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Abstract of the Dissertation

Quantum Field Theory in Coordinate Space

by

Ahmet Ozan Erdoğan

Doctor of Philosophy

in

Physics and Astronomy

Stony Brook University

2014

In order to provide a new coordinate-space perspective applicable
to scattering amplitudes, in the first part of this dissertation, the
structure of singularities in perturbative massless gauge theories
is investigated in coordinate space. The pinch singularities in
coordinate-space integrals occur at configurations of vertices which
have a direct interpretation in terms of physical scattering of par-
ticles in real space-time in the same way as for the loop momenta
in the case of momentum-space singularities. In the analysis of
vertex functions in coordinate space, the well-known factorization
into hard, soft, and jet functions is found. By power-counting
arguments, it is found that coordinate-space integrals of vertex
functions have logarithmic divergences at worst. The hard-collinear
and soft-collinear approximations that allow the application of
gauge theory Ward identities in the formal proof of factorization
in coordinate space are introduced.

In the second part, the perturbative cusp and closed polygons of
Wilson lines for massless gauge theories are analyzed in coordinate
space, and expressed as exponentials of two-dimensional integrals.
These integrals have geometric interpretations, which link renor-
malization scales with invariant distances. A direct perturbative
prescription for the logarithm of the cusp and related cross sections
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treated in eikonal approximation is provided by web diagrams.
The sources of their ultraviolet poles in coordinate space asso-
ciated with their nonlocal collinear divergences are identified by
the power-counting technique explained in the first part. In the
study of the coordinate-space matrix elements that correspond to
scattering amplitudes involving partons and Wilson lines in coordi-
nate space, a series of subtractions is developed to eliminate their
divergences and to show their factorization in coordinate space.
The ultraviolet finiteness of the web integrand is shown by relating
the web expansion to the application of this additive regularization
procedure to the massless cusp. Generalizations for multieikonal
and partonic amplitudes are discussed, and the factorization of
these coordinate-space amplitudes into hard, jet and soft functions
is verified.
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Chapter 1

Prologue

The desire to understand nature, the physical reality that surrounds us, may be
the most human characteristic, and has taken place throughout the history of
human thought. With the development of the scientific method, our growing
knowledge and understanding of natural phenomena has led us not only to
gain insight into the underlying structure of the physical reality but also to
explore the first principles. By an interplay between experiment and theory,
we discovered elementary particles and their interactions that are the basic
constituents of matter and forces in nature.

Our knowledge of the microscopic world from the experimental results is
formulated in terms of quantum field theory (QFT), which is a theoretical
framework where the principles of quantum mechanics and special relativity
are combined consistently. There is no other part of human knowledge that
has been tested and confirmed to the degree of accuracy and precision as the
principles and results of QFT in the history of mankind. In these theories, the
fundamental objects are the fields, while the particles are bundles of energy,
or quanta, of various fields. A field is a physical quantity that has a value for
each point in space and time, and can be thought of as some stress in space.

QFTs that are invariant under a continuous group of local transformations
are called gauge theories. The representations and interactions of the fields are
governed by the gauge symmetry group. All of the four fundamental forces
in nature, the electromagnetic, weak, strong, and gravitational interactions
are described by a gauge theory, where each force between the fields and
the particles is mediated by a gauge field. The quantum field theories for
all fundamental interactions are based on the principle of (gauge) symmetry,
however, their unification in one framework is still lacking.

The most studied QFT known as the ‘Standard Model’ describes the elec-
tromagnetic, weak, and strong interactions of all elementary particles as known
today, while gravity remains unaddressed. Despite its many successes, because
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of its incompatibility with general relativity, its deficiency in explaining phe-
nomena, such as dark matter and dark energy among others, and its depen-
dence on many parameters that are simply arbitrary, the ‘Standard Model’ is
far from being a complete theory of nature. In a modern perspective, both
‘Standard Model’ and general relativity are considered as effective field theories
that are low-energy descriptions of a more fundamental theory emergent at a
higher energy scale.

The most promising candidate for a unified theory to date is string theory,
where the extended, one-dimensional objects called strings are the fundamental
objects, and may provide substructure for fields and even space-time. Nev-
ertheless, string theory is closely connected to quantum field theory. String
theories use the language and methods of ordinary field theories, and can be
formulated as field theories. Any gauge theory is related to a string theory
in a certain limit of the rank of the gauge group, while low-energy limits of
string theories yield gauge theories. Therefore, presumably, the ‘fundamental
theory’ of nature, whatever its structure may be, will be founded on quantum
field theory.

Objects in quantum field theories can be expressed in two equivalent rep-
resentations, in coordinate space or in momentum space. Although the idea of
fields is intrinsically connected to space-time, the states and other field theory
objects are conventionally expressed in terms of energies and momenta rather
than space-time coordinates. The calculations of scattering amplitudes, which
quantify the information from the theory that is to be compared with the ex-
perimental results to test the theory and its predictions at a certain degree of
precision, are mostly carried out in the momentum-space representation. The
calculational techniques and the methods of QFTs are much less developed in
coordinate space. This thesis is based on graduate research that aimed for a
new, coordinate-space perspective applicable to amplitudes for massless gauge
theories.

The problem of the strong-coupling dynamics of gauge theories is still a
challenging one to solve in general, even though some progress has been made
in supersymmetric and conformal theories through the gauge/gravity dual-
ity. The methods for solving the dynamics of QFTs are well known at weak
coupling, that is for small values of the ‘coupling constant’, which is a multi-
plicative factor associated with each interaction. In this regime, perturbation
theory can be applied to get explicit knowledge from the theory to check
against observables in terms of amplitudes. Perturbation theory consists of a
systematic expansion in the coupling constant(s), where the interactions are
treated as small perturbations to the free theory. Perturbative expansion of
the path integral involves calculation of Feynman integrals that contain ultra-
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violet and infrared divergences in general. Such divergences are required to be
isolated and removed so that a finite result can be obtained from the theory.

In the study of this thesis, the analyses are mainly done in the framework
of massless nonabelian gauge theories like Quantum Chromodynamics (QCD),
the theory of strong interactions, but the results and applications are quite
more general. We will review some basic properties of QCD briefly below.

1.1 Preliminary review of QCD

Quantum Chromodynamics (QCD) is the gauge theory of strong interactions
with an unbroken SU(3) gauge symmetry group. Its name comes from the
existence of three kinds of charge referred to as “color”. In QCD, gluons me-
diate the strong interaction between the quarks inside the nucleus. The gluon
fields Aµ

a transform under the adjoint representation of the color gauge group,
where the color index a of the gauge field runs up to the dimension of the group,
a = 1, . . . , N2 − 1 for SU(N). The quark fields ψi, however, transform under
the fundamental representation of the color group with i = 1, . . . , N . The self-
interactions of gluons due to the nonabelian nature of the color group increase
the complexity of QCD tremendously compared to Quantum Electrodynamics
(QED). We will now briefly review basic concepts in field theory to mention
important characteristics of QCD here, while for pedagogical discussions and
details we refer to Refs. [1–7].

1.1.1 Foundations of QCD

QCD was accepted as the theory of strong interactions only after the SLAC
experiments that started in the 1960s and after theoretical developments in
nonabelian gauge theories by the early 1970s. Before that, even though non-
abelian gauge theories were introduced long ago [8], the focus for strong in-
teractions was on other ideas like the analyticity properties of the S-Matrix,
current algebra, and string theory rather than a field theory description.

The situation changed when the deeply inelastic scattering (DIS) experi-
ments at SLAC showed pointlike substructure in hadrons. Their data revealed
a striking property of the ‘structure functions’ called scaling, that these func-
tions become independent of momentum transfer for its large values due to
predominant wide-angle scattering from pointlike structures within the nucle-
ons [9, 10]. The parton model was developed to explain these results [11, 12],
while the quark model emerged out of hadron spectroscopy [13–15], and re-
quired a new quantum number, “color”, for the constituent quarks [16, 17].
A relation for the structure functions derived in the parton model provided
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evidence that the partons detected in DIS are the quarks of hadron spec-
troscopy [18].

Meanwhile, there have been important theoretical developments that es-
tablished the successes of current algebra in field theory. The current commu-
tation rules were shown to be replaced by divergence equations [19], which can
be derived from a theory with gauge invariance [20]. The proofs of unitarity
and renormalizability of nonabelian gauge theories [21–23] cleared up any the-
oretical concerns before the extension of the global SU(3) model of quarks to
a local nonabelian gauge theory [24]. The final crucial step was the discovery
that ‘asymptotic freedom’ was satisfied by QCD [25], which provided natural
explanation of the success of the parton model for DIS. Finally, QCD was
identified as the theory of strong interactions.

1.1.2 Renormalization and the running of the coupling

QCD has a “running” coupling meaning that the value of the coupling constant
changes with the energy (or distance) scale so that the theory is not conformal,
it inherits a scale ΛQCD that leads to confinement of quarks inside the nucleus.

Perturbative gauge theories suffer from ultraviolet divergences leading to
infinite results in theoretical calculations. However, we can still obtain sensible
results for physical observables by the process of renormalization, in which such
infinities are rendered into unobservable, ‘bare’ quantities. The perturbation
series is made finite by expressing the theory in terms of ‘renormalized’ quan-
tities that depend on a scale, usually taken as the scale of the experimental
measurements, instead of the ‘bare’ quantities. The proof that this idea works
in the case of nonabelian gauge theories, that is the proof of renormalizability
for such theories, was shown by Refs. [22, 23].

After renormalization, the parameters of the theory depend on the renor-
malization scale explicitly, for instance, the coupling is no longer a constant
but a function of this scale. However, physical quantities can be computed
equally from either ‘bare’ or ‘renormalized’ quantities. The fact that physical
observables cannot depend on the renormalization scale leads to a renormal-
ization group equation [26–29],

d

dµ
σ = 0 , (1.1.1)

where σ represents a physical observable, which may be a cross section or an
S-Matrix element. For simplicity, let us assume σ is an “infrared safe” cross
section, that is, it does not depend on quark masses in the short-distance limit.
We can then rewrite Eq. (1.1.1) expressing σ in terms of the renormalized
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coupling gR, the renormalization scale µ, and a set of measured quantities Qi,
and applying the chain rule,(

∂

∂µ
+ β(gR(µ))

∂

∂gR

)∣∣∣∣
gR

σ(gR(µ), µ,Qi) = 0 , (1.1.2)

where the renormalized coupling is held fixed. The function β defined by

β( gR(µ) ) =
∂

∂µ
gR(µ) , (1.1.3)

encodes the running of the coupling and can, in principle, be calculated from
the coupling renormalization constant Zg ≡ g0/gR, with g0 the bare coupling,
to any order in the coupling in perturbation theory. For conformal field the-
ories, the beta function vanishes, and the coupling is literally a constant. In
QCD, the first term in the expansion of the beta function in the strong coupling
gs is given by

βQCD(gs) = −gs

(
b0
αs

4π
+ b1(

αs

4π
)2 + · · ·

)
= − g3

s

16π2

(
11

3
N − 4

3
nfTf

)
+ O(g4

s) , (1.1.4)

with N = 3, nf = 6, and Tf = 1/2. The dependence of the strong coupling
in QCD, or equivalently of “alpha-strong”, on the renormalization scale µ is
then found from the solution of Eq. (1.1.3),

αs(µ
2) ≡ g2

s(µ)

4π
=

16π2

b0 ln(µ2/Λ2
QCD)

, (1.1.5)

where b0 is the coefficient of the first term in the expansion of βQCD given
above, while ΛQCD is the ‘QCD scale’ where the perturbation theory breaks
down, and the nonperturbative, confining domain of QCD starts.

1.1.3 Asymptotic freedom

An important characteristic of QCD is that the coupling decreases as the
distance scale over which it is measured decreases [25]. It eventually vanishes
at very short distances (or at very high energies), thus this characteristic is
called ‘asymptotic freedom’. We can observe this feature of QCD in Eq. (1.1.5),
αs(µ

2) vanishes in the limit µ2 →∞. This property allows us to make accurate
calculations within the perturbation theory at high energies, that is at short
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distances.
QCD is effectively a massless gauge theory, although the quark masses can

be generated dynamically by spontaneous breaking of chiral symmetry [30].
Because of the confinement, however, the masses of the quarks are not di-
rectly observable, but they also vanish as the renormalization scale increases
in an asymptotically free theory, which allows us to define “infrared safe”
cross sections to determine the coupling independent of the masses from the
experiments.

1.1.4 Factorization

A consequence of these properties is factorization, the systematic separation of
short- and long-distance dynamics, which leads to great predictive power and
phenomenological success of QCD. The factorization theorems were proven by
a diagrammatic analysis in momentum space [31]. For a general process involv-
ing a large momentum transfer, Q, a relevant cross section can be factorized
in the general form,

Q2 σphys(Q,m) = CSD(Q/µ, αs(µ)) ⊗ fLD(µ,m) + O(1/Qp) , (1.1.6)

where m represents infrared scales, and µ is the factorization scale separating
the short-distance dynamics in CSD from the long-distance dynamics in fLD

that is a product of universal parton distributions. Here, ⊗ represents a con-
volution between these two functions, usually in terms of parton momentum
fractions, which is accurate up to power corrections as indicated. The parton
distributions in fLD are based on experimental data, while the information in
CSD can be calculated very accurately in perturbation theory. As examples of
the processes involving hadrons where factorization holds in this sense, we can
list deeply inelastic scattering, e+e− annihilation, and Drell-Yan processes.

The factorization in cross sections for these processes originate from the
structure of singularities in perturbative gauge theories with massless fields in
Minkowski space. The underlying Ward identities of the gauge theory ensure
that the singularities of diagrams for the relevant amplitudes factorize after
summing over all diagrams contributing at any given order in perturbation
theory. The subject of this thesis is the analysis of these singularities and
their factorization in coordinate space.
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1.2 Outline

The contents of this thesis consists of research published in Refs. [32–34]. The
main subject of these articles is the study of matrix elements corresponding to
scattering amplitudes, their divergences and factorization properties analyzed
directly in coordinate space.

We will start with the analysis of the singularities in perturbative massless
gauge theories in coordinate space [32]. We will first review pinch singularities,
and the conditions for them to occur in coordinate-space integrals. The pinch
singularities in coordinate-space integrals occur at configurations of vertices
which have a direct interpretation in terms of physical scattering of particles
in real space-time in the same way as for the loop momenta in the case of
momentum-space singularities.

In the analysis of vertex functions related to partonic scattering, we will
find that their coordinate-space integrals have logarithmic divergences at worst
by power-counting arguments, and determine the conditions for existence of
these logarithmic divergences and their structure in coordinate space. A fun-
damental consequence of the structure of these ‘leading singularities’ is the
well-known factorization into soft, hard, and jet functions. We will define the
‘hard-collinear’ and ‘soft-collinear’ approximations that allow us to apply the
gauge theory Ward identities in the formal proof of factorization in coordi-
nate space. We also extend the results to the vacuum expectation values of
products of path-ordered exponentials for our following discussion.

In Chapter 3, we will analyze the perturbative cusp and closed polygons
of Wilson lines for massless gauge theories in coordinate space, and express
them as exponentials of two-dimensional integrals [33]. A direct perturbative
prescription for the logarithm of the cusp and related cross sections treated
in eikonal approximation is provided by web diagrams. We will give to the
integrals of web diagrams geometric interpretations, which link renormaliza-
tion scales with invariant distances. We will note that the forms of the web
integrands for the cusp and closed polygonal loops agree with the expressions
given for conformal theories via the gauge/gravity duality. The surface inter-
pretation relies on the cancellation of subdivergences in webs, which we will
show by analyzing the nested and overlapping regions in coordinate space in
the following chapter.

In Chapter 4, we will consider the coordinate-space matrix elements that
correspond to scattering amplitudes involving partons and Wilson lines in co-
ordinate space [34]. In coordinate space, both collinear and short-distance
limits produce ultraviolet divergences, as shown in Chapter 2. We develop a
series of subtractions that organize these divergences, and allow their factoriza-
tion, by analogy to the treatment of infrared logarithms in momentum space.
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Using the subtraction terms that impose the coordinate-space ‘hard-collinear’
and ‘soft-collinear’ approximations specifically for each leading region from
which an ultraviolet divergence can arise, we will rederive the factorization
in coordinate space. As an explicit application of our construction, we will
show the ultraviolet finiteness of the web integrand by relating this additive
regularization procedure in terms of nonlocal ultraviolet subtractions to the
exponentiation properties of the massless cusp. We also discuss generalizations
to amplitudes with multiple Wilson lines and external fields in configurations
related to scattering, and verify the factorization of these coordinate-space
amplitudes into hard, jet and soft functions.

Finally, we will comment on the scope of our results, and discuss their
possible extensions, and generalizations in the epilogue.
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Chapter 2

Analysis of Singularities in
Coordinate Space

The contents of this chapter is published in Ref. [32].

2.1 Introduction

The structure of singularities in perturbative gauge theories has long been
a subject of study for theoretical interest and for phenomenological applica-
tions [35, 36]. There is a vast literature on the subject, and most modern
analyses are carried out in momentum space to calculate scattering ampli-
tudes [37–40]. Calculations involving Wilson lines, however, are often simpler
in coordinate space [41,42] and coordinate-space integrals were used for Wilson
lines in the application of dual conformal invariance [43,44]. It is therefore nat-
ural to consider using them for amplitudes as well. The purpose of this study
is to provide a new, coordinate-space analysis of singularities in perturbation
theory applicable to amplitudes for massless gauge theories.

It is well known that the momentum-space singularities of Feynman inte-
grals in a generic quantum field theory occur at configurations of internal loop
momenta that have a direct interpretation in terms of physical scattering of
on-shell particles in real space-time [45,46]. In this study, we will analyze the
origin and structure of these singularities directly in coordinate space.

Massless gauge theories suffer from infrared (IR) divergences, which char-
acterize the long-distance contributions to perturbative predictions, in addi-
tion to ultraviolet (UV) divergences, which can be removed by local counter-
terms. An analysis of infrared divergences in gauge theories from the point
of pinch singularities of Feynman integrals over loop momenta was given by
Ref. [47]. Following [48], which dealt with scalar theories, we will show that
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the coordinate-space singularities of massless gauge theories have the same
interpretation in terms of physical scattering of particles with conserved mo-
menta. In contrast to momentum space examples, however, we will see that
collinear singularities are of ultraviolet nature in coordinate space, and require
D < 4 in dimensional regularization. This analysis can be applied to a variety
of field theory objects derived from Green functions, including form factors
and vertex functions, Wilson lines, as well as cut diagrams for cross sections.

In a detailed analysis of vertex functions in coordinate space, we will find
the factorization into hard, soft, and jet functions familiar from momentum
space analysis [7, 31]. In coordinate space, the soft function is finite when
the external points are kept at finite distances from each other. Therefore,
ultraviolet regularization is needed only for the jets and the hard function.
Adapting the power counting technique developed for momentum space in [47],
the residues of the lightcone poles of vertex functions in coordinate space will
be shown to have logarithmic divergences at worst.

This chapter is organized as follows. In section 2.2, a brief, general review
of pinch singularities will be followed by a derivation of conditions for singular-
ities in coordinate-space integrals together with their physical interpretations.
We will also comment on the case with massive lines in Appendix A.1. In
section 2.3, we will analyze the structure of singularities of vertex functions in
coordinate space, solving the conditions for pinch singularities, first explicitly
at lowest loop order and then extending the solutions to arbitrary order in
perturbation theory. In section 2.4, we will adapt the power counting tech-
nique developed in [47] to the coordinate-space vertex functions, and show
that divergences are at worst logarithmic relative to their lowest-order results
at higher orders in perturbation theory. In the last section, we will discuss the
approximations that can be made in the integrand to obtain the leading sin-
gularity. We will describe the “hard-collinear” and then the “soft-collinear”
approximations, which will lead to factorization of jets from the hard and
soft functions. Lastly, we will show that the fermionic vertex function can be
approximated by a Wilson line calculation, by imposing the conditions for a
pinch singularity inside the integrands.

