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CHAPTER 1

INTRODUCTION



1.1 Introduction

Nuclear physics deals primarily with the studies carried out to understand exact
nature of short ranged strong nuclear interaction and hence the structural and
behavioral aspects of various nuclei under different physical conditions. The
major tools of nuclear physics studies are various decay processes occurring in
radioactive nuclei and nuclear reactions induced by impinging energetic beams
of nuclei on stable targets [1-4]. Depending on experimental conditions during
nucleus-nucleus collision wide variety of nuclear phenomena like elastic
scattering, inelastic scattering and nuclear reactions occur. The elastic
scattering is the process in which projectile interacts with target and deviates
from its path without transfer of energy that is projectile and target stays in
their ground states. While in case of inelastic scattering there is a transfer of
energy during collision and hence either both projectile and target or target is
left in excited state. Besides these, there may occur processes in which the
charge number and/or mass number of the target changes after interaction and
are referred to as nuclear reactions. The nuclear reactions are broadly classified

into following three categories.

1. Compound Reactions: - These are two step processes which occur through
the formation of a compound nucleus. Infect during this process the interacting
nuclei coalesce to form highly excited compound nucleus (CN) that lives for
relatively long time. Since the time required by a nucleon to complete an orbit
inside the nucleus is typically of the order of ~ 1022 sec, the reaction time for
compound nucleus formation must be much larger than 10-*2sec. Owing to long
lifetime of compound nucleus, excitation energy is shared by all nucleons. If
sufficient energy is localized on one or more nucleons then CN decays through
nucleon(s) emission. Since the CN lives long enough it loses memory of its
formation. Consequently the probability of various decay modes is independent
of entrance channel. Usually these reactions take place at small impact
parameter and at low energy. Fusion, Fusion-fission and Fusion evaporation
etc. are some typical examples of compound nuclear reactions. The process of
formation of compound nucleus through fusion of two nuclei is shown in Fig.

I.1.



2. Direct reactions: - These reactions occur at a very short time scale in
comparison to CN reactions. When two nuclei make “glancing' contact and
separate immediately, then the process is termed as direct reactions (DR).
These reactions usually occur near the surface of the target nucleus and at large
impact parameters. These reactions occur within 10-2?sec time scale or less, and
hence there is no time for projectile to distribute its energy with target.
Transfer reactions, Deep inelastic collision and breakup etc. are some examples
of direct reactions. The breakup of projectile into two fragments is shown
schematically in Fig. 1.2

3. Resonance Reactions: - The reactions in which the incoming projectile
forms a quasi bound state before the outgoing particle is ejected are termed as
resonance reactions. In these reactions, there are sharp peaks in the reaction
excitation function which are termed as resonances and represent quasi bound
quantum state of compound nucleus being formed. The resonances occur at
some particular value of energies for which there is a smooth matching

between wave function inside and outside the potential as shown in Fig. 1.3.

Among various reaction channels discussed above, the nuclear fusion reactions
have attracted a great deal of attention in connection with the energy
production in stars, nucleo-synthesis of chemical elements in stellar
environment and production of super heavy elements. Classically the fusion
can occur only when the interacting nuclei have sufficient kinetic energy to
overcome the repulsive Coulomb barrier between them and get trapped inside
the potential pocket of compound nucleus. But quantum mechanically, fusion
may occur even at energies smaller then the barrier energies through the so
called quantum mechanical tunneling [5]. Infect, the kinetic energy determines
whether the process is going over the barrier or quantum tunneling through the
barrier. Thus, the fusion of two nuclei around the Coulomb barrier provides a
fascinating testing ground for theories of quantum tunneling. Initially, the
studies of nuclear fusion reactions were limited to reactions induced by stable

nuclei.
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Fig.1.1 Pictorial view of the two step compound nuclear reaction.

In first stage, excited prefragment is formed, after the thermal
equilibrium is established a compound nucleus is formed, which

then decay via particle evaporation or fission.
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Fig.1.2 Mechanism of breakup (a direct reaction) of projectile.
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Figl.3 (a) Far from resonance, the exterior and interior wave

functions match badly and probability of penetration of the nucleus
is negligible small. (b) As the match improves, there is a higher
probability to penetrate. (c) At resonance the amplitudes match
exactly, the incident particle penetrates easily, and the cross section

rise to a maximum.



However in mid nineties with the advancement in high energy Radioactive lon
Beams (RIB’s) [6-9] facilities it has become possible to induce various nuclear
reactions by using beam of nuclei lying in the vicinity of drip lines. The
positions of proton and neutron drip lines on N-Z graph have been shown
schematically in Fig. 1.4. The drip lines represent the limits of nuclear stability
where the binding energy of additional nucleon(s) becomes zero and the
excessive neutron or proton can no longer be kept in the nucleus they literally
drip out. The initial experiments carried out by . Tanihata et al [6-7, 10] using
beams of !"Li have indicated the existence of a novel neutron halo structure.
Subsequently, various experiments carried out by using beams of many neutron
rich and proton rich nuclei have confirmed the existence of one neutron halo,
two neutrons halo, one proton halo and two protons halo among some of these
neutron and proton rich nuclei as depicted in Fig. 1.5 [11]. Generally a halo
state consists of loosely bound nucleon(s) mostly in s-state extremely far away
from the core of normal nuclear density and hence leads to root mean square
(r.m.s) radius much larger than that is expected from the ryA!'” systematic
(ro~1.2fm) for stable nuclei as shown schematically in Fig. 1.6. Since the
binding energy of halo nucleon(s) is quite low, about 50% of the time these
remains outside the range of the core potential that is in the classically
forbidden region. Besides very small binding energy the formation of halo can
occur in nuclei having valance nucleon(s) in low orbital angular momentum
state that is s- or p- states because of low centrifugal barrier. However in case
of proton-halo nuclei the Coulomb barrier suppresses halo formation in
elements withZ > /(0. Jensen and Riisager [12] proposed that the necessary
and sufficient condition for the occurrence of halo states in nuclei having

2

valence nucleon in s-state is that the binding energy should be B < ()7/3
A

MeV while in case of valence nucleons in p-state there is an additional

limitation that the charge number should be Z < 0.44 4173,
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Fig.1.4 Nuclear landscape showing the stable and unstable nuclei

lying in between the neutron and the proton drip lines.
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The unique characteristic features of halo nuclei such as small binding energy,
large values of isospin, extended wave functions of the valence nucleon(s),
narrow momentum distributions, large spatial extension, existence of soft
dipole (Pygmy) resonances and large breakup probabilities are expected to

strongly affect all the possible reaction channels.

Now a day, besides the halo nuclei, the beams of various stable but weakly
bound nuclei are also available with reasonable intensities which have created
a renewed interest in fusion involving weakly bound stable and unstable nuclei.
Infect owing to very low binding energy of projectiles, the reactions involving
these nuclei differ in a fundamental way from those involving tightly bound
nuclei as shown in Figs. 1.7 and 1.8 [13-20]. For well bound projectile and
target the breakup probability is quite low and hence the breakup effects are
negligibly small. Usually in this case the direct complete fusion (DCF),
nucleon(s) transfer and inelastic excitation etc. are few dominant reaction
channels which are of great importance in different contexts. In direct complete
fusion the projectile moves towards target with an appreciable amount of
energy such that it over come the barrier between the two nuclei or tunnels
through it and gets fused with the target without undergoing breakup. The
resulting nucleus may be formed in its ground state or in bound or unbound
(resonant) excited states. In case of the compound nucleus formed in an excited
state it decays via the emission of y-rays or neutrons, protons or other charged
particles, or fission fragments. The transfer reaction is a rearrangement process
wherein one or more nucleons are transferred from the projectile to the target
nucleus or vice versa. It is important to note that transfer process should be
distinguished from the mass transfer occurring in quasi-fission processes [21]
in which exchange of nucleons leads to a deformed composite system which
subsequently decays into fission-like fragments. In the inelastic excitation the
projectile interacts with the target and loses some of its energy and results in

the excitation of the target nucleus.
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The reactions involving weakly bound projectiles are strongly influenced
mainly by two factors namely static effects of large spatial extension and
dynamic effects of large breakup probabilities. Some weakly bound nuclei
have a long tail in density distribution which gives rise to lowering of fusion
barriers and hence enhances the fusion cross section. Secondly because of low
breakup threshold, as listed in Table 1.1 for some light weakly bound nuclei,

the couplings with the breakup channel are of immense importance.

Table 1.1 Breakup thresholds of some typical weakly bound nuclei.

Stable weakly Breakup Unstable weakly Breakup
bound nuclei threshold bound nuclei threshold
(halo)
9 1
Be 1.67MeV Be 0.5MeV
6Li 1.48MeV HLi 0.3MeV
7 6
Li 2.45MeV He 0.97MeV

One of the immediate consequences of this coupling is to induce unusual
fusion channels in the reactions induced by weakly bound nuclei as shown in
Fig. 1.8. However, in order to study the influence of breakup, it is necessary to
distinguish between prompt breakup and delayed breakup. In the former, the
breakup process occurs when the weakly bound projectile is approaching the
target. The latter takes place in two steps. First, the projectile is excited to a
long-lived resonance above the breakup threshold, as it traverses the interaction
region. Then, the resonance decays into the breakup channel, when the
projectile is following the outgoing branch of the trajectory. Only prompt
breakup, which occurs on a time scale of 10722 s, may affect fusion. In delayed
breakup the resonance life-time is much longer than the collision time. Thus,
the projectile breaks up when the collision is over and hence it does not affect
the fusion cross section [22-24]. The breakup removes flux from the elastic
scattering and takes place either in the long-range Coulomb field (Coulomb
breakup) or in the short range nuclear field (nuclear breakup) [25]. Coulomb

breakup dominates for heavy targets and at impact parameters larger than the
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sum of the radii of interacting nuclei where the short-range nuclear interaction
is negligible. For lighter targets and at impact parameters smaller or
comparable to sum of radii of interacting nuclei the Coulomb interaction
becomes less important and the breakup is predominantly the nuclear breakup

Process.

Thus in case of reactions induced by weakly bound nuclei, in addition to these
reactions the incomplete fusion (ICF), sequential complete fusion (SCF) and
elastic breakup reactions are equally probable reaction channels. In an
incomplete fusion a large parts but not the whole of the projectile fuses with
the target nucleus. For light nuclei, wherein only few nucleons are involved,
incomplete fusion and transfer reactions remain conceptually different
mechanisms but may lead to the formation of the same final nucleus in the
same excitation state as the two processes are indistinguishable. Also the
angular momenta involved in the two processes are similar, since the (semi
classical) value of the critical angular momentum is small. The incomplete
fusion has been described as a two-step process of fusion following breakup in
which the projectile is first broken into two or more fragments by Coulomb
and/or nuclear forces and some of the fragments penetrate the barrier and fuse
with the target. Strictly speaking, events where all fragments fuse with the
target nucleus after breakup are also possible and are referred to as sequential
complete fusion which is experimentally indistinguishable from direct
complete fusion. The direct complete fusion (DCF), which may occur for both
tightly as well as loosely bound projectiles, corresponds to the complete
capture of the projectile by the target without explicitly going through the
breakup channel. The sum of complete fusion (CF=DCF+SCF) and incomplete
fusion (ICF) is termed as total fusion (TF). The quantitative estimation of
separate contribution of CF and ICF in TF is an important aspect to understand
the reaction dynamics of fusion induced by weakly bound nuclei. Another
important issue is to investigate the role of breakup in the enhancement or
suppression of the fusion cross section. The words enhancement and
suppression are based on a comparison with some standard cross section. Thus,

the choice of the standard should be very clear. A lot of theoretical and
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experimental studies have already been carried out to address these issues [13,

26-60].

