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1.1                                                 Introduction

Nuclear physics deals primarily with the studies carried out to understand exact 

nature of short ranged strong nuclear interaction and hence the structural and 

behavioral aspects of various nuclei under different physical conditions. The 

major tools of nuclear physics studies are various decay processes occurring in 

radioactive nuclei and nuclear reactions induced by impinging energetic beams 

of nuclei on stable targets [1-4]. Depending on experimental conditions during 

nucleus-nucleus collision wide variety of nuclear phenomena like elastic 

scattering, inelastic scattering and nuclear reactions occur. The elastic 

scattering is the process in which projectile interacts with target and deviates 

from its path without transfer of energy that is projectile and target stays in 

their ground states. While in case of inelastic scattering there is a transfer of 

energy during collision and hence either both projectile and target or target is 

left in excited state. Besides these, there may occur processes in which the 

charge number and/or mass number of the target changes after interaction and 

are referred to as nuclear reactions. The nuclear reactions are broadly classified 

into following three categories.  

1. Compound Reactions: - These are two step processes which occur through 

the formation of a compound nucleus. Infect during this process the interacting 

nuclei coalesce to form highly excited compound nucleus (CN) that lives for 

relatively long time. Since the time required by a nucleon to complete an orbit 

inside the nucleus is typically of the order of ~ 10-22 sec, the reaction time for 

compound nucleus formation must be much larger than 10-22sec. Owing to long 

lifetime of compound nucleus, excitation energy is shared by all nucleons. If 

sufficient energy is localized on one or more nucleons then CN decays through 

nucleon(s) emission. Since the CN lives long enough it loses memory of its 

formation. Consequently the probability of various decay modes is independent 

of entrance channel. Usually these reactions take place at small impact 

parameter and at low energy. Fusion, Fusion-fission and Fusion evaporation 

etc. are some typical examples of compound nuclear reactions. The process of 

formation of compound nucleus through fusion of two nuclei is shown in Fig. 

1.1.
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2. Direct reactions: - These reactions occur at a very short time scale in 

comparison to CN reactions. When two nuclei make `glancing' contact and 

separate immediately, then the process is termed as direct reactions (DR). 

These reactions usually occur near the surface of the target nucleus and at large 

impact parameters. These reactions occur within 10-22sec time scale or less, and 

hence there is no time for projectile to distribute its energy with target. 

Transfer reactions, Deep inelastic collision and breakup etc. are some examples 

of direct reactions. The breakup of projectile into two fragments is shown 

schematically in Fig. 1.2

3. Resonance Reactions: - The reactions in which the incoming projectile 

forms a quasi bound state before the outgoing particle is ejected are termed as 

resonance reactions. In these reactions, there are sharp peaks in the reaction 

excitation function which are termed as resonances and represent quasi bound 

quantum state of compound nucleus being formed. The resonances occur at 

some particular value of energies for which there is a smooth matching 

between wave function inside and outside the potential as shown in Fig. 1.3.

Among various reaction channels discussed above, the nuclear fusion reactions 

have attracted a great deal of attention in connection with the energy 

production in stars, nucleo-synthesis of chemical elements in stellar 

environment and production of super heavy elements. Classically the fusion 

can occur only when the interacting nuclei have sufficient kinetic energy to 

overcome the repulsive Coulomb barrier between them and get trapped inside 

the potential pocket of compound nucleus. But quantum mechanically, fusion 

may occur even at energies smaller then the barrier energies through the so 

called quantum mechanical tunneling [5]. Infect, the kinetic energy determines 

whether the process is going over the barrier or quantum tunneling through the 

barrier. Thus, the fusion of two nuclei around the Coulomb barrier provides a 

fascinating testing ground for theories of quantum tunneling. Initially, the 

studies of nuclear fusion reactions were limited to reactions induced by stable 

nuclei. 
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Fig.1.1 Pictorial view of the two step compound nuclear reaction. 

In first stage, excited prefragment is formed, after the thermal 

equilibrium is established a compound nucleus is formed, which 

then decay via particle evaporation or fission.
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 Fig.1.2 Mechanism of breakup (a direct reaction) of projectile. 
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Fig1.3 (a) Far from resonance, the exterior and interior wave 

functions match badly and probability of penetration of the nucleus 

is negligible small. (b) As the match improves, there is a higher 

probability to penetrate. (c) At resonance the amplitudes match 

exactly, the incident particle penetrates easily, and the cross section 

rise to a maximum.
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However in mid nineties with the advancement in high energy Radioactive Ion 

Beams (RIB’s) [6-9] facilities it has become possible to induce various nuclear 

reactions by using beam of nuclei lying in the vicinity of drip lines. The 

positions of proton and neutron drip lines on N-Z graph have been shown 

schematically in Fig. 1.4. The drip lines represent the limits of nuclear stability 

where the binding energy of additional nucleon(s) becomes zero and the 

excessive neutron or proton can no longer be kept in the nucleus they literally 

drip out. The initial experiments carried out by I. Tanihata et al [6-7, 10] using 

beams of 11Li have indicated the existence of a novel neutron halo structure. 

Subsequently, various experiments carried out by using beams of many neutron 

rich and proton rich nuclei have confirmed the existence of one neutron halo, 

two neutrons halo, one proton halo and two protons halo among some of these 

neutron and proton rich nuclei as depicted in Fig. 1.5 [11]. Generally a halo 

state consists of loosely bound nucleon(s) mostly in s-state extremely far away 

from the core of normal nuclear density and hence leads to root mean square 

(r.m.s)  radius much larger than that is expected from the r0A1/3 systematic 

(r0~1.2fm) for stable nuclei as shown schematically in Fig. 1.6. Since the 

binding energy of halo nucleon(s) is quite low, about 50% of the time these 

remains outside the range of the core potential that is in the classically 

forbidden region. Besides very small binding energy the formation of halo can 

occur in nuclei having valance nucleon(s) in low orbital angular momentum 

state that is s- or p- states because of low centrifugal barrier. However in case 

of proton-halo nuclei the Coulomb barrier suppresses halo formation in 

elements with . Jensen and Riisager [12] proposed that the necessary 10Z 

and sufficient condition for the occurrence of halo states in nuclei having 

valence nucleon in s-state is that the binding energy should be 
  32A

2B
/



MeV while in case of valence nucleons in p-state there is an additional 

limitation that the charge number should be .34A440Z /.
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Fig.1.4 Nuclear landscape showing the stable and unstable nuclei 

lying in between the neutron and the proton drip lines. 
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Fig.1.5 The portion of nuclear chart consisting of well known halo 

nuclei. 
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Fig.1.6 The neutron halo in 11Li extends to fill the volume 

equivalent to 208Pb, with very dilute, pure neutron matter. 
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The unique characteristic features of halo nuclei such as small binding energy, 

large values of isospin, extended wave functions of the valence nucleon(s), 

narrow momentum distributions, large spatial extension, existence of soft 

dipole (Pygmy) resonances and large breakup probabilities are expected to 

strongly affect all the possible reaction channels. 

Now a day, besides the halo nuclei, the beams of various stable but weakly 

bound nuclei are also available with reasonable intensities which have created 

a renewed interest in fusion involving weakly bound stable and unstable nuclei. 

Infect owing to very low binding energy of projectiles, the reactions involving 

these nuclei differ in a fundamental way from those involving tightly bound 

nuclei as shown in Figs. 1.7 and 1.8 [13-20]. For well bound projectile and 

target the breakup probability is quite low and hence the breakup effects are 

negligibly small. Usually in this case the direct complete fusion (DCF), 

nucleon(s) transfer and inelastic excitation etc. are few dominant reaction 

channels which are of great importance in different contexts. In direct complete 

fusion the projectile moves towards target with an appreciable amount of 

energy such that it over come the barrier between the two nuclei or tunnels 

through it and gets fused with the target without undergoing breakup.  The 

resulting nucleus may be formed in its ground state or in bound or unbound 

(resonant) excited states. In case of the compound nucleus formed in an excited 

state it decays via the emission of γ-rays or neutrons, protons or other charged 

particles, or fission fragments. The transfer reaction is a rearrangement process 

wherein one or more nucleons are transferred from the projectile to the target 

nucleus or vice versa. It is important to note that transfer process should be 

distinguished from the mass transfer occurring in quasi-fission processes [21] 

in which exchange of nucleons leads to a deformed composite system which 

subsequently decays into fission-like fragments. In the inelastic excitation the 

projectile interacts with the target and loses some of its energy and results in 

the excitation of the target nucleus. 
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Fig.1.7 Possible reaction mechanisms for a tightly bound 

projectile.
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Fig.1.8 Schematic representation of the fusion and breakup 

processes that can take place in the collision of a weakly bound 

projectile.
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The reactions involving weakly bound projectiles are strongly influenced 

mainly by two factors namely static effects of large spatial extension and 

dynamic effects of large breakup probabilities. Some weakly bound nuclei 

have a long tail in density distribution which gives rise to lowering of fusion 

barriers and hence enhances the fusion cross section. Secondly because of low 

breakup threshold, as listed in Table 1.1 for some light weakly bound nuclei, 

the couplings with the breakup channel are of immense importance.

Table 1.1 Breakup thresholds of some typical weakly bound nuclei.  

Stable weakly 
bound nuclei

Breakup 
threshold

Unstable weakly 
bound nuclei 

(halo)

Breakup 
threshold

9
Be 1.67MeV 11

Be 0.5MeV

6
Li 1.48MeV 11

Li 0.3MeV

7
Li 2.45MeV 6

He 0.97MeV

One of the immediate consequences of this coupling is to induce unusual 

fusion channels in the reactions induced by weakly bound nuclei as shown in 

Fig. 1.8. However, in order to study the influence of breakup, it is necessary to 

distinguish between prompt breakup and delayed breakup. In the former, the 

breakup process occurs when the weakly bound projectile is approaching the 

target. The latter takes place in two steps. First, the projectile is excited to a 

long-lived resonance above the breakup threshold, as it traverses the interaction 

region. Then, the resonance decays into the breakup channel, when the 

projectile is following the outgoing branch of the trajectory. Only prompt 

breakup, which occurs on a time scale of 10−22 s, may affect fusion. In delayed 

breakup the resonance life-time is much longer than the collision time. Thus, 

the projectile breaks up when the collision is over and hence it does not affect 

the fusion cross section [22-24]. The breakup removes flux from the elastic 

scattering and takes place either in the long-range Coulomb field (Coulomb 

breakup) or in the short range nuclear field (nuclear breakup) [25]. Coulomb 

breakup dominates for heavy targets and at impact parameters larger than the 
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sum of the radii of interacting nuclei where the short-range nuclear interaction 

is negligible. For lighter targets and at impact parameters smaller or 

comparable to sum of radii of interacting nuclei the Coulomb interaction 

becomes less important and the breakup is predominantly the nuclear breakup 

process. 