2.2 Analysis of singularities

This section treats the coordinate-space singularities of Feynman diagrams in
gauge theories. The discussion is in many ways similar to the momentum-
space analysis of Refs. [5, 35, 49]. The results of this section will be employed
to identify the natural subregions of the corresponding diagrams in order to
study their behavior in coordinate space.
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We start our analysis with an arbitrary Feynman integral with massless
lines in coordinate space. We work in D = 4−2ε dimensions using dimensional
regularization. For gauge theories, we employ Feynman gauge. The integrands
in scalar and gauge theories are similar, except that in the latter case, gauge
field vertices have derivatives that act on attached lines. These derivatives
change the powers of denominators and produce numerator factors, which
may enhance or suppress the integrals.

In coordinate space, we can represent graphical integrals schematically as

I({xµ
i }) =

∏
vertices k

∫
dDyk

∏
lines j

1

[−(
∑

k′ ηjk′ Xk′)2 + iε]pj
× F (xi, yk, D) ,

(2.2.1)
where the positions of internal vertices yµ

k are integrated over all space-time
for fixed external points xµ

i . For each line, the sum over {Xk′} = {yk, xi}
includes all vertices, internal and external, where ηjk is an “incidence matrix”,
which takes values +1 and −1 when the line j ends or begins at vertex k,
respectively, and is zero otherwise. The orientation of a line is at this point
arbitrary, but we will see that at singularities it is determined by the time-
ordering of the vertices it connects. Before the action of derivatives, the power
of the denominator of line j is pj = 2 − ε for fermion lines, and pj = 1 − ε
for scalar and gauge field lines; however, if a derivative acts on a line, the
power of its denominator is increased by 1. This expression holds for scalar
and gauge theories, for which we sum over terms with different numbers of
derivatives, and the functions F (xi, yk, D) include remaining constants, group
theory factors, and numerator factors, which do not affect the locations of the
singularities but will matter in power counting. They are simply numerical
constants for scalar theories. For theories with spin, they also carry the spin-
dependence, which we have suppressed here. The integrand in (2.2.1) becomes
singular when a line moves to the lightcone.

After combining the propagators of each line with Feynman parametriza-
tion, the integral will be of the form,

I({xµ
i }) =

∏
lines j

∫ 1

0

dαj α
pj−1
j δ(1−

∑
j

αj)

×
∏

vertices k

∫
dDyk D(αj, xi, yk)

−N(ε) F̄ (xi, yk, D) ,

(2.2.2)

where we have absorbed the prefactors of the parametrization into F̄ (xi, yk, D),
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and where the common denominator is given by

D(αj, xi, yk) =
∑

j

αj

[
−z2

j (xi, yk) + iε
]
. (2.2.3)

Here, αj is the Feynman parameter of the jth line, and zµ
j denotes the argu-

ment of its propagator, which is the coordinate difference between the vertices
it connects. The overall power of the denominator is N(ε) =

∑
j pj(ε), in

particular, N(ε) = N(1− ε) for a diagram with N scalar lines only. For gauge
theories, for a diagram with Ng gauge field lines, Nf massless fermion lines,
and V3g three-vector vertices it is given by N(ε) = Nf (2−ε)+Ng(1−ε)+V3g.

The zeros of the denominator D(αj, xi, yk) in Eq. (2.2.3) determine the
positions of the poles of the integrand in (2.2.2). These poles may produce
branch points of I({xµ

i }), depending on whether or not they may be avoided by
contour deformation in the complex (α, y)-space. We recall here the summary
given in Ref. [35]. In general, the singularities of a function f(z) defined by a
single integral,

f(z) =

∫
C
dw

1

g(z, w)
, (2.2.4)

arise if and only if the poles w̃(z) of the integrand, which are zeros of g(z, w),
cannot be avoided by contour deformation. This follows from a theorem proven
by Hadamard [50], and happens either when one of the poles migrates to one
of the end-points of the contour, an end-point singularity or when two or more
isolated poles coalesce at a point trapping the contour between them, resulting
in a pinch singularity.

These conditions for the existence of singularities can be generalized as nec-
essary conditions for functions of several (external) variables that are defined
by multiple integrals,

f({zi}) =

∫
H

∏
j

dwj
1

g({zi}, {wj})
, (2.2.5)

such as I({xµ
i }) in our case. Here, the hypercontour H denotes the multi-

dimensional region of integration. The set of points S = {w̃(z̃)} on which
g({zi}, {wj}) = 0 defines surfaces in the complex (z, w)-space. If g({zi}, {wj})
factors as g = g1({zi}, {wj}) × · · · × gr({zi}, {wj}), then there are r such
singular surfaces, which may or may not intersect with each other. As in
the case of an integral over a single variable, the singularities occur when
an intersection of these singular surfaces with the hypercontour H cannot be
avoided. Summarizing the arguments presented in Ref. [35], this again happens
either when a singular surface S overlaps with the boundary of H (end-point
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singularity) or when the hypercontour H is trapped between two or more
singular surfaces or between two different parts of the same singular surface
(pinch singularity). At an end-point, H cannot be moved in the directions
normal to its boundary, while at a pinch it cannot be moved away from singular
regions in the direction of the normals to two (or more) singular surfaces,
which are in opposite directions. In both cases, the vanishing of the gradient
of g({zi}, {wj}) on S is the necessary condition,

∂

∂wj

g({zi}, {wj})
∣∣∣∣
g=0

= 0 . (2.2.6)

In the following, we use the terminology of Ref. [5], and call the variables that
parametrize directions out of the singular surface S normal, and those that
lie in the surface intrinsic. The larger the volume of normal space, the less
singular the integral. Refs. [5, 35, 49] present pedagogical discussions of these
concepts.

This reasoning enables us to derive a powerful set of necessary conditions
for singularities of integrals like I({xµ

i }) in Eq. (2.2.1) using the representation
in Eq. (2.2.2), where a singular surface S in (α, y)-space is defined by the set
of points S = {α̃, ỹ} on which D(αj, xi, yk) vanishes. The singularities of
(2.2.2) can come only from the end-point αj = 0 of the αj-integral, because
D(αj, xi, yk) is linear in the αj. Note that αj = 1 is not a different end-point
singularity, as it sets all αi, i 6= j, to zero because of the delta function. On the
other hand, there are no end-point singularities in y-integrals, since they are
unbounded. However, in y-integrals the contour of integration can be trapped
at a pinch singular point when the two solutions of the quadratic equation
D = 0 are equal, i.e.,

∂

∂yµ
k

D(αj, xi, yk)

∣∣∣∣
D(α̃,ỹ)=0

= 0 . (2.2.7)

The momentum space analogs of these conditions are summarized as the Lan-
dau equations [45] in the literature. They were also written in coordinate space
for scalar theories in [48]. In coordinate space, they are given by Eq. (2.2.7)
above,

αj = 0 , or z2
j = 0 , (2.2.8)

and ∑
lines j at vertex k

ηkj αj z
µ
j = 0 . (2.2.9)

The conditions in the first line come from D = 0, while those in the second
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line come from (∂/∂yµ
k )D = 0. The “or” in the first line is not necessarily

exclusive. The condition (∂/∂αj)D = 0 for all j is equivalent to D = 0 since
D is homogenous of degree one in the αj.

A physical interpretation of the momentum space Landau equations was
originally given by Coleman and Norton in [46]. The momentum space analog
of Eq. (2.2.9) in terms of momenta kµ

i of lines is,∑
lines i in loop l

ηli αi k
µ
i = 0 . (2.2.10)

Then, with the identification of αik
µ
i ≡ ∆xµ

i with a space-time vector for each
on-shell line, these relations can be thought as describing on-shell particles
propagating between the end- and starting points of line i, which are sepa-
rated by interval ∆xµ

i . This way, αi is interpreted as the ratio of the time
of propagation to the energy of particle i; and thus the analog of Eq. (2.2.8)
states that there is no propagation for an off-shell line.

Similarly, in coordinate space, after the rescaling ∆x̄µ
j = αjz

µ
j , Eq. (2.2.9)

directly gives the same physical picture of on-shell particles propagating in
space-time. The interpretation with particles propagating forward in time
fixes the orientation of lines by the time-ordering of vertices. Additionally, we
may identify the product αjz

µ
j with a momentum vector,

pµ
j ≡ αj z

µ
j . (2.2.11)

Then Eq. (2.2.9) gives momentum conservation for the on-shell lines with mo-
menta pµ

j flowing in or out of vertex k. Moreover, with a further identification
of αj as the ratio of the energy of line j to the time component of zj,

αj ≡ p0
j/z

0
j , (2.2.12)

we obtain a relation between the energies and momenta of the propagating
particles associated with the pinch singularities of Eq. (2.2.2),

pµ
j = Ej v

µ
j , with vµ

j = (1, ~z/z0
j ) . (2.2.13)

This is the relation between energy and momentum of free massless particles;
the magnitude of their velocity is indeed c = 1 since (z0)2−|~z|2 = 0. Therefore,
to each pinch singularity we can associate a physical picture in which mass-
less particles propagate freely on the lightcone between vertices, while their
momenta satisfy momentum conservation at each internal vertex as well [48].

In the physical picture above, only lines on the lightcone “carry” finite
momenta. Lines not on the lightcone, that is lines connecting vertices at finite
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distances, have αj = 0 which by Eq. (2.2.12) sets their pµ
j = 0. In momen-

tum space, because the momenta of lines with αj = 0 do not show up in the
momentum-space analog of (2.2.9), in a graphical representation, one can con-
tract such off-shell lines to points. The resulting diagrams are called reduced
diagrams that represent lower-order singularities of a Feynman diagram, while
the diagram with all the lines on the mass-shell (i.e. no lines with α = 0) is
said to give the leading singularity [35, 51]. In contrast, in coordinate space,
these “contracted” lines should be compared to “zero lines”, with zµ

j = 0 that
do not contribute to the sum in (2.2.9) either. They represent “short-distance”
(UV) singularities, which occur when two connected vertices coincide at the
same point, but are not lower-order singularities of the coordinate integral.
These pinch singularities originate from the denominator of a single propaga-
tor, where the contour of integration, the real line, is pinched between two poles
of the same propagator. Therefore, we will first identify such UV singularities
of an arbitrary integral like (2.2.1), and then combine the rest of the denom-
inators by Feynman parametrization to find other types of singularities from
groups of lines in the remaining integrals using the Landau conditions (2.2.8)
and (2.2.9). We should note that not all UV singularities give UV divergences.
Divergences can be identified by the power counting procedure below.

As an example of the application of Eq. (2.2.7) to coordinate-space inte-
grals, we shall now find the configurations of lines for pinches in the integration
over the position of a single three-point vertex at a point yµ. For simplicity,
let us consider the following integral in a scalar theory

I(x1, x2, x3) =

∫
dDy

3∏
i=1

1

[−(xi − y)2 + iε]1−ε
. (2.2.14)

Apart from the the UV singularities when yµ = xµ
i for i = 1, 2 or 3, the

conditions for a pinch between different lines in the yµ integral are given by
Eqs. (2.2.8) and (2.2.9) after Feynman parametrization,

α1 z
µ
1 + α2 z

µ
2 + α3 z

µ
3 = 0 , (2.2.15)

with zµ
i ≡ xµ

i − yµ. For a pinch singularity, these vectors are either lightlike,
z2

i = 0, or have αi = 0. Equation (2.2.15) cannot be satisfied if all three
vectors have positive entries. Thus, at least one external point must have
x+

i < y+ and one must have x+
j > y+, so that there is at least one incoming

and one outgoing line. These considerations naturally provide a time ordering
for vertices and a direction for lines at any singularity. Assuming all αi 6= 0
and that all lines are on the lightcone, z2

i = 0 and Eq. (2.2.15) imply that
zj · zk = 0 as well. That is, all of these lines are parallel. If any one of the
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lines is off the lightcone with αi = 0, then the other two are on the lightcone
and again parallel to each other by (2.2.15). These pinch singularities can
be interpreted as a merging or splitting of three particles, which occurs at
point yµ, with the ratios of their momenta given by the ratios of the αi. Note
that these results hold for the three-point vertices of a gauge theory as well, and
can be generalized to n-point vertices. The coordinate-space singularities of
Green functions represent physical particle scattering and thus can be related
naturally to physical scattering amplitudes.

2.3 Coordinate-space singularities at a vertex

We will now study how coordinate-space singularities in a vertex function in
a massless gauge theory emerge from pinches in Feynman integrals in pertur-
bation theory. For simplicity, the first example that we consider will be the
correlation of two scalar fields with a color-singlet gauge current. We also
discuss the correlation of fermions with the same kind of current. The re-
sults of Sec. 2.2 will be applied to identify the configurations that can lead to
singularities of such vertex functions in coordinate space.

The scalar vertex function of interest is obtained from the vacuum expec-
tation value of the time-ordered product of two charged scalar fields with an
incoming color-singlet current,

Γν
S(x1, x2) = 〈0 |T (Φ(x2) J

ν(0) Φ∗(x1))| 0〉 . (2.3.1)

Here, we have shifted the position of the current to the origin using the trans-
lation invariance of the vacuum state. Γν

S(x1, x2) transforms as a vector under
Lorentz transformations. Its functional form is well-known and is determined
by the abelian Ward identity,

− i (∂1 + ∂2)ν Γν
S(x1, x2) =

[
δD(x2) − δD(x1)

]
G2((x2 − x1)

2) , (2.3.2)

where G2 is the scalar two-point function, which is only a function of the
invariant distance between the external points. A general solution to this
inhomogenous partial differential equation can be given by a particular solution
that satisfies (2.3.2) plus the general solution to the homogenous equation,

(∂1 + ∂2)µΓµ
S,(H)(x1, x2) = 0 . (2.3.3)

A particular solution to the abelian Ward identity, which has the structure of
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the lowest order result, is given by

Γν
S,(I)(x1, x2, µ) =

(
xν

2

(−x2
2 + iε)1−ε

− xν
1

(−x2
1 + iε)1−ε

)
ΣS

(
µ2(x2 − x1)

2
)

x2
1 x

2
2

,

(2.3.4)
where the form factor ΣS(µ2(x2 − x1)

2) is a dimensionless function, with µ2

the renormalization scale, and is related to the renormalized scalar two-point
function by

i G2(x
2, µ2) =

ΣS(µ2x2)

(−x2 + iε)1−ε
. (2.3.5)

Note that at zeroth order one obtains Σ(0)(x1, x2) = 1 from both equations
above.

The general solution to the homogenous equation can be found easily in
momentum space, since one then has an algebraic equation,

(pµ
1 − p

µ
2)Γ̃µ

S,(H)(p1, p2) = 0 , (2.3.6)

whose solution involves polynomials of momenta times one independent func-
tion1. Here, momentum p1 flows into the vertex and p2 out. The general
solution in momentum representation is given by

Γ̃µ
S,(H)(p1, p2) =

[
(p2

2 − p1 · p2) p
µ
1 + (p2

1 − p1 · p2) p
µ
2

]
f̃H(p1, p2) . (2.3.7)

After inverse Fourier transform with pµ
1 → i∂µ

1 and pµ
2 → −i∂

µ
2 , the part of the

vertex that vanishes in the abelian Ward identity (2.3.2) is of the form,

Γµ
S,(H)(x1, x2) = −i(∂1 − ∂2)ν [∂

µ
1 ∂

ν
2 − ∂ν

1∂
µ
2 ] fH(x1, x2) , (2.3.8)

where fH is a function of mass dimension two. In conventional terms, the
inhomogenous solution gives the ‘longitudinal’ part of the vertex while the
homogenous solution is the ‘transverse’ part. Note that any fH that is a
function of only (x1±x2)

2 vanishes under the derivatives in Eq. (2.3.8). Thus,
fH must depend on x2

i separately to contribute to the scalar vertex. This will
allow lightcone singularities to factorize from the rest of the vertex.

The fermionic counterpart of Eq. (2.3.1) is,

(ΓF )ν
ba (x1, x2) =

〈
0
∣∣T (ψb(x2) J

ν(0) ψ̄a(x1)
)∣∣ 0〉 , (2.3.9)

1Starting from (p1 − p2)µ(A pµ
1 + B pµ

2 ) = 0, the homogenous equation is solved for
A
B = p2

2−p1·p2

p2
1−p1·p2

. The Ward identity reduces the number of independent functions by one.
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whose tensor and Dirac structure is determined by the invariance under the
global symmetries of the theory while its functional form is similarly con-
strained by the Ward identity for fermion fields. Chiral invariance for a
massless theory requires this vertex to have odd number of gamma matri-
ces. Skipping the details given for scalars above, a particular solution for the
‘longitudinal’ part of the fermionic vertex function is given by

(
ΓF,(I)

)ν
ba

(x1, x2, µ) =
(/x2 γ

ν /x1)ba

(−x2
2 + iε)2−ε (−x2

1 + iε)2−ε
ΣF

(
µ2(x2 − x1)

2
)
,

(2.3.10)
where ΣF (x2) is related to the renormalized fermion two-point function SF (x2)
by

i SF (x2, µ2) = /x
ΣF (µ2x2)

(−x2 + iε)2−ε
. (2.3.11)

The ‘transverse’ part of the fermionic vertex function that vanishes in the
abelian Ward identity can be written in the form,

Γµ
F,(H)(x1, x2) = γµ [(21 + 2∂1 · ∂2 + 22)f1(x1, x2) + (21 −22)f2(x1, x2)]

−(/∂1 + /∂2) (∂1 + ∂2)
µ f1(x1, x2)

−(/∂1 + /∂2) (∂1 − ∂2)
µ f2(x1, x2) (2.3.12)

+(/∂1 − /∂2) (∂1 + ∂2)ν

(
∂ν

2 ∂
µ
1 − ∂ν

1 ∂
µ
2

)
f3(x1, x2)

+γ5 ε
µνρσ γν (∂1 − ∂2)ρ (∂1 + ∂2)σ f4(x1, x2) .

Here, all form factors fi(x1, x2) have mass dimension four except f3(x1, x2),
which has dimension two. The tensor decomposition of this vertex and the list
of form factors in momentum space can be found in Ref. [52]. Again, these
form factors can have arbitrary dependence on x2

i , which allows factorization
of lightcone singularities.

We are interested in singularities that are related to scattering processes,
thus the limit x1 → x2 will not be considered in the discussion below as it
gives effectively a two-point function. We also assume here that xµ

1 and xµ
2

are fixed, nonzero vectors that are not lightlike separated (x1 · x2 6= 0). Given
these external data, the only power singularities of the coordinate-space vertex
functions will be in x2

i , which correspond to single-particle poles of the external
propagators in momentum space. Furthermore, both ΣS(x1, x2) in (2.3.4) and
ΣF (x1, x2) in (2.3.10) remain finite when both x2

i = 0 with x1 · x2 6= 0. Thus,
the leading divergence of the scalar vertex can come from fH(x1, x2) in (2.3.8)
while the leading divergence of the fermionic vertex comes along again from
the ‘transverse’ part of the vertex.

Let us now illustrate how the lightcone singularities of the vertex functions
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given above emerge at one loop in perturbation theory. The integrand of the
one-loop diagram in Fig. 2.1, the first nontrivial contribution to the scalar
vertex function, is of the form,

Γ
(1) µ
S (x1, x2) = C

(1)
S

∫
dDy1 d

Dy2 g
αβ 1

[−(y2 − y1)2 + iε]1−ε

×
(

1

[−(x2 − y2)2 + iε]1−ε

←→
∂yα

2

[
1

[−(y2 − z)2 + iε]1−ε

←→
∂zµ

1

[−(z − y1)2 + iε]1−ε

]
z=0

←→
∂yβ

1

1

[−(y1 − x1)2 + iε]1−ε

)
,

(2.3.13)

with C
(1)
S a numerical constant. Compare this expression to that of the one-

loop diagram for the fermionic vertex function,

Γ
(1) µ
F (x1, x2) = C

(1)
F

∫
dDy1 d

Dy2
1

[−(y2 − y1)2 + iε]1−ε

×
(
/∂x2

1

[−(x2 − y2)2 + iε]1−ε

)
γα

(
/∂y2

1

[−y2
2 + iε]1−ε

)
γµ

×
(
/∂y1

1

[−y2
1 + iε]1−ε

)
γα

(
/∂x1

1

[−(y1 − x1)2 + iε]1−ε

)
.