Sinha et al. [26, 27] measured TF for the Li+?8Si system, at energies below
and above the barrier and have compared the data with coupled channel
calculations. They found a slight enhancement at sub-barrier energies and no
effect at energies just above the barrier. Kumawat et al. [28] measured the CF
cross section for the °Li+°Zr system at energies above the Coulomb barrier
and observed that the data was suppressed by 34% compared to coupled
channel predictions. However, Hu et al. [29] measured the CF cross section for
®Li+%Zr, a similar system, at above-barrier energies and found a suppression of
only 25% compared to coupled channel calculations. Rath et al. [30-32]
measured CF and TF of &7Li + 44152Sm systems, at energies below and above
the Coulomb barrier and have compared their experimental CF cross sections
with predictions of coupled channel calculations involving inelastic channels,
using the CCFULL code [33]. They also performed calculations involving both
inelastic and transfer channels, using the FRESCO code [34]. Their results
have indicated a suppression of the experimental CF cross section of the order
of 30% for all systems especially at above barrier energy region. They further
observed that the suppression is more important for fusion induced by °Li than
by ’Li. Pradhan et al. [35] measured the CF and ICF cross sections for °Li +
I139Tb systems, at energies above the Coulomb barrier. Comparing their CF data
with results of coupled channel calculations, they found that the experimental
CF cross section for °Li + 3°Tb is suppressed by more than 30%. Mukherjee et
al. [36] performed a similar experiment for ’Li + '°Tb system and found a
suppression of 26% in CF cross section data in comparison to coupled channel
calculations. Palshetkar et al. [37] measured CF, ICF and transfer cross
sections for ®7Li + 97 Au systems, at energies below and above the barrier. The
comparison between experiments and CC calculations indicated that the CF
data for the °Li and 7Li projectiles were suppressed by 35% and 15%
respectively. Shrivastava et al. [38] measured the CF cross section for °Li +
198Pt system and have found that the data well below the barrier is very well
described by the CC calculation. Thus, there is no hindrance of fusion at deep

sub-barrier energies for this system. At energies above the barrier, there is
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some suppression of the CF cross section. C.L. Gua et al. [61] observed that
contribution of ICF in TF for system °Li + *Sm is around 28% in above
barrier energy region while M. Dasgupta et al. [48] have observed ratio of ICF
to TF for &’Li+ 29°Bi systems goes from 90% to 30% as energy goes from sub

barrier region to far above barrier region.

Besides %7Li, good quality beams of °Be with high intensities are also available
at various accelerator facilities worldwide [7, 8]. The beams of °Be have
attracted significant attention as it can be generated with high intensity in the
energy range between 10MeV and 60MeV with lesser efforts. The °Be is a
weakly bound nucleus having one neutron separation energy of
nearly1.67MeV and it easily breaks up into n +*Be two body channel with 8Be
either in ground state or in excited state. The so formed ®Be is then dissociated
into two alphas through delayed (life time ~107'%s) and prompt (life time
~1072%s) breakup processes. This breakup channel strongly affects the fusion
cross section in near barrier energy region. Many authors have measured CF
cross sections for reactions induced by °Be beams on ¥Y, 124Sn, 144Sm, 19°Tm,
181Ta, 187Re and '*W targets [39-45]. The measured CF cross sections were
compared with predictions of CC calculations using CCFULL or FRESCO
codes. In all cases, data showed some enhancement below the Coulomb barrier
and suppression in above barrier region. The suppressions found for 8°Y, 124Sn,
144Sm, 19Tm, '31Ta, '¥Re and '8W targets were 20%, 28%, 10% (later
corrected to 16% [46]), 34%, 34%, 30% and 40% respectively. For reactions
induced by °Be on '®Tm, '¥1Ta and '®’Re ratio of ICF to TF is found to be
30% in above barrier energy region while it increases to 90% as incident
energy goes from above barrier to deep sub barrier region. This conclusive
remark was found to be in clear contradiction with the observation of P.R.S
Gomes et al. [58] for °Be+!“4Sm system that ICF to TF ratio was found to be
15% throughout the energy range. Clearly the range of suppression or
enhancement is quite wide and involves substantial ambiguity and hence needs

further investigations.

It 1s well known that the simplest theoretical way to understand the fusion of
two nuclei is the Barrier Penetration Model (BPM) [14, 62-63] wherein the

projectile is assumed to penetrate through potential barrier between two
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interacting nuclei and form a composite nucleus. At low energies, the barrier
penetration occurs via quantum tunneling phenomenon which is a slow
quantum leak through the classical barrier due to the wave nature of nuclei. In
fact, the behavior of sub-barrier fusion cross-section strongly depends upon the
nature of the reactant nuclei as a result there are unexpected variations in sub-
barrier fusion cross-sections even for different isotopes of a given element. At
energies below the Coulomb barrier, a large enhancement in the fusion cross-
section by several orders of magnitude in comparison to the predictions of one
dimensional barrier penetration model was observed. This enhancement in the
sub-barrier fusion cross-section was found to have a link with the intrinsic
structure of colliding nuclei. Indeed, the coupling of the relative motion of
projectile and target to the internal degrees of freedom such as static
deformation, vibration of nuclear surface, rotations, neck formation, nucleon
transfer reactions etc. enhances the sub-barrier fusion cross-section.

So far different approaches have been proposed to analyze fusion cross section
data which takes in to account these effects. The coupled channel method is a
standard theoretical approach to study the effects of nuclear intrinsic degrees of
freedom on the fusion cross section which consists in solving numerically the
coupled channels equations that determine the wave functions of the relative
motion. Since weakly bound nuclei may get dissociated very easily, it becomes
necessary to include the coupling with the continuum. This is achieved through
the Continuum Discreatized Coupled Channel (CDCC) [64-68] method
devised by the Surrey group to study breakup and fusion reactions induced by
weakly bound projectiles [67, 69-70]. The CC approach, however, becomes
quite cumbersome when more and more number of channels are needed to be
included in the analysis. Hence another approach based on Dynamic
Polarization Potential (DPP) is found to be more appropriate in such cases. In
the dynamic polarization potential approach the coupling between different
excited states does not pose any problem as it can be considered as additive, so
that the polarization potential induced by the coupling to two states is
approximately the sum of the potentials corresponding to the coupling to each
one independently. Thus dynamic polarization potential approach becomes

more useful to include the coupling to large sets of states, like the continuum of
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breakup states, for which standard coupled channels calculations become very
difficult [71-72].

An alternative formulation based on multidimensional quantum tunneling is
given by the path integral approach. This approach is very convenient when the
internal structure is represented by an algebraic model such as the interacting
boson model. Also the effects of coupling between the nuclear structure and
translational motion can be discussed in two limiting cases namely sudden and
adiabatic approximation. These approximations are very useful for obtaining
analytical results which provide a conceptual framework for understanding the
fusion process. For deformed nuclei, in which the excitation energies are very
low, sudden approximation provides a reasonably good description of the data.
In rotation-vibration coupling, sudden approximation can be utilized to reduce
the size of the channel coupling. While in case of large excitation energy of
first excited states the adiabatic approximation works very well. In the
intermediate cases between sudden and adiabatic tunneling, the effects of the

environment are not straightforward to illustrate in simple physical terms.

Besides the channel coupling effects, it is very crucial to calculate separately
the contribution of ICF and CF in TF for reactions induced by weakly bound
nuclei. The first calculations of separate cross sections for CF and ICF
processes were performed by Hagino, Dasgupta and Hinde [52-53], treating the
reaction as a three-body problem in two dimensions and using classical
physics. Subsequently, a three body Classical Trajectory Monte-Carlo (CTMC)
model developed by K. Hagino and others [53] was a great step forward in this
direction. This method follows the classical trajectories of breakup fragments
after the breakup and thus provides an unambiguous separation between
complete and incomplete fusion cross sections but this model does not fill a

gap in the sense of assessing the importance of ICF and SCF.

Further a three-dimensional classical dynamical model that treats breakup
stochastically is proposed by A. Diaz-Torres for low energy reactions of
weakly bound nuclei [54-56, 73]. It allows a consistent calculation of breakup,
incomplete and complete fusion cross sections. In addition, the classical
dynamical model (CDM) is advantageous in the sense that besides separate CF

and ICF calculations one can calculate the no-capture breakup (NCBU) cross
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section, angular and relative energy distribution of fragments also. It is
important to mention that various channel coupling effects may be mocked up
by introducing the energy dependence in the nucleus—nucleus potential. The
energy dependent potential in conjunction with one dimensional Wong’s
formula represent a very simple method to analyze, though qualitatively,
excitation functions of various projectile—target combinations having different

channel coupling effects.

In the present work we have studied the relative contribution of ICF and CF in
TF for reactions induced by °Be on various targets using CDM and Wong’s
formula in conjugation with energy dependent Woods—Saxon potential
(EDWSP). After giving a brief introduction in chapter 1, the main steps
involved in the derivation of Wong’s formula and the details of EDWSP are
presented in chapter 2. The conceptual development of the CDM is outlined in
chapter 3. The detailed discussion of our results regarding the complete,
incomplete and total fusion cross section in near barrier energy region is given
in chapter 4. Finally in chapter 5 we present the important conclusions and

possible future extension of the present work.
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CHAPTER 2

BARRIER
PENETRATION
MODEL



2.1 Barrier Penetration Model

The barrier penetration model (BPM) is the simplest quantum mechanical way
to analyze the fusion excitation functions. In general fusion excitation function
of reactions involving heavy-ions depends strongly on the intrinsic degrees of
freedom of the nuclei involved in collision. Nevertheless, the gross features of
the elastic and the total reaction cross sections can be described by a simple
Schrédinger equation in the space of the projectile—target separation degree of
freedom by generalizing the potential to be complex energy dependent

potential given as [1-4]
UP(r)=V*F)—iW> (r) (2.1.1)
The explicit energy dependence in the potential is omitted for the sake of

simplicity. The real part of the interaction, V' * “(r) consisting of Columbic

and nuclear terms, can be written in the form

VP (r)y=V.(r)+V,(r) (2.1.2)

where VC is pure Coulomb term which arises because of the positive charge

possessed by the interacting nuclei and is a long-ranged repulsive term while
VN which is associated with strong nuclear forces is a short ranged attractive

term. The imaginary part, W t (7), is a short-ranged function accounting for

the incident flux lost to excited channels. Within this approach, the reaction

dynamics is governed by the following Schrodinger equation

[T+VP () =iW» (MY F) = EYDF) (2.1.3)
Here T is the kinetic energy operator for the projectile—target relative motion
and E is its total energy. The wave function p (7) can be written as sum
of the wave functions corresponding to pure Coulomb scattering @ (lg ,F)and

the scattering wave ¥, (k,7) arising from nuclear part of the scattering

potential that is

YO F) = D (k, )+ Y (k,F) (2.1.4)
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where k is the incident wave vector. The wave function (O34 (lg ,7)is obtained

by solving Eq. (2.1.3) by switching off potentials Vi and W% "under the

scattering boundary condition given by

O (k,7,z)

e2uFmﬁh+mmk0—ﬂﬂﬁmmh_mehDﬁ{myZLﬁ
‘r—z‘—)w (272-) r

Above, f.(0)is the scattering amplitude associated with the long ranged

Coulomb interaction and is given by the following expression

zpzpe’ expl—in(In(l—cos@)/2) +irx +2iJ, ]
2mv* sin’(8/2)

['(1+in)
I'd-in)

Jc(0) = (2.1.6)

with exp(2i9,) =

2

and n = le—ze is called Sommerfeld parameter.
v

Here 50 is the phase shift in s-partial wave, I'(n) is gamma function, Z,e and
z e are the charges on the projectile and target respectively, V is the relative
velocity of projectile-target system and & is scattering angle.

