particle pairs and its energy density using the following equations:

Npair =
1

(2πa)3

∫
d3k|β(k)|2, ρpair =

1
(2πa)3a

∫
d3kp(η)|β(k)|2. (10)

In the present context, to describe a very small fraction of particle creation after inflation, we have
to start with a Bogoliubov coefficient β in FLRW space time, which gives the amount of mixing
between the WKB approximated solutions, which is of two type. Noting that in the sub-Hubble region
(|kcSη| >> 1) Bogoliubov coefficient β is small, and hence the representative probability distribution
P(x) for the relative comoving distance x between the two pairs peaks at the comoving length scale,
which is x ∼ |ηpair|. In the present setup, all the pair is created if typical comoving distance x is on the
order of the time ηpair. See Figure 4, where we have explicitly shown the particle creation process for
mass profile A for two cases—m ≈ H and m >> H.
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Figure 4. Particle creation for mass profile A for two cases: m ≈ H and m >> H. (a) For m ≈ H;
(b) For m ≈ H; (c) For m >> H; (d) For m >> H. Here pictures are taken from [3].
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5. Important Note and Results in Cosmological Perturbation Theory

Effect of the massive particles on the scalar curvature fluctuations can be described if we take the
second-order action derived as [3]:

S =
1
2

∫
dηd3x

2εM2
p

c2
S H2

[
(∂ηζ)2 − c2

S(∂iζ)
2

η2 −
m2

in f

H2η2

]
−
∫ dη

cS H
m(η)∂ηζ(η, x = 0) (11)

Here, the curvature perturbation ζ is related to scalar field fluctuation as ζ = −Hδρ/ρ, or more
precisely in Fourier space, ζk = −Hφk/ ˙̄φ0Mp. The last term contains the effect of massive particle, as
the time-dependent mass parameter appears here. Additionally, it symbolizes the interaction term,
where the inflaton field is interacting with the heavy fields. This is a complex model of inflation, as
this model contains both inflaton and heavy field with a time-dependent coupling m(η). However,
in the simplest models of inflation, one can also neglect the mass contribution, because min f << H
approximation is valid in those cases. We can compare our present setup with effective time varying
mass parameter with the axions with time varying decay constant in the case of canonical interactions,
which will be shown in the next section.

Using this action, one can further compute the one point function as:

〈ζ(x,η = 0)〉|kcSη|→−∞ ≈ − 2H
M2

pεπ

[
|C2|2O1 − |C1|2O2 − i

(
C∗1 C2eiπ(Λ+ 1

2 ) + C1C∗2 e−iπ(Λ+ 1
2 )
)

O3

]
, (12)

〈ζ(x,η = ξ → 0)〉|kcSη|→0 =
H
√

ξcS
2M2

pεπ2

(
C∗1 C2 + C1C∗2 − |C1|2 − |C2|2

)
Oξθ

4 , (13)

〈ζ(x,η = ξ → 0)〉|kcSη|≈1 =
H
√

ξcS
2M2

pεπ2

(
C∗1 C2 + C1C∗2 − |C1|2 − |C2|2

)
Oξθ

5 , (14)

where O1, O2, O3, Oξθ
4 , Oξθ

5 are given by:

O1,2 = ∓ i
2π2c2

S
m(η = −|x|/cS), O3 =

1
2π2c2

S
m(η = −|x|/cS),

Oξθ
4 =

1
2π2

∫ ∞

0
dk k2 eikx

ξ∫
−∞

dη
cS

(
Λ− 1

2

)
m(η)

a(η)ε
√
−η

[(
− kcSη

2

)−Λ (
− kcSξ

2

)−Λ

+

(
kcSη

2

)−Λ ( kcSξ

2

)−Λ
]

,

Oξθ
5 =

1
2π2

∫ ∞

0
dk eikx k2−Λ

ξ∫
−∞

dη
cS

(
Λ− 1

2

) (
1
2

)−Λ
m(η)

a(η)ε
√
−η

[(
− cSξ

2

)−Λ

+ (−1)−Λ
(

cSξ

2

)−Λ
]

. (15)

Here, ξ is the cut-off in conformal time coordinates and acts as regulator in the theory and
the parameter Λ =

√
ν2 −m2/H2. Here it is important to mention that due to the presence of

time-dependent mass parameter 〈ζ(x,η = 0)〉 is non zero in all cases, and precisely shows the
signature of Bell’s inequality violation in primordial cosmology.