(2.3.14)

Clearly, both have the same pole structure, more precisely, the positions of
the poles are the same, although term-by-term their degrees may or may not
be different. Using Feynman parametrization, either before or after the action
of the derivatives on the lines, both integrals can be put into the form of
Eq. (2.2.2) with the same common denominator but, of course, with different
numerator factors and different powers of the resulting denominator in the
integrands.

The pinch singularities of (2.3.13) and (2.3.14) can originate from the two
poles of a single denominator or from poles from different denominators. For
the latter case, we will combine the denominators by Feynman parametriza-
tion, and use Eq. (2.2.7), the coordinate-space analog of Landau equations. In
general, at a pinch singularity, one encounters combinations of these two cases
simultaneously. After Feynman parametrization the common denominator for
either diagram is given by

D(1)
(
x1, x2, y1, y2; {α}

)
= − α1 (y1 − x1)

2 − α2 y
2
1 − α3 y

2
2

− α4 (x2 − y2)
2 − α5 (y2 − y1)

2 + iε .
(2.3.15)
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FIG. 1. One-loop diagrams for the vertex functions in Eq. (16) and Eq. (24).

Clearly, both have the same pole structure, more precisely, the positions of the poles are the

same, although term-by-term their degrees may or may not be different. Using Feynman

parametrization, either before or after the action of the derivatives on the lines, both integrals

can be put into the form of Eq. (2) with the same common denominator but, of course,

with different numerator factors and different powers of the resulting denominator in the

integrands.

The pinch singularities of (28) and (29) can originate from the two poles of a single

denominator or from poles from different denominators. For the latter case, we will combine

the denominators by Feynman parametrization, and use Eq. (7), the coordinate-space analog

of Landau equations. In general, at a pinch singularity, one encounters combinations of

these two cases simultaneously. After Feynman parametrization the common denominator

for either diagram is given by

D(1)
�
x1, x2, y1, y2; {α}

�
= − α1 (y1 − x1)

2 − α2 y2
1 − α3 y2

2

− α4 (x2 − y2)
2 − α5 (y2 − y1)

2 + i� .
(30)

Using Eq. (7), we get the Landau conditions for pinches in the integration over the positions

of internal vertices y1 and y2,

α1 (y1 − x1)
µ + α2 yµ

1 − α5 (y2 − y1)
µ = 0 , (31)

−α4 (x2 − y2)
µ + α3 yµ

2 + α5 (y2 − y1)
µ = 0 , (32)

when D(1) vanishes at a singularity.

We shall list the singularities of (28) or (29) starting with pinches without any zero lines.

Eqs. (31) and (32) make up an underdetermined system of two vector equations, since the

αj also are unknowns. We will not list all solutions to these equations but only those that

13

Figure 2.1: One-loop diagrams for the vertex functions in Eq. (2.3.1) and
Eq. (2.3.9).

Using Eq. (2.2.7), we get the Landau conditions for pinches in the integration
over the positions of internal vertices y1 and y2,

α1 (y1 − x1)
µ + α2 y

µ
1 − α5 (y2 − y1)

µ = 0 , (2.3.16)

−α4 (x2 − y2)
µ + α3 y

µ
2 + α5 (y2 − y1)

µ = 0 , (2.3.17)

when D(1) vanishes at a singularity.
We shall list the singularities of (2.3.13) or (2.3.14) starting with pinches

without any zero lines. Eqs. (2.3.16) and (2.3.17) make up an underdetermined
system of two vector equations, since the αj also are unknowns. We will not
list all solutions to these equations but only those that give the leading power
singularities of the vertex functions, which are physically relevant. By leading
power singularities of the vertex functions we mean the terms in

Γ̂µ
S,F (x1, x2) = x2

1 x
2
2 Γµ

S,F (x1, x2) (2.3.18)

that do not vanish when x2
1 = x2

2 = 0. The simplest solution is when only
α5 = 0 while others are nonzero, where one gets

yµ
1 =

α1

α1 + α2

xµ
1 , (2.3.19)

yµ
2 =

α4

α3 + α4

xµ
2 , (2.3.20)

such that yµ
1 becomes ‘parallel’ to xµ

1 while yµ
2 is parallel to xµ

2 . The neccessary
condition for a singularity, D(1) = 0, is then satisfied only if x2

1 = x2
2 = 0. This

solution can be interpreted as a “soft” gauge particle, say a gluon, propagating
over a finite (invariant) distance between y1 and y2, such that the directions
of the external particles have not changed after the emission or absorbtion of
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the gluon. In momentum space, lines with negligible momenta are called soft,
while in coordinate space soft lines are those which connect two points at a
finite (invariant) distance. In this case, the scalar/fermion lines are on the
lightcone for a pinch.

If α5 were not equal to zero, the general solution to Eqs. (2.3.16) and
(2.3.17) is such that yµ

1 , and similarly yµ
2 , are given as linear combinations of

xµ
1 and xµ

2 . Assuming no other αj vanishes either, D(1) = 0 requires then not
only x2

i = 0 but also xµ
1 · x

µ
2 = 0. These solutions, however, imply that x1

and x2 are lightlike separated. Likewise, when only α2 = 0 or α3 = 0, the
condition D(1) = 0 is only satisfied with x1 and x2 lightlike separated. On the
other hand, if α1 = 0 the solution to Eq. (2.3.16) is such that yµ

1 ∝ yµ
2 and

by Eq. (2.3.17) both y1 and y2 are then parallel to x2 with D(1) = 0 being
satisfied for x2

2 = 0. However, now the external line (x1 − y1)
2 can not be

on the lightcone, so that this solution does not correspond to a leading power
singularity of the vertex. Similarly, when α4 = 0, y1 and y2 will be parallel to
x1, and D(1) = 0 is satisfied for x2

1 = 0, so that the external line (x2− y2)
2 can

not be on the lightcone either. The solutions with two or more αj vanishing
are either ruled out because of the reasons given above or because they are
equivalent to singularities from zero lines with zµ

j (yi) = 0, which we now
consider below.

Let us first consider the UV-type singularity of the internal line connecting
the vertex at y1 to the origin, yµ

1 = 0, and look at the conditions for pinches
in the remaining integral over yµ

2 . Eq. (2.3.17) is now satisfied for

yµ
2 =

α4

α3 + α4 + α5

xµ
2 . (2.3.21)

Similarly, when yµ
2 = 0, Eq. (2.3.16) gives

yµ
1 =

α1

α1 + α2 + α5

xµ
1 . (2.3.22)

These solutions satisfy the condition D(1) = 0 if x2
2 = 0 and x2

1 = 0, separately.
According to the physical interpretation of pinch singularities given in the
previous section, these solutions give “collinear” gauge particles that propagate
on the lightcone parallel to one of the external scalars/fermions. We will
refer to such lighlike lines with finite energies and momenta in the physical
interpretation as jet lines.

Next, consider the case when both internal vertices move to the origin,
yµ

1 = yµ
2 = 0, which makes three lines become zero lines simultaneously. Again,

the vanishing of D(1) for a singularity requires x2
1 = x2

2 = 0 with all lines on
the lightcone, otherwise α1 = α4 = 0. This solution represents an ultraviolet
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(short-distance) divergence, and we call it a “hard” solution by analogy to
hard scattering.

Among the remaining cases with zero vectors, first consider yµ
2 = xµ

2 and
yµ

1 = xµ
1 . The solution to Eq. (2.3.16) for the former, and to Eq. (2.3.17) for

the latter, is such that yµ
1 , and similarly yµ

2 , is given as a linear combination of
xµ

1 and xµ
2 , so that D(1) = 0 is not satisfied for these (unless α5 = 0) because

xµ
1 · x

µ
2 6= 0. For yµ

1 = yµ
2 = yµ, both of the external lines can not be on

the lightcone simultaneously. Among the cases when two propagators have
zero arguments at the same time, yµ

1 = xµ
1 together with yµ

2 = 0, and yµ
1 = 0

together with yµ
2 = xµ

2 are limiting cases of collinear solutions in (2.3.22) and
(2.3.21), respectively; while any other combination is ruled out because they
require x2

i = 0 and x1 ·x2 = 0. The only possible solution with three zero lines
is the hard solution we found, and there can not be any other with more zero
lines, because xµ

1 6= xµ
2 6= 0. We have finished the list of solutions to Landau

conditions for the leading power singularities of the vertex functions at one
loop.

From the solutions to Landau conditions at one loop, one can draw the
conclusion that the divergences of the vertex functions in coordinate space
come from configurations where, whether the gluons are soft or collinear, the
external particles move along rigid, classical trajectories along the directions
of external points that are located on the lightcone. For the singular con-
figurations at higher orders, we will not need to solve the Landau equations
explicitly. Instead, we will make use of the physical interpretation of the nec-
essary conditions for a pinch singularity given in the previous section, and
confirmed above for the one-loop case.

In the case of the pinch singularities of the vertex function, to identify an
arbitrary pinch surface, we can use the necessary condition (2.2.9) that the
lightlike lines of the corresponding diagram must describe a physical process,
where the two external lines start from the same point, say the origin, moving
in different directions, toward xµ

1 and xµ
2 . For the sake of the argument, suppose

the external particles are fermions. Any gauge field lines that connect them
by vertices at finite distances have to be soft, because they cannot be parallel
to both. They may still have a hard interaction at the origin reflecting a
short-distance singularity. The integrals over the positions of the fermion-
gluon vertices will be pinched either when the gluon and the fermion lines get
mutually collinear, or when the two collinear fermions are connected by the
emission of a soft gluon as described in the example given at the end of Sec. 2.2.
Likewise, the integrations over the positions of vertices, to which these collinear
gluons are connected, will be pinched if the other lines connected to these
vertices also become parallel to them, such that all collinear lines make up a
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“jet” moving in the direction of the external fermions. The Landau conditions
allow these collinear gluons to emit soft gluon lines that can connect to the
other jet as well. Therefore, the two jets can have hard interactions at very
short distances, and they can only interact by the exchange of soft partons at
long distances at later times. Eventually, the fermion lines end at the external
points xµ

i , which have to be on the lightcone, x2
i = 0, in order that D(n) = 0 is

satisfied.
To sum up, the pinch singularities of the integrals for vertex functions in

coordinate space come from configurations where the (time-ordered) vertices,
at which either soft or collinear gluons are emitted or absorbed, are aligned
along straight lines going through the ‘origin’ and the external points. These
two lines also determine the classical trajectories of the external particles in the
Coleman-Norton interpretation. The behaviour of the integrals for arbitrary
diagrams at higher orders near the corresponding pinch surfaces will be covered
by general power counting arguments in the next section.

2.4 Power counting

In this section, we will apply a power counting technique similar to the one
developed for momentum space integrals in Ref. [47] to study the behaviour
of the divergences of vertex functions in coordinate space. We have studied in
the previous section the pinch singularities in the integrals when the external
points are on the lightcone. As the external propagators are not truncated,
even the zeroth order results are very singular in coordinate space when the
external points are on the lightcone; for instance, the fermionic vertex diverges
as 1/(x2

1 x
2
2)

2. Therefore, we will now only consider the external points set on
the lightcone, and look for the degree of divergence of vertex functions with
respect to their lowest-order results. In a sense, we are looking for any possible
divergences in the residues of the lightcone poles, by analogy to the residues
of single-particle poles in external momenta of Green functions in momentum
space for S-Matrix elements. We will show at the end of this section by power
counting arguments that vertex functions in coordinate space have at worst
logarithmic divergences with respect to their lowest order results at higher
orders in perturbation theory.

Since x2 = 0 does not imply xµ = 0 in Minkowski space, näıve dimensional
counting does not neccessarily bound the true behaviour of the integrals. As
we already mentioned in Sec. 2.2, the divergences of the integrals are related
to both the volume of the space of normal variables and the singularities of
the integrand. Therefore, we will do the power counting by combining the size
of the volume element of normal variables with that of the integrand, which
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depends on both normal and intrinsic variables. In order to estimate the size
of the integrand, we will first approximate the integrals near the pinch surfaces
by keeping in each factor (numerator or denominator) only the terms of lowest
order in normal coordinates, as their scale goes to zero. Then the resultant
integrand is a homogenous function of normal variables, and the powers of
the normal variables in the homogenous integrals combined with the normal
volume element will give us the bounds on the original integrals.

Suppose z1, . . . , zn and w1, . . . , wm denote the normal and intrinsic variables
for a pinch surface S of an integral I. The zi vanish on S with a scale λ, while
wj remain finite (as λ → 0) on S. For our discussion for vertex functions,
we can choose a single scale λ for properly chosen normal coordinates in our
integrals to do the power counting, although we should stress that this does
not need to be the case in general. The scale λ bounds the size of each normal
variable, and measures the “distance” of the hypercontour H from the pinch
surface S. The homogenous integral Ī near the pinch surface S will have the
form2

Ī ∼
∫
dλ2

∫
H

(
n∏

i=1

dzi

)
δ(λ2 −

∑
i

|zi|2)
∫ ( m∏

j=1

dwj

)
f̄(zi, wj) , (2.4.1)

where the homogenous integrand f̄(zi, wj) is obtained by keeping only terms
lowest order in λ in each factor of the original integrand such that

f(zi, wj) = λ−dH f̄(z′i, wj) (1 +O(λ)) , (2.4.2)

for each normal variable zi = λ z′i with dH the degree of homogeneity of
f̄(zi, wj). More specifically, as we will do the analysis for integrals of the
form of Eq. (2.2.1), dH equals the sum of the lowest powers of λ in the de-
nominator factors minus that in the numerator factors in f(zi, wj). The idea
is then to scale out λ from each factor in the homogenous integral, to count
the overall power, and find the behaviour of the integral as λ→ 0,

Ī ∼
∫
dλ λγ−1

∫
H

n∏
i=1

dz′i δ(1−
∑

i

|z′i|2)
∫ m∏

j=1

dwj f̄(z′i, wj) , (2.4.3)

where the overall degree of divergence γ is given by

γ = n− dH . (2.4.4)

2This form with a delta fuction having the sum of the squares of the absolute values of
the normal variables in its argument corresponds to bounding the normal space with an
n-dimensional sphere with radius λ.

24



H S

J(+)

J(−)

FIG. 2. Illustration of the soft (S), hard (H), and jet (J(±)) regions.

still be the same for each subregion. Before two lines can produce a pinch singularity, they

must approach the hypercontour to the same scale. Therefore, one can choose a single scale

for all normal variables for the power counting for a particular vertex function near a pinch

surface. We shall now apply this power counting technique for the fermionic vertex given

by Eq. (24), which we will refer to as the vertex function in the following. As we shall see,

power counting for the scalar vertex is essentially equivalent.

As we are dealing with lightlike lines, we will use lightcone coordinates, because the

Landau equations for lightcone singularities can be solved more simply in these coordinates.

By a combination of rotations and boosts, one can put one of the external points at xµ
2 =

X2 δµ+ and the other one at xµ
1 = X1 δµ− giving x2

1 = x2
2 = 0 with x1 · x2 �= 0. This will set

our coordinate system.

For a particular pinch surface S, i.e. a particular solution to Landau equations, one has

to identify the intrinsic and normal variables that parametrize the surface and its normal

space, respectively. For instance, let us take the solution with a soft gluon at one loop from

Sec. III. There, y+
2 and y−1 are the intrinsic variables that remain finite, while y−2 , y+

1 , y2
2,⊥,

and y2
1,⊥ are the normal variables that vanish on the pinch surface. Such lines connecting

vertices at finite distances are part of the soft function. On the other hand, for the hard

solution at one loop, all components of yµ
1 and yµ

2 were vanishing, and one has only normal

variables for this solution. We will refer to the set of lines connecting a set of vertices all of

whose coordinates vanish as the hard function. Lastly, in the one loop example, there were

collinear lines. At one loop, for a line in the plus direction, y+
2 is the intrinsic variable while
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Figure 2.2: Illustration of the soft (S), hard (H), and jet (J(±)) regions.

By overall degree of divergence, we mean the power of scale parameter λ in the
overall integral when all normal variables have the same scale. For γ = 0, the
divergences are logarithmic, while for γ < 0 there will be power divergences.

If some set of normal coordinates vanished faster than others on S, say as
λ2, that would only increase the power of λ in the volume element of the normal
space, giving a nonleading contribution, unless there are new pinches in the
homogenous integral after dropping terms that are higher order in the normal
variables. These pinches, which could occur between poles that were separated
by nonleading terms before they were dropped, could enhance the integrals in
principle. However, we will argue that, for our choice of variables, only pinches
of the hard-jet-soft type occur in the homogenous integrals. Notice also that, if
every normal variable in a subregion vanishes faster than those of other regions,
the power counting will still be the same for each subregion. Before two lines
can produce a pinch singularity, they must approach the hypercontour to the
same scale. Therefore, one can choose a single scale for all normal variables for
the power counting for a particular vertex function near a pinch surface. We
shall now apply this power counting technique for the fermionic vertex given
by Eq. (2.3.9), which we will refer to as the vertex function in the following.
As we shall see, power counting for the scalar vertex is essentially equivalent.

As we are dealing with lightlike lines, we will use lightcone coordinates,
because the Landau equations for lightcone singularities can be solved more
simply in these coordinates. By a combination of rotations and boosts, one can
put one of the external points at xµ

2 = X2 δ
µ+ and the other one at xµ

1 = X1 δ
µ−

giving x2
1 = x2

2 = 0 with x1 · x2 6= 0. This will set our coordinate system.
For a particular pinch surface S, i.e. a particular solution to Landau equa-

tions, one has to identify the intrinsic and normal variables that parametrize
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the surface and its normal space, respectively. For instance, let us take the
solution with a soft gluon at one loop from Sec. 2.3. There, y+

2 and y−1 are
the intrinsic variables that remain finite, while y−2 , y+

1 , y2
2,⊥, and y2

1,⊥ are the
normal variables that vanish on the pinch surface. Such lines connecting ver-
tices at finite distances are part of the soft function. On the other hand, for
the hard solution at one loop, all components of yµ

1 and yµ
2 were vanishing,

and one has only normal variables for this solution. We will refer to the set of
lines connecting a set of vertices all of whose coordinates vanish as the hard
function. Lastly, in the one loop example, there were collinear lines. At one
loop, for a line in the plus direction, y+

2 is the intrinsic variable while the rest
of the components are normal variables. The set of collinear gluons together
with the external lines to which they are parallel define the jet function and
its direction. Note that the limits of integration of y+

2 here goes from zero up
to X2 on this pinch surface. For y+

2 > X2, the Landau equations can not be
solved. Indeed, y+

2 > X2 does not correspond to a physical process where all
lines move forward in time. In general, in a jet the limits of integration over
the intrinsic variables for a given pinch surface are not unbounded, but are set
according to the time-ordering of vertices along the jet direction.

In homogenous integrals, the denominators of the jet lines will be linear,
and those of the hard lines quadratic in normal variables; while the soft lines
are of zeroth order. The lines connecting the hard function with the jets are
linear in normal variables, and we thus count them as part of the jets. Any
line connecting the jets or the hard part to the soft function is zeroth order in
normal variables, and hence they are counted in the soft function.

The only approximation in writing the homogenous integrand is dropping
terms that are higher order in the normal variables. In fact, such terms occur
only in lines connecting two different subdiagrams, namely, in lines connecting
the jets to the hard and soft function or those connecting the hard and soft
functions. In order for our power counting arguments to be valid, there must
not be new pinches introduced in the homogenous integrals because of this
approximation. In other words, the Landau conditions for the homogenous
integral to be pinched must have the same solutions as those of the original
integral (up to trivial shifts or rescalings in some of the variables). We mean by
the same solutions, that the pinch singularities of both have the same physical
picture. Note that soft lines are never pinched in coordinate space, and thus
we only need to consider the pinches of the lines connecting a jet to the hard
part in the original and homogenous integrals. To this end, one may consider,
for instance, the following integral over two jet lines, which is a part of a jet
function,

I =

∫
d4y

1

−(x− y)2 + iε

1

−(y − z)2 + iε
, (2.4.5)
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where xµ, yµ are jet vertices and zµ is a hard vertex3. The Landau conditions
for a pinch from these two lines after Feynman parametrization are given by

− α1 (x− y)µ + α2 (y − z)µ = 0 , (2.4.6)

with (x − y)2 = (y − z)2 = 0. The only solution to these conditions is that
all three vertices are aligned along the jet direction, say the plus direction,
and are parallel to each other. The vertex zµ is allowed to be hard by these
conditions, i.e. z+ can also vanish in Eq. (2.4.6) at the same rate as the other
components. If one approximates the integral in (2.4.5) by a homogenous
integrand with (y− z)2 ∼ y2− 2y+z−, the condition for a pinch in y−-integral
is then the same as the condition (2.4.6) for the original integral with z+ = 0.
The integrals over the transverse components of yµ can only be pinched at y2

⊥ =
x2
⊥ = 0. These pinch singularities are present in both original and homogenous

integrals. They show up as end-point singularities after the change of variables
with y1, y2 → y2

⊥, φ, which can always be carried out. In general, the pinches
of the homogenous integral correspond to pinches of the original integral with
some of the variables moved to their end-points.