The scattering wave function ¥, (k,7)corresponds to pure nuclear

interaction and is obtained by solving Eq. (2.1.3) by switching off V¢ term and

retaining V,, and W' terms under boundary condition

W ir), Uy (@epitkr—nin@k)]

(27[)3,2 p (2.1.7)

Here f,(0)is the scattering amplitude, associated with the short ranged

nuclear interaction, which is usually expanded in partial waves

1 io,
Iv(0)= EZ@I +1)B (cosB)e™ (S, ~1) (2.1.8)

with P; as the Legendre polynomial, O, as the Coulomb phase shift and

S ~.¢ as the nuclear S-matrix. The elastic differential scattering cross-section

is given by the modulus square of the sum of scattering amplitudes through the

expression
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d0'(49)

=|f.O)+ £, O (2.1.9)

It is pertinent to mention here that because of the presence of the imaginary
part in the potential, the usual continuity equation is not satisfied. But the
modified continuity equation can be derived by using the following

Schrédinger equation

n’ oy
—V+U"(r,t) ¥ =in (2.1.10)
2u
. .. . mphiy
Here A is the reduced mass of projectile-target system i.e. #=—"—
m, +m,

where m,and m are the masses of projectile and target respectively.

Taking complex conjugate of Eq. (2.1.10), we get

2 (+)
|: h VZ (Uopt (V,l‘)) i|\P(+) h a‘{]
2u

(2.1.11)

Now, pre multiply Eq. (2.1.10) by Y and Eq.(2.1.11) by e and then

subtracting the resulting equations, we have

g oy i 0¥ oy :——2[\}'(”*V2\P‘*)—‘I’“)Vz‘{’(”*

ot ot 2u (2.1.12)
+ [\P“Y’U”P’ ()P (U (1) W ]

or

2
ih%[\y(ﬂ*\{,m]: _;l_v[\},(+)*v\};(+) _\P(+)V\P(+)*]_Zl-Wopt\{;(ﬂ*\PH) (2.1.13)
H

Further simplification leads to

%[\I;(H*\P(H]: _Lv[\yﬁ)*v\{;(ﬂ _LI/(+)V\P(+)* ]_%WOPI\P(H*LP(H (2.1.14)

2
or
0 = 2 0 +)" +
a_/t):_v.] —%W CANVIORNICY (2.1.15)
where
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j = % YO VYO gy (2.1.16)
is called current density and

p=YyH (2.1.17)
is called position probability density.

For stationary energy states that is for constant value of p(7,¢) Eq. (2.1.15)

becomes
= 2 opt\y (+) (+)
V.j=—=WP¥Y" Y
h
or
~ 2 0 o2
V.]Z—%Wpt p (2.1.18)

In order to interpret the modified continuity equation, let us consider the case

of non stationary states

—p+v.j:_%Wow<+>*\P<+> (2.1.19)

Since p(r,t) = POP® g always a positive quantity, so right hand side of
Eq. (2.1.18) acts as a source of probability for negative value of W' and acts

as a sink for positive value of W . But for physical reasons W " is either zero

or positive and hence the particles are being absorbed. The absorption cross-
section 0, 1s defined as the total number of particles absorbed in complete

configurational space in unit time provided a unit incident particles flux. For

plane incident wave, wave density is unity and current density is—, the

absorption cross section can be obtained by integrating Eq. (2.1.18) over a

sphere of radius R—o0

87
(%)
y7,

Using Gauss-divergence theorem

2

YO dr (2.1.20)

[v.jav = TW”’”’
4 0
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W.j‘dV = jf.]’dS 2.121)
S

14

Eq. (2.1.20) becomes

_ Qr) 'k

o, <Py > (2.1.22)
‘ E

Here we have divided right hand side by incident current as absorption cross
section is defined for unit incident particle flux.

In general the imaginary part of potential is given by the sum of separate
contributions from fusion absorption W’ and absorption through direct

reaction channels W” i.c.
W (ry=Ww"(r)+W"(r) (2.1.23)
Above, W' (r) is a volumetric term and W”(r) is generally a surface term,

which is relevant at » ® R, + R, so that the fusion cross section and the total

cross section for direct reactions are given by the expressions

3

o, =%<\P‘” W > (2.1.24)
3

o, = % <y® WD“P(*) > (2.1.25)

For practical purposes, one carries out the partial-waves expansion [5]

> (21+1)P,(cosB)i'e”

i

u, (k,r)
e (2.1.26)

3/2

YO () =
2

here 5] is the phase shift for /” partial wave and P,(cos 8) is the Legendre

polynomial. Here < ¥

w* “I’(” > implies volume integration over complete

configurational space d7 i.e.

<y WF“P(” >= J.(\P(*) (IE;F))*WF\P(” (E;F)dr. Neglecting spins we
4
have
4 2
<YW s=———N QI+ D) drWF (r)|u, (k;r 2.1.27
| Famy D[ i) (2.127)

Eq. (2.1.24) becomes

T
o= k—zzll(zz +1)T” (2.1.28)
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with
T' = 4_; j drW " (r)u, (k;r)|2 (2.1.29)

as fusion probability. Similarly

o, :%Z(2I+I)T1D (2.1.30)
/
with
4
TP = fk j erD(r)|u,(k;r)|2 (2.1.31)

Heret,(k;7) is the wave function corresponding to /™ partial wave having

angular momentum [l and is obtained by numerical integration of the
following radial equation from the origin, where one sets #,(k;0) =0 as

boundary condition.

n? d*u,(k,r) .
_ZT+[E_% + i |, (k,r)=0 (2.1.32)

I,
here quf is given by

(1 +1)n?

Vi =V.+V, +
C N 2,ur2

= (2.1.33)

The initial value of derivative can be chosen arbitrarily, since it only affects
the overall normalization. The Eq. (2.1.32) can be rewritten as

d Zu i k,r 2
#:kl uy (k,r) (2.1.34)

with

2
k, :\/h—/;‘(E—ngf £ i o) (2.1.35)

as the effective local wave number. Now if the effective local wave number
varies sufficiently slowly with the distance so that

diy I

<< 1
dr kl2

as is frequently the case at sufficiently large distance from a turning point.

Then using the JWKB approximation, the solution of Eq. (2.1.34) is
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A f B f

ul(k,r):—lexp{i jkldr}+—lexp[—i [k; dr] (2.1.36)
vk R, vk R,

The first term represents the outgoing wave and the second term ingoing

. A . .
wave. The ratio B_l depends on the nature of the potential near R, (internal
/

radius where the fusion starts and which is smaller than barrier radius R; ) and

on the condition imposed on Uy (k,r) at r <<R;). The ratio

A T
R, _B—lexp[—2 [Imk; d r} decreases with r for negative WO7. If Rj
/ R,

becomes negligible beyond Ij(internal turning point), the outgoing branch

may be neglected and U; (k ) 1‘) becomes [6]

ul(k,r): \/Bk’fexp{—i_[k,d r} (2.1.37)
l

Ry

Taking logarithm on both sides;

log|u, (k.r Wk, (r)]= log(B,) + {— z'jk,d r}

Ry

%
The logarithmic derivative of U, (k , 1') 1s obtained as

%log[ul(k,r)\/z(r)]: ~ik; (r)

1 d _ i,
mjd—[uz(/{,r)\/@(r)}— k

r

b Yaulen) o wle) i ]
“l(k,f)\/g(r)j{ dr \/E(r)—FWE = —ik; ()

1 dul(k,r)Jr 1 dk,

=—ik
W) dr 20@)dr
[ duy(k,r) 1 dk;
= — ik
u(k,r)  dr 2k;(r) dr i (2.1.38)
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d
It is noted thatﬂ depends only on k[ (I‘) and its derivative and does

dr rxR,

not depend on the values of optical potential in r < R, region. Since the

logarithmic derivative of wave function is given by Eq. (2.1.38), it is
convenient to start the numerical integration at r = R instead of at the origin
[6-9].

Now in order to present the fusion cross-section in a way which is suitable for

approximation we substitute the Eq. (2.1.18) into Eq. (2.1.24) and obtain

or (2 BE [ v e

2 E
or
3
272' -
oF _(2n) [(=v.5)d?r (2.1.39)
%
hk
Here VY =~ is the asymptotic relative velocity.

Using Gauss-divergence theorem

A
j(— V.]‘)d3r = (— r .]‘st
S
We may write

P = (275)31 (—?.]'st

N

The integration is carried out over the surface of a sphere of radius R,

containing region where W (r) is relevant that is ds = R;dQ  so that

3 A
o _ (27) R?| [—r.j}m (2.1.40)
A%

N

Above 7 is the radial unit vector, which corresponds to the normal to the

spherical surface at the direction determined by Q(=6,4). Since

V=rdlor—irxL [10], and the dot product 7.(F X Z) vanish, we have

- h , o o O(PD)
Fj=—| (YY) ——— (¥ ))u (2.1.41)
2ui or or
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Substituting Eq. (2.1.26) in to Eq. (2.1.41), integrating over the surface and

using the orthogonality of Legendre polynomials we get

3 *
aF:_(Z”) R: x 4”)32(2”1) L {u*duf—ul ‘;”1} (2.1.42)
Tr

v (271- 7 k*r® 2ui "dr

or

T jF
op=—3> (20+1)7 (2.1.43)

4
Above
. ) h du,(k;r du, (k;r
JJFEJz(RF)——{ (s D 1( )} s the
2# r r=Rp

radial current evaluated at 7 = R, .