Similarly, in the position space, the two point function is given by:

〈ζ(x,η)ζ(y,η)〉|kcSη|→−∞ ≈ 1
4π4

H2

2εM2
p

η2 c̃2
S

cS

[(
|C2|2 + |C1|2

)
J1 +

(
C∗1 C2eiπ(Λ+ 1

2 ) J2 + C1C∗2 e−iπ(Λ+ 1
2 ) J3

)]
, (16)

〈ζ(x,η)ζ(y,η)〉|kcSη|→0 ≈ H2

2εM2
p

(−ηcS)
3−2Λ

22(2−Λ)π4

c̃2
S

c3
S

∣∣∣∣∣ Γ(Λ)

Γ
( 3

2

) ∣∣∣∣∣
2 [

(|C2|2 + |C1|2)− (C∗1 C2 + C1C∗2 )
]

KI , (17)

〈ζ(x,η = 0)ζ(y,η = 0)〉|kcSη|≈1 ≈ H2

2εM2
p

1
22(2−Λ)π4

c̃2
S

c3
S

∣∣∣∣∣ Γ(Λ)

Γ
( 3

2

) ∣∣∣∣∣
2 [

(|C2|2 + |C1|2)− (C∗1 C2 + C1C∗2 )
]

ZI , (18)

where J1, J2, J3, KI , and ZI are defined as:

J1 = − 4π

|x− y|2 , J2,3 = − 4π

(|x− y| ± 2cSη)2 , KI = 4π

(
i

|x− y|

)3−2Λ

Γ(3− 2Λ), ZI = 4π

{
ln
(

LIR

|x− y|

)
− γE

}
. (19)
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Here, 1/LIR is the infrared cut-off in the momentum scale which is introduced to regularize the
momentum integral.

6. Analogy with Axion Fluctuations from String Theory

Let us consider the canonically normalized string theory originated axion action, which is
represented as:

Saxion =
∫

dη d3x

[
f 2
a (η)

2H2

[
(∂ηa)2 − (∂ia)2]

η2 − U(a)
H4η4

]
, (20)

where the dimensionless axion field a = φ/ fa with time-dependent decay constant fa and the
corresponding potential can be given by:

U(a) = µ3a fa + Λ4
C cos a = µ3 fa [a + b cos a] , (21)

where the new parameter b can be represented as b =
Λ4

C
µ3 fa

. See Figure 5, where we have shown the
various parts of axion potential. Here in Equation (21), the linear part of the axion potential has been
derived in the context of string theory in Reference [3], whereas the cosine part of the axion potential
has its origin in non-perturbative aspects in string theory [3]. Here, only mass contribution for axion
field will contribute to the fluctuations, whereas other part can be considered as back-reaction effect,
which we can neglect since it is too small to be considered further. Thus, one can represent the axion
potential as U(a) ≈ 1

2 m2
axion(a− a0)

2. Additionally, it is important to mention that the scale ΛC is
given by ΛC =

√
mSUSY Mp e−cSinst , where Sinst is the action of the instanton giving rise to effective

potential, c is constant factor on the order of unity, mSUSY is the supersymmetry breaking mass scale,
and Mp represents reduced Planck mass, which is defined as Mp = L3/

√
α
′gs. In this context, we

assume that the axion decay constant fa is dependent on inflaton field, and initially this axion decay
constant becomes large compared to the Hubble scale during inflation. During some time interval, it
becomes smaller compared to the Hubble scale, a few e-foldings were created after the massive new
particles, and then it becomes large again. Due to the increase in axion decay constant fa, one can
suppress quantum fluctuations effect at a shorter distance scale. Hence, we get an admissible value for
the magnitude of the dimensionless axion field a from axion at each created particle’s location. As fa

plays the same role as the mass parameter m, all of the earlier computations for four cases of the choice
of mass parameters are valid here. Here the equation for the conformal time scale dependent axion

decay constant is fa =
√

100− 80
1+(ln η

ηc )
2 H. In Table 1, we have shown the analogy between stringy

axion and the new massive particle.