Thus in case of reactions induced by weakly bound nuclei, in addition to these 

reactions the incomplete fusion (ICF), sequential complete fusion (SCF) and 

elastic breakup reactions are equally probable reaction channels. In an 

incomplete fusion a large parts but not the whole of the projectile fuses with 

the target nucleus. For light nuclei, wherein only few nucleons are involved, 

incomplete fusion and transfer reactions remain conceptually different 

mechanisms but may lead to the formation of the same final nucleus in the 

same excitation state as the two processes are indistinguishable. Also the 

angular momenta involved in the two processes are similar, since the (semi 

classical) value of the critical angular momentum is small. The incomplete 

fusion has been described as a two-step process of fusion following breakup in 

which the projectile is first broken into two or more fragments by Coulomb 

and/or nuclear forces and some of the fragments penetrate the barrier and fuse 

with the target. Strictly speaking, events where all fragments fuse with the 

target nucleus after breakup are also possible and are referred to as sequential 

complete fusion which is experimentally indistinguishable from direct 

complete fusion. The direct complete fusion (DCF), which may occur for both 

tightly as well as loosely bound projectiles, corresponds to the complete 

capture of the projectile by the target without explicitly going through the 

breakup channel. The sum of complete fusion (CF=DCF+SCF) and incomplete 

fusion (ICF) is termed as total fusion (TF). The quantitative estimation of 

separate contribution of CF and ICF in TF is an important aspect to understand 

the reaction dynamics of fusion induced by weakly bound nuclei. Another 

important issue is to investigate the role of breakup in the enhancement or 

suppression of the fusion cross section. The words enhancement and 

suppression are based on a comparison with some standard cross section. Thus, 

the choice of the standard should be very clear. A lot of theoretical and 
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experimental studies have already been carried out to address these issues [13, 

26-60]. 

Sinha et al. [26, 27] measured TF for the 7Li+28Si system, at energies below 

and above the barrier and have compared the data with coupled channel 

calculations. They found a slight enhancement at sub-barrier energies and no 

effect at energies just above the barrier. Kumawat et al. [28] measured the CF 

cross section for the 6Li+90Zr system at energies above the Coulomb barrier 

and observed that the data was suppressed by 34% compared to coupled 

channel predictions. However, Hu et al. [29] measured the CF cross section for 
6Li+96Zr, a similar system, at above-barrier energies and found a suppression of 

only 25% compared to coupled channel calculations. Rath et al. [30-32] 

measured CF and TF of 6,7Li + 144,152Sm systems, at energies below and above 

the Coulomb barrier and have compared their experimental CF cross sections 

with predictions of coupled channel calculations involving inelastic channels, 

using the CCFULL code [33]. They also performed calculations involving both 

inelastic and transfer channels, using the FRESCO code [34]. Their results 

have indicated a suppression of the experimental CF cross section of the order 

of 30% for all systems especially at above barrier energy region. They further 

observed that the suppression is more important for fusion induced by 6Li than 

by 7Li. Pradhan et al. [35] measured the CF and ICF cross sections for 6Li + 
159Tb systems, at energies above the Coulomb barrier. Comparing their CF data 

with results of coupled channel calculations, they found that the experimental 

CF cross section for 6Li + 159Tb is suppressed by more than 30%. Mukherjee et 

al. [36] performed a similar experiment for 7Li + 159Tb system and found a 

suppression of 26% in CF cross section data in comparison to coupled channel 

calculations. Palshetkar et al. [37] measured CF, ICF and transfer cross 

sections for 6,7Li + 197Au systems, at energies below and above the barrier. The 

comparison between experiments and CC calculations indicated that the CF 

data for the 6Li and 7Li projectiles were suppressed by 35% and 15% 

respectively. Shrivastava et al. [38] measured the CF cross section for 6Li + 
198Pt system and have found that the data well below the barrier is very well 

described by the CC calculation. Thus, there is no hindrance of fusion at deep 

sub-barrier energies for this system. At energies above the barrier, there is 
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some suppression of the CF cross section. C.L. Gua et al. [61] observed that 

contribution of ICF in TF for system 6Li + 154Sm is around 28% in above 

barrier energy region while M. Dasgupta et al. [48] have observed ratio of ICF 

to TF for 6,7Li+ 209Bi systems goes from 90% to 30% as energy goes from sub 

barrier region to far above barrier region.

Besides 6,7Li, good quality beams of 9Be with high intensities are also available 

at various accelerator facilities worldwide [7, 8]. The beams of 9Be have 

attracted significant attention as it can be generated with high intensity in the 

energy range between 10MeV and 60MeV with lesser efforts. The 9Be is a 

weakly bound nucleus having one neutron separation energy of 

nearly1.67MeV and it easily breaks up into n +8Be two body channel with 8Be 

either in ground state or in excited state. The so formed 8Be is then dissociated 

into two alphas through delayed (life time ∼10−16s) and prompt (life time 

∼10−22s) breakup processes. This breakup channel strongly affects the fusion 

cross section in near barrier energy region. Many authors have measured CF 

cross sections for reactions induced by 9Be beams on 89Y, 124Sn, 144Sm, 169Tm, 
181Ta, 187Re and 186W targets [39-45]. The measured CF cross sections were 

compared with predictions of CC calculations using CCFULL or FRESCO 

codes. In all cases, data showed some enhancement below the Coulomb barrier 

and suppression in above barrier region. The suppressions found for 89Y, 124Sn, 
144Sm, 169Tm, 181Ta, 187Re and 186W targets were 20%, 28%, 10% (later 

corrected to 16% [46]), 34%, 34%, 30% and 40% respectively. For reactions 

induced by 9Be on 169Tm, 181Ta and 187Re ratio of  ICF to TF is found to be 

30% in above barrier energy region while it increases to 90% as incident 

energy goes from above barrier to deep sub barrier region. This conclusive 

remark was found to be in clear contradiction with the observation of P.R.S 

Gomes et al. [58] for 9Be+144Sm system that ICF to TF ratio was found to be 

15% throughout the energy range. Clearly the range of suppression or 

enhancement is quite wide and involves substantial ambiguity and hence needs 

further investigations.

It is well known that the simplest theoretical way to understand the fusion of 

two nuclei is the Barrier Penetration Model (BPM) [14, 62-63] wherein the 

projectile is assumed to penetrate through potential barrier between two 
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interacting nuclei and form a composite nucleus. At low energies, the barrier 

penetration occurs via quantum tunneling phenomenon which is a slow 

quantum leak through the classical barrier due to the wave nature of nuclei. In 

fact, the behavior of sub-barrier fusion cross-section strongly depends upon the 

nature of the reactant nuclei as a result there are unexpected variations in sub-

barrier fusion cross-sections even for different isotopes of a given element. At 

energies below the Coulomb barrier, a large enhancement in the fusion cross-

section by several orders of magnitude in comparison to the predictions of one 

dimensional barrier penetration model was observed. This enhancement in the 

sub-barrier fusion cross-section was found to have a link with the intrinsic 

structure of colliding nuclei. Indeed, the coupling of the relative motion of 

projectile and target to the internal degrees of freedom such as static 

deformation, vibration of nuclear surface, rotations, neck formation, nucleon 

transfer reactions etc. enhances the sub-barrier fusion cross-section.

So far different approaches have been proposed to analyze fusion cross section 

data which takes in to account these effects. The coupled channel method is a 

standard theoretical approach to study the effects of nuclear intrinsic degrees of 

freedom on the fusion cross section which consists in solving numerically the 

coupled channels equations that determine the wave functions of the relative 

motion. Since weakly bound nuclei may get dissociated very easily, it becomes 

necessary to include the coupling with the continuum. This is achieved through 

the Continuum Discreatized Coupled Channel (CDCC) [64-68] method 

devised by the Surrey group to study breakup and fusion reactions induced by 

weakly bound projectiles [67, 69-70]. The CC approach, however, becomes 

quite cumbersome when more and more number of channels are needed to be 

included in the analysis. Hence another approach based on Dynamic 

Polarization Potential (DPP) is found to be more appropriate in such cases. In 

the dynamic polarization potential approach the coupling between different 

excited states does not pose any problem as it can be considered as additive, so 

that the polarization potential induced by the coupling to two states is 

approximately the sum of the potentials corresponding to the coupling to each 

one independently. Thus dynamic polarization potential approach becomes 

more useful to include the coupling to large sets of states, like the continuum of 
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breakup states, for which standard coupled channels calculations become very 

difficult [71-72].

 An alternative formulation based on multidimensional quantum tunneling is 

given by the path integral approach. This approach is very convenient when the 

internal structure is represented by an algebraic model such as the interacting 

boson model. Also the effects of coupling between the nuclear structure and 

translational motion can be discussed in two limiting cases namely sudden and 

adiabatic approximation. These approximations are very useful for obtaining 

analytical results which provide a conceptual framework for understanding the 

fusion process.  For deformed nuclei, in which the excitation energies are very 

low, sudden approximation provides a reasonably good description of the data. 

In rotation-vibration coupling, sudden approximation can be utilized to reduce 

the size of the channel coupling. While in case of large excitation energy of 

first excited states the adiabatic approximation works very well. In the 

intermediate cases between sudden and adiabatic tunneling, the effects of the 

environment are not straightforward to illustrate in simple physical terms. 

Besides the channel coupling effects, it is very crucial to calculate separately 

the contribution of ICF and CF in TF for reactions induced by weakly bound 

nuclei. The first calculations of separate cross sections for CF and ICF 

processes were performed by Hagino, Dasgupta and Hinde [52-53], treating the 

reaction as a three-body problem in two dimensions and using classical 

physics. Subsequently, a three body Classical Trajectory Monte-Carlo (CTMC) 

model developed by K. Hagino and others [53] was a great step forward in this 

direction. This method follows the classical trajectories of breakup fragments 

after the breakup and thus provides an unambiguous separation between 

complete and incomplete fusion cross sections but this model does not fill a 

gap in the sense of assessing the importance of ICF and SCF. 