Now comparing the Eq. (2.1.43) and Eq. (2.1.28) the fusion probability comes

out to be
jF

TIF =2 (2.1.44)
%
4

The major disadvantage of this equation is that it depends on arbitrary

normalization of the radial wave function. In order to get rid of this
disadvantage it is convenient to write ¥; as the sum
u,(k;r)=u” (k;r) +u™ (k;r) (2.1.45)

(=) (+) . . . . .
where U; “and U; ’ are, respectively, solutions of the radial equation with

incoming and outgoing boundary conditions at r —oo and have the following

asymptotic forms [11]

_ ] , /
u" (k;r — 0) = éexp[— i(kr _77[ -nIln(2p)+ O',)J (2.1.46)

+ - . l
”1( "(k;r — 0) = _éSI exp{z(kr —77[— nln(2p)+ U,):| (2.1.47)

where S; i1s the S-matrix associated with the short-ranged potentials. The

incident radial current is now expressed in terms of (”1( _)) as
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y N du(*) d u(*) *
i = lim () = ﬂlg}g{( Oy B ’)%} (.148)
Now
)
”l(_) er =7lexp{ [kr—%—nln(Zkr)+5lﬂ

ol syt oo

] 2T

dr r
AW du(_) 1 .
“z( ) dlr :Z[_ ik+%} (2.1.49)
Similarly
) .
ul(_) al’ - é[ik - ﬁ} (2.1.50)
T T
and

T I I m) Iy 2]

Taking lim r—o0

: L du!”) dul? | ik
e |

Now putting Eq. (2.1.51) into Eq. (2.1.48) we get

in e h | —ik| —-hk -
jie)=tim j) = —| == === =L
r—o 2ui| 2 4u  4u

-in : -(— —V
Ji (r):hm],( ) :T (2.1.52)

r—>x

Using this result, Eq. (2.1.44) takes the form

Na
TFZ—J+~ 2.1.53
l ji (2.1.53)
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If, the imaginary potential associated with fusion absorption is taken as

Woods—Saxon function of small radius R, diffusivity and incoming wave

boundary conditions are assumed to be applicable at R: = R then a very

simple expression for I, can be obtained within the WKB approximation,

(TIF Yk = exp[-20"""] (2.1.54)

with

" = [Tm{k, (r)}dr (2.1.55)
Rp

Here, since the imaginary potential vanishes from R, to oo, k,(7)is real in

the classically allowed region and at sub-barrier energies the integral can be

evaluated between the internal and the external classical turning points 7; and

T, . That is,
DB = j k, (r)dr (2.1.56)

where k,(I’ )=1ik(r). One of the important limitation of WKB

approximation for the fusion probability is that it is accurate at collision

energies well below the potential barrier, Vg, but leads to wrong results around

the barrier. At E = Vg, (T,"),x; =1 while the quantum mechanical value is

T =1/2. This difficulty is removed in an improved Kemble’s version of

WKB approximation [12]. In this modified version, the transmission of
progressive matter wave through an approximately parabolic potential barrier
was considered. In case when incident projectile energy is lower than the top
of the parabolic hill and the projectile are incident from the left of potential
hill then the constancy of current density leads to the following transmission
co-efficient

_ 1

 1+exp[2® ]

(2.1.57a)
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Further if the energy of incident particles is more than the maximum of
potential hill then the integrand will be imaginary and the transmission co-
efficient becomes

1
1+ exp[—2D wks]

(2.1.57b)

‘ 272_ z2
with @y, and DPwks denotes the integral (7)”]7“15 and
z1

272' z2
(TJHPHdﬂ respectively, z1, z2 are the classical turning points and

z1

p=+2u(E V) . This problem was also discussed in the work of Hill and

Wheeler [13] under the following parabolic approximation for potential

V,(r)= B, —%ua),z(r—R,)2 (2.1.58)
they actually evaluated the integral in closed form and obtains
THY _ 1

! 1+ eXp[27Z(DHW] (2.1.59)
with
D" = —(Eh;f’) (2.1.60)

here ®”" is the energy deficit relative to the top of the barrier, divided by
characteristic quantum energy, E.,, which is fixed by the curvature of the top
of the barrier and by the effective mass associated with the fission mode of
deformation. E.,, can be visualize by reversing the sign of potential so that
barrier peak becomes a trough and the system will behave like a harmonic

oscillator in the neighborhood of the critical point, with a natural circular
frequency, @; and a characteristic quantum energy, /1®,. Above E is the

incident beam energy and B, is the barrier height. The Hill-Wheeler

approximation for the fusion cross sections was further modified by Wong

[14] considering the following assumptions,

R =R_, =R, 2.1.61)
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0 =0_=0 (2.1.62)

h2
B, :V3+ﬁ(l+l/2)2 (2.1.63)

B
with ¥ = B,_, and assuming that many partial-waves contribute to fusion

cross section so that the summation over / may be replaced by integral over
) ) 1 ) ) .
continuous variable / + E’ the Hill-Wheeler formula for fusion cross section

1S
op =23 (21 +1) 1 (2.1.64)
o L+ exp(* [V, ~ E)
hiw

Since the centrifugal barrier Vl can be written as

1> h? 2 n’
V1=VB+WW+D:VB+ (I+1/2) e (2.1.65)

2
B B B

we may write the fusion cross-section as

AN 1
=—>» (2[+1 2.1.66
O kZIZOJ( +1) It ex (—”[V —L—E])ex (%[M]) ( )
Pho" * " uR? Mot 2uR?
For further simplifications, let us assume that
27 7’
b=exp—|V, — _E
pha){ " 2uR;} } (2.1.67)
go2m I
ho 2uR, (2.1.68)
So that
o _ T - 2(1+1/2)
TS 1+ bexpla(l+1/2)%) (2.1.69)

As large number of the partial waves contribute to the fusion cross-section, the

summation over [ may be changed into the integration

lT 21 +1/2)dl

O =
"k 1 bexp(a(l +1/2))

(2.1.70)

=0
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In order to evaluate the integral, let us change the variable of the integration

from [to x by assuming X = [/ +1/2]"so that Eq. (2.1.70) becomes

o, =% | dx 2.1.71)
Tk 1 (I+bexp(ax)) o
4

or

P = T _exp(zax)dx_ 2.1.72)
k l [exp(—ax)+b]

=
4

Further, the substitution exp(—ax) =t leads to

Now by performing the integration with respect to ‘t ’, one obtains

T exp(—a/4)
op = e ln{1+ 5 (2.1.73)

By putting the values of b and a from Egs. (2.1.67) and (2.1.68) into Eq.
(2.1.73) we get the following final expression of Wong’s formula for the

fusion cross-section

hoR, 27
- In| 1+ exp| =——(E -V,
O =g n{ eXp(hw( B)ﬂ (2.1.74)

Here Ry, Vg and /i@ are barrier position, barrier height and barrier curvature
respectively and play very crucial role in the determination of fusion cross
section. It is important to mention that results of Wong’s approximation are
better than that of Hill-Wheeler approximation which may be ascribed to the
fact that in Wong’s formula the unrealistic transparency of the parabolic

barrier is partially corrected.
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2.2 The Interaction Potential

The barrier position which strongly depends on sizes of colliding nuclei is
parameterized as R, =7,(A}° + A)°);r, ~1.4fin[15]. The barrier height,

which is very sensitive barrier parameter, is the value of total interaction
potential,

Vi(R,L) =V, (R)+V,

oul

(R)+ V3, (R, L) 2.2.1)

ucl

for two colliding nuclei at R=Rg. Here Vnucl , VCW, and VRO, stands for the

nuclear, Coulomb and the centrifugal potentials respectively. The Coulomb
potential may be conveniently taken as the potential due to uniformly charged

spheres of radii Rp(projectile radius) and Ry(target radius) such that

Z,7.¢e
—L=I—_ forR>R, +R;

VCoul (R) = 2 2
ZpZ;e {3— R 2}f0rR<RP+RT
2R, +R;)|” (R, +R,) (222)
and the centrifugal term is given by
2
Vi = RLUL+]) f ) (2.2.3)
2R

Above Zp and Zr are the atomic numbers of projectile and target. The R is the
relative distance between the centers of the projectile and the target, p is the

reduced mass of the projectile—target system and L is the angular momentum

quantum number. For the nuclear part of the potential Vnud , we employ three

parametric energy dependent Woods—Saxon potential

—7

Vo=
nucl |: (R _ RO jj|
I+exp
a

with Vo, Ry and “a’ as the depth, range and diffuseness parameters. The

(2.2.4)

energy dependence in the potential is introduced through the diffuseness
parameter, which defines slope of the nuclear potential in the tail region of
Coulomb barrier where fusion starts to take place, by the following relation

[16,17]
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o

1 1
13.75| 4> + 4,° | 1+exp %—0.96
? 0.03

The other two parameters of the potential are evaluated by using

R, =7,(4;° + 4”) and

R.R
V, =-52.99 ———
R, +R;

a(E)=0.851+

fm

with rg=1.2fm, R, =1.54,° —0.774;'" fin and
R, =1.54;,° —0.774;"" fin

(2.2.5)

Besides the barrier position and height the barrier curvature is also an

important ingredient for the calculations and is related to the double derivative

of the potential at barrier position through the following expression [18]

Y L 50
U

(2.2.6)

An alternative determination of potential parameters may be used wherein

a(E)=0.631+ ! fin

1 L E
13.75| A,* + 4,% | 1+exp &—0.96
’ 0.03

(2.2.7)

which is slightly modified form of expression given in Ref.[15, 3] such that

the minimum diffuseness becomes 0.63fm with the range and depth

parameters are obtained by using Broglia-Winther parameterization [19] as

under

R(): RP+RT+0-29

Ry =1.2334,5, —0.984, )
Vo= 16myRa(E)

R=RpRy/(Rp+R7)
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. {1_1_8% ~Z,)(N; —ZT)}

A A,
with y,= 0.95 MeVfm=2.

To extract CF (or ICF) from TF, a phenomenological selection function given

0.08 forV£ <091

B

2
f LN —13.34 £ +29.99 £ —-16.16 f0r0.91£££1.13 (2.2.8)
Vy 14 14 4

B B B

O.70f0rV£ >1.13

B

is used in such a way that we have

o =1 (VEJGTF (2.2.9)

equivalently

Orcr = {1 - f[VEJ:|0-TF (2.2.10)
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CHAPTER 3

CLASSICAL DYNAMICAL
MODEL



3.1 Classical Dynamical Model

The classical dynamical model used to describe nuclear reactions involving
loosely bound nuclei is based on the assumption that the projectile—target
relative motion can be treated classically [1-2]. Within this approach, when a
weakly bound projectile is incident on target T with energy E, and orbital
angular momentum L, its motion is along a determinate path with definite
distance of closest approach R,i,(Eg, Ly). The path of the projectile is traced
by solving the classical equation of motion under the influence of mutual

Coulomb and nuclear forces between the projectile and target. This interaction

generate a Coulomb barrier for head-on (Ly=0) collisions of height VBPT ata

separation R II;T. Since projectile is weakly bound it is highly prone to
dissociate and the process of breakup of projectile is assumed to be
completely random process. Let PBLU (R)be the density of local breakup
probability such that the probability of breakup of projectile in the region R to
R+dR is Pj, (R)dR, R being the projectile target relative separation. For

such a breakup event to occur there must be a finite probability of surviving

the projectile in the interval oo to R, let it be S(R). Now it is quite obvious that
L

S(R+dR) =S(R)[1 — Py, (R)dR] represents the probability of survival of

projectile at R+dR.