Table 1. The table below shows the analogy between the new particle and axion in string theory.

Characteristics New Particle Axion

Action Snew = 1
2
∫

dηd3x
2εM2

p

c̃2
S H2

[
(∂ηζ)2−c2

S(∂iζ)
2

η2

]
Saxion =

∫
dη d3x

[
f 2
a (η)
2H2

[(∂ηa)2−(∂i a)2]
η2 − U(a)

H4η4

]
.

−
∫ dη

c̃S H m(η)∂ηζ(η, x = 0) −
∫ dη

fa H maxion∂η ā(η, x = 0)

Mass parameter m2

H2 =


γ

(
η

η0
− 1
)2

+ δ Case I
m2

0
2H2

[
1− tanh

(
ρ

ln(−Hη)

H

)]
Case II

m2
0

H2 sech2
(
ρ

ln(−Hη)

H

)
Case III.

maxion
fa

=


√√√√√− Λ4

C
f 2
a

cos

sin−1

µ3 fa
Λ4

C

 for total U(a)

√√√√ Λ4
C

f 2
a

(−1)m+1 for osc. U(a).
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Table 1. Cont.

Characteristics New Particle Axion

Rescaled mode hk = −
√

2ε
Hηc̃S

Mpζk ϑk =
f 2
a

H2η2 M2
p

āk

Scalar mode h
′′

k +

(
c2

Sk2 +

(
m2

H2 −δ
)

η2

)
hk = 0 ∂2

ηϑk +

k2 −
∂2
η

(
f 2
a

H2η2

)
(

f 2
a

H2η2

) +
m2

axion
f 2
a H2η2

 ϑk = 0

Equation where δ = z′′

z =


2 for dS(

ν2 − 1
4

)
for qdS.

where
∂2
η

(
f 2
a

H2η2

)
(

f 2
a

H2η2

) ≈


6

η2 for η ∼ ηc
6

η2 for early and late η
6 + ∆c
η2 for η < ηc .

U(a)/μ3fa=a

U(a)/μ3fa=b cos a

U(a)/μ3fa=(a+b cos a)
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Figure 5. Behaviour of the axion effective potential and time-dependent decay constant. (a) Various
parts of potential; (b) Total potential; (c) Axion decay constant profile. Here pictures are taken from [3].

7. Role of Isospin Breaking Interaction and Detection

We know that to construct a Bell violating experiment in the context of cosmology, isospin plays a
very significant role. Therefore, let us consider the following effective Lagrangian for the inflaton and
heavy scalar field interaction, which is given by:

S =
∫

d4x
√
−g
[

1
2

gµν(∂µH1)
∗(∂νH1) +

1
2

gµν(∂µH2)
∗(∂νH2) +

1
2

gµν(∂µφ)(∂νφ)

−
[
|H1|2 + |H2|2

]
M2

even(φ)− [exp(−imθ)H∗1H2 + exp(imθ)H∗2 H1]M2
odd(φ) + · · ·

]
. (22)
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Here φ is inflaton field, and the heavy field has an isospin SU(2) doublet which is given by,
H = (H1,H2). Here, the mass-terms are defined as M2

even(φ) = ∑∞
n=0,2,4M2

n(φ), M2
odd(φ) =

∑∞
n=1,3,5M2

n(φ). Using this, one can construct a physical mass eigenbasis from the eigenvalues:

λ±(φ) =
√
M2

even(φ)±M2
odd(φ). To show the time-dependent behaviour of the mass parameters

which are constructed out of the even and odd contributions in the interaction picture, here we chose