Further a three-dimensional classical dynamical model that treats breakup 

stochastically is proposed by A. Diaz-Torres for low energy reactions of 

weakly bound nuclei [54-56, 73]. It allows a consistent calculation of breakup, 

incomplete and complete fusion cross sections. In addition, the classical 

dynamical model (CDM) is advantageous in the sense that besides separate CF 

and ICF calculations one can calculate the no-capture breakup (NCBU) cross 
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section, angular and relative energy distribution of fragments also. It is 

important to mention that various channel coupling effects may be mocked up 

by introducing the energy dependence in the nucleus–nucleus potential. The 

energy dependent potential in conjunction with one dimensional Wong’s 

formula represent a very simple method to analyze, though qualitatively, 

excitation functions of various projectile–target combinations having different 

channel coupling effects. 

In the present work we have studied the relative contribution of ICF and CF in 

TF for reactions induced by 9Be on various targets using CDM and Wong’s 

formula in conjugation with energy dependent Woods–Saxon potential 

(EDWSP). After giving a brief introduction in chapter 1, the main steps 

involved in the derivation of Wong’s formula and the details of EDWSP are 

presented in chapter 2. The conceptual development of the CDM is outlined in 

chapter 3. The detailed discussion of our results regarding the complete, 

incomplete and total fusion cross section in near barrier energy region is given 

in chapter 4. Finally in chapter 5 we present the important conclusions and 

possible future extension of the present work.
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2.1  Barrier Penetration Model 

The barrier penetration model (BPM) is the simplest quantum mechanical way 

to analyze the fusion excitation functions. In general fusion excitation function 

of reactions involving heavy-ions depends strongly on the intrinsic degrees of 

freedom of the nuclei involved in collision. Nevertheless, the gross features of 

the elastic and the total reaction cross sections can be described by a simple 

Schrödinger equation in the space of the projectile–target separation degree of 

freedom by generalizing the potential to be complex energy dependent 

potential given as [1-4]

        (2.1.1))()()( riWrVrU optoptopt 

The explicit energy dependence in the potential is omitted for the sake of 

simplicity. The real part of the interaction, consisting of Columbic )(rV opt

and nuclear terms, can be written in the form 

 
      (2.1.2))()()( rVrVrV NC

opt 

where  is pure Coulomb term which arises because of the positive charge CV
possessed by the interacting nuclei and is a long-ranged repulsive term while  

which is associated with strong nuclear forces is a short ranged attractive NV

term. The imaginary part, , is a short-ranged function accounting for )(rW opt

the incident flux lost to excited channels. Within this approach, the reaction 

dynamics is governed by the following Schrödinger equation 

                 (2.1.3))()()]()([ )()( rErriWrVT optopt   

Here T is the kinetic energy operator for the projectile–target relative motion 

and E is its total energy.  The wave function  can be written as sum )()( r

of the wave functions corresponding to pure Coulomb scattering and ),( rksc
C




the scattering wave  arising from nuclear part of the scattering ),( rksc
N




potential that is

           (2.1.4)),(),()()( rkrkr sc
N

sc
C


 
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where  is the incident wave vector. The wave function is obtained k


),( rksc
C




by solving Eq. (2.1.3) by switching off potentials VN and under the optW
scattering boundary condition given by 

(2.1.5)



 




)())2ln(exp())(lnexp(
)2(

1),,( 2/3 
 CzrC f

r
kriikrzrkiikzzrk 

Above, is the scattering amplitude associated with the long ranged )(Cf

Coulomb interaction and is given by the following expression

       (2.1.6)
)2/(sin

]2)2/)cos1(ln(exp[
2

)( 2
0

2

2





iii

mv
ezzf TP

C




with  
)1(
)1()2exp( 0 


i
ii






and  is called Sommerfeld parameter. 
hv

ezz 2
21

Here is the phase shift in s-partial wave, is gamma function, and 0 )(n ezP

 are the charges on the projectile and target respectively,  is the relative ezT v
velocity of projectile-target system and is scattering angle. 

The scattering wave function corresponds to pure nuclear ),( rksc
N




interaction and is obtained by solving Eq. (2.1.3) by switching off VC term and 

retaining   and  terms under boundary conditionNV optW

 
      (2.1.7)r

krkrifrk N
r

sc ))]2ln((exp)([
)2(

1),( 2/3





 



Here is the scattering amplitude, associated with the short ranged )(Nf

nuclear interaction, which is usually expanded in partial waves

      (2.1.8)  
l

N
i

lN SePl
ik

f l )1()(cos)12(
2
1)( ,

2




with  as the Legendre polynomial,  as the Coulomb phase shift and lP 

 as the nuclear S-matrix. The elastic differential scattering cross-section ,NS

is given by the modulus square of the sum of scattering amplitudes through the 

expression
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     (2.1.9)
2)()()( 

NC ff
d

d




It is pertinent to mention here that because of the presence of the imaginary 

part in the potential, the usual continuity equation is not satisfied. But the 

modified continuity equation can be derived by using the following 

Schrödinger equation 

          (2.1.10) t
itrU opt

















)(
)(2

2

),(
2






Here is the reduced mass of projectile-target system i.e. 
TP

TP

mm
mm




where and  are the masses of projectile and target respectively. Pm Tm

Taking complex conjugate of Eq. (2.1.10), we get 

     (2.1.11)  
t

itrU opt




















)(
)(2

2

),(
2






Now, pre multiply Eq. (2.1.10) by and Eq.(2.1.11) by and then 
 )( )(

subtracting the resulting equations, we have 

 

(2.1.12)
 

  

























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

)()()()(

)(2)()(2)(
2)(

)(
)(

)(

),(),(

2

trUtrU

t
i

t
i

optopt






or 

  
(2.1.13)     )()()()()()(

2
)()( 2

2
 


  optiW
t

i





Further simplification leads to  

  (2.1.14)    )()()()()()()()( 2
2

 

  optW

it 





or

    (2.1.15)  )()(2.  

 optWj

t 



where
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     (2.1.16)      )()()()(

2 i
j




is called current density and 

    (2.1.17) )()(  




is called position probability density.                                

For stationary energy states that is for constant value of Eq. (2.1.15) ),( tr

becomes 

)()(2.  
optWj





or 

    (2.1.18)
2)(2.  optWj





In order to interpret the modified continuity equation, let us consider the case 

of non stationary states 

     (2.1.19))()(2.  

 optWj

t 



Since  is always a positive quantity, so right hand side of )()(),(  tr

Eq. (2.1.18) acts as a source of probability for negative value of  and acts optW

as a sink for positive value of . But for physical reasons is either zero optW optW

or positive and hence the particles are being absorbed. The absorption cross-

section is defined as the total number of particles absorbed in complete abs

configurational space in unit time provided a unit incident particles flux. For 

plane incident wave, wave density is unity and current density is , the 

k

absorption cross section can be obtained by integrating Eq. (2.1.18) over a 

sphere of radius R→∞ 

    (2.1.20) 












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0

2)(8. drW
k

dVj opt

V










Using Gauss-divergence theorem 
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    (2.1.21)  
SV

dSjrdVj


.ˆ.

Eq. (2.1.20) becomes 

        (2.1.22)  )()(
3)2( opt

abs W
E

k

Here we have divided right hand side by incident current as absorption cross 

section is defined for unit incident particle flux. 

In general the imaginary part of potential is given by the sum of separate 

contributions from fusion absorption  and absorption through direct FW

reaction channels  i.e.DW

     (2.1.23))()()( rWrWrW DFopt 

Above,  is a volumetric term and  is generally a surface term, )(rW F )(rW D

which is relevant at so that the fusion cross section and the total TP RRr 

cross section for direct reactions are given by the expressions 

    (2.1.24)  )()(
3)2( F

F W
E

k

     (2.1.25)  )()(
3)2( D

D W
E

k

For practical purposes, one carries out the partial-waves expansion [5] 

                 (2.1.26)    

l

lil
l kr

rku
eiPlrk l

),(
)(cos)12(

)2(
1);( 2/3

)( 




here  is the phase shift for  partial wave and is the Legendre l thl )(coslP

polynomial. Here  implies volume integration over complete   )()( FW

configurational space  i.e. d

 Neglecting spins we   .);();( )()()()(   
V

FF drkWrkW 

have

     (2.1.27)   

l
l

FF rkurdrWl
k

W 2
32

)()( );()()12(
)2(

4




Eq. (2.1.24) becomes

     (2.1.28)F
l

l
F Tl

k   )12(2

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with

                 (2.1.29) 2);()(4 rkurdrW
E
kT l

FF
l 

as fusion probability. Similarly

    
(2.1.30) D

l
l

D Tl
k   )12(2


with

     (2.1.31)
2);()(4 rkurdrW

E
kT l

DD
l 

Here is the wave function corresponding to  partial wave having );( rkul
thl

angular momentum  and is obtained by numerical integration of the l

following radial equation from the origin, where one sets  as 0)0;( kul

boundary condition.

                              
(2.1.32)

      0r,
r

r,
2 2
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 kuiWVE
d

kud
l

OPTl
eff

l




here  is given by l
effV

                                                                 
(2.1.33)

 
2

2

r2
1





llVVV NC

l
eff

The initial value of derivative can be chosen arbitrarily, since it only affects 

the overall normalization. The Eq. (2.1.32) can be rewritten as 

                                                                     (2.1.34)   r
r

r
,kuk

d

,kud
l

2
l2

l
2



 with

                                                              (2.1.35) OPTl
effl iWVEk  2

2




as the effective local wave number. Now if the effective local wave number 

varies sufficiently slowly with the distance so that 

1
k
1

d
dk

2
l

l 
r

as is frequently the case at sufficiently large distance from a turning point. 

Then using the JWKB approximation, the solution of Eq. (2.1.34) is
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(2.1.36) 
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The first term represents the outgoing wave and the second term ingoing 

wave. The ratio  depends on the nature of the potential near (internal 
l

l
B
A

0R

radius where the fusion starts and which is smaller than barrier radius ) and BR

on the condition imposed on  at r << . The ratio  r,kul 0R

 decreases with r for negative . If  












r

r
0R

l
l

l
l dkIm2exp

B
A

R OPTW lR

becomes negligible beyond (internal turning point), the outgoing branch ir

may be neglected and becomes [6] r,kul

                                                           (2.1.37) 
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Taking logarithm on both sides;
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The logarithmic derivative of  is obtained as r),(
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It is noted that depends only on  and its derivative and does 
0R

l
d
du

rr
 rlk

not depend on the values of optical potential in  region. Since the 0Rr

logarithmic derivative of wave function is given by Eq. (2.1.38), it is 

convenient to start the numerical integration at  instead of at the origin 0Rr

[6-9]. 