Rearranging terms, we have

S(R+dR)-S(R) ,
7 ==S(R)P,; (R)

dS(R) _ L
o = =S(RP(R) (3.1.1)

At R=co, the projectile must survive that is S(e0)=1. Under this boundary

condition the above equation i.e.
dS(R) L

———=—-P, (R)dR 3.1.2
SR su (R) (3.1.2)

can be easily integrated to give
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S(R) = exp[- j PL,(R)dR] (3.1.3)

R
If .[PBLU (R)dR <<1 then S(R) may be approximated, by retaining only first

two terms of exponential expansion, as

S(R)~1- j PL (R)dR (3.1.4)

and the breakup probability at R which is simply 1-S(R), is given by

P, (R) ~ j PL,(RYdR. (3.1.5)

Since the breakup may occur either when the projectile is approaching to the
target or when it is going away from the target after crossing, we may write

Pyy (Ryyin) =2 IP;U (R)dR. (3.1.6)
Rmin

On the empirical ground or on the basis of the CDCC calculations, it is found

that the integral in above equation can be expressed as an exponential function

of distance of closest approach that is [1-3]

PBU (Rmin) =4 eXp(_O’IRmin) (3 1 7)
It immediately leads to the fact that the local breakup function at any arbitrary

R has the same exponential form P BU (R) o exp(—aR).

The position of breakup of the projectile on its orbit is determined by
sampling a breakup radius Rgy on the interval [Rpi.(Eo, Lo), ] with the

weighting P, (R) which clearly place most Rgy in the vicinity of Ry,. It is

worth noting that if the chosen L, is less than the critical partial wave for

projectile fusion, L, then the associated trajectory would normally lead to

CF, i, R, <R} . Forthese Ly, R, is set to be R.”, when sampling
Ry, and all breakup events are confined to the incoming branch of the
projectile trajectory. On the other hand for L, >L., breakup can take place on
both the entrance and the exit branches of the classical orbit, which are

sampled equally. Thus the function given by Eq. (3.1.7) is used as a sampling
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function to determine the position on the trajectory at which the projectile gets

dissociated instantaneously into constituent fragments F1 and F2.

For the sake of simplicity, it is assumed that the interaction of fragments with
the target and with each other can be described by a two-body central
potential. At the breakup position the dynamical variables like inter-fragment
separation, relative angular momentum of fragments and the total internal
energy of the excited projectile are all determined through Monte Carlo
simulation. Initially the separation between two fragments in the projectile is
calculated by using radial probability distribution which in turn is obtained by
employing a Gaussian function for the radial part of ground state wave
function of the projectile. This Gaussian approximation is well justified for 0*

ground state of the projectile.

The orientation of inter-fragment separation is isotropic that is it may be

chosen randomly over 4n solid angle. The relative angular momentum of

fragments is sampled uniformly on the interval [0, ¢ and its orientation is

max |
chosen randomly among the directions orthogonal to the orientation of inter-
fragment separation. Regarding total internal energy, on the basis of faster
convergence and similar outcomes instead of a uniform function, an

exponentially decreasing function is chosen to sample it between the top of

the barrier and a chosen maximum &, It is worth mentioning that both £ .

and € ax are increased until the convergence occurs. Now the instantaneous
velocity of the fragments and the target in the centre of mass frame at the
point of breakup is determined by employing energy, linear momentum and
angular momentum conservation laws. After the breakup, the two body
system becomes a three body system and the separation between the three
bodies as well as that between projectile and target is known. The total energy

of the three body system is given by E,, =&, +U ; (1) + U, (ryp )+ Poy | 2185,
my
is conserved and is equal to the total energy E,.=——"—E; in the
my+m,

overall centre-of-mass (CM) system. Here &, is the relative energy of the

fragments of the projectile, U, is interaction potential between fragment
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1(2) and the target and P, is the relative linear momentum of the projectile

and target. The energy conservation immediately provides the modulus of

relative velocity between P and T (V,, = P,, / u,,)

The knowledge of \%P and ‘fr , velocities of P and T with respect to overall

CM, is required for providing initial condition for subsequent propagation of

three bodies in time. These velocities are related to each other through

vo=-2r5 (3.1.8)
my
Vop =Vp =7, (3.1.9)

The magnitude of velocity VPT is already known through energy conservation,
its direction is determined by using conservation of angular momentum. The

total angular momentum L, = /,, + L,, in overall CM system is known as

to

L,,=mpb,(V—V,). Here le,bo,v and ¥, are the relative angular
momentum of the fragments of projectile, impact parameter, velocity of
projectile in laboratory system and the CM velocity respectively. The ZPT,

angular momentum associated with relative motion of P and T about CM, is

known and is written as

Now splitting Vv, in radial and transverse component, we may write

v, =+ 500G (3.1.10)
with 7=R,,/R,, and ¢ =nxr when ji=L,, /L, . The transverse component

of the velocity of projectile and target are given by
‘7f(>q) =Ly /(mpRp; ) and
VT(q) ==Ly (m;Rpr)

respectively. Now using Eqgs. (3.1.8) and (3.1.9), it is quite straight forward to

obtain the following expression for radial velocity component
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v =+ - (3.1.11)
my

These velocity and position vectors of the fragments of the projectile and
target are transformed to the laboratory system using Galilean transformation.
The basic strategy to numerate the ICF, CF and NCBU events is to assume
that a fragment is fused with the target if the trajectory takes it within the
fragment target barrier radius. Let N be the number of breakup events sampled
and N,, N; and N, be the number of events with 0,1and 2 captured fragments
respectively, then the ratio P=Ny/N [i=0(NCBU), 1(ICF) or 2(CF)] provides
the relative yields of these three processes with Py+P,+P,=1 and the absolute

probabilities for these processes are [1-2]

PO(EO’LO):PBU(Rmin)PO (3112)
P(E,Ly) =Py (R, )P (3.1.13)
PZ(EO’LO):[I_PBU (Rmin)]H(Lcr _L0)+PBU (Rmin)ﬁz (3114)

with H(x) as the Heaviside step function and L, as the critical partial wave for
fusion. The first term in the expression of P,(E,,L,) corresponds to direct
complete fusion (DCF) while the second one to sequential complete fusion
(SCF). The cross sections for these processes are calculated by using

following standard prescription

o,(Ey)= 7[122(2[’0 + 1P (Ey, Ly)

Ly

(3.1.15)

where A?=h?/(2uEy) is the de-Broglie wavelength and = m,m,/(m, + my)
is the reduced mass of the projectile-target system.

This model is implemented in the code PLATYPUS [4]. Although this method
is quite successful in explaining the CF, ICF and TF data at above barrier
energies but fails at around and sub barrier energies. The failure of the model

at around and sub barrier energies may be attributed to the fact that at these
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energies the quantum mechanical tunneling effect becomes significant and
cannot be ignored. Here we have incorporated quantum mechanical tunneling

correction based on WKB approximation [5] in this model.
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3.2 WKB Approximation and Tunneling

Factor

The WKB method is based on the expansion of wave function in powers of 7
and is quite useful for approximate solution of quantum mechanical problems
in appropriate cases.

Consider the following basic Schrodinger wave equations in one dimension

d*u

—+k*(X)u=0 for k>0 (3.2.1)
dx
d’u

5 -7 (u=0 for 7’ >0 (3.2.2)
dx
such that
k(x)= %W/ZyiE—V(x)i when V(x)< E (3.2.3)
and

7(x) = %1 [24(V (x)—E) when V'(x)> E (3.2.4)

are always real. For convenience, let us assume that

i
u(x)=4 exp(g S(x)) (3.2.5)
be the solution of Eq. (3.2.1) which on substitution results is
2 2
(d—S) _ind f —-k°n* =0 (3.2.6)
dx dx

Now expanding S(x) in powers of 71

h2
S(x)=8,(x)+8,(x)h +S2(x)7+ ........... (3.2.7)
substituting the expansion in Eq. (3.2.6) and equating the coefficients of

terms having 7 raised to power one, we get

~S;2+2u(E-V)=0 (3.2.8)
and
iS, —25,8,=0 (3.2.9)
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These Eqgs. may be rewritten as

S;—k*n* =0 (3.2.10)
and
S, :% (3.2.11)

Integration of (3.2.10) immediately gives

So(x)= ih;[k(x')a’x' (3.2.12)
and that of (3.2.11) gives

S, = éln k(x) (3.2.13)

here the arbitrary constants of integration are omitted because these may be
absorbed in A.

Now if only first two terms in the expansion of S are retained, then
I .
u=A4 exp(% S,) exp(iS,) (3.2.14)

Using Egs. (3.2.12) and (3.2.13) we get

A P
exp(i[ kdx) for vV <E (3.2.15)

u(x) = k1/2

Similarly the approximate solution of Eq. (3.2.2) is

B X
u(x) = Wi eXp(iJVdX) for V>E (3.2.16)

These solutions may be treated accurate in that part of the domain of x where

W <<I that is when the potential energy changes so slowly that the

momentum of particle is always constant over many wavelengths. But this
condition does not hold good near turning point and hence these approximate
solutions are asymptotically valid.

Since wave Egs. (3.2.1) and (3.2.2) are regular at a turning point there are
analytic solutions at these points which have above asymptotic form. In order

to find exact solution having desired asymptotic form consider that the origin
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of x lies at a turning point, ¥ (x) < E to the right of the turning point (positive

x) and that
§(x) = [ kdx
0

Now if k*(x)=Cx", C being positive constant, Eq. (3.2.1) have solutions

u(x) = A\/%Jim (&), m= ! (3.2.17)

n+2
with J as a Bessel function and it agrees asymptotically with Eq. (3.2.15). To
verify this let us rewrite Eq. (3.2.1) with an additional term &(x)

+(k*=0)u=0 (3.2.18)

Substitution of Eq. (3.2.17) in to Eq. (3.2.18) shows that the new equation is

satisfied if we define @ as

12 " 2
j’;z —]2{—k+(m2 —1/4)’2—2 (3.2.19)

O(x) =
The expansion of k”in powers of x results in the following leading term in the
expansion of 4(x),

3(n+5)a’ 3b
9 _
)t 6 nt6

(3.2.19)

Thus € << k?in the asymptotic region and is not negligible in comparison to
k? in a region around turning point. But quite small value of &(0) indicates

that for slowly varying potential Eq. (3.2.17) is a good approximation to
actual solution of Eq. (3.2.1)
For simplicity we consider the case n =1 corresponding to linear turning point

as shown in Fig.(3.2.1). In region 1 (x>0) Eq. (3.2.1) is used while in region
X 0

2 (x<0) Eq. (3.2.2) is used. Putting & (x)= Ikdx and &,(x) = I}fdx so that
0 X

both & and &, increases as x moves away from the turning point, the two

independent solutions in each of the two regions become
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”1i(x) =4, \/%Ji(l/?a)(él)

(3.2.20)

u2+(x)=B+\/%]+(,/3)((§2) (3.2.21)

Vix)

F

IR B S s S Sy — ik S N PGS AN N G

»X

Region ? 0| Region !