I. λ±(η)/H =

√
γ±
(

η
η0
− 1
)2

+ δ±, II. λ±(η)/H = m0±√
2H

√[
1− tanh

(
ρ

ln(−Hη)
H

)]
, III. λ±(η)/H =

m0±
H sech

(
ρ

ln(−Hη)
H

)
. To simplify the calculations, we introduce new parameters as: γ± = γeven ±

γodd, δ± = δeven ± δodd, m0± =
√

m2
even ±m2

even. See Figure 6, where we have shown the conformal
time dependent behaviour of three toy models of heavy particle mass profile for two eigenstates.
To make the eigenbasis stable, eigenvalues of the mass matrix are always positive definite. At late time
scalesM2

even(φ) ∼M2
odd(φ). Hence, the eigenvalue of the mass-matrix increases. Another important

requirement is that eigenvalues of the mass matrix should be on the order of Mp. The eigenvalue of
the mass matrix is λ(φ) ∼ Meven(φ) when we know that all the isospin breaking interactions are
absent from the effective Lagrangian. This is also one criterion of significant importance that can be
observed with SU(2) isospin singlet state during the time of heavy mass particle creation. Here the
angular parameter θ and its functional dependence on the background plays an extremely important
role to set up the Cosmological Bell violating setup. To make the case easy, one can assume that θ is
a constant. Here, if the particle mass eigenvalue is λ±(φ), then the antiparticle mass eigenvalues are
given by λ±(φ). The sign of the eigenvalue of the antiparticle mass eigenstate may flip if the angular
parameter θ is not a constant quantity but background dependent. After the period of inflation, we can
set the axion potential to be zero to avoid the problem of domain wall formation. We have not yet
observed any signatures of these heavy fields or the axion; therefore, we can consider such heavy fields
or the axions corresponding to a component of dark matter, and we can treat its corresponding density
fluctuations as isocurvature fluctuations.
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Heavy field mass profile for two eigenvalues (Case I)
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Heavy field mass profile for two eigenvalues (Case II)
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Figure 6. Cont.
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Figure 6. Conformal time scale dependent behaviour of heavy particle mass profile for two eigenstates.
(a) Here we set γeven = 1 = δeven, γodd = 0.5 = δodd; (b) Here we set meven = 3, modd = 1.5 and
ρ/H = 1; (c) Here we set meven = 2, modd = 1.5 and ρ/H = 1. Here pictures are taken from [3].

8. Role of Spin for New Particles

Let us generalize the idea where we consider the situation for a dynamical massive field with
arbitrary spin S . Therefore, in this case, the classical time dependence of the high spin modes give rise
to time-dependent mass mS (η) for the spin field. Hence, for the massive field with arbitrary spin S ,
the equation of motion is given by:

h′′k +

{
c2

Sk2 +

(
m2
S

H2 −
[

ν2
S −

1
4

])
1
η2

}
hk = 0, (23)

where in quasi de-Sitter case, νS =
(
S − 1

2

)
+ ε + η

2 + s
2 . Now, following the same procedure

mentioned earlier, we finally give the estimate of the mass parameter as
∣∣mS

H

∣∣ = ∣∣∣∣√ν2
S −

(4−nζ )2

4

∣∣∣∣ ≥√
ν2
S −

1
4 , where nζ is scalar spectral tilt, which is constrained from cosmological observation

(Planck 2015 data).

9. Conclusions

To summarize, in the present article we have addressed following important points:

• We provide a toy model for Bell’s inequality violation in cosmology.
• The model consists of inflaton and additional massive field with time-dependent behaviour.
• For each model, massive particle creation in “isospin” singlet state plays a crucial role.
• The prescribed methodology is consistent with axion fluctuations appearing in the context of

String Theory.
• The signature of the Bell violation is visualized from non-zero one-point function of curvature

fluctuation. Additionally, we provide the result of a two-point function which has direct
observational consequence.

• Finally, we also provide the mass bound on the new particle in terms of the arbitrary spin S .
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