This approximation can fail if z+ becomes comparable to y+ and x+, or
if y+ diminishes like z+, which are actually different solutions to the Landau
conditions corresponding to different pinch surfaces. Nevertheless, we will
see that the result of power counting will not differ in either case, whether
the vertex zµ is taken as part of the jet, or included in the hard part. In
our analysis, we identify the normal variables of a pinch surface, group each
vertex in a certain subdiagram depending on the size of the components of
its position, and do the power counting for the divergence on that particular
pinch surface. Generally speaking, the approximations in the homogenous
integrals can change if two different regions overlap when some vertices escape
to a different subdiagram. However, we will show that the changes in the
powers of the factors of two subdiagrams due to removal of a vertex from
one subdiagram and its inclusion to the other subdiagram cancel each other,
leading to the same conclusion for the overall degree of divergence.

2.4.1 Power counting for a single jet

Before we do the power counting for the full vertex function in coordinate
space, we begin with the power counting for a single jet, with the topology of
a self-energy diagram, as depicted in Fig. 2.3. Let us take a “dressed” ultra-
relativistic fermion moving in the plus direction, so that the plus coordinates

3Here, we have omitted the derivatives at each vertex in order to write a simple integrand
to illustrate the idea.
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with (x− y)
2

= (y− z)
2

= 0. The only solution to these conditions is that all three vertices

are aligned along the jet direction, say the plus direction, and are parallel to each other.

The vertex zµ
is allowed to be hard by these conditions, i.e. z+

can also vanish in Eq. (43)

at the same rate as the other components. If one approximates the integral in (42) by a

homogenous integrand with (y − z)
2 ∼ y2 − 2y+z−, the condition for a pinch in y−-integral

is then the same as the condition (43) for the original integral with z+
= 0. The integrals

over the transverse components of yµ
can only be pinched at y2

⊥ = x2
⊥ = 0. These pinch

singularities are present in both original and homogenous integrals. They show up as end-

point singularities after the change of variables with y1, y2 → y2
⊥, φ, which can always be

carried out. In general, the pinches of the homogenous integral correspond to pinches of the

original integral with some of the variables moved to their end-points.

This approximation can fail if z+
becomes comparable to y+

and x+
, or if y+

diminishes

like z+
, which are actually different solutions to the Landau conditions corresponding to

different pinch surfaces. Nevertheless, we will see that the result of power counting will

not differ in either case, whether the vertex zµ
is taken as part of the jet, or included in

the hard part. In our analysis, we identify the normal variables of a pinch surface, group

each vertex in a certain subdiagram depending on the size of the components of its position,

and do the power counting for the divergence on that particular pinch surface. Generally

speaking, the approximations in the homogenous integrals can change if two different regions

overlap when some vertices escape to a different subdiagram. However, we will show that

the changes in the powers of the factors of two subdiagrams due to removal of a vertex from

one subdiagram and its inclusion to the other subdiagram cancel each other, leading to the

same conclusion for the overall degree of divergence.

A. Power counting for a single jet

Before we do the power counting for the full vertex function in coordinate space, we

begin with the power counting for a single jet, with the topology of a self-energy diagram,

0 x

FIG. 3. A single jet with the topology of a self-energy diagram.
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Figure 2.3: A single jet with the topology of a self-energy diagram.

of all vertices inside the jet are the intrinsic variables, while their minus co-
ordinates and squares of transverse positions are the normal variables. With
these choices, all normal variables appear linearly in jet line denominators.
The condition that the vertices have to be on the lightcone for pinches leaves
us with three variables for each vertex. The azimuthal symmetry around the
jet axis allows us to choose the square of the transverse components as one
normal variable. We will compute the contributions to the overall degree of
divergence of the jet, γJ , from the normal volume element, the denominators,
and the numerators of the jet function as defined in Eq. (2.4.4) for a generic
singular integral.

For every integration over the positions of the three- and four-point vertices
inside the jet, one needs to add +2 to γJ , that is, +1 for each normal variable
(transverse square and minus component). In D = 4−2ε dimensions, however,
the power for transverse square components is +(1−ε). In the homogenous jet
function, the denominator of each gauge field line contributes a term −(1− ε)
while that of each fermion line contributes −(2− ε) to γJ , since the massless
fermion propagator in coordinate space is given, as in Eq. (2.3.14), by

SF (x) = /∂∆F (x2) =
Γ(2− ε)
2π2−ε

/x

(−x2 + iε)2−ε
. (2.4.7)

We are interested in the degree of divergence with respect to the lowest order
result, so we will multiply the diagrams of Fig. 2.3 by [/x/(−x2 + iε)2−ε]−1.
Equivalently, we add a term +(2− ε) to γJ to cancel the lightcone divergence
of the lowest order diagram, which is simply the fermion propagator.

Now we consider the numerator suppressions. In order to get the leading
divergences, in the numerators we will keep only the terms lowest order in
normal coordinates, which therefore give the least suppression. To begin, we
note that there is a factor contributing to the numerator from each fermion-
gluon vertex at a point yµ

n of the form,

(/yn+1
− /yn

) γµ (/yn
− /yn−1

) =

2 (yn+1 − yn)µ (/yn
− /yn−1

)− γµ (/yn+1
− /yn

) (/yn
− /yn−1

) .

(2.4.8)
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Here, the first term is unsuppressed as it is, although the vector with the
index µ must form an invariant with some other vector. At the same time,
terms proportional to γµ in Eq. (2.4.8) either vanish by (γ∓)2 = 0 or vanish
at least as the transverse coordinates of one of the vertices, which are at the
order of λ1/2. In the case of scalar, instead of gauge field lines, with Yukawa
couplings to fermions, for each two-fermion-scalar vertex there would be a
factor of (/yn+1

− /yn
) (/yn

− /yn−1
) in the numerator, giving the same power-

counting suppression of at least λ1/2.
In addition to numerator factors from fermion lines, there are factors from

three-gluon vertex functions. A vertex at zµ
m combines with gluon propagators

to give terms that (dropping overall factors) can be written as

v3g(zm, {yi}) = εijk g
µiµj ∆(zm − yi) ∆(zm − yj) ∂

µk
zm

∆(zm − yk) , (2.4.9)

where the yi are the positions of the other ends of the lines. Acting on the
gluon lines, the derivatives bring vectors from their coordinate arguments to
the numerator, while increasing the power of a denominator by one. These
vectors also must form invariants in the numerator, either among themselves
or with the Dirac matrices of the fermion-gluon vertices. Suppose we let zi

denote the position of the ith three-gluon-vertex, and yj the position of the jth
fermion-gluon vertex. The numerator is then a product of linear combinations
of invariants of the form /zi, /yj

, and zi · zi′ . Referring to Eq. (2.4.8), one could

also get factors with zi · yj. Each such invariant made out of two vectors is
linear in normal variables. One can see then that each fermion-gluon vertex
suppresses the numerator by λ1/2 at least, while every pair of three-gluon
vertices produce an invariant suppressing the numerator by λ, while if a three-
gluon vertex is contracted with a Dirac matrix at a fermion-gluon vertex, it
also suppresses the numerator by λ1/2 at least. Hence, the contribution of the
numerators to γJ is given by

γnJ
≥ 1

2
(V f

3 + V g
3 ) =

1

2
V3 , (2.4.10)

with V f
3 the number of fermion-gluon vertices and V g

3 the number of three-
gluon vertices inside the jet. Adding all contributions, we obtain a lower bound
for the overall degree of divergence of this fermion jet,

γJ ≥ 2(V3 + V4) + 2−Ng − 2Nf − V g
3 +

1

2
V3 +O(ε) . (2.4.11)

Here, V3 (V4) is the total number of three-point (four-point) vertices, while
Ng (Nf ) is the number of gluon (fermion) lines in the jet. We can use the
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graphical identity,

2N = E +
∑
i=3,4

i Vi , (2.4.12)

in Eq. (2.4.11), which relates the number of lines of a diagram to the numbers
of its various kinds of vertices, where E is the number of external lines of
the jet. A single jet has two external lines, E = 2, one connected to the
external point xµ and the other to the origin. Combining the number of lines
N = Nf + Ng and the number of three-point vertices V3 = V f

3 + V g
3 , we can

rearrange the terms in Eq. (2.4.11),

γJ ≥
3

2
V3 + 2V4 −N + 2 + V f

3 −Nf , (2.4.13)

which, using the graphical identity (2.4.12), can be reduced to

γJ ≥ 1 + V f
3 −Nf . (2.4.14)

Here, we note that, because at each fermion-gluon vertex one fermion line
enters and one exists, the number of fermion lines in the jet are equal to one
plus the number of fermion-gluon vertices in the jet. Therefore, our power
counting results in

γJ ≥ 0 . (2.4.15)

Thus, a fermion jet in coordinate space with the topology of a self-energy
diagram can have at worst logarithmic divergence. In contrast to the power
counting in momentum space, we did not count the number of loops nor did
need to use the Euler identity. Note that the power counting for a scalar jet
gives the same result, because the derivatives at two-scalar-gluon vertices in a
scalar jet correspond to the derivatives from fermion propagators in a fermion
jet. Similarly, the two-scalar-two-gluon “seagull” couplings have no numerator
factors, and are counted like the four-point gluon couplings.4

If we had kept the terms at O(ε) in the power counting of Eq. (2.4.11), we

4By the arguments given in the main text, the overall degree of divergence of a scalar jet
is bounded from below by

γSJ ≥ 2(V3 + V4 + V 2g2s
4 ) + 1−Ns −Ng − V g

3 − V sg
3 +

1
2
(V g

3 + V sg
3 ) +O(ε) ,

with Ns the number of scalar lines, V 2g2s
4 the number of two-scalar-two-gluon vertices, and

V sg
3 the number of two-scalar-gluon vertices. Each term on the right hand side cancels by

Eq. (2.4.12) such that γSJ ≥ 0 in this case as well.
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would have derived a bound

γJ ≥ (
1

2
V3 + V4)ε , (2.4.16)

which shows that these collinear singularities are regulated also by ε > 0 in
coordinate space. No IR regularization is neccessary after UV renormalization
when the external points are taken to the lightcone. However, in the Fourier
transform of the vertex function for S-Matrix elements in momentum space,
the divergences in p2 = 0 will require IR regularization with ε < 0 when the
external points are integrated to infinity.

The power counting above and the result (2.4.15) hold in the presence
of self-energies inside the jet as well. For instance, cutting a gluon line in
the jet and inserting a fermion loop does not change γJ , because the changes
due to extra fermion denominators are canceled by the terms for integra-
tions over the positions of these two new vertices, while the denominator of
the extra gluon cancels the contribution of fermion numerators to γJ since

/y(−/y) = −y2 ∼ O(λ) with yµ the difference of the positions of the two ver-
tices. In the case of inserting a gluon or a ghost loop, a similar cancellation
occurs. The denominators of the two new lines in the loop each have a lower
power by one compared to fermion lines, but there are now two derivatives at
the new vertices raising those powers. A different power counting is needed
for the case when such self-energies shrink to a point, that is y+ → 0 in the
example above for a jet in the plus direction. When renormalization has been
carried out, such UV-divergences are removed by local counter-terms.

2.4.2 Overall power counting for the vertex function

We are now ready to continue with the overall power counting for the vertex
function including two jets, a soft subdiagram, and a hard subdiagram as in
Fig. 2.2. We will do the analysis for the fermionic vertex function. As in the
previous subsection, the counting is the same for the scalar vertex. It also
straightforwardly extends to any amplitude for wide-angle scattering.

The homogenous soft function is independent of normal variables, and by
dimensional counting it is finite for fixed external points. We introduce the
notation JH

(±)g and JH
(±)f to denote the numbers of vector and fermion lines,

respectively, that connect the hard subdiagram to the jets in the ± direction.
In these terms, we also define

JH
g,f = JH

(+)g,f + JH
(−)g,f , (2.4.17)

JH = JH
g + JH

f , (2.4.18)
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where JH is the total number of lines attaching both jets to the hard sub-
diagram. Similarly, we define for the lines connecting the jets to the soft
subdiagram,

SJ
g,f = SJ

(+)g,f + SJ
(−)g,f , (2.4.19)

SJ = SJ
g + SJ

f , (2.4.20)

and lastly for the lines connecting the soft and hard subdiagrams,

SH = SH
g + SH

f . (2.4.21)

Recall that all components of the vertices in the hard function vanish together,
so that hard lines are quadratic in normal variables. Similar to Eq. (2.4.11)
for a single jet, the overall degree of divergence for the vertex function relative
to the lowest order diagram can be written as

γΓ ≥ 4(V H
3 + V H

4 )− 2NH
g − 3NH

f − V H
3g

+
∑

i=+,−

[
2(V

J(i)

3 + V
J(i)

4 ) + 2−NJ(i)
g − 2N

J(i)

f − V J(i)

3g + nJ(i)

]
+O(ε) ,

(2.4.22)

where nJ(±) denotes the numerator contributions from the jet in the ± direc-
tion. The terms labeled H are contributions from the hard part, followed by
contributions from the two jets. Note that there are no contributions from
integrations over the positions of soft vertices here, because all of their com-
ponents are intrinsic variables.

In the hard part, every three-gluon vertex produces a vector that must be
proportional to a linear combination of the position vectors, zµ

i of vertices in
the hard subdiagram. These are all normal variables, and are hence order λ.
These vectors may form invariants with a jet or a soft vertex suppressing the
numerator by λ, or two of them may form an invariant at O(λ2). Thus, each
hard three-gluon vertex contributes +1 to scaling of the numerator while their
derivatives increase the power of a gluon denominator that is quadratic in λ.
In total, they contribute −V H

3g to γΓ.
The numerator contributions of jets are somewhat different compared to

Eq. (2.4.11), because the vectors arising from the derivatives of three-gluon
vertices inside the jets can now form invariants with vectors from three-gluon
vertices in the hard or soft part, or from the opposite moving jet. At lowest
order in normal variables, the invariants resulting from contracting a jet vertex
with a soft vertex are zeroth order in normal variables, while those from a
jet and a hard vertex are linear, which, however, we have already counted
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in (2.4.22) among the contributions from the hard part. There can be at most
JH

g such vectors to form out-of-jet invariants, as many as the number of lines
connecting jets to the hard part. The polarization of any of the SJ

g soft gluons
connecting the jets to the soft function does not produce an invariant that
contributes to nJ = nJ(+)

+ nJ(−)
, and the fermion-gluon vertices in the jets

where a soft fermion line attaches do not always give a suppression in the
numerator. For the minimum numerator suppressions, we can thus subtract
JH

g + SJ
g + SJ

f from the total number of three-point vertices in nJ ,

nJ ≥ 1

2
(V J

3 − JH
g − SJ) , (2.4.23)

where we use the notation of Eqs. (2.4.18) and (2.4.20).
We can again apply the graphical identity in (2.4.12) to the terms in

Eq. (2.4.22) for the jets and the hard subdiagram separately. The EH ex-
ternal lines of the hard function are either jet or soft lines,

EH = SH + JH , (2.4.24)

where we assume for this discussion that the minimum of the fermion lines
connecting the jets to the hard part is two, JH

f ≥ 2, one from each jet. Pinch
surfaces where only gluons attach the hard part to the jets in the reduced
diagram are also possible, and may be treated similarly, with equivalent results.
These external lines must be added to the number of hard lines, NH = NH

g +
NH

f , in the identity for the total number of lines connected to the hard part,

2NH + EH = 2V H
2 + 3V H

3 + 4V H
4 . (2.4.25)

Here, we consider the vertex of the external current as a two-point-vertex,
so that V H

2 = 1. The total number of jet lines are related to the number of
vertices in both jets by

2NJ + SJ = 2 + JH + 3V J
3 + 4V J

4 , (2.4.26)

where the number of (soft) lines, SJ , connecting the jets to the soft part is
added to the number of jet lines. Removing the contributions from the gluon
lines and vertices they attach in Eq. (2.4.25), one can find a relation between
the number of fermion vertices and the number of fermion lines in the hard
subdiagram,

V H
3f = NH

f +
1

2
(SH

f + JH
f − 2), (2.4.27)
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while a similar relation can be found from (2.4.26) for jets

V J
3f = NJ

f +
1

2
(SJ

f − JH
f − 2) . (2.4.28)

To derive a lower bound for γΓ in Eq. (2.4.22) it is convenient to begin by
applying (2.4.25) to the ‘H’ terms of γΓ, and Eq. (2.4.26) to the jet terms.
Then, we can readily use the relations of fermion lines to vertices, (2.4.27)
and (2.4.28), for the hard subdiagram and for the jets, respectively, and the
numerator inequality (2.4.23), to derive a lower bound for the overall degree
of divergence of the vertex function,

γΓ ≥ SH
g +

3

2
SH

f +
1

2
(SJ

f + JH
f − 2) . (2.4.29)

The condition for a (logarithmic) divergence is then that no line can connect
the hard subdiagram directly to the soft subdiagram and that only a single
fermion attach each jet to the hard subdiagram. This corresponds to similar
results found for pinch surfaces in momentum space [7,47]. The soft and hard
subdiagrams can only interact through jets. Moreover, when the lower bound
is saturated, using the same relations above, the leftover terms in γΓ that are
at the order of ε can be shown to be equal to

γ
O(ε)
Γ =

(1

2
V J

3 + V H
3 + V J

4 + 2V H
4 −

1

2
[SJ

g + JH
g ]
)
ε . (2.4.30)

For each line connecting the soft part to a jet there is a vertex in the jet, while
for each line connecting a jet to the hard part there is a hard vertex. Thus,
there will be enough vertices left over to make the coefficient of ε positive.
Therefore, the logarithmic divergence of the vertex function is regulated by
ε > 0 in coordinate space.

We shall now consider the changes in the power counting due to removal of
a vertex from one subdiagram and its inclusion to the other subdiagram. This
will happen at the boundary of integration in intrinsic variables. Suppose that
one of the jet vertices connected to the hard part gets captured by the hard
part and becomes part of it, or a vertex in the jet escapes to the soft part,
as depicted in Fig. 2.4. In the first case, the line, which used to connect the
hard part to one of the jets has become a hard line, while the other jet lines
attached to that vertex now connect the hard part and the jet. Thus, if the
vertex that gets captured is a three-gluon vertex, NH

g , V H
3g , and JH each change

by +1, while NJ
g and V J

3g change by −1. Likewise, if a four-point vertex gets
captured, NH

g and V H
4 increase by +1 but JH now increases by +2, while NJ

g

and V J
4 change by −1. These changes, however, cancel exactly in Eq. (2.4.22)
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B

FIG. 4. A jet vertex A gets captured by the hard part, while another vertex B escapes to the soft

part. Power counting for this pinch surface gives the same result as when the vertices A and B

were inside the jet. The other jet in the opposite direction is suppressed here.

To derive a lower bound for γΓ in Eq. (59) it is convenient to begin by applying (62) to

the ‘H’ terms of γΓ, and Eq. (63) to the jet terms. Then, we can readily use the relations

of fermion lines to vertices, (64) and (65), for the hard subdiagram and for the jets, respec-

tively, and the numerator inequality (60), to derive a lower bound for the overall degree of

divergence of the vertex function,

γΓ ≥ S
H

g
+

3

2
S

H

f
+

1

2
(SJ

f
+ J

H

f
− 2) . (66)

The condition for a (logarithmic) divergence is then that no line can connect the hard

subdiagram directly to the soft subdiagram and that only a single fermion attach each jet

to the hard subdiagram. This corresponds to similar results found for pinch surfaces in

momentum space [12, 15]. The soft and hard subdiagrams can only interact through jets.