Now in order to present the fusion cross-section in a way which is suitable for 

approximation we substitute the Eq. (2.1.18) into Eq. (2.1.24) and obtain
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 The integration is carried out over the surface of a sphere of radius , FR

containing region where  is relevant that is so that  rFW  dRds F
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Above  is the radial unit vector, which corresponds to the normal to the r

spherical surface at the direction determined by . Since  ),( 

 [10], and the dot product  vanish, we haveLrirr
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Substituting Eq. (2.1.26) in to Eq. (2.1.41), integrating over the surface and 

using the orthogonality of Legendre polynomials we get
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radial current evaluated at .FRr 

Now comparing the Eq. (2.1.43) and Eq. (2.1.28) the fusion probability comes 

out to be 
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The major disadvantage of this equation is that it depends on arbitrary 

normalization of the radial wave function. In order to get rid of this 

disadvantage it is convenient to write  as the sumlu
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where and are, respectively, solutions of the radial equation with 
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lu )(
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incoming and outgoing boundary conditions at r →∞ and have the following 

asymptotic forms [11]
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where  is the S-matrix associated with the short-ranged potentials. The lS

incident radial current is now expressed in terms of  as )( )(
lu
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Now putting Eq. (2.1.51) into Eq. (2.1.48) we get
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Using this result, Eq. (2.1.44) takes the form 
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If, the imaginary potential associated with fusion absorption is taken as 

Woods–Saxon function of small radius , diffusivity and incoming wave FR

boundary conditions are assumed to be applicable at then a very 0RRF 

simple expression for can be obtained within the WKB approximation, F
lT

     (2.1.54)]2exp[)( WKB
WKB

F
lT 

with
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Here, since the imaginary potential vanishes from  to ∞, is real in FR )(rkl

the classically allowed region and at sub-barrier energies the integral can be 

evaluated between the internal and the external classical turning points  and ir

. That is,er
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where  One  of the important limitation of WKB ).()( rikrkl 

approximation for the fusion probability is that it is accurate at collision 

energies well below the potential barrier, VB, but leads to wrong results around 

the barrier. At E = VB,  while the quantum mechanical value is 1)( WKB
F

lT

 This difficulty is removed in an improved Kemble’s version of .2/1F
lT

WKB approximation [12]. In this modified version, the transmission of 

progressive matter wave through an approximately parabolic potential barrier 

was considered. In case when incident projectile energy is lower than the top 

of the parabolic hill and the projectile are incident from the left of potential 

hill then the constancy of current density leads to the following transmission 

co-efficient
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Further if the energy of incident particles is more than the maximum of 

potential hill then the integrand will be imaginary and the transmission co-

efficient becomes 

  (2.1.57b) ]2exp[1
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 . This problem was also discussed in the work of Hill and )(2 BVEp  

Wheeler [13] under the following parabolic approximation for potential 
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here   is the energy deficit relative to the top of the barrier, divided by HW

characteristic quantum energy, Ecurv, which is fixed by the curvature of the top 

of the barrier and by the effective mass associated with the fission mode of 

deformation. Ecurv can be visualize by reversing the sign of potential so that 

barrier peak becomes a trough and the system will behave like a harmonic 

oscillator in the neighborhood of the critical point, with a natural circular 

frequency,  and a characteristic quantum energy, . Above E is the l l

incident beam energy and  is the barrier height. The Hill–Wheeler lB

approximation for the fusion cross sections was further modified by Wong 

[14] considering the following assumptions, 
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For further simplifications, let us assume that 
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As large number of the partial waves contribute to the fusion cross-section, the 

summation over  may be changed into the integrationl
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In order to evaluate the integral, let us change the variable of the integration 

from to x by assuming so that Eq. (2.1.70) becomesl 2]2/1[  lx
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Now by performing the integration with respect to ‘t ’, one obtains 
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By putting the values of  and  from Eqs. (2.1.67) and (2.1.68) into Eq. b a
(2.1.73) we get the following final expression of Wong’s formula for the 

fusion cross-section
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Here RB, VB and  are barrier position, barrier height and barrier curvature 

respectively and play very crucial role in the determination of fusion cross 

section. It is important to mention that results of Wong’s approximation are 

better than that of Hill-Wheeler approximation which may be ascribed to the 

fact that in Wong’s formula the unrealistic transparency of the parabolic 

barrier is partially corrected. 



37

2.2           The Interaction Potential  

The barrier position which strongly depends on sizes of colliding nuclei is 

parameterized as [15].  The barrier height, fmrAArR bTPbB 4.1);( 3/13/1 

which is very sensitive barrier parameter, is the value of total interaction 

potential,

       (2.2.1) ),()()(),( LRVRVRVLRV RotCoulnuclT 

for two colliding nuclei at R=RB. Here  ,  and  stands for the nuclV CoulV RotV
nuclear, Coulomb and the centrifugal potentials respectively. The Coulomb 

potential may be conveniently taken as the potential due to uniformly charged 

spheres of radii RP(projectile radius) and RT(target radius) such that
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and the centrifugal term is given by
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Above ZP and ZT are the atomic numbers of projectile and target. The R is the 

relative distance between the centers of the projectile and the target, μ is the 

reduced mass of the projectile–target system and L is the angular momentum 

quantum number. For the nuclear part of the potential , we employ three nuclV
parametric energy dependent Woods–Saxon potential
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with V0, R0 and ‘ ’ as the depth, range and diffuseness parameters. The a
energy dependence in the potential is introduced through the diffuseness 

parameter, which defines slope of the nuclear potential in the tail region of 

Coulomb barrier where fusion starts to take place, by the following relation 

[16, 17]
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The other two parameters of the potential are evaluated by using 
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Besides the barrier position and height the barrier curvature is also an 

important ingredient for the calculations and is related to the double derivative 

of the potential at barrier position through the following expression [18]
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An alternative determination of potential parameters may be used wherein 
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which is slightly modified form of expression given in Ref.[15, 3] such that 

the minimum diffuseness becomes 0.63fm with the range and depth 

parameters are obtained by using Broglia-Winther parameterization [19] as 

under

R0= RP+RT+0.29

3/1
)(

3/1
)()( 98.0233.1  TPTPTP AAR

V0= 16πγŘa(E)

Ř=RPRT/(RP+RT)
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with γ0= 0.95 MeVfm-2. 

To extract CF (or ICF) from TF, a phenomenological selection function given 

by 
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is used in such a way that we have 
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3.1                       Classical Dynamical Model         

The classical dynamical model used to describe nuclear reactions involving 

loosely bound nuclei is based on the assumption that the projectile–target 

relative motion can be treated classically [1-2]. Within this approach, when a 

weakly bound projectile is incident on target T with energy E0 and orbital 

angular momentum L0, its motion is along a determinate path with definite 

distance of closest approach Rmin(E0, L0). The path of the projectile is traced 

by solving the classical equation of motion under the influence of mutual 

Coulomb and nuclear forces between the projectile and target. This interaction 

generate a Coulomb barrier for head-on (L0=0) collisions of height  at a PT
BV

separation . Since projectile is weakly bound it is highly prone to PT
BR

dissociate and the process of breakup of projectile is assumed to be 

completely random process. Let be the density of local breakup )(RP L
BU

probability such that the probability of breakup of projectile in the region R to 

R+dR is , R being the projectile target relative separation. For dRRP L
BU )(

such a breakup event to occur there must be a finite probability of surviving 

the projectile in the interval ∞ to R, let it be S(R). Now it is quite obvious that 

S(R+dR) =S(R)[1 − ] represents the probability of survival of dRRP L
BU )(

projectile at R+dR.

Rearranging terms, we have

)()()()( RPRS
dR

RSdRRS L
BU



     (3.1.1) )()()( RPRS
dR

RdS L
BU

At R=∞, the projectile must survive that is S(∞)=1. Under this boundary 

condition the above equation i.e. 

      (3.1.2) dRRP
RS
RdS L

BU )(
)(
)(



can be easily integrated to give 
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      (3.1.3)       ])(exp[)( 



R

L
BU dRRPRS

If <<1 then S(R) may be approximated, by retaining only first 


R
L

BU dRRP )(

two terms of exponential expansion, as 

      (3.1.4) 



R

L
BU dRRPRS )(1)(

and the breakup probability at R which is simply 1-S(R), is given by 

.       (3.1.5) 



R

L
BUBU dRRPRP )()(

Since the breakup may occur either when the projectile is approaching to the 

target or when it is going away from the target after crossing, we may write

.       (3.1.6) 



min

)(2)( min
R

L
BUBU dRRPRP

On the empirical ground or on the basis of the CDCC calculations, it is found 

that the integral in above equation can be expressed as an exponential function 

of distance of closest approach that is [1-3]

      (3.1.7)   )exp()( minmin RARPBU 

It immediately leads to the fact that the local breakup function at any arbitrary 

R has the same exponential form . )exp()( RRPBU 

The position of breakup of the projectile on its orbit is determined by 

sampling a breakup radius RBU on the interval [Rmin(E0, L0), ∞] with the 

weighting which clearly place most RBU in the vicinity of Rmin. It is )(RPBU

worth noting that if the chosen L0 is less than the critical partial wave for 

projectile fusion, Lcr, then the associated trajectory would normally lead to 

CF, i.e., . For these L0 ,  is set to be , when sampling PT
BRR min minR PT

BR

RBU, and all breakup events are confined to the incoming branch of the 

projectile trajectory. On the other hand for L0 >Lcr breakup can take place on 

both the entrance and the exit branches of the classical orbit, which are 

sampled equally. Thus the function given by Eq. (3.1.7) is used as a sampling 
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function to determine the position on the trajectory at which the projectile gets 

dissociated instantaneously into constituent fragments F1 and F2. 

For the sake of simplicity, it is assumed that the interaction of fragments with 

the target and with each other can be described by a two-body central 

potential. At the breakup position the dynamical variables like inter-fragment 

separation, relative angular momentum of fragments and the total internal 

energy of the excited projectile are all determined through Monte Carlo 

simulation. Initially the separation between two fragments in the projectile is 

calculated by using radial probability distribution which in turn is obtained by 

employing a Gaussian function for the radial part of ground state wave 

function of the projectile. This Gaussian approximation is well justified for 0+ 

ground state of the projectile. 