Fig. 3.2.1 A typical linear turning point is shown at the origin.

Using the leading terms of the power series expansions for these functions that

1S

J¢(1/3)(981) 50 7

1
ra+ g)
(3.2.22)
2%)
L. (&) —— 1 (3.2.23)
ra=+ g)

and & =(2c/3)x’'%; &, = (20/3)|x|3/2 the behavior of theu'snear x=0 is

given as
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)
3 (3.2.24)

)
3 (3.2.25)

clearly u joins smoothly on to u, if B, =—A, and u, joins smoothly on to

u, if B =4

These relations between the coefficients and the asymptotic expansions

J+(1/3)(§1)TW{%§1 COS(@ 1%‘%) (3.2.26)
11(1/3) (ézz)_x_,—w_n{%l:eiz +e ~€[2+3]m] (3.2.27)

can be used to obtain asymptotic forms like Eq. (3.2.15) and Eq. (3.2.16) for

. . + - . .
the two independent solutions ¥ and % in two regions.

. 2 hY/4
U ———> [ cos| & ———
X—>+0 ﬂk 12
1 522
= 27[7(652 +e 6J (3.2.28)
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_ 2 T
U ———>.—cos| & ——
A 7k ( 12)

1 52
i {eé +te ¢ J (3.2.29)
2y

The asymptotic form of any linear combination of #" and U can be found

from these equations which may be used to obtain convenient connection

formulas between the asymptotic WKB solutions in the two regions. For

instance the combination u 4+ which contains only the decreasing

exponential, yields the first connection formula

| 1 V4
—e RN e cos(é"1 _Zj (3.2.30)

Egs. (3.2.1) and (3.2.2) becomes the usual radial equation if x is replaced by r

_ R +1) , ,
and V(x) is replaced by V(I’)+2—2 which effectively represent a
ur

potential barrier as shown in Fig. (3.2.2)

V)

Region 1

LY
"4

T

Fig.3.2.2 Single particle of energy E penetrating a barrier.
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We have already seen that in region 2, the wave function is a real exponential

r2

of the form (3.2.16). If the integral I?dr is appreciable larger than unity then

rl
the behavior of the solution is dominated by large ratio of the wave function at
the two turning points. The ratio of the square of wave function is termed as

barrier penetration factor T and is given as

r2
T = exp{ 2J.7/(r)dr} (3.2.31)
rl
with
7(r):1{2y(y<r)+wgl»_,9}} (323
h 2ur

53



References

[1]. A. Diaz-Torres, D.J. Hinde, J.A. Tostevin, M. Dasgupta and L.R.
Gasques, Phys. Rev. Lett. 98 (2007) 152701.

[2]. A. Diaz-Torres, J. Phys. G, Nucl. Part. Phys. 37 (2010) 075109.

[3]. R. Rafiei, et al., Phys. Rev. C 81 (2010) 024601.

[4]. A. Diaz-Torres, Comput. Phys. Commun. 182 (2011) 1100.

[5]. L.I. Schiff, Quantum Mechanics, Tata McGraw-Hill, New Delhi, 2010.

54



CHAPTER 4

RESULTS AND
DISCUSSION



4.1 Results and Discussion

In the present work we have analyzed the fusion excitation functions of
reactions induced by weakly bound nuclei ®’Li and °Be on massive targets
having mass number greater than or equal to 152 at around barrier energies
with a special emphasis on relative contribution of CF and ICF in TF for these
reactions. Theoretically different models are being used for separate
calculations of CF and ICF [1-11]. Here we have adopted the simplest model
developed by Diaz-Torres et al [10] which is based on classical considerations.
However, this model works well only in the above barrier energy region and
fails completely at near and below barrier energies as will be described in
detail in section 4.2. Since it is quite intuitive that at sub barrier energies
fusion occurs through quantum mechanical tunneling mechanism, we have
incorporated these effects in the analysis and so obtained results are discussed
in section 4.3. Further another simple model based on Wong’s formula in
conjunction with the energy dependent Woods-Saxon potential is employed
for a phenomenological description of CF and TF data and results are
presented in section 4.4. In addition, a detailed description of determining
optimum value of barrier radius for reactions involving deformed nuclei is

given in section 4.5.
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4.2 Contributions of ICF in °Be+!Tm,

181Ta and '8’Re Fusion Reactions

In this section we present, along with detailed discussion, the results of
calculations of the fusion excitation functions for reactions induced by °Be on
19Tm, '81Ta and !'3'Re targets in near barrier energy region using the code
PLATYPUS [9-12] wherein ICF and CF events are calculated separately.
Among various inputs, the centroid and width of the Gaussian function that
approximates the radial probability distribution of projectile ground state wave
function are important ingredients needed in the calculations. In order to
determine the radial part of the ground state wave function of the projectile it
is assumed that the nucleus °Be may be approximated as a system consisting
of two very loosely bound alpha particles. Because of the high probability of
breakup of °Be into ®Be” and a neutron it is quite justified to assume pseudo-
8Be containing two alpha particles as projectile. The radial ground state wave
function of this alphatalpha system bound with 0.5MeV energy, under the
assumption of a nodeless s-state, is obtained by solving the concerned
Schrodinger equation for Woods-Saxon potential with 32.66MeV, 1.25fm and
0.62fm as depth, range and diffuseness parameters. The so obtained wave
function is fitted with a Gaussian function with 2.17fm and 3.98fm as the
centroid and width. Besides these, the parameters of the breakup function that
is A and o are needed in the calculations and are determined by using the
experimental breakup probability information at two different values of Ry,
(or energy) in the vicinity of Coulomb barrier [9]. The values of the

parameters A and a for different systems are listed in table 4.2.1.

In Fig. 4.2.1 the CF and TF (CF+ICF) cross sections and in Fig. 4.2.2 the ICF
cross sections are plotted as a function of incident beam energy for °Be+!6°Tm
system and are compared with the corresponding experimental data taken from
Ref. [14]. It is clearly seen that the CF and TF data are slightly under predicted
while the ICF data are slightly over predicted at above barrier energies. While
at sub barrier energies cross sections for all the three fusion processes are

significantly under predicted. Further it is interesting to note that theoretically
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percentage contribution of ICF is found to be 35-40% at above barrier energies
which is quite large in comparison to that observed experimentally (See Fig.
4.2.3). It is worth mentioning that the predicted contribution of ICF in TF at
above barrier energies is in good agreement with the measurements for “Be+
181Tq, 187Re [13-14] systems while it is significantly over predicted for “Be+
19Tm system. This may be attributed to the fact that the nucleus '°Tm has
zero quadruple moment value while the nuclei '8!Ta and '¥’Re are prolate
nuclei having quadruple moment values as 3.3b and 2.1b respectively. It
clearly indicates that the value of quadruple moment of interacting nuclei play

an important role in fusion excitation functions.

Table 4.2.1 The values of breakup function parameters A and o
along with the breakup probability (Pgy) at two different values of

Ruin used to determine A and o for different projectile-target

combinations.
System Pgy Rnin A *

(fm) (fm™)
9Be+!9Tm 0.0108 15.1 2587 0.82

Ref. [14] 0.0371 13.6
9Be+!81Ta 0.0185 14.5 4116 0.85

Ref. [13] 0.0558 13.2
9Be+'8"Re 0.00406 16.3 5644 0.864

Ref. [14] 0.0315 13.8
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Fig.4.2.1 Fusion excitation functions for CF and TF processes,
calculated through code PLATYPUS, are compared with the
corresponding data taken from Ref. [14] for °Be+ 1°Tm system.
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Fig.4.2.2 Fusion excitation function for ICF process, calculated
through code PLATYPUS, for °Be+'Tm system is compared with
the corresponding data taken from Ref. [14]
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Fig.4.2.3 Ratio of ICF and TF cross sections calculated using the
code PLATYPUS is plotted as a function of E..,,/Vs for °Be+'®Tm
system. [Data taken from Ref. [14]]

In Fig. 4.2.4 the CF and TF (CF+ICF) cross sections are plotted as a function
of incident beam energy for °Be+!'81Ta system and are compared with the
corresponding experimental data taken from Ref. [13]. The experimental CF
and TF cross sections are very well reproduced at energies greater than and
equal to 1.14 times Vg while for energies smaller than 1.14Vpg the calculations
significantly under estimate the observations where Vg is the height of the
barrier between interacting nuclei. In fact, at above barrier energies the
quantum mechanical tunneling effects are not significant hence fusion can be
described very well by the classical model resulting in a very good agreement
between data and predictions. However, at around barrier energies along with
the quantum mechanical tunneling various channel coupling effects play very
important role in the determination of fusion cross section. Since in the
classical dynamical model which is implemented in the code, these effects
responsible for sub barrier fusion enhancement are not taken into account and
hence the experimental data are significantly underestimated in sub barrier

energy region.
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Fig.4.2.4 Fusion excitation functions for CF and TF processes,
calculated using the code PLATYPUS, for °Be+'¥Ta reaction are

compared with the experimental data taken from Ref. [13]

Similar trend prevails for ICF originating from one alpha absorption by the
target as shown in Fig. 4.2.5. In order to assess the contribution of ICF in TF
more conspicuously, the variation of the ratio of Ojcg/Orr With energy is

compared in Fig. 4.2.6 with the corresponding experimental ratio. Both the
predictions and data indicate that on an average 30-32% of TF is ICF at above
barrier energies while the contribution of ICF increases significantly at near

and below barrier energies.
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Fig.4.2.5 Fusion excitation function for ICF process, calculated
using the code PLATYPUS, for °Be+!81Ta system is compared with
the data taken from Ref. [13]
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Fig.4.2.6 Ratio of ICF and TF cross sections calculated using the
code PLATYPUS is plotted as a function of E. ,,./Vs for °Be+¥1Ta
system. [Data taken from Ref. [13]]
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In Figs 4.2.7 through 4.2.9, the excitation functions for various fusion
mechanisms induced by °Be on '®Re target at around barrier energies are
compared with the corresponding data taken from Ref. [14]. The percentage
contribution of ICF in TF for Be+!'¥’Re system is found to be nearly 25-30%

in above barrier energy region which is in agreement with the data.
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Fig.4.2.7 Fusion excitation functions for CF and TF processes,
calculated using the code PLATYPUS, for °Be+!8"Re reaction are

compared with the experimental data taken from Ref. [14]
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Fig.4.2.8 Fusion excitation function for ICF process, calculated
using the code PLATYPUS, for °Be+!8"Re system is compared with
the data taken from Ref. [14]
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Fig.4.2.9 Ratio of ICF and TF cross sections calculated using the
code PLATYPUS is plotted as a function of E..,,/Vy for °Be+!8’Re
system. [Data taken from Ref. [14]]
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4.3 The Tunneling Effect