Moreover, when the lower bound is saturated, using the same relations above, the leftover

terms in γΓ that are at the order of ε can be shown to be equal to

γ
O(ε)
Γ =

�1

2
V

J

3 + V
H

3 + V
J

4 + 2V H

4 −
1

2
[SJ

g
+ J

H

g
]
�
ε . (67)

For each line connecting the soft part to a jet there is a vertex in the jet, while for each line

connecting a jet to the hard part there is a hard vertex. Thus, there will be enough vertices

left over to make the coefficient of ε positive. Therefore, the logarithmic divergence of the

vertex function is regulated by ε > 0 in coordinate space.

We shall now consider the changes in the power counting due to removal of a vertex from

one subdiagram and its inclusion to the other subdiagram. This will happen at the boundary
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Figure 2.4: A jet vertex A gets captured by the hard part, while another
vertex B escapes to the soft part. Power counting for this pinch surface gives
the same result as when the vertices A and B were inside the jet. The other
jet in the opposite direction is suppressed here.

using the bound for the jet numerator contributions nJ in Eqs. (2.4.23) for
the most divergent configurations. Similarly, if a three-gluon vertex in the jet
escapes to the soft part, it pulls two lines out of the jet making them soft,
hence NJ

g and V J
3g change by −2 and −1, respectively, while SJ increases by

+1. For a four-point vertex that escapes the jet and joins the soft part, NJ
g

and V J
4 decrease by −3 and −1, respectively, while SJ increases by +2. These

changes also cancel in Eq. (2.4.22) for the most divergent configurations. Note
also that when a hard vertex escapes to the soft part the leftover changes
in Eq. (2.4.22) are equal to ∆SH , the change in the number of lines connecting
the hard and soft parts. Therefore, the leading behaviour does not change,
even if two different subdiagrams do overlap, as was asserted at the beginning
of this section.

To conclude, we have shown by power counting arguments that the ver-
tex function in coordinate space can diverge at worst logarithmically times
overall lowest-order behavior. This logarithmic divergence requires D < 4 in
dimensional regularization.

2.5 Approximations and Factorization

A fundamental consequence of the structure of pinch surfaces is the factoriza-
tion of soft gluons from jets and jet gluons from the hard part. This is shown
in momentum space by the use of Ward identities [5, 31, 53]. In this section,
we show how the same Ward identities, as they appear in coordinate space,
result in the factorization of soft, jet and hard functions.
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2.5.1 Hard-collinear approximation

Having identified the jet and hard regions that can give divergences in coordinate-
space integrals in the previous section, we now construct a coordinate space
“hard-collinear” approximation to the integral, which enables factorization of
the jet and hard functions at the leading singularities. Recall that the only
approximation made for writing a homogenous integrand to do the power
counting for these two regions was dropping the terms higher order in normal
variables in lines connecting the jets to the hard part. Thus, the approxi-
mation one needs is made on the propagators of these jet lines attached to
the hard part. We shall explain this “hard-collinear” approximation with the
example of the following integral,

I(y) =

∫
d4z Jν(y) gνρD

ρµ(y − z)Hµ(z) , (2.5.1)

where Jν denotes a jet function with a direction βν , Dρµ(y−z) the propagator
of the line that connects a jet vertex at y to a hard vertex at z, and Hµ(z)
a hard function. We raise and lower the indices by the Minkowski metric.
Here, we have suppressed the dependence on other vertices, which are also
integrated over. The integral in (2.5.1) will have divergences when the jet
moves in the plus or minus lightcone direction and all coordinates of the hard
function vanish. In this limit, we can approximate this integral by picking out
the large component of the jet, by replacing gνρ → β′νβρ where βµ = δµ+ and
β′ν = δν−,

I(y) ∼
∫
d4z Jν(y) β′ν βρ D̄

ρµ(y − z)Hµ(z) . (2.5.2)

In the gluon propagator, D̄, we neglect the smaller terms coming from the hard
vertex. Let us take the jet to be in the plus-direction, then the dependence on
zµ in the argument of the propagator will be largely through z−, the component
of the hard vertex in the opposite direction, because

(y − z)2 = 2y+(y− − z−)− y2
⊥ +O(λ3/2) , (2.5.3)

for y+ � z+ and y2
⊥ � z2

⊥. We then write the propagator as

βρD
ρµ(y − z) = D−+(y − z)βµ ,

D̄−+(y − z) =
∂

∂z−

∫ z−

∞
dσ D−+

(
2y+(y− − σ β′−)− y2

⊥
)
,

≡ ∂z−D(y, z−) . (2.5.4)
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FIG. 5. One-loop example for the hard-collinear approximation. The arrow represents the action

of the derivative on the hard function H(z), which is just a fermion propagator here.

For this representation, we should take ε < 0 in D̄
−+. One can now integrate by parts in

Eq. (69), so that −∂z− acts on the hard function Hµ(z),

I(y) ∼
�

d
4
z J

+
(y) D(y, z

−
)
�
− ∂z−H

−
(z)
�

. (72)

There are no boundary terms as a result of integrating by parts, because in the hard function

Hµ(z) there must be at least one propagator that vanishes at z
− = ±∞. Furthermore, we

can add to the integrand the derivatives with respect to other components of z
µ such that we

now have a full gradient ∂µ
z acting on the hard function Hµ(z). Because the jet function and

D(y, z
−) do not depend on z

+ and z⊥, these added terms are total derivatives and vanish

after the integration. The result of our approximation can then be expressed by

I(y) ∼
�

d
4
z
�
J

ν
(y) β

�
ν

�
D(y, z)

�
− ∂µ

Hµ(z)
�

. (73)

In other words, we have replaced the propagator of the gluon escaping from the jet to the

hard part by D
νµ(y − z) → D(y, z)β�ν∂µ

z with β
�ν being a vector in the opposite direction

of the jet. The momentum-space analog of such a gluon is called “longitudinally” or “scalar

polarized”, and is associated with the scalar operator ∂µA
µ(x) in coordinate space.

For the simplest example illustrated in Fig. 5, this approximation for the vertex function

at one loop results in

I
(1) ∼

�
d

D
z

/x2 − /y

(−(x2 − y)2 + i�)2−ε
/β
� /y

(−y2 + i�)2−ε

� z−

∞
dσ

1

(−2y+(y− − σ β�) + y
2
⊥ + i�)1−ε

×
�
− ∂

∂zµ

��
−/z

(−z2 + i�)2−ε
γ

µ /z − /x1

(−(z − x1)
2 + i�)2−ε

�
, (74)
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Figure 2.5: One-loop example for the hard-collinear approximation. The arrow
represents the action of the derivative on the hard function H(z), which is just
a fermion propagator here.

For this representation, we should take ε < 0 in D̄−+. One can now integrate
by parts in Eq. (2.5.2), so that −∂z− acts on the hard function Hµ(z),

I(y) ∼
∫
d4z J+(y) D(y, z−)

(
− ∂z−H

−(z)
)
. (2.5.5)

There are no boundary terms as a result of integrating by parts, because in
the hard function Hµ(z) there must be at least one propagator that vanishes
at z− = ±∞. Furthermore, we can add to the integrand the derivatives with
respect to other components of zµ such that we now have a full gradient ∂µ

z

acting on the hard function Hµ(z). Because the jet function and D(y, z−) do
not depend on z+ and z⊥, these added terms are total derivatives and vanish
after the integration. The result of our approximation can then be expressed
by

I(y) ∼
∫
d4z
(
Jν(y) β′ν

)
D(y, z)

(
− ∂µHµ(z)

)
. (2.5.6)

In other words, we have replaced the propagator of the gluon escaping from
the jet to the hard part by Dνµ(y− z)→ D(y, z)β′ν∂µ

z with β′ν being a vector
in the opposite direction of the jet. The momentum-space analog of such a
gluon is called “longitudinally” or “scalar polarized”, and is associated with
the scalar operator ∂µA

µ(x) in coordinate space.
For the simplest example illustrated in Fig. 2.5, this approximation for the
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vertex function at one loop results in

I(1) ∼
∫
dDz

/x2 − /y
(−(x2 − y)2 + iε)2−ε

/β′
/y

(−y2 + iε)2−ε

×
∫ z−

∞
dσ

1

(−2y+(y− − σ β′) + y2
⊥ + iε)1−ε

×
(
− ∂

∂zµ

)(
−/z

(−z2 + iε)2−ε
γµ /z − /x1

(−(z − x1)2 + iε)2−ε

)
,

(2.5.7)

where we have omitted the incoming current, integrations over jet vertices, and
numerical factors. After acting with ∂z

µ, there are two terms with a relative
sign coming from the action of the derivative on either fermion propagator,
canceling them in turn by the massless Dirac equation /∂SF (x) = −δD(x),

I(1) ∼
∫
dDz

/x2 − /y
(−(x2 − y)2 + iε)2−ε

/β′
/y

(−y2 + iε)2−ε

×
∫ z−

∞
dσ

1

(−2y+(y− − σ β′) + y2
⊥ + iε)1−ε

×
(

−/z
(−z2 + iε)2−ε

δD(z − x1) − δD(z)
/z − /x1

(−(z − x1)2 + iε)2−ε

)
.

(2.5.8)

After integrating over z, the location of the attachment of the “scalar polar-
ized” gluon, using the delta functions, the two terms differ only in the upper
limits of the σ integrals, which can be combined so that the the remaining
leading term is given by

I(1) ∼ −
/x2 − /y

(−(x2 − y)2 + iε)2−ε
/β′

/y

(−y2 + iε)2−ε

−/x1

(−x2
1 + iε)2−ε

×

(∫ x−1

0

dσ
1

(−2y+(y− − σ β′) + y2
⊥ + iε)1−ε

)
.

(2.5.9)

Therefore, after the hard-collinear approximation the “scalar polarized” gluon
has been factored onto an eikonal line in the opposite direction from the jet
of which it is a part such that the jet is now factorized from the rest of the
diagram. Note that the integration over the eikonal line is a scaleless integral,
which in the limit x−1 →∞ will be defined by its ultraviolet pole only.
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The hard-collinear approximation also allows us to apply the basic Ward
identities of gauge theories directly to the leading singularity of the vertex
function in order to factor the “scalar polarized” gluons from the hard function.
This reasoning was used in the proofs of factorization in gauge theories in
momentum space [31, 54, 55] and the same reasoning applies here. The Ward
identity that we need is given by

〈out|T
(
∂µ1A

µ1(x1) · · · ∂µnA
µn(xn)

)
|in〉 = 0 , (2.5.10)

where |in〉 and 〈out| are physical states involving particles of fermion and gauge
fields with physical polarizations only. The gauge field Aµ(x) can be abelian
or non-abelian, the above matrix element relation involving scalar polarized
gauge fields holds at each order in perturbation theory after the sum over all
contributing diagrams [22,56].

At higher orders, the external lines of the hard function will be two physi-
cal fermion lines on the lightcone, one entering and the other exiting the hard
function, and some number of “scalar polarized” gauge field lines with deriva-
tives acting on the hard function. Consider the case with one such gluon line
connected to the hard part as in Fig. 2.6. This diagram is equal to minus
the diagram where the scalar-polarized gluon is acting on the fermion line in
the same direction by the Ward identity (2.5.10), which gives a factored gluon
onto an eikonal line as we showed above at lowest order. This summarizes the
argument, which was also extended to arbitrary number of gluon lines, for the
proof of factorization of jets (collinear singularities) from the hard function
in momentum space, see the review of Ref. [31]. The same factorization can
be shown in coordinate space after the hard-collinear approximation described
above using the Ward identity (2.5.10), in the same way as in momentum
space.
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�
d4y Sµ(z) Dµν(z − y) gνρ Jρ(y) . (78)

Here, Sµ(z) denotes the soft function, and Jρ denotes a jet function with a direction βρ.

Dµν(z−y) is the propagator of the line that connects a soft vertex at z to a vertex in the jet
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FIG. 6. Factorization of one “scalar polarized” gluon from the hard subdiagram.
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Figure 2.6: Factorization of one “scalar polarized” gluon from the hard sub-
diagram.
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2.5.2 Soft-collinear approximation

One may also do a “soft-collinear” approximation for the lines that connect
the jets to the soft function such that the collinear singularities of jets will
be factored from the finite soft function. We will follow the same reasoning
and repeat the same steps as we did for the “hard-collinear” approximation.
To avoid repetition, we will skip those details of our arguments that were
explained in the previous section. In analogy to the integral in (2.5.1), now
consider

I(z) =

∫
d4y Sµ(z)Dµν(z − y) gνρ J

ρ(y) . (2.5.11)

Here, Sµ(z) denotes the soft function, and Jρ denotes a jet function with a
direction βρ. Dµν(z − y) is the propagator of the line that connects a soft
vertex at z to a vertex in the jet at y, which are at a finite distance from
each other. We suppress the dependence of either function on other vertices
as before. In this integral, the only singularities of the integrand are contained
in the jet function. Again, to approximate this integral, we will drop the small
terms in the argument of the progator, and pick up only the large numerator
component of the jet,

I(z) ∼
∫
d4y Sµ(z) D̄µν(z − y) βν β

′
ρ J

ρ(y) , (2.5.12)

with β2 = β′2 = 0 and β ·β′ = 1. Suppose the jet is in the plus-direction, then
following our power counting, z− � y− and z2

⊥ � y2
⊥ such that

(z − y)2 = 2(z+ − y+)z− − z2
⊥ +O(λ1/2) . (2.5.13)

Thus, this time we write the propagator connecting the soft part to a jet as

Dµν(z − y) βν = βµD+−(y − z) ,

D̄+−(z − y) =
∂

∂y+

∫ y+

∞
dσ D+−(z − σ β) ≡ ∂y+D(z, y+) .(2.5.14)

Using the steps above, we integrate by parts in Eq. (2.5.12), and then add to
the integrand the derivatives with respect to other components of yµ as well.
In this way, we obtain

I(z) ∼
∫
d4y Sµ(z) βµ D(y, z)

(
− ∂νJ

ν(y)
)
. (2.5.15)
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We see that the jets are connected to the soft part also by “scalar polarized”
gluons, which can be factored from the jets by using the Ward identity given in
Eq. (2.5.10). The formal proof of factorization into hard, soft, and jet functions
in coordinate space now follows the momentum-space procedure, and requires
only the hard-collinear and soft-collinear approximations described here.

2.5.3 Eikonal approximation

Having described the hard-collinear and soft-collinear approximations above
to factorize the contributions from different subdiagrams at the leading singu-
larity, we can now think of another approximation to simplify the computation
of the leading term. One may make an approximation to the integrals keeping
only the leading contribution on a pinch surface where the fermion lines are
taken on the lightcone, and neglecting the sub-leading contributions coming
away from that pinch surface by imposing the results of the Landau conditions
inside the integrands.

As an example, let us again take the fermionic vertex function. The solu-
tions to Landau equations with collinear fermions set the transverse coordi-
nates and the minus (plus) coordinates of the positions of the fermion-gluon
vertices on the plus-line (minus-line) to zero as well as time-ordering them.
These conditions can be imposed inside the integrand by replacing the fermion
propagators along the plus line with

SF (x2) = /∂∆F (x2) → θ(x+) δ(x−) δ2(x⊥) γ · β , (2.5.16)

with β = δµ+ while for those along the minus line, in the direction β′ = δµ−,
x+ and x− are exchanged. This is actually the coordinate-space version of the
well-known eikonal approximation, which is based on assuming the gluons are
soft and neglecting their squared momenta in the fermion propagators. The
eikonal approximation originates from geometrical optics, where it corresponds
to the small wavelength limit in which the trajectories of light are given by
light rays as in classical theory. One might have derived the form of the fermion
propagators also by taking the Fourier transform of the eikonal propagator in
momentum space for a massless fermion moving in the direction βµ = δµ+,∫

d4k

(2π)4

i

β · k + iε
e−ik·x = θ(x+) δ(x−) δ2(x⊥) . (2.5.17)

Let us apply this eikonal approximation to the one-loop vertex diagram as an
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example,

Γ
(1)
eik =

∫
d4y2 d

4y1 θ(x
+
2 − y+

2 ) θ(y+
2 ) θ(y−1 ) θ(x−1 − y−1 )

× δ(y−2 ) δ2(y2,⊥) δ(y+
1 ) δ2(y1,⊥)

1

(−(y2 − y1)2 + iε)
,

(2.5.18)

where we have suppressed the numerical factors and dropped the delta-functions
of the external lines. The result, after introducing the parameters λ and σ with
β′ν = δν−,

Γ
(1)
eik =

∫ x+
2

0

dλ

∫ x−1

0

dσ
1

(−2β · β′λσ + iε)
, (2.5.19)

is exactly equal to a first-order diagram of a Wilson line with a cusp at the
origin, which begins at the point xµ

1 pointing in the direction of β′, then changes
its direction to β at the origin, and later ends at xµ

2 . The parameters λ, σ are
simply relabelings for y+

2 and y−1 that give the locations where the gluon is
attached to the Wilson line, and of course, are integrated over. This equality
between the diagrams of a cusped path ordered exponential and of the vertex
function after the eikonal approximation also holds at higher orders, because
the theta functions simply order the attachments to the eikonals while the
integrations over any other vertices are the same in both cases. Therefore,
we may approximate the vertex function by a Wilson line calculation at any
given order in perturbation theory [33, 57]. The power counting for the path
ordered exponentials is not exactly the same with that for the vertex function
with partonic lines, but is very similar and gives the same bound for their
overall degree of divergence, which we will present in Appendix A.2 to avoid
repetition. Having seen that path-ordered exponentials of constant velocities
correspond to the eikonal approximation for energetic partons, we will now
investigate them further in the next chapter.

2.6 Discussion

The coordinate-space singularities of Feynman integrals in a massless gauge
theory have a direct interpretation in terms of physical processes, in which clas-
sical massless particles propagate freely between points in space-time, where
they scatter by local interactions. The singularities occur only if these particles
move on the lightcone. The condition for pinches in the coordinate integrals is
interpreted as momentum conservation for these scattered particles with the
identification of their momenta from their coordinates. This interpretation is
the same as the interpretation given by Coleman and Norton [46] to Landau
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equations in momentum space [45].
The pinches in the coordinate integrals for the vertex function occur when

a group of lines get mutually collinear forming jets as in momentum space.
There are also pinches from “zero” lines when some set of internal vertices
move to the origin x → 0 reflecting a short-distance singularity, where these
zero lines or vertices with vanishing components define a hard function in
coordinate space. There are also end-point singularities in the integrals over
Feynman parameters α→ 0, which define the soft function in coordinate space.
An important difference from the momentum space is that the soft function
is finite in coordinate space when the external points of the vertex function
(x1 and x2 above) are kept at finite distances. The collinear divergences are
of ultraviolet nature in coordinate space, and require D < 4 in dimensional
regularization; while no infrared regulation is needed since the coordinates of
the external particles provide the natural infrared cut-off.

By the power counting arguments developed above, vertex functions in co-
ordinate space are found to be at worst logarithmically divergent at higher
orders, relative to the lowest order results. Similarly, after the eikonal approx-
imation, the path ordered exponentials have the same bound for their overall
degree of divergence. The requirement for a divergence in both cases is that
the hard and soft subdiagrams must not be directly connected, and they can
only interact through the jets. Two jets on the lightcone in different directions
can only have a hard interaction at the origin and interact softly at later times.
This illustrates in coordinate space the factorization of short and long-distance
dynamics in field theories. We have also explained the hard-collinear and soft-
collinear approximations that are needed for the formal implementation of
factorization in coordinate space.
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Chapter 3

Webs and Surfaces

The contents of this chapter is published in Ref. [33].

3.1 Introduction

Gauge field path-ordered exponentials [59–61] or Wilson lines, represent the in-
teraction of energetic partons with relatively softer radiation in gauge theories.
For constant velocities, ordered exponentials of semi-infinite length correspond
to the eikonal approximation for energetic partons. Classic phenomenological
applications of ordered exponentials include soft radiation limits in deeply
inelastic scattering [62] and parton pair production and electroweak anni-
hilation [63–65]. They appear as well in the treatment of parton distribu-
tions [66, 67]. In all these cases, the electroweak current is represented by a
color singlet vertex at which lines in the same color representation but with
different velocities are coupled. This vertex is often referred to as a cusp.