The orientation of inter-fragment separation is isotropic that is it may be 

chosen randomly over 4π solid angle. The relative angular momentum of 

fragments is sampled uniformly on the interval [0, ] and its orientation is max

chosen randomly among the directions orthogonal to the orientation of inter-

fragment separation. Regarding total internal energy, on the basis of faster 

convergence and similar outcomes instead of a uniform function, an 

exponentially decreasing function is chosen to sample it between the top of 

the barrier and a chosen maximum . It is worth mentioning that both  max max

and are increased until the convergence occurs. Now the instantaneous max
velocity of the fragments and the target in the centre of mass frame at the 

point of breakup is determined by employing energy, linear momentum and 

angular momentum conservation laws. After the breakup, the two body 

system becomes a three body system and the separation between the three 

bodies as well as that between projectile and target is known. The total energy 

of the three body system is given by  PTPTTTTTtot PrUrUE  2/)()( 2
221112 

is conserved and is equal to the total energy  in the 0E
mm

mE
PT

T
total 



overall centre-of-mass (CM) system. Here  is the relative energy of the 12

fragments of the projectile, is interaction potential between fragment TU )2(1
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1(2) and the target and  is the relative linear momentum of the projectile PTP

and target. The energy conservation immediately provides the modulus of 

relative velocity between P and T . )/( PTPTPT PV 

The knowledge of and , velocities of P and T with respect to overall Pv
~

Tv
~

CM, is required for providing initial condition for subsequent propagation of 

three bodies in time. These velocities are related to each other through

       (3.1.8) P
T

P
T v

m
m

v
 ~~ 

       (3.1.9)TPPT vvV
 ~~ 

The magnitude of velocity  is already known through energy conservation, PTV


its direction is determined by using conservation of angular momentum. The 

total angular momentum  in overall CM system is known as PTtot LL





 12

. Here  and are the relative angular )(0 CMPtotal VvbmL


 vb 



,, 012 CMV


momentum of the fragments of projectile, impact parameter, velocity of 

projectile in laboratory system and the CM velocity respectively. The , PTL


angular momentum associated with relative motion of P and T about CM, is 

known and is written as

 PPTPPT vRmL
 ~

Now splitting in radial and transverse component, we may writePv
~

   (3.1.10) qvrvv q
P

r
PP


)()( ~~~ 

with  and  when . The transverse component PTPT RRr /


 rnq 
 PTPT LLn /




of the velocity of projectile and target are given by

 and )/(~ )(
PTPPT

q
P RmLv 

)/(~ )(
PTTPT

q
T RmLv 

respectively. Now using Eqs. (3.1.8) and (3.1.9), it is quite straight forward to 

obtain the following expression for radial velocity component  
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     (3.1.11)











































T

P

T

Pq
PPT

r
P

m
m

m
m

vV

v
1

1~

~

2/12

)(2

)(

These velocity and position vectors of the fragments of the projectile and 

target are transformed to the laboratory system using Galilean transformation. 

The basic strategy to numerate the ICF, CF and NCBU events is to assume 

that a fragment is fused with the target if the trajectory takes it within the 

fragment target barrier radius. Let N be the number of breakup events sampled 

and No, N1 and N2 be the number of events with 0,1and 2 captured fragments 

respectively, then the ratio i=Ni/N [i=0(NCBU), 1(ICF) or 2(CF)] provides 𝑃

the relative yields of these three processes with 0+ 1+ 2=1 and the absolute 𝑃 𝑃 𝑃

probabilities for these processes are [1-2]

     (3.1.12)0min000
~)(),( PRPLEP BU

                   (3.1.13)1min001
~)(),( PRPLEP BU

    (3.1.14)2min0min002
~)()()](1[),( PRPLLHRPLEP BUcrBU 

with H(x) as the Heaviside step function and Lcr as the critical partial wave for 

fusion. The first term in the expression of corresponds to direct ),( 002 LEP

complete fusion (DCF) while the second one to sequential complete fusion 

(SCF). The cross sections for these processes are calculated by using 

following standard prescription

    (3.1.15) 
0

),()12()( 000
2

0
L

ii LEPLE 

where λ2=ћ2/(2 E0) is the de-Broglie wavelength and  𝜇 𝜇 = 𝑚𝑃𝑚𝑇/(𝑚𝑃 + 𝑚𝑇)

is the reduced mass of the projectile-target system. 

This model is implemented in the code PLATYPUS [4]. Although this method 

is quite successful in explaining the CF, ICF and TF data at above barrier 

energies but fails at around and sub barrier energies. The failure of the model 

at around and sub barrier energies may be attributed to the fact that at these 
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energies the quantum mechanical tunneling effect becomes significant and 

cannot be ignored. Here we have incorporated quantum mechanical tunneling 

correction based on WKB approximation [5] in this model. 
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3.2      WKB Approximation and Tunneling 

Factor          

The WKB method is based on the expansion of wave function in powers of  

and is quite useful for approximate solution of quantum mechanical problems 

in appropriate cases.

Consider the following basic Schrödinger wave equations in one dimension 

  for                                                             (3.2.1)0)(2
2

2

 uxk
dx

ud
02 k

for        (3.2.2)0)(2
2

2

 ux
dx

ud  02 

such that 

  
when                                           (3.2.3)   )(21)( xVExk  


ExV )(

and

 when       (3.2.4)        ExVx  )(21)( 


ExV )(

are always real. For convenience, let us assume that 

                                                                             (3.2.5)  ))(exp()( xSiAxu




be the solution of Eq. (3.2.1) which on substitution results is 

       
(3.2.6) 022

2

22









 k
dx

Sdi
dx
dS

Now expanding S(x) in powers of  

                   (3.2.7) ...........
2

)()()()(
2

210 


 xSxSxSxS

substituting the expansion in Eq.  (3.2.6) and equating the coefficients of 

terms having raised to power one, we get

                                                                   (3.2.8)0)(22''
0  VES 

and

      
(3.2.9)02 '

1
'
0

''
0  SSiS
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These Eqs. may be rewritten as

                 (3.2.10)  0222'
0  kS

and

                (3.2.11)
k

ikS
2

'
'
1 

Integration of (3.2.10) immediately gives 

     (3.2.12)
x

dxxkxS ')'()(0 

and that of (3.2.11) gives

                                             (3.2.13))(ln
21 xkiS 

here the arbitrary constants of integration are omitted because these may be 

absorbed in A.

Now if only first two terms in the expansion of S are retained, then

     (3.2.14))exp()exp( 10 iSSiAu




Using Eqs. (3.2.12) and (3.2.13) we get

   for     (3.2.15)   )exp()( 2/1 
x

kdxi
k

Axu EV 

Similarly the approximate solution of Eq. (3.2.2) is  

  for                  (3.2.16))exp()( 2/1 
x

dxBxu 
 EV 

These solutions may be treated accurate in that part of the domain of x where 

 that is when the potential energy changes so slowly that the 1
2

'
2 

k
k

momentum of particle is always constant over many wavelengths. But this 

condition does not hold good near turning point and hence these approximate 

solutions are asymptotically valid.

Since wave Eqs. (3.2.1) and (3.2.2) are regular at a turning point there are 

analytic solutions at these points which have above asymptotic form. In order 

to find exact solution having desired asymptotic form consider that the origin 



49

of x lies at a turning point,  to the right of the turning point (positive ExV )(

x) and that

 . 
x

kdxx
0

)(

Now if , C being positive constant, Eq. (3.2.1) have solutions nCxxk )(2

,     (3.2.17) )()( 
mJ

k
Axu 

2
1



n

m

with  as a Bessel function and it agrees asymptotically with Eq. (3.2.15). To J

verify this let us rewrite Eq. (3.2.1) with an additional term  )(x

                                                                    (3.2.18) 0)( 2
2

2

 uk
dx

ud 

Substitution of Eq. (3.2.17) in to Eq. (3.2.18) shows that the new equation is 

satisfied if we define  as

    (3.2.19) 2

2
2

2

2

)4/1(
2

''
4

'3)(


 km
k

k
k
kx 

The expansion of in powers of x results in the following leading term in the 2k

expansion of , )(x

   (3.2.19a) 
6

3
)6)(4(2

)5(3)(
2

0 






 n

b
nn
anx

x


Thus in the asymptotic region and is not negligible in comparison to 2k

 in a region around turning point. But quite small value of indicates 2k )0(

that for slowly varying potential Eq. (3.2.17) is a good approximation to 

actual solution of Eq. (3.2.1)

For simplicity we consider the case  corresponding to linear turning point 1n

as shown in Fig.(3.2.1). In region 1 ( >0) Eq. (3.2.1) is used while in region x

2 ( ) Eq. (3.2.2) is used. Putting  and  so that 0x 
x

kdxx
0

1 )( 
0

2 )(
x

dxx 

both and  increases as  moves away from the turning point, the two 1 2 x

independent solutions in each of the two regions become 
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                 )()( 1)3/1(
1

1 



  J

k
Axu

(3.2.20)

    (3.2.21))()( 2)3/1(
2

2 




  IBxu

Fig. 3.2.1 A typical linear turning point is shown at the origin.

Using the leading terms of the power series expansions for these functions that 

is 

              
)

3
11(

2
1

)(

3/1

1

01)3/1(











 






 xJ

(3.2.22)

               (3.2.23)
)

3
11(

2
1

)(

3/1

2

02)3/1(











 






 xI

 and ;  the behavior of the near  is 2/3
1 )3/2( xc 2/3

2 )3/2( xc su' 0x

given as
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     (3.2.24)




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cAu

x
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Au

    (3.2.25) 





























































3
2
3
1

3
2

,

3
4
3
1

3
2

3/12/1

2

3/12/1

2

cBu

x
c

Bu

clearly  joins smoothly on to  if  and  joins smoothly on to 
1u 

2u   AB 
1u

 if 
2u   AB

These relations between the coefficients and the asymptotic expansions 

     (3.2.26)





    46

cos2)( 1
1

1)3/1(



 xJ

     (3.2.27)











 







 



i

x eeeI



 3

1
2
1

2
2)3/1( .2)( 22

can be used to obtain asymptotic forms like Eq. (3.2.15) and Eq. (3.2.16) for 

the two independent solutions and  in two regions. u u







   



12
5cos2

1


k
u x

        (3.2.28)







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


6

5
2

2

2
1 i

x ee





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





   



12
cos2

1


k
u x

          (3.2.29) 









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


62

2

2
1 i

x ee






The asymptotic form of any linear combination of and can be found u u
from these equations which may be used to obtain convenient connection 

formulas between the asymptotic WKB solutions in the two regions. For 

instance the combination which contains only the decreasing   uu
exponential, yields the first connection formula

                (3.2.30) 





 

4
cos1

2
1

12/12/1
2






k
e

Eqs. (3.2.1) and (3.2.2) becomes the usual radial equation if  is replaced by r x

and  is replaced by  which effectively represent a )(xV 2

2

2
)1()(

r
llrV







potential barrier as shown in Fig. (3.2.2) 

      
Fig.3.2.2 Single particle of energy E penetrating a barrier.
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We have already seen that in region 2, the wave function is a real exponential 

of the form (3.2.16).  If the integral  is appreciable larger than unity then 
2

1

r

r

dr

the behavior of the solution is dominated by large ratio of the wave function at 

the two turning points. The ratio of the square of wave function is termed as 

barrier penetration factor T and is given as 

                         (3.2.31) 







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2

1

)(2exp
r

r

drrT 
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(3.2.32)
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2

2
))1()(21)(
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4.1                               Results and Discussion

In the present work we have analyzed the fusion excitation functions of 

reactions induced by weakly bound nuclei 6,7Li and 9Be on massive targets 

having mass number greater than or equal to 152 at around barrier energies 

with a special emphasis on relative contribution of CF and ICF in TF for these 

reactions. Theoretically different models are being used for separate 

calculations of CF and ICF [1-11]. Here we have adopted the simplest model 

developed by Diaz-Torres et al [10] which is based on classical considerations. 