We have seen in the preceding section that at energies higher than barrier
energy the matching between the data and prediction is excellent whereas at
energies quite close to the barrier and much smaller than the barrier the theory
completely fails to explain the data. The obvious reason for this behavior is
that the quantum mechanical tunneling effects play a significant role in the
near and sub barrier energy region. Owing to absence of tunneling in classical
picture, no fusion is expected at energies smaller than the barrier energy and
hence the fusion cross section becomes zero very rapidly. Since the
phenomenon of tunneling is a typical quantum effect, it cannot be introduced
in a model based on classical ideas. However a correction factor arising due to
the quantum mechanical tunneling may be conveniently included in the
analysis. Basically, the quantum mechanical tunneling corresponds to non-
zero probability of finding an object at a position where it is never observed
classically. In the present case classically neither of the fragments is expected
to be inside the target. But quantum mechanically there is a finite probability
of finding either one or both the fragments inside the target leading to ICF and
CF processes. Consequently the total flux available for classically allowed
NCBU channel reduces. Thus incorporation of tunneling correction consists in
multiplying the cross section of classically possible reaction channel that is
NCBU, at sub barrier energies, by a tunneling factor which reduces flux
available for this channel. Equivalently, some of the flux from classically
allowed process has gone to classically forbidden channels. In the code it is
assumed that the reaction between collision partners occurs only through CF,
ICF and NCBU channels. Since at sub barrier energies CF and ICF channels
are closed, all the incident flux goes to NCBU channel. If only one of the
fragment is assumed to tunnel through the barrier the total flux is divided into
ICF and NCBU channels. It is important to note that the fragments of ®Be are
symmetrical and hence ICF1 and ICF2 both represent the same channel. On
the other hand when both the fragments tunnel total flux is distributed among
CF and NCBU channels. In fact it is assumed here that the flux to CF channel

is that transferred from NCBU channel since the breakup has already occurred.
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Thus the only possible mode of CF to occur is through the SCF process. When
such a correction factor is taken into account in the analysis it improves to a
great extent the matching between data and predictions in near and sub barrier
energy region as shown in Fig.4.3.1. The tunneling factor depends on incident
beam energy. It varies from unity at barrier energy to nearly zero at deep sub
barrier energies. However on empirical grounds, we have incorporated
tunneling effects in energy region where the value of tunneling factor is less
than or equal to 0.25 because the experimental observation indicates that
nearly 75% events are NCBU. As the energy decreases, the tunneling factor
decreases and hence the contribution of both ICF and SCF channels reduces.
At deep sub barrier energies almost all the events are NCBU. In this energy
region both the fragments of the projectile have a sufficiently low energy so
that they get scattered before absorption. Similarly, as a consequence of
tunneling correction the experimental ICF cross section could also be

reproduced very well as shown in Fig. 4.3.2.
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Fig.4.3.1. Fusion excitation functions for CF and TF processes,
calculation through code PLATYPUS with tunneling correction,
are compared with the corresponding data taken from Ref. [14] for

’Be+19Tm system.
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Fig.4.3.2 Fusion excitation function for ICF process, calculated
through code PLATYPUS with tunneling correction is compared
with the corresponding data taken from Ref. [14] for *Be+!Tm

system.

In Figs. 4.3.3 and 4.3.5 the excitation functions of complete fusion and total
fusion processes are compared with corresponding data taken from Ref. [13]
and [14] respectively at around barrier energies for “Be+'#1Ta and °Be+'#"Re
systems. The ICF excitation functions for these systems along with the data

taken from Ref. [13] and [14] are plotted in Fig. 4.3.4 and 4.3.6 respectively.
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Fig.4.3.3 Fusion excitation functions for CF and TF processes,
calculation through code PLATYPUS with tunneling correction,
are compared with the corresponding data taken from Ref. [13] for

’Be+'8Ta system.
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Fig.4.3.4 Fusion excitation function for ICF process, calculated
through code PLATYPUS with tunneling correction is compared
with the corresponding data taken from Ref. [13] for °Be+'¥Ta

system.
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Fig.4.3.5 Fusion excitation functions for CF and TF processes,
calculation through code PLATYPUS with tunneling correction,

are compared with the corresponding data taken from Ref. [14] for

’Be+!8’Re system.
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Fig.4.3.6 Fusion excitation function for ICF process, calculated
through code PLATYPUS with tunneling correction is compared
with the corresponding data taken from Ref. [14] for *Be+'®Re

system.
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The comparison between data and prediction made in these figures is
interpreted in the same way as that for Figs. 4.3.1 and 4.3.2. However, it is
very interesting to note that both CF and ICF cross sections and hence TF
cross section at energies near and below the barrier is slightly over estimated
for “Be+!9Tm system while these are slightly underestimated for °Be+!81Ta
and °Be+!'®Re systems. It may be ascribed to the fact that the tunneling

reduces with the increasing mass-asymmetry of the system.
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4.4 Energy Dependent Woods-Saxon

Potential and Fusion

Besides classical dynamical model, we have adopted an alternative procedure
to explain the data which consists in assuming that the contribution of ICF in
TF is the same as that predicted by code platypus for above barrier energy
region and employing this assumption in a simplified fusion model based on
Wong’s formula and energy dependent Woods—Saxon potential [EDWSP]
[15-16]. Although any of the fusion model may be used for this purpose, but
this model is simplest one wherein various channel coupling effects are
simulated through the introduction of energy dependence in the potential.
Using this approach we have analyzed the ICF, CF and TF excitation
functions data for °Be+'81Ta and '®’Re systems at around barrier energies. The
so obtained fusion excitation functions for CF and TF reaction mechanisms
are compared with the corresponding experimental data taken from Ref. [13]
for °Be+!31Ta system are shown in Fig.4.4.1. For above barrier energy region,
fusion cross sections calculated through code platypus and for below barrier

energy region, calculations are performed through EDWSP model.
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Fig.4.4.1 Fusion excitation functions for CF and TF processes for
'Be+¥Ta reaction, calculated using code PLATYPUS at E.,>
1.14 Vy MeV and using Wong’s formula with EDWSP for E.,<

1.14 V3, are compared with the experimental data taken from Ref.

[13].

It is clearly seen that the CF data are very well explained over entire energy
regime while the TF data are slightly under-predicted in the deep sub-barrier
energy region. Although most of the channels coupling effects are already
imitated through energy dependence in potential, the slight mismatch between
TF data and prediction at deep sub-barrier energies may be ascribed to the fact
that the contribution of ICF is larger than that predicted by code platypus. It
may be seen more clearly in Fig.4.4.2 where ICF fusion excitation function is
compared with the corresponding experimental data [13]. The matching
between data and calculations could be achieved by considering 45-48%
contribution of ICF in TF. However, the so obtained information about the
contribution of ICF in TF is not unambiguous. Nevertheless one obtains a

fairly good estimate regarding the relative importance of ICF and CF
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mechanisms in below barrier energy regime. It is important to mention here
that the contribution of ICF in below barrier energy is more than that for above

barrier energies. For “Be+ '37Re system almost similar results have been found

as shown in Figs. 4.4.3 and 4.4.4.
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Fig.4.4.2 Fusion excitation function for ICF process for °Be+'%Ta

reaction, calculated using code PLATYPUS at E.,> 1.14 Vz MeV

and using Wong’s formula with EDWSP for E.,< 1.14 Vp, is
compared with the experimental data taken from Ref. [13].
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Fig.4.4.3 CF and TF cross section for *Be+'®’Re calculated by
code platypus (for E/Vyz >1.07) and by EDWSP model (for
E/Vg<1.07) are compared with the experimental data taken from

Ref [14].
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Fig.4.4.4 The ICF cross section for °Be+ '%Re calculated by code
platypus (for E/Vy >1.07) and by EDWSP model (for E/Vz<1.07)

are compared with the experimental data taken from Ref. [14].

73



Further in order to account for the proper energy dependence of the relative
contribution of CF and ICF in TF we propose a selection function which
represents the fact that at barrier energy, there is a strong competition between
the CF and ICF processes as both are equally probable. While at energies
much higher than the barrier energy, CF predominates over ICF and vice versa
at very low energies. The Fig. 4.4.5 shows that the contribution of ICF varies
from 20% to 35% for energies much larger than the barrier energy and
increases smoothly up to approximately 55% at near barrier and slightly
smaller energies. While at deep sub barrier energies, the ICF cross-section
dominates. At high energies, the projectile approaches quickly to the target
thus it is absorbed either directly or sequentially after the breakup by the
target. Hence, at high energies, the process is predominantly the CF process.
While at lower energies, each of the fragments of the projectile has sufficient

time to get scattered, consequently the contribution of ICF is enhanced.
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Fig.4.4.5 The ratio of ICF cross-section to TF cross-section for
different projectile-target combinations is plotted as function of the

ratio of projectile energy to Coulomb barrier.
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By employing the selection function discussed in chapter 2 (sec. 2.2) we have
calculated the excitation functions for CF, ICF and TF reactions induced by
°Be and °Li on heavy targets for energies ranging from deep sub-barrier to
above barrier region by using Wong’s formula employing EDWSP and
selection function for separating CF and ICF. The values of various potential
and barrier parameters needed in the calculations are listed in Table 4.4.1 for

different projectile-target combinations.

The range of potential depends only on the size of interacting nuclei and
increases with increasing size while potential diffuseness and strength
depends, besides the size, on incident energy also. Hence, a range of their
values corresponding to minimum (Approx. 0.9Vp, MeV) and maximum
(1.2Vgo MeV) incident energies for a given projectile-target system is quoted
in the table; the Vg is barrier height corresponding to the pure Coulomb
interaction. As per expectations, the diffuseness decreases with increasing

beam energies and the process becomes sharper at higher energies.

Regarding barrier parameters, the barrier position is assumed to depend only
on size of projectile and target. The barrier height varies with incident energy
and hence simulates various channel coupling effects. This is in accordance
with the fact that when coupling with collective vibrational and rotational
states are taken into account, the single barrier turns into a distribution of
barriers of different heights. The barrier curvature, on the other hand, is
obtained by using potential strength for three different energies. Specially, the
incident energy equal to average barrier height, slightly more than this and
slightly less than this are used for this purpose which results in a very weak

dependence of curvature on energy.
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Table 4.4.1 Values of potential and barrier parameters for various
projectile-target combinations. The values of energy dependent
quantities are given for an energy range ~0.9Vp, to 1.2V, MeV.

Here Vg, denotes the average height of the Coulomb barrier.