Cusps also appear as vertices in polygons formed from Wilson lines [58],
which have been studied extensively in the context of their duality to scattering
amplitudes in N = 4 SYM theory [43,44,68–71]. In the strong coupling limit
of this theory, gauge-gravity duality relates the cusp and polygons to the expo-
nentials of two-dimensional surface integrals. Surfaces bounded by open and
closed paths of ordered exponentials are also a classic ingredient in lattice [61]
and large-Nc [72] paradigms for confinement in quantum chromodynamics.

In this chapter, we show that in any gauge theory with massless vector
bosons the cusp matrix element for lightlike Wilson lines can be expressed as
the exponential of an integral over a two-dimensional surface, a result with
applications as well to polygons formed from ordered exponentials. The cor-
responding integrand is an infrared finite function of the gauge theory cou-
pling, evaluated for each point on the surface at a scale given by the invariant
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distance from that point to the cusp vertex. This result extends to all orders
in perturbation theory.

The set of all virtual corrections for the cusp [57] is formally identical to a
vacuum expectation value, and can be written as

Γ(f)(β1, β2) =

〈
0

∣∣∣∣T(Φ
(f)
β2

(∞, 0) Φ
(f)
β1

(0,−∞)

)∣∣∣∣ 0〉 , (3.1.1)

in terms of constant-velocity ordered exponentials,

Φ
(f)
βi

(x+ λβi, x) = P exp

(
−ig

∫ λ

0

dλ′βi · A(f)(x+ λ′βi)

)
. (3.1.2)

Here f labels a representation of the gauge group and βi is a four-velocity,
taken lightlike in the following. The combination of ordered exponentials in
Eq. (3.1.1) corresponds to a partonic process with spacelike momentum trans-

fer. For correspondence to a timelike process like pair creation, Φ
(f)
β1

(0,−∞)

can be replaced by Φ
(f̄)
β1

(∞, 0). Corrections to partonic scattering [73–83] in-
volve the coupling of more than two ordered exponentials at a point [84, 85].
Here, we study the all-orders properties of the single cusp and of polygons
with sequential cusps, computed perturbatively in coordinate space.

Perturbative corrections to the unrenormalized cusp, Eq. (3.1.1) are scale-
less, and hence vanish in dimensional regularization. The ultraviolet poles of
(3.1.1) determine the anomalous dimension of the cusp, and can be used to
define a renormalized expansion, both for the cusp and for polygons formed
from ordered exponentials of finite length [58, 84]. For the cusp in an asymp-
totically free theory, however, neither its ultraviolet nor its infrared behavior
can be considered as truly physical. At very short distances, dynamics is per-
turbative and recoil cannot be neglected. At very long distances, dynamics is
nonperturbative, and dominated by the hadronic spectrum. In this discussion,
we will regard the cusp as an interpolation between these asymptotic regimes.
We will concentrate on the structure of the integrals in the intermediate region,
although we also discuss their renormalization.

We begin in Sec. 3.2 with a review of exponentiation for products of ordered
exponentials, a result that extends to arbitrary products of such lines and to
closed loops. Section 3.3 recalls the coordinate space picture of exponentiation
in terms of web diagrams and introduces the cancellation of subdivergences
of webs. It is in this discussion that a surface interpretation of the exponent
emerges. We provide a two-loop illustration of subdivergence cancellation,
motivate its generalization to all orders, and give an all-orders prescription
for the calculation of the cusp exponent. In Sec. 3.4, we apply these ideas to
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multi-cusp polygonal Wilson loops.

3.2 Exponentiation and webs in momentum-

space

The cusp has long been known [86–88] to be the exponential of a sum of special
diagrams called webs, which are irreducible by cutting two eikonal lines. We
represent this result as

Γ(β1, β2, ε) = expE(β1, β2, ε) , (3.2.1)

in D = 4− 2ε dimensions. The exponent E equals a sum over web diagrams,
d, each given by a group factor multiplied by a diagrammatic integral,

E(β1, β2, ε) =
∑

webs d

Cd Fd(β1, β2, ε) , (3.2.2)

where Fd represents the momentum- or coordinate-space integral for dia-
gram d. The coefficients of these integrals, Cd are modified color factors.
Two-loop examples are shown in Fig. 3.1.

In momentum space we can write the exponent E as the integral over a
single, overall loop momentum that runs through the web and the cusp vertex,
assuming that all loop integrals internal to the web have already been carried
out. The web is defined to include the necessary counterterms of the gauge
theory [66,84,89,90]. Taking into account the boost invariance of the cusp for
massless loop velocities, and the invariance of the ordered exponentials under
rescalings of the velocities βi, we have for the exponent the form,

E(β1, β2, ε) =

∫
dDk

(2π)D

β1 · β2

k · β1 k · β2

1

k2
w̄

(
k2

µ2
,
k · β1 k · β2

µ2β1 · β2

, αs(µ
2, ε), ε

)
.

(3.2.3)
In addition, the webs themselves are renormalization-scale independent,

µ
d

dµ
w̄

(
k2

µ2
,
k · β1 k · β2

µ2β1 · β2

, αs(µ
2, ε), ε

)
= 0 . (3.2.4)

This renormalization scale invariance allows us to choose µ2 equal to either of
the kinematic arguments in the web. A further important property of webs is
the absence of collinear and soft subdivergences in the sum of all web diagrams.
That is, in Eq. (3.2.3), collinear poles are generated only when k2 and either
k ·β1 or k ·β2 vanish, infrared poles only when all three vanish and the overall
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(a) (b) (c) (d)

Figure 3.1: Two-loop web diagrams, referred to in the text as: (a) Ecross,
(b) E3g, (c)–(d) Ese. Web diagram (a) has the modified color factor, CaCA/2,
where a refers to the representation of the Wilson lines. For diagram (a),
the web color factor differs from its original color factor, while all other color
factors are the same as in the normal expansion. Diagrams related by top-
bottom reflection are not shown.

ultraviolet poles only when all components of k diverge. Equation (3.2.3)
thus organizes the same double poles found in the corresponding partonic
form factors [90–94]. Arguments for these properties in momentum space are
given in Ref. [90], based on the factorization of soft gluons from fast-moving
collinear partons. These considerations suggest that when embedded in an
on-shell amplitude or cross section, the web acts as a unit, almost like a single
gluon, dressed by arbitrary orders in the coupling. In the following, we observe
that this analogy can be extended to coordinate space.

The form given above, in terms of webs, is for the unrenormalized cusp.
When renormalized by the minimal subtraction of ultraviolet poles, the expo-
nent E can be written in the form [36],

Eren(αs(µ
2), ε) = −1

2

∫ µ2

0

dξ2

ξ2

[
Γcusp

(
αs

(
ξ2
) )

log

(
µ2

ξ2

)
− Geik(αs

(
ξ2)
)]

,

(3.2.5)
where µ2 is the renormalization scale, and where, here and below, we have set
β1 · β2 = 1. At order αn

s , the leading pole behavior of this exponent is pro-

portional to Γ
(1)
cusp αn

s (1/ε)n+1, with Γ
(1)
cusp(αs/π) the one-loop cusp anomalous

dimension. Nonleading poles are generated from higher orders in Γcusp, from
Geik, and from the ε-dependence of the running coupling in D dimensions [91].
After renormalization in this manner, the cusp is a sum of infrared poles in
one-to-one correspondence with the ultraviolet poles that are subtracted. The
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cusp anomalous dimension is given to two loops by

Γcusp, a =
(αs

π

)
Ca

[
1 +

(αs

π

)
K
]
,

K =

(
67

36
− π2

12

)
CA −

5

18
nfTf , (3.2.6)

with Ca = 4/3, 3 for a = q, g for QCD, nf the number of fermion flavors,
and Tf = 1/2. At one loop, Geik is zero, and we will derive its two-loop form
below. Equation (3.2.5) gives all the poles of the cusp, when reexpanded in
terms of the coupling at any fixed scale. We note that for timelike kinematics,
the renormalization scale µ2 should be chosen negative [36].

3.3 Webs and surfaces in coordinate space

3.3.1 The unrenormalized exponent and its surface in-
terpretation

The coordinate-space analog of Eq. (3.2.3) is a double integral over two pa-
rameters, σ and λ that measure distances along the Wilson lines β1 and β2,
respectively, with a new web function, w, which depends on these variables
through the only available dimensionless combination, λσµ2,

E =

∫ ∞

0

dλ

λ

∫ ∞

0

dσ

σ
w(αs(µ

2, ε), λσµ2, ε) . (3.3.1)

Here and below, we choose timelike kinematics. We emphasize that we are
interested primarily in the form and symmetries of the integrand, rather than
its convergence properties. Nevertheless, to separate infrared and ultraviolet
poles in the integration, it is necessary that the integrand, w in Eq. (3.3.1)
be free of both infrared and ultraviolet divergences at ε = 0 in renormalized
perturbation theory (aside from the renormalization of the cusp itself). As we
shall see below, Eq. (3.3.1) with a finite web function leads to a renormalized
cusp that is fully consistent with the momentum space form, Eq. (3.2.5). In
this construction, all ε poles of the exponent, and therefore the cusp, are then
associated with the integrals over λ and σ in (3.3.1).

A direct, coordinate-space demonstration of the finiteness of the web func-
tion is interesting in its own right, and will be described in detail elsewhere [34].
Formally, such a demonstration is necessary to extend the proof of renormaliz-
ability for cusps connecting massive lines [84] to the massless case [58]. Here,
we simply mention the essential ingredients of such an argument.
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Diagram by diagram, one may use the analytic structure of the coordinate
integrations [48] combined with a coordinate-space power-counting technique
to identify the most general singular subregions in coordinate space [32]. In
coordinate space, nonlocal ultraviolet subdivergences arise when a subset of
vertices line up at finite distances from the cusp along either of the lightlike
Wilson lines, while other, “soft” vertices remain at finite distances. Such
subdiagrams factorize, however, in much the same manner as in momentum
space [53–55]. Once in factorized form, combinatoric arguments show that
divergent integrals cancel when all web diagrams are combined at a given
order [34] in coordinate space, in much the same way as in the momentum-
space treatment of Ref. [90]. Finally, taking λ and σ, as the positions of
vertices in the web diagrams furthest from the cusp, there are no soft (infinite
wavelength) divergences from integrations over the internal vertices of webs in
coordinate representation, as shown in Ref. [32].

As we shall shall illustrate below, it is possible to implement the cancel-
lation of subdivergences at fixed positions, λ and σ, along the ordered paths,
specified by the vertices furthest from the cusp. Once this is done and the
subdivergences thereby eliminated, the integrals over all vertices of the web
diagrams converge on scales set by λ and σ in (3.3.1), and the web acts as
a unit. Singular behavior of the cusp arises as λ and/or σ vanish, and in
these limits all web vertices approach the directions of β1 or β2 together, as
in Fig. 3.2(a). This is the perturbative realization of the web as a geometrical
object. Subdivergent configurations that cancel are illustrated in Fig. 3.2(b).

The web function w constructed this way is again a renormalization group
invariant, so that in (3.3.1), we may shift the renormalization scale to the
product (λσ)−1, which results in an expression with the coupling running as
the leading vertices move up and down the Wilson lines,

E =

∫ ∞

0

dλ

λ

∫ ∞

0

dσ

σ
w (αs (1/λσ) , ε) . (3.3.2)

In this all-orders form, dependence on the product λσ is entirely through the
running coupling, aside from the overall dimensional factor. For N = 4 SYM
theory, Eq. (3.3.2) for the cusp holds as well at strong coupling [68, 69, 95],
where the coordinates λ and σ also parameterize a surface. The generality
of these results can be traced to the symmetries of the problem [95]. It is
interesting to note, however, that in the strong coupling analysis, the prod-
uct of internal coordinates λσ, which serves as the renormalization scale in
Eq. (3.3.2), relates the plane of the Wilson lines to a minimal surface in five
dimensions.
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(a)

(b)

Figure 3.2: Representation of singular regions for a two-loop web diagram.
(a) Single-scale regions, characteristic of webs. (b) Multiple-scale regions,
associated with subdivergences that cancel in the sum of web diagrams.

3.3.2 Web renormalization in coordinate space

To derive a renormalized exponent for the cusp in coordinate space, we will
find it useful to expand the unrenormalized web function in (3.3.2) in explicit
powers of ε,

E(ε) =
∞∑

n=0

εn

∫ ∞

0

dλ

λ

∫ ∞

0

dσ

σ
wn (αs (1/λσ)) , (3.3.3)

where wn is the coefficient of εn, noting that the coupling retains implicit ε
dependence. As noted above, the renormalized exponent is determined by the
ultraviolet poles of these scaleless integrals. With this in mind, consistency
with momentum space pole structure in Eq. (3.2.5) then clearly requires

w0 (αs (1/λσ)) = − 1

2
Γcusp

(
αs (1/λσ)

)
. (3.3.4)

For finite values of λ and σ, only w0 contributes to the unrenormalized integral
in the ε→ 0 limit. To determine the renormalized cusp integral, however, we
must take into account contributions from the boundaries λ = 0 and σ = 0,
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which produce poles that can compensate explicit powers of ε in Eq. (3.3.3).
Such boundary contributions from terms εnwn with n > 0 in Eq. (3.3.3) gen-
erate the anomalous dimension Geik in the renormalized form, Eq. (3.2.5).

To compute Geik, we recall that the running coupling αs(1/λσ) remains a
function of ε when reexpanded in terms of the coupling at any fixed scale, µ,
which we represent as

αs(1/λσ) = αs(µ
2) (µ2λσ)ε

(
1 +

αs(µ
2)

4π

b0
ε

[
(µ2λσ)ε − 1

]
+ . . .

)
≡ ᾱs

(
αs(µ

2), (µ2λσ)ε, ε
)
, (3.3.5)

where we exhibit only the dependence to order α2
s, which is all we need here,

and where b0 = (11/3)CA − (4/3)nfTf . The subleading anomalous dimension
Geik is found from single poles in E(ε) after the λ and σ integrations. These
can arise at any order by combinations of an overall factor εn in (3.3.3) with
poles in the expansion of the coupling, (3.3.5). To identify such terms, we may
conveniently take σ < λ and multiply by 2, and reexpand αs(1/λσ) in terms
of αs(1/λ

2), schematically,

E(ε) = − 1

2

∫ ∞

0

dλ

λ

∫ ∞

0

dσ

σ
Γcusp

(
αs (1/λσ)

)
(3.3.6)

+ 2
∞∑

n=1

εn

∫ ∞

0

dλ

λ

∫ λ

0

dσ

σ
wn

(
ᾱs

(
αs(1/λ

2), (σ/λ)ε, ε
))
.

The renormalized exponent is defined as the remainder when all ultraviolet
poles are subtracted minimally at an arbitrary, fixed scale µ. Leading and
nonleading poles are then generated by

Eren(ε, αs(µ
2)) = − 1

2

∫ ∞

1/µ

dλ

λ

∫ ∞

1/µ

dσ

σ
Γcusp

(
αs (1/λσ)

)
+

∫ ∞

1/µ

dλ

λ
Geik

(
αs(1/λ

2)
)
,

(3.3.7)

where the integrals are now defined by infrared renormalization (ε < 0). Sim-
ple changes of variables transform this expression into the renormalized cusp
momentum-space integrals given in Eq. (3.2.5).

3.3.3 Lowest orders

The lowest order expression for Eq. (3.3.1) already illustrates the nontrivial
relationship between the renormalization scale and the positions of the vertices.
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It is found directly from the coordinate-space gluon propagator in Feynman
gauge,

Dµν(x2) =

∫
dDk

(2π)D
e−ik·x −i gµν

k2 + iε

=
Γ(1− ε)
4π2−ε

−gµν

(−x2 + iε)1−ε . (3.3.8)

The resulting expression for the unrenormalized exponent is

E(LO) = − CF
Γ(1− ε)

2

∫ ∞

0

dλ

λ

dσ

σ

(
αs(µ

2)

π

)
(2πλσµ2)ε , (3.3.9)

= − CF

2

(
1 + ε2 π

2

12

) ∫ ∞

0

dλ

λ

dσ

σ

(
αs(µ

2)

π

)
(2πeγEλσµ2)ε ,

where in the second form we have expanded the integrand to order ε2. The
corresponding renormalized exponent is

E(LO)
ren = − CF

Γ(1− ε)
2

∫ ∞

1/µ

dλ

λ

∫ ∞

1/µ

dσ

σ

(
αs(µ

2)

π

)
(2πλσµ2)ε , (3.3.10)

which is precisely Eq. (3.3.7) to lowest order. Here and below, for definiteness
we choose the Wilson lines in fundamental representation.

At two loops, the diagrams of Fig. 3.1 can be used to illustrate both the
cancellation of subdivergences in the sum of web diagrams, and the manner
in which we identify the parameters λ and σ, which together define the po-
sition of the web function. Our calculations are carried out with ultraviolet
regularization (D < 4). These coordinate-space integrals have appeared in the
literature before, of course, and the calculations we exhibit below are closely
related to those of Refs. [58] and [43, 44], also carried out in dimensional reg-
ularization. We present them again, however, in a form that shows explicitly
how the cancellation of subdivergences occurs at fixed positions for the web
along the lightlike paths, already in the unrenormalized forms.

The calculation of the crossed-ladder diagram, Fig. 3.1(a), is particularly
simple in coordinate space. It is just the integral of two gluon propagators
over the eikonal parameters,

Ecross = Ncross(ε)

∫ ∞

0

dλ2

∫ λ2

0

dλ1

∫ ∞

0

dσ2

∫ σ2

0

dσ1

× 1

(2λ2σ1 + iε)1−ε

1

(2λ1σ2 + iε)1−ε
,

(3.3.11)
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where the prefactor is given by

Ncross(ε) ≡ −
(αs

π

)2

CACF
Γ2(1− ε)

2
(πµ2)2ε . (3.3.12)

For the color factor in this web diagram, we keep only the CACF/2 contribu-
tion, as mentioned above. For ε > 0, we choose to integrate over the inner
eikonal parameters, and identify λ2 ≡ λ and σ2 ≡ σ in the general form of
Eq. (3.3.2), giving

Ecross = −
(αs

π

)2

CACF
Γ2(1− ε)

8 ε2
(2πµ2)2ε

∫ ∞

0

dλ dσ

(λσ)1−2ε
. (3.3.13)

This expression has overall double ultraviolet poles in addition to two scale-
less (surface) integrals along the Wilson lines. The singular behavior of the
coefficient arises from λ1 � λ and σ1 � σ, a “subdivergent” configuration, in
which the two gluons approach different Wilson lines. The contributions from
these regions will be cancelled by corresponding terms from the three-gluon
diagrams.

We now turn to the diagrams with a three-gluon coupling, one of which is
shown in Fig. 3.1(b), referred to below as E3g. In the expression for E3g, we
introduce upper limits, Λ and Σ on the two paths. For the simple cusp, we
will take the limit Λ, Σ → ∞. We return to the finite case in the discussion
of polygons.

After evaluation of the three-gluon vertex, using β2
2 = 0, E3g can be written

as

E3g = N3g(ε)

∫
dDx

∫ Σ

0

dσ
1

(−x2 + 2σx · β1 + iε)1−ε

×
[∫ Λ

0

dλ1

∫ Λ

λ1

dλ2
1

(−x2 + 2λ1x · β2 + iε)1−ε

2x · β2(1− ε)
(−x2 + 2λ2x · β2 + iε)2−ε

−
∫ Λ

0

dλ2

∫ λ2

0

dλ1
2x · β2(1− ε)

(−x2 + 2λ1x · β2 + iε)2−ε

1

(−x2 + 2λ2x · β2 + iε)1−ε

]
= N3g(ε)

∫
dDx

∫ Σ

0

dσ
1

(−x2 + 2σx · β1 + iε)1−ε

×
[∫ Λ

0

dλ2
1

(−x2 + 2λ2x · β2 + iε)1−ε

∫ λ2

0

dλ1
∂

∂λ1

(
1

(−x2 + 2λ1x · β2 + iε)1−ε

)
−
∫ Λ

0

dλ1
1

(−x2 + 2λ1x · β2 + iε)1−ε

∫ Λ

λ1

dλ2
∂

∂λ2

(
1

(−x2 + 2λ2x · β2 + iε)1−ε

)]
,

(3.3.14)
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where in this case the numerical prefactor is

N3g(ε) = −i
(αs

π

)2

CACF
Γ3(1− ε)

8π2−ε
(πµ2)2ε . (3.3.15)

In the second equality of Eq. (3.3.14), we isolate two total derivatives, in the
variables λ1 and λ2. We shall carry out these two integrals first, at fixed values
of the other path parameters and of xµ.