However, this model works well only in the above barrier energy region and 

fails completely at near and below barrier energies as will be described in 

detail in section 4.2. Since it is quite intuitive that at sub barrier energies 

fusion occurs through quantum mechanical tunneling mechanism, we have 

incorporated these effects in the analysis and so obtained results are discussed 

in section 4.3. Further another simple model based on Wong’s formula in 

conjunction with the energy dependent Woods-Saxon potential is employed 

for a phenomenological description of CF and TF data and results are 

presented in section 4.4. In addition, a detailed description of determining 

optimum value of barrier radius for reactions involving deformed nuclei is 

given in section 4.5.
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4.2 Contributions of ICF in 9Be+169Tm, 
181Ta and 187Re Fusion Reactions 

In this section we present, along with detailed discussion, the results of 

calculations of the fusion excitation functions for reactions induced by 9Be on 
169Tm, 181Ta and 187Re targets in near barrier energy region using the code 

PLATYPUS [9-12] wherein ICF and CF events are calculated separately. 

Among various inputs, the centroid and width of the Gaussian function that 

approximates the radial probability distribution of projectile ground state wave 

function are important ingredients needed in the calculations. In order to 

determine the radial part of the ground state wave function of the projectile it 

is assumed that the nucleus 9Be may be approximated as a system consisting 

of two very loosely bound alpha particles. Because of the high probability of 

breakup of 9Be into 8Be* and a neutron it is quite justified to assume pseudo-
8Be containing two alpha particles as projectile. The radial ground state wave 

function of this alpha+alpha system bound with 0.5MeV energy, under the 

assumption of a nodeless s-state, is obtained by solving the concerned 

Schrödinger equation for Woods-Saxon potential with 32.66MeV, 1.25fm and 

0.62fm as depth, range and diffuseness parameters. The so obtained wave 

function is fitted with a Gaussian function with 2.17fm and 3.98fm as the 

centroid and width. Besides these, the parameters of the breakup function that 

is A and α are needed in the calculations and are determined by using the 

experimental breakup probability information at two different values of Rmin 

(or energy) in the vicinity of Coulomb barrier [9]. The values of the 

parameters A and α for different systems are listed in table 4.2.1.

In Fig. 4.2.1 the CF and TF (CF+ICF) cross sections and in Fig. 4.2.2 the ICF 

cross sections are plotted as a function of incident beam energy for 9Be+169Tm 

system and are compared with the corresponding experimental data taken from 

Ref. [14]. It is clearly seen that the CF and TF data are slightly under predicted 

while the ICF data are slightly over predicted at above barrier energies. While 

at sub barrier energies cross sections for all the three fusion processes are 

significantly under predicted. Further it is interesting to note that theoretically 
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percentage contribution of ICF is found to be 35-40% at above barrier energies 

which is quite large in comparison to that observed experimentally (See Fig. 

4.2.3). It is worth mentioning that the predicted contribution of ICF in TF at 

above barrier energies is in good agreement with the measurements for 9Be+ 
181Ta, 187Re [13-14] systems while it is significantly over predicted for 9Be+ 
169Tm system. This may be attributed to the fact that the nucleus 169Tm has 

zero quadruple moment value while the nuclei 181Ta and 187Re are prolate 

nuclei having quadruple moment values as 3.3b and 2.1b respectively. It 

clearly indicates that the value of quadruple moment of interacting nuclei play 

an important role in fusion excitation functions. 

Table 4.2.1 The values of breakup function parameters A and α 

along with the breakup probability (PBU) at two different values of 

Rmin used to determine A and α for different projectile-target 

combinations.

System PBU Rmin

(fm)

A α

(fm-1)

0.0108 15.19Be+169Tm

Ref. [14] 0.0371 13.6

2587 0.82

0.0185 14.59Be+181Ta

Ref. [13]
0.0558 13.2

4116 0.85

0.00406 16.39Be+187Re

Ref. [14] 0.0315 13.8

5644 0.864
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Fig.4.2.1 Fusion excitation functions for CF and TF processes, 

calculated through code PLATYPUS, are compared with the 

corresponding data taken from Ref. [14] for 9Be+ 169Tm system.

32 36 40 44 48
1

10

100

1000

32 36 40 44 48
1

10

100

1000

 ICFTh

Fu
sio

n 
cr

os
s 

se
ct

io
n(

m
b)

Ec.m.(MeV)

 ICFexp

 

Fig.4.2.2 Fusion excitation function for ICF process, calculated 

through code PLATYPUS, for 9Be+169Tm system is compared with 

the corresponding data taken from Ref. [14]



59

0.9 1.0 1.1 1.2 1.3 1.4

0.2

0.3

0.4

0.5

0.6

 IC
F/

TF

Ec.m/VB

 Th
 Exp

Fig.4.2.3 Ratio of ICF and TF cross sections calculated using the 

code PLATYPUS is plotted as a function of Ec.m./VB  for 9Be+169Tm 

system. [Data taken from Ref. [14]]

In Fig. 4.2.4 the CF and TF (CF+ICF) cross sections are plotted as a function 

of incident beam energy for 9Be+181Ta system and are compared with the 

corresponding experimental data taken from Ref. [13]. The experimental CF 

and TF cross sections are very well reproduced at energies greater than and 

equal to 1.14 times VB while for energies smaller than 1.14VB the calculations 

significantly under estimate the observations where VB is the height of the 

barrier between interacting nuclei. In fact, at above barrier energies the 

quantum mechanical tunneling effects are not significant hence fusion can be 

described very well by the classical model resulting in a very good agreement 

between data and predictions. However, at around barrier energies along with 

the quantum mechanical tunneling various channel coupling effects play very 

important role in the determination of fusion cross section. Since in the 

classical dynamical model which is implemented in the code, these effects 

responsible for sub barrier fusion enhancement are not taken into account and 

hence the experimental data are significantly underestimated in sub barrier 

energy region. 
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Fig.4.2.4 Fusion excitation functions for CF and TF processes, 

calculated using the code PLATYPUS, for 9Be+181Ta reaction are 

compared with the experimental data taken from Ref. [13] 

Similar trend prevails for ICF originating from one alpha absorption by the 

target as shown in Fig. 4.2.5. In order to assess the contribution of ICF in TF 

more conspicuously, the variation of the ratio of σICF/σTF with energy is 

compared in Fig. 4.2.6 with the corresponding experimental ratio. Both the 

predictions and data indicate that on an average 30-32% of TF is ICF at above 

barrier energies while the contribution of ICF increases significantly at near 

and below barrier energies.
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Fig.4.2.5 Fusion excitation function for ICF process, calculated 

using the code PLATYPUS, for 9Be+181Ta system is compared with 

the data taken from Ref. [13]
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Fig.4.2.6 Ratio of ICF and TF cross sections calculated using the 

code PLATYPUS is plotted as a function of Ec.m./VB  for 9Be+181Ta 

system. [Data taken from Ref. [13]]
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In Figs 4.2.7 through 4.2.9, the excitation functions for various fusion 

mechanisms induced by 9Be on 187Re target at around barrier energies are 

compared with the corresponding data taken from Ref. [14]. The percentage 

contribution of ICF in TF for 9Be+187Re system is found to be nearly 25-30% 

in above barrier energy region which is in agreement with the data. 
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Fig.4.2.7 Fusion excitation functions for CF and TF processes, 

calculated using the code PLATYPUS, for 9Be+187Re reaction are 

compared with the experimental data taken from Ref. [14] 
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Fig.4.2.8 Fusion excitation function for ICF process, calculated 

using the code PLATYPUS, for 9Be+187Re system is compared with 

the data taken from Ref. [14]
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Fig.4.2.9 Ratio of ICF and TF cross sections calculated using the 

code PLATYPUS is plotted as a function of Ec.m./VB  for 9Be+187Re 

system. [Data taken from Ref. [14]]
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4.3                               The Tunneling Effect 

We have seen in the preceding section that at energies higher than barrier 

energy the matching between the data and prediction is excellent whereas at 

energies quite close to the barrier and much smaller than the barrier the theory 

completely fails to explain the data. The obvious reason for this behavior is 

that the quantum mechanical tunneling effects play a significant role in the 

near and sub barrier energy region. Owing to absence of tunneling in classical 

picture, no fusion is expected at energies smaller than the barrier energy and 

hence the fusion cross section becomes zero very rapidly. Since the 

phenomenon of tunneling is a typical quantum effect, it cannot be introduced 

in a model based on classical ideas. However a correction factor arising due to 

the quantum mechanical tunneling may be conveniently included in the 

analysis. Basically, the quantum mechanical tunneling corresponds to non-

zero probability of finding an object at a position where it is never observed 

classically. In the present case classically neither of the fragments is expected 

to be inside the target. But quantum mechanically there is a finite probability 

of finding either one or both the fragments inside the target leading to ICF and 

CF processes. Consequently the total flux available for classically allowed 

NCBU channel reduces. Thus incorporation of tunneling correction consists in 

multiplying the cross section of classically possible reaction channel that is 

NCBU, at sub barrier energies, by a tunneling factor which reduces flux 

available for this channel. Equivalently, some of the flux from classically 

allowed process has gone to classically forbidden channels. In the code it is 

assumed that the reaction between collision partners occurs only through CF, 

ICF and NCBU channels. Since at sub barrier energies CF and ICF channels 

are closed, all the incident flux goes to NCBU channel. If only one of the 

fragment is assumed to tunnel through the barrier the total flux is divided into 

ICF and NCBU channels. It is important to note that the fragments of 8Be are 

symmetrical and hence ICF1 and ICF2 both represent the same channel. On 

the other hand when both the fragments tunnel total flux is distributed among 

CF and NCBU channels. In fact it is assumed here that the flux to CF channel 

is that transferred from NCBU channel since the breakup has already occurred. 
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Thus the only possible mode of CF to occur is through the SCF process. When 

such a correction factor is taken into account in the analysis it improves to a 

great extent the matching between data and predictions in near and sub barrier 

energy region as shown in Fig.4.3.1. The tunneling factor depends on incident 

beam energy. It varies from unity at barrier energy to nearly zero at deep sub 

barrier energies. However on empirical grounds, we have incorporated 

tunneling effects in energy region where the value of tunneling factor is less 

than or equal to 0.25 because the experimental observation indicates that 

nearly 75% events are NCBU. As the energy decreases, the tunneling factor 

decreases and hence the contribution of both ICF and SCF channels reduces. 