P-T System Ry a Vo Ry ho Vg

(fm) | (fm) (MeV) (fm) | MeV) | (MeV)

‘Be+ '®Tm | 9.02 | 0.69-0.63 | 50.52-46.13 | 11.03 | 4.40 | 33.74-34.20

‘Be+ '81Ta | 9.18 | 0.69-0.63 | 50.7-46.3 10.99 4.9 34.57-35.78

‘Bet+ ¥Re | 9.26 | 0.69-0.63 | 50.82-46.40 | 11.07 | 4.99 | 35.56-36.54

‘Bet2Bi | 9.53 | 0.64-0.63 | 47.46-46.71 | 11.54 | 4.45 | 39.47-39.58

®Li+ 152Sm | 8.38 | 0.69-0.63 | 44.3-40.43 | 10.27 54 23.4-24.17

SLi+ 134Sm | 8.42 0.63 0.66-0.63 10.34 | 6.25 | 23.74-24.07
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The introduction of energy dependence in the potential results in the sub-
barrier fusion enhancement as shown in Fig. 4.4.6 for °Be + '°Tm fusion
reaction. Since it is well-established, both experimentally as well as
theoretically, that coupling to various channels leads to significant increase in
fusion cross-section at energies lower than the barrier energy, the
enhancement shown in Fig. 4.4.6 is a clear manifestation of the channel

coupling effects.
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Fig.4.4.6 Total fusion excitation functions for °Be +1Tm reaction
corresponding to constant (dashed line) and energy dependent
(solid line) diffuseness parameters are compared with the

corresponding experimental data taken from Ref. [14].

In Fig. 4.4.7, TF, CF and ICF excitation functions for °Be+!°Tm fusion
reaction have been compared with the corresponding data taken from Ref.
[14]. The almost perfect matching between data and results of calculations
indicates that the method proposed to separate CF and ICF from TF works
very well for target with zero quadruple moment, as the nucleus 'Tm has
zero quadruple moment in its ground state. However, it is worthwhile to
mention that at energies well above the barrier, the CF and TF both are under
predicted though to a small extent. The large measured TF cross-sections at

high energies in comparison to the theoretical values may be ascribed to the
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fact that the contribution of the processes other than ICF leading to the
formation of same residual nuclei cannot be separated out in measurements.
Further at energies much larger than the barrier, the CF cross sections tend to
be same as TF cross-sections which indicate that the contribution of ICF
becomes negligible. Since at higher energies, the fusion no longer occurs
through the quantum mechanical tunneling, hence the probability of fusing
whole projectile is quite large and process is predominantly the CF process. In
addition, the disagreement between the results of calculations and the
measurements at very high energies is due to the fact that at these energies
theoretically it is assumed that still 30% of events are ICF events which is no

longer valid at these energies.
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Fig.4.4.7 Fusion excitation functions for ICF, CF and TF
processes for °Be + 19Tm reaction compared with the

corresponding experimental data taken from Ref. [14].

In order to check the validity of the technique to separate ICF from TF for
processes involving target with nonzero quadruple moment, we have

compared the experimental and predicted CF, ICF and TF cross-sections in
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Fig. 4.4.8 for °Be+!8!Ta system and in Fig. 4.4.9 for °Be+'¥"Re at near barrier
energies. The experimental data shown in Fig. 4.4.8 are taken from Ref. [13]
and those in Fig. 4.4.9 are taken from Ref. [14]. Besides larger charge (Z) and
mass number (A) of '8!Ta and '8’Re with respect to '®°Tm the former two are
nuclei having ground state quadruple moment value approximately 3.3b and
2.1b respectively. As mentioned earlier, for such nuclei slightly smaller value
(1.42 fm) of radius parameter 1, is taken in evaluation of barrier radius Rp
which takes into account the effects of nonzero quadruple moment of target.
Once again a reasonably good agreement between the data and predictions is
found. The slight mismatch at higher energies may be interpreted in the same

manner as earlier.
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Fig.4.4.8 Similar to Fig.4.4.7 but for °Be+8'Ta reaction.
Experimental data are taken from Ref. [13].
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Fig.4.4.9. Similar to Fig.4.4.7 but for °Be+'Re reaction.
Experimental data are taken from Ref. [14].

In case of °Be + 20%Bi system because of the availability of CF data only, in
Fig. 4.4.10 we depict the comparison of calculated CF excitation function with
the measured one. Since target 2°°Bi has quadruple moment value around -0.5b
in its ground state, the value 1.44 fm of r is used in the determination of Rg to
nullify the quadruple moment effects. The CF cross-sections extracted from
the TF cross-section employing the selection function proposed in chapter 2
are found to be in good agreement with the measured one. In Fig. 4.4.10, the
calculated excitation functions for TF and ICF are also given. The relative
contribution of ICF in TF is found to vary from 37% to 34% for incident
energies 42.15 MeV to 57.5 MeV.
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Fig.4.4.10. Complete fusion excitation function for ’Be + 2"Bi
reaction compared with the experimental data taken from Ref.

[17]. The calculated TF and ICF excitation functions are also

shown.

For SLi+ 152154Sm systems similar results are found as shown in Figs. 4.4.11

and 4.4.12.
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Fig.4.4.11 Fusion excitation functions for CF process for

SLi+1328m reaction are compared with the experimental data taken

from Ref. [18]
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Fig.4.4.12 Fusion excitation functions for CF, TF and ICF
processes for SLi+'Sm reaction are compared with the

experimental data taken from Ref. [19]
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4.5 Optimum Barrier Radius for Deformed

Targets

In this section we propose a simple systematic to determine barrier radius Rg
for fusion reactions involving stable weakly bound nuclei and different
deformed and massive targets. Since the fusion cross section is highly
sensitive to barrier radius, a very small change in its value may results
appreciable change in fusion cross section. It is obvious that barrier radius
must depend on the deformation of target nucleus only because the quadruple
moments of the projectiles SLi, 'Li and °Be are negligibly small in comparison
to that of target. Phenomenologically, we have found that the parameter r,
used to determine barrier radius varies from 1.38 to 1.39fm for reactions
involving targets having quadruple moment smaller than 0.5b, from 1.40 to
1.41fm for reactions involving targets with quadruple moment 0.5 to1.5b and
1.42 tol.44fm for reactions invovling targets with quadruple moment greater
than 1.5b. Using the so decided values of barrier radii we have calculated the
fusion excitation functions for CF processes for 7Li+2%Bi, °Li+!'*Tb and
"Li+152Sm systems at around barrier energies and have compared with the
corresponding experimental data as shown in Figs. 4.5.1, 4.5.2 and 4.5.3
respectively. The matching between the data and predictions, as can be seen
clearly from these figures, is very promising which is turn indicates that the

proposed phenomenology is quite convincing.
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Fig.4.5.1 Fusion excitation functions for CF process for "Li+*"Bi

(O.M.= -0.4b) reaction is compared with the experimental data
taken from Ref. [20-21]
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CHAPTER 5

CONCLUSIONS



5.1 Conclusions

This chapter is devoted to important conclusions, drawn on the basis of
comparison between predictions and corresponding data, of the present study.
We have analyzed the fusion excitation function data of reactions induced by
stable weakly bound projectiles on different targets in near barrier energy
region within the framework of Classical Dynamical Model and Wong’s
formula with energy dependent Woods-Saxon potential. Owing to very low
binding energies of %’Li and °Be their breakup significantly affects the fusion
process induced by impinging these projectiles on various targets [1-13]. One
of the important consequence of breakup occurring before fusion is to initiate
a new incomplete fusion (ICF) reaction channel beside the usual complete
fusion (CF) process. Thus there arises an immediate need to develop new
theoretical models capable of calculating separately CF and ICF cross
sections. One such simple model frequently referred to as classical dynamical
model was developed by Diaz-Torres [14-17]. According to this model, the
projectile-target relative motion is treated classically and its time evolution is
described by the classical equations of motion for mutual Coulomb and
nuclear forces between projectile and target. Separate calculations of CF and
ICF cross sections are made possible by introducing a stochastically sampled
breakup function [14, 17]. Here we have used the code PLATYPUS, wherein
the classical dynamical model is employed, to study the separate contribution
of ICF and CF in total fusion (TF) for reaction induced by °Be on '8! Ta target
in near barrier energy region. It is found that this model work very well only
at above barrier energies and fails completely at energies well below the
Coulomb barrier where the fusion occurs through quantum mechanical
tunneling [18]. Thus, we have introduced the tunneling correction in this
model at below barrier energies and analyzed the CF and ICF cross section
data of fusion reactions induced by °Be on '°Tm and '8’Re targets at around
barrier energies. A significant improvement between the data and prediction
is found as a result of tunneling correction particularly at below barrier
energies [19]. The basic strategy used to incorporate the tunneling correction

is to multiply the no captured breakup (NCBU) cross section at below barrier
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energies by a tunneling factor based on WKB approximation [20]. Basically,
the quantum mechanical tunneling corresponds to non-zero probability of
finding an object at a position where it is never observed classically. Thus
incorporation of tunneling correction results in sub barrier fusion which is a
classically forbidden channel and improves matching between predictions
and data at energies smaller than the barrier energy. Besides the tunneling
effects, the channel coupling effects also play major role in the sub barrier
fusion process. Therefore we have also used another simple model based on
Wong’s formula in conjugation with energy dependent Woods-Saxon
potential [21-23]. In this model the channel coupling effects are simulated
through the energy dependence in the potential. However only TF cross
section is calculated through this model and the separate contribution of CF
and ICF in TF is obtained by assuming that the relative contribution of these
processes in TF is same as that predicted by code platypus at above barrier
energies and have found that these are not consistent in this energy region
[18]. Rather the contribution of ICF is found to be larger than that predicted
by code platypus in TF for below barrier energies. In order to remove this
discrepancy a simple energy dependent selection function is proposed to
extract relative contribution of CF and ICF from TF process [24]. It is found
that the contribution of ICF decreases with increasing incident energy.
However, it never becomes zero, a minimum of approximately 25%
contribution of ICF remains in TF even at energies much larger than the
barrier energy. Further for heavier target, the contribution of ICF is found to
be enhanced in comparison to lighter ones. Further since the barrier radius
parameter is quite sensitive to the quadruple moment of interacting nuclei, it
is quite tempting to obtain its optimum value for a given projectile-target
combination. In present study we have found that the parameter ry used to
determine barrier radius varies from 1.38 to 1.39fm for reactions involving
targets having quadruple moment smaller than 0.b, from 1.40 to 1.41fm for
reactions involving targets with quadruple moment 0.5 tol.5b and 1.42
tol.44fm for reactions invovling targets with quadruple moment greater than

1.5b.
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Finally in terms of future prospective the work may be extended to address

the following issues.

1.

For complete understanding of the dynamics of complete fusion and
incomplete fusion more experiments are required to be carried out and
more sophisticated models are needed to be developed.

The role of nuclear size, shape and structure in the process of CF and ICF
is still not so clear.

A fully quantum mechanical model taking tunneling and other channel
coupling effects into account is required for better physical insight and
unambiguous understanding of fusion reactions involving weakly bound
nuclei.

In order to differentiate between direct transfer and ICF processes more
measurements and calculations concerning breakup, transfer and ICF

processes are yet to be carried out.
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