There is a suggestive way of interpreting the total derivatives in Eq. (3.3.14),
starting by recognizing that the “propagator” for the Wilson line is a step func-
tion, for example, θ(λ), with “equation of motion” ∂λθ(λ) = δ(λ). In these
terms, the λ1 or λ2 integrals over total derivatives can also be thought of as
the result of integration by parts and the use of the equation of motion. In the
term with ∂/∂λ2 , the equation of motion sets λ2 = λ1 and λ2 = Λ. As Λ→∞
for fixed xµ, the term with λ2 = Λ vanishes as a power for any ε < 1/2. The
vanishing of such contributions, through the cancellation of propagators, is an
ingredient in the gauge invariance of the cusp, which generalizes to the gauge
invariance of partonic amplitudes [22,96]. We shall take the limit Λ→∞ first,
at fixed values of the remaining integration variables after using the eikonal
equation of motion. We will confirm below that this prescription gives a gauge
invariant result for the cusp after summing over diagrams. We will evaluate
the term from λ2 = Λ, which by itself is gauge dependent, in Appendix B.2.

Returning to Eq. (3.3.14), we now integrate over the total-derivative inte-
grals, λ1 in the first term and over λ2 in the second, and get,

E3g = N3g(ε)

∫
dDx

∫ Σ

0

dσ
1

(−x2 + 2σx · β1 + iε)1−ε

×
∫ Λ

0

dλ

[
− 1

(−x2 + iε)1−ε

1

(−x2 + 2λx · β2 + iε)1−ε

+
2

(−x2 + 2λx · β2 + iε)2−2ε

− 1

(−x2 + 2Λx · β2 + iε)1−ε

1

(−x2 + 2λx · β2 + iε)1−ε

]
≡ E3s + 2Epse + Eend .

(3.3.16)

Here we have relabeled the remaining parameters as σ and λ in both terms.
The three terms identified in the second relation correspond to the three terms
in square brackets of the first relation. These terms involve scalar propagators
only, and are represented by Fig. 3.3. We refer to the first term in brackets as
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(a) (b) (c)

Figure 3.3: (a) 3-scalar diagram (b) Pseudo-self-energy diagram (c) End-point
diagram.

the 3-scalar integral, E3s (Fig. 3.3(a)), in which the end of one of the scalar
propagators is fixed at the cusp by the eikonal equation of motion. We will call
the second term the “pseudo-self-energy”, Epse (Fig. 3.3(b)), since two scalar
propagators form a loop and attach to the Wilson line at the same point.
Finally, the third term, Eend (Fig. 3.3(c)), in which λ2 = Λ for finite Λ will be
referred to as the “end-point” diagram for this case. As noted above, the cusp
itself is defined without the end-point diagram, but we will return to it in our
discussion of Wilson line polygons below.

We can identify the sources of subdivergences in the expressions of Eq.
(3.3.16) by finding points where the xµ integral is pinched between coalescing
singularities [32]. In the 3-scalar term E3s, the integration contours of the
light cone component β1 · x and two-dimensional transverse components x⊥
are pinched when xµ = ζβµ

1 , with 0 < ζ < σ, and also when xµ = ηβµ
2 , with

0 < η < λ. For fixed λ and σ these are the singular subdivergences referred to
above, in which the point xµ approaches the path in the β1 or β2 directions,
respectively. In either case two lines are forced to the light cone on one of the
Wilson lines, while the third line may attach anywhere on the opposite-moving
line. There is no corresponding pinch in the pseudo-self-energy term, and this
diagram, along with the self-energy diagrams, has only a single ultraviolet
pole at fixed λ and σ, which is removed by the standard renormalization of
the gauge theory.

The integration of the 3-scalar term has been in the literature for a long
time, but some details are given in Appendix B.1, to derive it as a coefficient
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times the scaleless integrals over parameters λ and σ. We find

E3s =
(αs

π

)2

CACF
Γ(1− 2ε)Γ(1 + ε)Γ(1− ε)

16 ε2
(2πµ2)2ε

∫ ∞

0

dλ dσ

(λσ)1−2ε
.

(3.3.17)
We have taken the upper limits to infinity at this point, because we are inter-
ested in the (unrenormalized) cusp integral.

The pseudo-self-energy term in Eq. (3.3.16) inherits the entire ultraviolet
divergence of the diagram E3g, Fig. 3.1(b) at fixed λ and σ, and requires a
counterterm that is part of the web, rather than cusp, renormalization. The
result is

Epse = −
(αs

π

)2

CACF
1

16 ε

∫ ∞

0

dλ dσ

λσ

×
[
Γ2(1− ε)
1− 2ε

(2πµ2λσ)2ε − Γ(1− ε)(2πµ2λσ)ε

]
,

(3.3.18)

with the same scaleless integral times a single-scale constant. Finally, for
the gluon self-energy diagrams, Figs. 3.1(c)–(d), we use the renormalized one-
loop gluon Green function in coordinate space. The result for the self-energy
contribution, Ese of Fig. 3.1(c), where the gluon connects both Wilson lines,
can be written as

Ese = −
(αs

π

)2

CF
1

8ε

∫ ∞

0

dλ dσ

λσ

×
[
Γ2(1− ε)
1− 2ε

{
(5− 3ε)CA − 4Tfnf (1− ε)

3− 2ε

}
(2πµ2λσ)2ε

− Γ(1− ε)
{

5CA − 4Tfnf

3

}
(2πµ2λσ)ε

]
+ Elong ,

(3.3.19)

where the (unrenormalized) longitudinal part of the Green function is given
by

Elong = −
(αs

π

)2

CF
Γ2(1− ε)

32 ε2 (1 + ε)(1− 2ε)

{
(5− 3ε)CA − 4Tfnf (1− ε)

3− 2ε

}
×
∫ ∞

0

dλ dσ
∂

∂λ

∂

∂σ

[
(πµ2(β2λ− β1σ)2)2ε

]
.

(3.3.20)

The function Elong comes from the coordinate space transform of the qµqν

term in the gluon self energy, and reduces to total derivatives in both σ and λ.
In momentum space, the qµqν terms decouple from the gauge invariant cusp
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algebraically in the sum over diagrams, assuming that the external Wilson lines
carry no momentum. To define such derivative terms in coordinate space for
the cusp requires the introduction of small but nonzero β2

1 and β2
2 , and with this

infrared regularization, the longitudinal term above cancels the corresponding
term for the self-energy diagram of Fig. 3.1(d), up to end-point contributions
analogous to Eend in Eq. (3.3.16), which we have discarded in the calculation
of the cusp contribution from E3g above. We will once again neglect such
terms for the purposes of this calculation, but will return to this question in
the next subsection.

To check the finiteness and structure of the sum of these two-loop web dia-
grams, we expand them in ε, keeping all terms that can contribute ultraviolet
poles to the cusp. The (two) three-gluon diagrams plus the crossed ladder
gives

Ecross + 2E3s =
1

8

(αs

π

)2

CFCA

(
π2

3
+ 2ε ζ3 +O(ε2)

)
×
(
2πeγEµ2

)2ε
∫ ∞

0

dλ dσ

(λσ)1−2ε
.

(3.3.21)

Thus, as anticipated, the ultraviolet poles from the subdivergences of the web
cancel, leaving only the overall scaleless integrals, whose singular behavior can
be associated with hard, soft, and collinear configurations for all of the lines
of the web together. The π2 term will contribute to Γcusp and the εζ3 term to
Geik. We next expand the integrands of Ese and Epse at two loops, Eqs. (3.3.19)
and (3.3.18) to order ε,

Ese + 4Epse = −
(αs

π

)2

CF
1

8

∫ ∞

0

dλ dσ

λσ[{
1 + ε2π

2

12

}
1

ε
b0
[
(2πµ2eγEλσ)2ε − (2πµ2eγEλσ)ε

]
+

{(
67

9
CA −

20

9
nfTf

)
+ ε

(
404

27
CA −

112

27
nfTf +

π2

12
b0

)}
(2πµ2eγEλσ)2ε

]
.

(3.3.22)

The terms proportional to b0/ε serve to evolve the one-loop web, Eq. (3.3.10)
to the scale 1/λσ times constants.

Combining Eqs. (3.3.21) and (3.3.22), we find the explicit terms in the web
expansion, Eq. (3.3.3). In a scheme where logs of factors 2πeγE are absorbed
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into the definition of αs(1/λσ), we have for the terms in Eq. (3.3.3),

w0(αs) = − αs

2π
CF −

(αs

π

)2 CF

2

([
67

9
− π2

3

]
CA −

20

9
nfTf

)
+ . . . ,

w1(αs) = −
(αs

π

)2 CF

8

([
404

27
− 2ζ3

]
CA −

112

27
nfTf +

ζ2
2
b0

)
+ . . . ,

w2(αs) = − αs

2π
CF

π2

12
+ . . . , (3.3.23)

where omitted terms are higher order in αs or do not contribute to the cusp
ultraviolet poles. The term linear in ε begins at order α2

s, but the single pole
also gets a contribution from the ε2 term at one loop, when combined with
the running of the coupling. With these results in hand, we can return to Eq.
(3.3.3) and expand αs(1/λσ) in terms of the coupling at a fixed scale, αs(µ

2)
using (3.3.5). This enables us to derive the single ultraviolet pole in E to order
α2

s, and hence the anomalous dimension Geik at two loops,

Geik =
1

2
CFCA

(αs

π

)2
[{

101

27
− 11

72
π2 − 1

2
ζ3

}
CA +

{
28

27
− π2

18

}
nfTf

]
.

(3.3.24)
In Sec. 3.4, we will see the close relation of this result to the “collinear anoma-
lous dimension” derived long ago in Ref. [58] for a closed polygon of Wilson
lines of finite size.

3.3.4 Web integrals, end-points, and gauge invariance

A self-contained coordinate-space derivation of Eq. (3.3.1), generalizing the
renormalization analysis of Ref. [84] for massive Wilson lines, will be given
elsewhere [34]. Here, however, we will generalize our prescription for the calcu-
lation of the gauge-invariant cusp anomalous dimension. As we have seen, this
requires us to find in coordinate space the analog of the action of momentum-
space Ward identities that ensure the gauge invariance of the S-matrix [22,96].

In the following brief but all-orders discussion we follow Ref. [97] and write
the exponent as a sum over the numbers, ea, of gluons attached to the two
Wilson lines, of velocity βa, a = 1, 2. We note, however, that the argument ex-
tends to any number of lines. The web diagrams are integrals over the positions
λjβ2 and σkβ1 of these ordered vertices of a functionWe1,e2 ({λj}, {σk}), which
includes the integrals over all the internal vertices of the corresponding web
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diagrams. In the notation of Ref. [97] we then have at nth order (n ≥ e1 + e2),

E(n) =
n−1∑
e2=1

n−e2∑
e1=1

e1∏
j=1

∫ ∞

λj−1

dλj

e2∏
k=1

∫ ∞

σk−1

dσk W(n)
e1,e2

({λj}, {σk}) , (3.3.25)

with λ0, σ0 ≡ 0. Here we expand functions as E =
∑

(αs/π)nE(n). We can
use the notation of Eq. (4.4.1) to generalize our treatment of the three-gluon
diagram and self-energy diagrams above. First, we isolate those contributions
to W(n)

e1,e2 ({λj}, {σk}) that are of the form of total derivatives in the largest
path parameters, λe1 , σe2 , and whose upper limits vanish when the end-points
of ordered exponentials are taken to infinity for fixed values of the internal
vertices of the web. We represent this separation as,

W(n)
e1,e2

({λj}, {σk}) =
∂

∂ λe1

X (λ)(n)
e1,e2

({λj}, {σk}) +
∂

∂ σe2

X (σ)(n)
e1,e2

({λj}, {σk})

+
∂

∂ λe1

∂

∂ σe2

X (λσ)(n)
e1,e2

({λj}, {σk}) +W(n)

e1,e2
({λj}, {σk}) ,

(3.3.26)

where the X (I), I = λ, σ , λσ, are functions whose derivatives are taken by
λe1 , σe2 or both, and which vanish when λe1 and/or σe2 are taken to infinity
with other integration variables held fixed. The function W is the remaining
web integrand. To determine the cusp, we evaluate the total derivatives at
the lower limits, λe1 = λe1−1, σe2 = σe2−1 or both, discarding the upper limits,
as Eend in the two-loop case above. We then relabel the largest remaining λj

integral (either λe1 or λe1−1) as λ, and integrate over the rest of the λj, up to
λ. The σk parameters are treated in just the same way. In this manner, we
find for the web function in Eq. (3.3.1), the form

w
(
αs(1/λσ, ε), λσµ

2, ε
)

=
n−1∑
e2=1

n−e2∑
e1=1

e1∏
j=1

∫ λ

λj−1

dλj

e2∏
k=1

∫ σ

σk−1

dσk δ(λe1 − λ) δ(σe2 − σ)

×

[
− δ(λe1−1 − λ)X (λ)(n)

e1,e2
({λj}, {σk})− δ(σe2−1 − σ)X (σ)(n)

e1,e2
({λj}, {σk})

+ δ(λe1−1 − λ) δ(σe2−1 − σ)X (λσ)(n)
e1,e2

({λj}, {σk}) +W(n)

e1,e2
({λj}, {σk})

]
.

(3.3.27)

Once web diagrams are summed over at any order, this form is gauge invariant,
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and produces the same cusp integrand for finite lines as for infinite lines. This
is because the infinitesimal gauge variation of a product of Wilson lines as in
Eq. (3.1.1) produces a ghost propagator ending on the ends of the lines, which
vanishes when those lines are taken to infinity [22, 96]. Even if the ends of
the lines are at finite distances, the prescription to discard the upper limit
of total derivatives automatically removes these gauge variations. When the
end-points, which generalize Eend in Eq. (3.3.16) in our discussion above, are
at finite distances, however, we must keep these terms and combine them with
the remainder of the diagrams of the graph to derive the full, gauge invariant
result.

3.4 Applications to polygon loops

The above reasoning leads to a number of interesting results for polygonal
closed Wilson loops [43, 44, 68, 69]. These amplitudes also exponentiate in
perturbation theory in terms of webs [43, 44]. To this observation we may
apply once again the lack of subdivergences for webs.

Generic diagrams for quadrilateral loops are shown in Figs. 3.4 and 3.5. In
Fig. 3.4, for example, the ath vertex of the polygon represents a cusp vertex
that connects two Wilson lines, of velocity βa−1 and βa, with β0 ≡ β4.

Exponentiation in coordinate space implies that the logarithm of a poly-
gon P is a sum of the web configurations illustrated by the figures,

lnP =
∑

cusps a

Wa +
∑

sides {a+1,a}

Wa+1,a + Wplane . (3.4.1)

The first terms organize webs associated entirely with one of the cusps of the
polygon, constructed in terms of the coordinate webs identified above. Because
each edge is of finite length, we must now retain the additional gauge-variant

Xa

Xa − σaβa−1

Xa + λaβa

w

. . .

...

FIG. 4. A single-cusp web Wa, in the sum of Eq. (36).

on the ends of the lines, which vanishes when those lines are taken to infinity [37]. Even if

the ends of the lines are at finite distances, the prescription to discard the upper limit of

total derivatives automatically removes these gauge variations. When the end-points, which

generalize Eend, Eq. (24) in our discussion above, are at finite distances, however, we must

keep these terms and combine them with the remainder of the diagrams of the graph to

derive the full, gauge invariant result.

IV. APPLICATIONS TO POLYGON LOOPS

The above reasoning leads to a number of interesting results for polygonal closed Wilson

loops [10, 11, 13]. These amplitudes also exponentiate in perturbation theory in terms of

webs [10]. To this observation we may apply once again the lack of subdivergences for webs.

Generic diagrams for quadrilateral loops are shown in Figs. 4 and 5. In Fig. 4, for example,

the ath vertex of the polygon represents a cusp vertex that connects two Wilson lines, of

velocity βa−1 and βa, with β0 ≡ β4.

Exponentiation in coordinate space implies that the logarithm of a polygon P is a sum

of the web configurations represented by the figures,

ln P =
�

cusps a

Wa +
�

sides {a+1,a}

Wa+1,a + Wplane . (36)

The first terms organize webs associated entirely with one of the cusps of the polygon,

constructed in terms of the coordinate webs identified above. Because each edge is of finite

length, we must now retain the additional gauge variant terms associated with the end-point

contributions (Eend above), which are to be combined with gauge-variant end-points from

webs connecting three or four sides to derive a gauge-invariant result. The cancellation of
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Figure 3.4: A single-cusp web Wa, in the sum of Eq. (3.4.1).
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subdivergences in webs implies that after a sum over diagrams, only the cusp poles and a

single, overall collinear singularity survives [10, 36]. There remains a finite contribution from

webs that connect all four (or in general more) of the Wilson lines, and these are represented

by the final term in (36).

Evidently, the single-cusp contribution, Wa(βa, βa−1) has the same gauge invariant inte-

grand as for the finite Wilson lines in Eq. (10), in terms of the lengths La of the sides of the

polygon, between vertices a and a + 1

Wa(βa, βa−1, La, La−1) =

� La

0

dλa

λa

� 0

−La−1

dσa

σa
w(αs(1/λaσa, ε), ε) . (37)

The web function w for the cusp can depend only on the scalar products of the velocities,

and we may assume for simplicity that these are all of the same order.

The two-cusp contributions connect three sides, and the only available singular configu-

ration is when all lines in the web are parallel to the side between the two adjacent vertices.

The only invariants on which the web can then depend are of the form Laλ, with La the

length of this side, and λ a typical distance of vertices in the web from the side. As a result,

the general form of the Wa+1,a in Eq. (36) is

Wa+1,a =

� La

0

dλ

λ
wa+1,a (αs(λLa, ε)) , (38)

for a function wa+1,a(αs). Finally, for the planar diagrams, in which the web is stretched

out over the dimensions of the polygon (quadrilateral in this case), Wplane, the only scale

available is the area of the quadrilateral, and these web contributions are an expansion in

the coupling evaluated at the inverse area, with finite coefficients.

(a)
Xa Xa+1

...
...

. . .

(b)

...
...

. . .

. . .

FIG. 5. (a) A ‘side’ web Wa+1,a in of Eq. (36), in this case associated with the lightlike side between

Xa and Xa+1. (b) A web that contributes to Wplane in Eq. (36).
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Figure 3.5: (a) A ‘side’ web Wa+1,a in of Eq. (3.4.1), in this case associated
with the lightlike side between Xa and Xa+1. (b) A web that contributes to
Wplane in Eq. (3.4.1).

terms associated with the end-point contributions (Eend above), which are to
be combined with gauge-variant end-points from webs connecting three or four
sides to derive a gauge-invariant result. The cancellation of subdivergences
in webs implies that after a sum over diagrams, only the cusp poles and a
single, overall collinear singularity survives [34, 43, 44]. There remains a finite
contribution from webs that connect all four (or in general more) of the Wilson
lines, and these are represented by the final term in (3.4.1).

Evidently, the single-cusp contribution, Wa(βa, βa−1) has the same gauge-
invariant integrand as for the finite Wilson lines in Eq. (3.3.2), in terms of the
lengths La of the sides of the polygon, between vertices a and a+ 1

Wa(βa, βa−1, La, La−1) =

∫ La

0

dλa

λa

∫ 0

−La−1

dσa

σa

w(αs(1/λaσa, ε), ε) . (3.4.2)

The web function w for the cusp can depend only on the scalar products of
the velocities, and we may assume for simplicity that these are all of the same
order.