At deep sub barrier energies almost all the events are NCBU. In this energy 

region both the fragments of the projectile have a sufficiently low energy so 

that they get scattered before absorption. Similarly, as a consequence of 

tunneling correction the experimental ICF cross section could also be 

reproduced very well as shown in Fig. 4.3.2. 
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Fig.4.3.1. Fusion excitation functions for CF and TF processes, 

calculation through code PLATYPUS with tunneling correction, 

are compared with the corresponding data taken from Ref. [14] for 
9Be+169Tm system.
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Fig.4.3.2 Fusion excitation function for ICF process, calculated 

through code PLATYPUS with tunneling correction is compared 

with the corresponding data taken from Ref. [14] for 9Be+169Tm 

system.

In Figs. 4.3.3 and 4.3.5 the excitation functions of complete fusion and total 

fusion processes are compared with corresponding data taken from Ref. [13] 

and [14] respectively at around barrier energies for 9Be+181Ta and 9Be+187Re 

systems. The ICF excitation functions for these systems along with the data 

taken from Ref. [13] and [14] are plotted in Fig. 4.3.4 and 4.3.6 respectively. 
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Fig.4.3.3 Fusion excitation functions for CF and TF processes, 

calculation through code PLATYPUS with tunneling correction, 

are compared with the corresponding data taken from Ref. [13] for 
9Be+181Ta system.
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Fig.4.3.4 Fusion excitation function for ICF process, calculated 

through code PLATYPUS with tunneling correction is compared 

with the corresponding data taken from Ref. [13] for 9Be+181Ta 

system.
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Fig.4.3.5 Fusion excitation functions for CF and TF processes, 

calculation through code PLATYPUS with tunneling correction, 

are compared with the corresponding data taken from Ref. [14] for 
9Be+187Re system.
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Fig.4.3.6 Fusion excitation function for ICF process, calculated 

through code PLATYPUS with tunneling correction is compared 

with the corresponding data taken from Ref. [14] for 9Be+187Re 

system.



69

The comparison between data and prediction made in these figures is 

interpreted in the same way as that for Figs. 4.3.1 and 4.3.2. However, it is 

very interesting to note that both CF and ICF cross sections and hence TF 

cross section at energies near and below the barrier is slightly over estimated 

for 9Be+169Tm system while these are slightly underestimated for 9Be+181Ta 

and 9Be+187Re systems. It may be ascribed to the fact that the tunneling 

reduces with the increasing mass-asymmetry of the system.
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4.4 Energy Dependent Woods-Saxon 

Potential and Fusion

Besides classical dynamical model, we have adopted an alternative procedure 

to explain the data which consists in assuming that the contribution of ICF in 

TF is the same as that predicted by code platypus for above barrier energy 

region and employing this assumption in a simplified fusion model based on 

Wong’s formula and energy dependent Woods–Saxon potential [EDWSP] 

[15-16]. Although any of the fusion model may be used for this purpose, but 

this model is simplest one wherein various channel coupling effects are 

simulated through the introduction of energy dependence in the potential. 

Using this approach we have analyzed the ICF, CF and TF excitation 

functions data for 9Be+181Ta and 187Re systems at around barrier energies. The 

so obtained fusion excitation functions for CF and TF reaction mechanisms 

are compared with the corresponding experimental data taken from Ref. [13] 

for 9Be+181Ta system are shown in Fig.4.4.1. For above barrier energy region, 

fusion cross sections calculated through code platypus and for below barrier 

energy region, calculations are performed through EDWSP model. 
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Fig.4.4.1 Fusion excitation functions for CF and TF processes for 
9Be+181Ta reaction, calculated using code PLATYPUS at Ecm> 

1.14 VB MeV and using Wong’s formula with EDWSP for Ecm< 

1.14 VB, are compared with the experimental data taken from Ref. 

[13].

It is clearly seen that the CF data are very well explained over entire energy 

regime while the TF data are slightly under-predicted in the deep sub-barrier 

energy region. Although most of the channels coupling effects are already 

imitated through energy dependence in potential, the slight mismatch between 

TF data and prediction at deep sub-barrier energies may be ascribed to the fact 

that the contribution of ICF is larger than that predicted by code platypus.  It 

may be seen more clearly in Fig.4.4.2 where ICF fusion excitation function is 

compared with the corresponding experimental data [13]. The matching 

between data and calculations could be achieved by considering 45–48% 

contribution of ICF in TF. However, the so obtained information about the 

contribution of ICF in TF is not unambiguous. Nevertheless one obtains a 

fairly good estimate regarding the relative importance of ICF and CF 
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mechanisms in below barrier energy regime. It is important to mention here 

that the contribution of ICF in below barrier energy is more than that for above 

barrier energies. For 9Be+ 187Re system almost similar results have been found 

as shown in Figs. 4.4.3 and 4.4.4.
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Fig.4.4.2 Fusion excitation function for ICF process for 9Be+181Ta 

reaction, calculated using code PLATYPUS at Ecm> 1.14 VB MeV 

and using Wong’s formula with EDWSP for Ecm< 1.14 VB, is 

compared with the experimental data taken from Ref. [13].
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Fig.4.4.3 CF and TF cross section for 9Be+187Re calculated by 

code platypus (for E/VB ≥1.07) and by EDWSP model (for 

E/VB≤1.07) are compared with the experimental data taken from 

Ref. [14].
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Fig.4.4.4 The ICF cross section for 9Be+ 187Re calculated by code 

platypus (for E/VB ≥1.07) and by EDWSP model (for E/VB≤1.07) 

are compared with the experimental data taken from Ref. [14].
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 Further in order to account for the proper energy dependence of the relative 

contribution of CF and ICF in TF we propose a selection function which 

represents the fact that at barrier energy, there is a strong competition between 

the CF and ICF processes as both are equally probable. While at energies 

much higher than the barrier energy, CF predominates over ICF and vice versa 

at very low energies. The Fig. 4.4.5 shows that the contribution of ICF varies 

from 20% to 35% for energies much larger than the barrier energy and 

increases smoothly up to approximately 55% at near barrier and slightly 

smaller energies. While at deep sub barrier energies, the ICF cross-section 

dominates. At high energies, the projectile approaches quickly to the target 

thus it is absorbed either directly or sequentially after the breakup by the 

target. Hence, at high energies, the process is predominantly the CF process. 

While at lower energies, each of the fragments of the projectile has sufficient 

time to get scattered, consequently the contribution of ICF is enhanced.
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Fig.4.4.5 The ratio of ICF cross-section to TF cross-section for 

different projectile-target combinations is plotted as function of the 

ratio of projectile energy to Coulomb barrier. 
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By employing the selection function discussed in chapter 2 (sec. 2.2) we have 

calculated the excitation functions for CF, ICF and TF reactions induced by 
9Be and 6Li on heavy targets for energies ranging from deep sub-barrier to 

above barrier region by using Wong’s formula employing EDWSP and 

selection function for separating CF and ICF. The values of various potential 

and barrier parameters needed in the calculations are listed in Table 4.4.1 for 

different projectile-target combinations.

The range of potential depends only on the size of interacting nuclei and 

increases with increasing size while potential diffuseness and strength 

depends, besides the size, on incident energy also. Hence, a range of their 

values corresponding to minimum (Approx. 0.9VB0 MeV) and maximum 

(1.2VB0 MeV) incident energies for a given projectile-target system is quoted 

in the table; the VB0 is barrier height corresponding to the pure Coulomb 

interaction. As per expectations, the diffuseness decreases with increasing 

beam energies and the process becomes sharper at higher energies.

Regarding barrier parameters, the barrier position is assumed to depend only 

on size of projectile and target. The barrier height varies with incident energy 

and hence simulates various channel coupling effects. This is in accordance 

with the fact that when coupling with collective vibrational and rotational 

states are taken into account, the single barrier turns into a distribution of 

barriers of different heights. The barrier curvature, on the other hand, is 

obtained by using potential strength for three different energies. Specially, the 

incident energy equal to average barrier height, slightly more than this and 

slightly less than this are used for this purpose which results in a very weak 

dependence of curvature on energy.
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Table 4.4.1 Values of potential and barrier parameters for various 

projectile-target combinations. The values of energy dependent 

quantities are given for an energy range ~0.9VB0 to 1.2VB0 MeV. 

Here VB0 denotes the average height of the Coulomb barrier. 

P-T System R0

(fm)

a

(fm)

V0

(MeV)

RB

(fm)

ћω

(MeV)

VB

(MeV)

9Be+ 169Tm 9.02 0.69-0.63 50.52-46.13 11.03 4.40 33.74-34.20

9Be+ 181Ta 9.18 0.69-0.63 50.7-46.3 10.99 4.9 34.57-35.78

9Be+ 187Re 9.26 0.69-0.63 50.82-46.40 11.07 4.99 35.56-36.54

9Be+ 209Bi 9.53 0.64-0.63 47.46-46.71 11.54 4.45 39.47-39.58

6Li+ 152Sm 8.38 0.69-0.63 44.3-40.43 10.27 5.4 23.4-24.17

6Li+ 154Sm 8.42 0.63 0.66-0.63 10.34 6.25 23.74-24.07
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The introduction of energy dependence in the potential results in the sub-

barrier fusion enhancement as shown in Fig. 4.4.6 for 9Be + 169Tm fusion 

reaction. Since it is well-established, both experimentally as well as 

theoretically, that coupling to various channels leads to significant increase in 

fusion cross-section at energies lower than the barrier energy, the 

enhancement shown in Fig. 4.4.6 is a clear manifestation of the channel 

coupling effects. 
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Fig.4.4.6 Total fusion excitation functions for 9Be + 169Tm reaction 

corresponding to constant (dashed line) and energy dependent 

(solid line) diffuseness parameters are compared with the 

corresponding experimental data taken from Ref. [14].

In Fig. 4.4.7, TF, CF and ICF excitation functions for 9Be+169Tm fusion 

reaction have been compared with the corresponding data taken from Ref. 

[14]. The almost perfect matching between data and results of calculations 

indicates that the method proposed to separate CF and ICF from TF works 

very well for target with zero quadruple moment, as the nucleus 169Tm has 

zero quadruple moment in its ground state. However, it is worthwhile to 

mention that at energies well above the barrier, the CF and TF both are under 

predicted though to a small extent. The large measured TF cross-sections at 

high energies in comparison to the theoretical values may be ascribed to the 
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fact that the contribution of the processes other than ICF leading to the 

formation of same residual nuclei cannot be separated out in measurements. 

Further at energies much larger than the barrier, the CF cross sections tend to 

be same as TF cross-sections which indicate that the contribution of ICF 

becomes negligible. Since at higher energies, the fusion no longer occurs 

through the quantum mechanical tunneling, hence the probability of fusing 

whole projectile is quite large and process is predominantly the CF process. In 

addition, the disagreement between the results of calculations and the 

measurements at very high energies is due to the fact that at these energies 

theoretically it is assumed that still 30% of events are ICF events which is no 

longer valid at these energies.
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Fig.4.4.7 Fusion excitation functions for ICF, CF and TF 

processes for 9Be + 169Tm reaction compared with the 

corresponding experimental data taken from Ref. [14].

In order to check the validity of the technique to separate ICF from TF for 

processes involving target with nonzero quadruple moment, we have 

compared the experimental and predicted CF, ICF and TF cross-sections in 
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Fig. 4.4.8 for 9Be+181Ta  system and in Fig. 4.4.9 for 9Be+187Re at near barrier 

energies. The experimental data shown in Fig. 4.4.8 are taken from Ref. [13] 

and those in Fig. 4.4.9 are taken from Ref. [14]. Besides larger charge (Z) and 

mass number (A) of 181Ta and 187Re with respect to 169Tm the former two are 

nuclei having ground state quadruple moment value approximately 3.3b and 

2.1b respectively. As mentioned earlier, for such nuclei slightly smaller value 

(1.42 fm) of radius parameter r0 is taken in evaluation of barrier radius RB 

which takes into account the effects of nonzero quadruple moment of target. 

Once again a reasonably good agreement between the data and predictions is 

found. The slight mismatch at higher energies may be interpreted in the same 

manner as earlier. 

32 34 36 38 40 42 44 46 48 50
1

10

100

1000

32 36 40 44 48
1

10

100

1000

32 34 36 38 40 42 44 46 48 50
1

10

100

1000

32 36 40 44 48
1

10

100

1000

 TFTh
 CFTh

Fu
si

on
 c

rs
s 

se
ct

io
n(

m
b)

Ec.m.(MeV)

 TFexp
 CFexp

 ICFexp

 ICFTh

Fig.4.4.8 Similar to Fig.4.4.7 but for 9Be+181Ta reaction. 

Experimental data are taken from Ref. [13].
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Fig.4.4.9. Similar to Fig.4.4.7 but for 9Be+187Re reaction. 

Experimental data are taken from Ref. [14].

In case of 9Be + 209Bi system because of the availability of CF data only, in 

Fig. 4.4.10 we depict the comparison of calculated CF excitation function with 

the measured one. Since target 209Bi has quadruple moment value around -0.5b 

in its ground state, the value 1.44 fm of r0 is used in the determination of RB to 

nullify the quadruple moment effects. The CF cross-sections extracted from 

the TF cross-section employing the selection function proposed in chapter 2 

are found to be in good agreement with the measured one. In Fig. 4.4.10, the 

calculated excitation functions for TF and ICF are also given. The relative 

contribution of ICF in TF is found to vary from 37% to 34% for incident 

energies 42.15 MeV to 57.5 MeV.
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Fig.4.4.10. Complete fusion excitation function for 9Be + 209Bi 

reaction compared with the experimental data taken from Ref. 

[17]. The calculated TF and ICF excitation functions are also 

shown.

For 6Li+ 152,154Sm systems similar results are found as shown in Figs. 4.4.11 

and 4.4.12. 
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Fig.4.4.11 Fusion excitation functions for CF process for 
6Li+152Sm reaction are compared with the experimental data taken 

from Ref. [18]
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Fig.4.4.12 Fusion excitation functions for CF, TF and ICF 

processes for 6Li+154Sm reaction are compared with the 

experimental data taken from Ref. [19]
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4.5 Optimum Barrier Radius for Deformed 

Targets 

In this section we propose a simple systematic to determine barrier radius RB 

for fusion reactions involving stable weakly bound nuclei and different 

deformed and massive targets. Since the fusion cross section is highly 

sensitive to barrier radius, a very small change in its value may results 

appreciable change in fusion cross section. It is obvious that barrier radius 

must depend on the deformation of target nucleus only because the quadruple 

moments of the projectiles 6Li, 7Li and 9Be are negligibly small in comparison 

to that of target. Phenomenologically, we have found that the parameter r0 

used to determine barrier radius varies from 1.38 to 1.39fm for reactions 

involving targets having quadruple moment smaller than 0.5b, from 1.40 to 

1.41fm for reactions involving targets with quadruple moment 0.5 to1.5b and 

1.42 to1.44fm for reactions invovling targets with quadruple moment greater 

than 1.5b. Using the so decided values of barrier radii we have calculated the 

fusion excitation functions for CF processes for 7Li+209Bi, 6Li+159Tb and 
7Li+152Sm  systems at around barrier energies and have compared with the 

corresponding experimental data as shown in Figs. 4.5.1, 4.5.2 and 4.5.3 

respectively. The matching between the data and predictions, as can be seen 

clearly from these figures, is very promising which is turn indicates that the 

proposed phenomenology is quite convincing. 
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Fig.4.5.1 Fusion excitation functions for CF process for 7Li+209Bi 

(Q.M.= -0.4b) reaction is compared with the experimental data 

taken from Ref. [20-21]  
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Fig.4.5.2 Fusion excitation function for CF process for 6Li+159Tb 

(Q.M.= 1.4b) reaction is compared with the experimental data 

taken from Ref. [22]
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Fig.4.5.3 Fusion excitation function for CF process for 7Li+152Sm 

(Q.M.= -1.7b) reaction is compared with the experimental data 

taken from Ref. [23]
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5.1                                                 Conclusions

This chapter is devoted to important conclusions, drawn on the basis of 

comparison between predictions and corresponding data, of the present study. 

We have analyzed the fusion excitation function data of reactions induced by 

stable weakly bound projectiles on different targets in near barrier energy 

region within the framework of Classical Dynamical Model and Wong’s 

formula with energy dependent Woods-Saxon potential. Owing to very low 

binding energies of 6,7Li and 9Be their breakup significantly affects the fusion 

process induced by impinging these projectiles on various targets [1-13]. One 

of the important consequence of breakup occurring before fusion is to initiate 

a new incomplete fusion (ICF) reaction channel beside the usual complete 

fusion (CF) process. Thus there arises an immediate need to develop new 

theoretical models capable of calculating separately CF and ICF cross 

sections. One such simple model frequently referred to as classical dynamical 

model was developed by Diaz-Torres [14-17]. According to this model, the 

projectile-target relative motion is treated classically and its time evolution is 

described by the classical equations of motion for mutual Coulomb and 

nuclear forces between projectile and target. Separate calculations of CF and 

ICF cross sections are made possible by introducing a stochastically sampled 

breakup function [14, 17]. Here we have used the code PLATYPUS, wherein 

the classical dynamical model is employed, to study the separate contribution 

of ICF and CF in total fusion (TF) for reaction induced by 9Be on 181Ta target 

in near barrier energy region. It is found that this model work very well only 

at above barrier energies and fails completely at energies well below the 

Coulomb barrier where the fusion occurs through quantum mechanical 

tunneling [18]. Thus, we have introduced the tunneling correction in this 

model at below barrier energies and analyzed the CF and ICF cross section 

data of fusion reactions induced by 9Be on 169Tm and 187Re targets at around 

barrier energies. A significant improvement between the data and prediction 

is found as a result of tunneling correction particularly at below barrier 

energies [19]. The basic strategy used to incorporate the tunneling correction 

is to multiply the no captured breakup (NCBU) cross section at below barrier 
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energies by a tunneling factor based on WKB approximation [20]. Basically, 

the quantum mechanical tunneling corresponds to non-zero probability of 

finding an object at a position where it is never observed classically. Thus 

incorporation of tunneling correction results in sub barrier fusion which is a 

classically forbidden channel and improves matching between predictions 

and data at energies smaller than the barrier energy. Besides the tunneling 

effects, the channel coupling effects also play major role in the sub barrier 

fusion process. Therefore we have also used another simple model based on 

Wong’s formula in conjugation with energy dependent Woods-Saxon 

potential [21-23]. In this model the channel coupling effects are simulated 

through the energy dependence in the potential. However only TF cross 

section is calculated through this model and the separate contribution of CF 

and ICF in TF is obtained by assuming that the relative contribution of these 

processes in TF is same as that predicted by code platypus at above barrier 

energies and have found that these are not consistent in this energy region 

[18]. Rather the contribution of ICF is found to be larger than that predicted 

by code platypus in TF for below barrier energies. In order to remove this 

discrepancy a simple energy dependent selection function is proposed to 

extract relative contribution of CF and ICF from TF process [24]. It is found 

that the contribution of ICF decreases with increasing incident energy. 

However, it never becomes zero, a minimum of approximately 25% 

contribution of ICF remains in TF even at energies much larger than the 

barrier energy. Further for heavier target, the contribution of ICF is found to 

be enhanced in comparison to lighter ones. Further since the barrier radius 

parameter is quite sensitive to the quadruple moment of interacting nuclei, it 

is quite tempting to obtain its optimum value for a given projectile-target 

combination. In present study we have found that the parameter r0 used to 

determine barrier radius varies from 1.38 to 1.39fm for reactions involving 

targets having quadruple moment smaller than 0.b, from 1.40 to 1.41fm for 

reactions involving targets with quadruple moment 0.5 to1.5b and 1.42 

to1.44fm for reactions invovling targets with quadruple moment greater than 

1.5b. 
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Finally in terms of future prospective the work may be extended to address 

the following issues.

1. For complete understanding of the dynamics of complete fusion and 

incomplete fusion more experiments are required to be carried out and 

more sophisticated models are needed to be developed. 

2. The role of nuclear size, shape and structure in the process of CF and ICF 

is still not so clear.

3. A fully quantum mechanical model taking tunneling and other channel 

coupling effects into account is required for better physical insight and 

unambiguous understanding of fusion reactions involving weakly bound 

nuclei.

4. In order to differentiate between direct transfer and ICF processes more 

measurements and calculations concerning breakup, transfer and ICF 

processes are yet to be carried out.
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