The two-cusp contributions connect three sides, and the only available
singular configuration is when all lines in the web are parallel to the side
between the two adjacent vertices. The only invariants on which the web can
then depend are of the form Laη, with La the length of this side, and η a
typical distance of vertices in the web from the side. As a result, the general
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form of the Wa+1,a in Eq. (3.4.1) is

Wa+1,a(La) =

∫ La

0

dη

η
wa+1,a (αs(ηLa, ε)) , (3.4.3)

for a function wa+1,a(αs), where we assume all the sides are of a similar length.
Finally, for the diagrams, in which the web is stretched out between more
than three sides of a polygon (in this case, the web is connected to all four
sides of the quadrilateral), Wplane, the only scale available is the area of the
quadrilateral, and these web contributions are an expansion in the coupling
evaluated at the inverse area, with finite coefficients.

The two-loop diagrams for all of these topologies were computed in [43,44].
We note that in the results quoted there, the cusp anomalous dimension does
not appear until all diagrams of the topologies of Wa and Wa+1,a are com-
bined. Following the prescription for the web integrand given above, however,
the two-loop cusp is associated entirely with the diagrams dressing a single cor-
ner, Wa, precisely because the gauge-variant end-point contributions Eend of
Eq. (3.3.16) are not included in that object. For polygons, these gauge-variant
terms at two loops, or any order, cancel contributions from the two-cusp con-
tributions Wa+1,a, which also give rise to gauge-variant terms that cancel those
from planar diagrams. These gauge-variant terms contain subdivergences in
general. The complete result, of course, is gauge invariant and corresponds at
two loops to the full calculation in Refs. [58] and [43,44].

For polygons, the renormalization group equation has been given in [58],

d

d lnµ2
Pren = −1

2

∑
a

Γcusp(αs(µ
2)) ln(µ2LaLa−1βa · βa−1)− Γco

(
αs(µ

2)
)
,

(3.4.4)
where the La and µ-dependence of the first term is characteristic of cusps
with lightlike Wilson lines [57], and where the second term, Γco was called
the collinear anomalous dimension in Ref [58]. Aside from overall factors
associated with the number of sides of the polygon, the collinear anomalous
dimension for the quadrilateral is identical to Geik in Eq. (3.3.24), except for
the coefficient of ζ3, which differs due to extra diagrams that connect three
sides of the quadrilateral.

Polygons of this sort have been studied in the context of a duality to
scattering amplitudes in conformal theories [43, 44, 68]. Here, we consider a
four-sided polygon that projects to a square in the x1/x2 plane, with side X, as
in Figs. 3.4–3.5. In four dimensions, the loop starts at the origin, travels along
the plus-x1 direction for a ‘time’ X0 = X, then changes direction to x2 for
time X, and then moves backwards in time and space, first in the x1 direction,
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then x2, back to the origin. We can now use the coordinates x1 and x2 to
define parameters λa and σa for each of the cusp integrals Wa in Eq. (3.4.2),

σ1 = −x2 , λ1 = x1 ,
σ2 = x1 −X , λ2 = x2 ,
σ3 = x2 −X , λ3 = X − x1 ,
σ4 = −x1 , λ4 = X − x2 .

(3.4.5)

In this notation, we can add the four cusp web integrals of Eq. (3.4.2), to get
a single integral over x1 and x2. The web functions, of course, depend on the
particular forms of λ and σ above. We find

4∑
a=1

Wa(βa, βa−1) =∫ X

0

dx1

∫ X

0

dx2
(X − x2)[(X − x1)w1 + x1w2] + x2[x1w3 + (X − x1)w4]

x1(X − x1)x2(X − x2)
,

(3.4.6)

where wa ≡ w(αs(λa(x1, x2)σa(x1, x2))). For a conformal theory, all depen-
dence on the σa and λa is in the denominators and we can sum over a to
get a result in terms of a constant web function w0. Changing variables to
ya = 1− 2xa/X, we derive the unregularized form found from the analysis of
extremal two-dimensional surfaces embedded in a five-dimensional background
in [68],

4∑
a=1

Wa(βa, βa−1) =

∫ 1

−1

dy1

∫ 1

−1

dy2
4w0

(1− y2
1)(1− y2

2)
, (3.4.7)

to which we should add the collinear and finite multi-cusp contributions of
Fig. 3.5.

3.5 Conclusions

We have found that when the massless cusp is analyzed in coordinate space,
it is naturally written as the exponential of a two-dimensional integral. The
integrand, a web function, depends on the single invariant scale through the
running of the coupling, which for a theory that is conformal in four dimensions
agrees with strong-coupling results [68, 69, 95]. This agreement extends to
aspects of closed, polygonal Wilson loops. These results do not rely on a
planar limit [72], but it is natural to conjecture that for large Nc the integral
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may take on an even more direct interpretation in terms of surfaces for non-
conformal theories.
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Chapter 4

Regularization, Subtractions,
and Factorization in Coordinate
Space

This chapter of the thesis is based on research (in joint work with George
Sterman) that has not been published yet [34].

4.1 Introduction

For many purposes, scattering amplitudes and the expectation values of gauge
theory Wilson lines may be studied in momentum space or coordinate space,
although most fixed-order computations are carried out in momentum space.
At the same time, a coordinate-space perspective may serve as a bridge be-
tween scattering amplitudes and observables, often those involving jets [98,99].
Similarly, analyses in coordinate space have played a central role in correspon-
dences between gauge theories and gravity [69], and dual conformal symme-
tries for select supersymmetric theories make a direct correspondence between
choices of momenta for amplitudes and assignments of the vertices of certain
polygonal Wilson loops [43, 100]. These considerations suggest that it may
be useful to reexamine some of the all-orders properties of perturbative scat-
tering amplitudes and cross sections that have been derived primarily from
a momentum-space analysis [7, 53] in terms of coordinate-space integrals. In
this spirit, we argued in Ref. [33] that the cusp formed by two Wilson lines
can be written in a geometrical form to all orders in perturbation theory, as
a surface integral over an ultraviolet finite function of the running coupling,
whose scale varies with position on the surface. The surface integrand itself
is found from the web diagrams of the cusp [86–88], which will play a role

65



in our discussion below. A more general analysis of partonic amplitudes was
undertaken in Ref. [32], which examined the structure of coordinate-space sin-
gularities of massless gauge theories, by analyzing the pinch singularities of
Feynman integrals in coordinate space [48] and developing a power counting
procedure to identify leading and nonleading behavior.

In this chapter we will apply and extend the results of Chapter 2 (published
in Ref. [32]), where it was found, for example, that in renormalized matrix
elements of the form

Gν(x1, x2) =
〈
0
∣∣T (φ(x2) J

ν(0)φ†(x1)
)∣∣ 0〉 , (4.1.1)

singularities occur only when the external points are on the light cone with
respect to the interaction vertex, that is, only at x2

I = 0, I = 1, 2, and
that divergences in coordinate-space integrals are logarithmic, relative to tree
level. It was also argued that integrals in such “leading regions” factorize into
hard, soft, and jet functions as for the well-known factorizations of momentum
space [31,54,55].

In coordinate space, the collinear and short-distance divergences are both
of ultraviolet nature [32], requiring D < 4 in dimensional regularization, while
the factorized soft function is finite when the external points are kept at finite
distances from each other. In contrast to short-distance singularities, collinear
ultraviolet divergences are by their very nature nonlocal, and are not removed
by the standard renormalization procedures for quantum field theory. It is
natural, however, to expect that they may be treated by analogy to collinear
singularities in momentum space, where they are infrared, requiring D > 4, for
example, and are factorized into universal functions. To derive and interpret
the corresponding factorization properties for coordinate-space amplitudes, it
is necessary to introduce a subtraction procedure directly in coordinate space,
similar to constructions in momentum space [31,54,55]. The subtractions will
enable us to reorganize perturbative amplitudes for gauge theories in a manner
that makes their singularity structure and factorization properties manifest,
after using the Ward identities of the theory.

We work in Feynman gauge, to preserve Lorentz invariance and causality in
the physical space-time structure of the amplitudes we study. Our construction
is for gauge theory amplitudes in fixed-angle scattering, and so must deal with
the non-trivial complication that in gauge theories with massless particles
almost any subdiagram may produce collinear singularities or take part in the
underlying short-distance process, in different parts of the integration space.
This is in contrast to lowest-order electroweak processes like Drell-Yan, where
the hard scattering is uniquely associated with a specific vertex.

Building on the results and analysis of Chapter 2 (Ref. [32]), we will analyze
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the ultraviolet structure of multiparton coordinate-space Green functions in
configurations related to fixed-angle scattering,

GN(x1, . . . , xN) = 〈0|T (φN(xN) · · · φ1(x1)) |0〉 . (4.1.2)

These Green functions, of course, are not gauge invariant, but as we will
observe, their leading singularities in coordinate space have essentially the
same gauge invariance properties as S-matrix amplitudes, as a result of the
same Ward identities.

The arguments that we give below carry over almost without change from
coordinate space to momentum space, and we provide in this way a new all-
orders analysis of factorization for scattering amplitudes in massless QCD
and related theories in Feynman gauge. Our work thus complements the
momentum-space analyses carried out in physical gauge long ago in Ref. [101]
for scattering amplitudes. See also Ref. [102], which uses physical gauges to
analyze a large set of amplitudes and observables involving outgoing jets. Our
analysis of field theory perturbative amplitudes, based on an all-orders sub-
traction procedure to isolate, organize and cancel singular behavior, can also
play a role in improving and extending existing factorization proofs for elec-
troweak annihilation [31,54,55], jet and single-particle inclusive cross sections
in hadron-hadron collisions [103].

We also study the closely-related multieikonal products of path-ordered
exponentials, or Wilson lines [59–61], which we represent as

Φ
[f ]

ξ̇C
(y, x) = P exp

[ ∫ ∞

0

dτ ξ̇C(τ) · A(f) (ξC(τ))

]
. (4.1.3)

Wilson lines that correspond to partonic amplitudes have constant velocities,
ξ̇C = βC , and are color matrices, in representations labelled f here. A four-
Wilson line multieikonal vertex, for example, is defined by a constant matrix,
cM in color space that links the color indices at a point [73, 84,101],

Γ
[f]
4,M {rk} =

∑
{di}

〈0|Φ[f4]
β4

(∞, 0)r4,d4 Φ
[f3]
β3

(∞, 0)r3,d3

× (cM)d4d3,d2d1
Φ

[f2]
β2

(0,−∞)d2,r2 Φ
[f1]
β1

(0,−∞)d1,r1 |0〉 .
(4.1.4)

For the eikonal Wilson lines of this expression, constant velocities βI label the
curves, which we can choose to be ξJ(τJ) = βJτJ (outgoing) or ξI(τI) = −βIτI
(incoming). The curves meet at the origin, either from infinity in the past or
to infinity in the future. In momentum space, Wilson lines appear as linear,
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“eikonal” propagators. The corresponding coordinate-space propagators are
simply step functions, ordering the connections of gluons to the exponential.
As a specific application below, we will use our subtraction scheme to confirm
the ultraviolet finiteness of the cusp web integrand [33].

We begin Sec. 4.2, with a review of the sources of ultraviolet poles in the
coordinate-space calculation of multieikonal and partonic amplitudes [32, 48].
We go on to define a series of subtractions [53,104] adapted to coordinate inte-
grals, and show how they eliminate singularities and enable factorization to all
orders in perturbation theory by methods similar to the treatment of infrared
logarithms in momentum space. Section 4.3 deals with the special case of the
two-eikonal amplitude, the singlet “cusp”. We will relate the subtraction pro-
cedure of Sec. 4.2 directly to the logarithm of the cusp, given by the so-called
web prescription. In this context, the ultraviolet finiteness of the web function,
as discussed in Chapter 3 (published in Ref. [33]) is confirmed. We then turn
in Sec. 4.4 to general, fixed-angle partonic and multieikonal amplitudes, and
derive their factorization properties in Feynman gauge. We conclude with a
summary and comments on possible developments.

4.2 Regularization of collinear singularities in

coordinate space

We begin with a review of the results of Ref. [32] regarding the coordinate-space
singularities of partonic and eikonal amplitudes, after perturbative renormal-
ization. We follow this with an iterative construction of a set of nonlocal
ultraviolet subtractions, adapted in analogy to the BPHZ momentum-space
renormalization procedure [104], in the spirit of the all-orders, all-logs treat-
ment of infrared divergences in momentum space in Ref. [53] for infrared diver-
gences. In the subsequent sections, we will relate this additive regularization
to the renormalization and factorization properties of eikonal and partonic
amplitudes in coordinate space.

4.2.1 Leading regions, ultraviolet divergences and gauge
invariance

The most general singular regions of coordinate-space integrals from which
divergences arise were determined by the analysis of the analytic structure
of coordinate-space integrals and the development of a corresponding power-
counting technique in Ref. [32]. Divergences arise from pinches in the integra-
tions over the positions of internal vertices considered as variables in complex
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(a)
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J1

J2

(b)
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JI JK

... ...

. . .

Figure 4.1: Leading pinch surfaces represented by soft, jet and hard subdia-
grams for (a) cusp and (b) a typical multieikonal or multi-parton amplitude.
Gluon lines represent arbitrary number of connections between the subdia-
grams. In (b) the double line represents either Wilson lines or partonic prop-
agators connected to the external vertices.

coordinate space. This is the direct analog of pinches in loop momenta in
momentum space [35, 47, 53]. As in momentum space, at each such leading
region, the diagram describes a physical processes with classical propagation
for all lines that connect vertices that are lightlike separated, while soft lines
can connect vertices with arbitrary separations. We will refer to a manifold in
coordinate space with a definite set of lines pinched on the lightcone as a pinch
surface (PS). (We use this notation in the same sense as “PSS” in Ref. [53].)

In Ref. [32] it was shown that at such pinch surfaces, diagrams are char-
acterized by subdiagrams of soft, jet-like and short-distance (hard) sets of
lines, as depicted in Fig. 4.1, which is similar to the familiar structure of
diagrams at pinch surfaces (PSs) in momentum space in direct QCD treat-
ments [31,47,53–55] and in soft-collinear effective theory [74,105]. In the case
of the massless cusp, for example (Fig. 4.1(a)), nonlocal ultraviolet subdiver-
gences occur when subsets of vertices align along the Wilson lines, configu-
rations that define jet subdiagrams. Other vertices remain at finite distances
from both Wilson lines and the cusp in the soft subdiagram, while the remain-
ing vertices move to the cusp and form the hard subdiagram [33]. The same
factorization into the same types of subdiagrams also occurs for multieikonal
vertices with more Wilson lines and in partonic amplitudes in coordinate space
whenever a single point in spacetime is related to a set of external positions
by lightlike distances, as illustrated in Fig. 4.1(b). (We assume that no pair
of external vertices is related by a lightlike distance, and that the positions
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of external vertices do not allow physical processes with multiple hard scat-
terings.) At these leading regions or PSs, one can make the coordinate-space
soft-collinear and hard-collinear approximations, as defined in Ref. [32], which
lead to the factorization of these subregions by the application of the Ward
identities in the same way as in momentum space [31, 54, 55]. We will give
the expressions for these approximants for a leading PS in the definition of
the subtraction terms below. We use the term “leading” below to denote an
ultraviolet logarithm or a pole in the dimensionally regulated case, and where
necessary to distinguish PS that produce such divergences from those that do
not.

Before giving more details, we pause to observe that, to participate in the
physical picture associated with pinch surfaces requires that the “external”
propagators, beginning at the positions of fields, xI in Eq. (4.1.2), be on the
light cone with respect to the position of the physical hard scattering. The
hard scattering may be mediated, for example, by exchange of a gluon in QCD
or by an electroweak current. For multieikonal amplitudes, we can always fix
the vertex joining the eikonal lines at the origin. In the case of partonic
scattering, with external fields φI at points xI , as in Eq. (4.1.2), we consider
2 → N scattering, where x0

1, x
0
2 are large and negative and all x0

I , I > 2 are
large and positive. In this case, the requirement of a physical process allows
hard scattering at a single, unique point, which, by translation invariance may
also be taken as the origin. In this coordinate system, all x2

I = 0 at the pinch
surfaces, and we may identify velocity vectors by βµ

I ≡ xµ
I /x

0
I for each external

field. These βI fix the directions of jets in the reduced diagrams of Fig. 4.1(b),
for partonic scattering amplitudes, in the same way as the Wilson lines fix jet
directions for multieikonal amplitudes. For an amplitude with several Wilson
lines or external partonic fields, we denote the velocity of the Ith line by βI ,
with β2

I = 0. For each such line we introduce an additional, “complement”
vector, β̄I , β̄

2
I = 0, normalized by βI · β̄I = 1. The leading singularity of

the diagram requires that the leading behavior of each external propagator
remains uncancelled. We may think of this as the analog of the requirement
that the S-matrix is the residue of the leading pole in every external line.

The foregoing considerations on external propagators enable us to argue
that the leading behavior in coordinate space is gauge invariant, once external
vector fields are projected onto transverse polarizations. This may be seen
from the diagrammatic proof of the gauge invariance of the S-matrix [56].
In momentum space, an infinitesimal gauge transformation produces a sum
of terms in which either external propagators are cancelled, or vectors are
projected onto scalar polarizations, proportional to their own momentum.
The Fourier transformations of these relations are contributions in which an
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external propagator is replaced by a four dimensional delta function, fixing its
position at an internal vertex, or the divergence is taken of an external vector
field, and hence a gradient of the external propagator. The former case gives
a suppression by x2

I relative to leading behavior, while the latter is eliminated
by the same transverse projection that defines the S-matrix.

4.2.2 Variables, power counting and neighborhoods for
pinch surfaces

In the analysis of the pinch singularities of the coordinate-space integrals, the
soft, jet, and hard regions were determined by the identification of “intrinsic”
and “normal” variables, which parametrize a pinch surface and its normal
space, respectively [32, 47, 53]. At a pinch surface, normal variables vanish as
a distance scaling factor, λ → 0 while intrinsic variables remain finite. At
lowest order in normal variables, the propagator denominators of jet lines are
linear in normal, those of the hard lines are quadratic in normal variables, and
the soft lines are of zeroth order in normal variables. (Our specific choices
of normal variables for the amplitudes under consideration will be described
shortly.) Power counting can be performed by factoring out the lowest powers
of λ from each factor of the homogenous integrand and the integration measure
for each normal variable,

si = λs′i . (4.2.1)

Then, near a pinch surface, the integral for some quantity g(qk), depending on
external parameters qk has the form [32],

g(qk) ∼
∫ d0

0

dλλp−1

∫ ∏
i

ds′i δ

(
1−

∑
i

|s′i|2
)

×
∫ ∏

j

drj

(
Īg(s

′
i, rj, qk) +O(λη)

)
,

(4.2.2)

where η > 0 and where the integrals over the intrinsic variables rj of the
homogenous integrand Īg should be finite or have similar pinch surfaces as
subsets of the s′i and possibly intrinsic variables vanish. The scale d0, which
quantifies the maximum distance from the pinch surface, may be thought
of as arbitrary at this point. The analysis of the homogeneous integrand
determines the choice of normal variables near each PS [32]. As found in the
power counting in Ref. [32], the leading overall degree of divergence is p = 0
for pinch surfaces of both eikonal and partonic amplitudes, relative to lowest
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order, indicating logarithmic divergences of their integrals in coordinate space.
In these terms, leading regions are characterized by

1. Gluon propagators attaching the soft subdiagram to jet K are contracted
only to the jet velocity vector, βK .

2. Gluon propagators attaching the soft subdiagram to jet subdiagram K
depend on the positions, z(K)µ of the jet vertices to which they attach
only through a vector that depends on a single coordinate: β̄K · z(K)βµ

K .
The arguments of such propagators are given by

Dµν(x− z(K)) Jν(z
(K)) =

gµν

[−(x− z)2 + iε]1−ε
Jν(z

(K))

→ βµ
K β̄

ν
K

[−2 β̄K · (x− z(K)) βK · x+ x2
⊥ + iε]1−ε

Jν(z
(K)) ,

(4.2.3)

with x the position of a soft vertex, or in the case of a gluon exchanged
between Wilson lines or jets, a point on the other line or in the other jet.
We have dropped terms that are of order λ1/2 near the pinch surface,
where the denominator is finite. It is then convenient to define coordi-
nates that link the soft and jet subdiagram in convolution for each vertex
position, z(K),

dDz(K) ≡ dτ (K) dD−1z(K) ,

τ (K) = β̄K · z(K) . (4.2.4)

Here, only τ (K) is an intrinsic variable, while βK ·z(K) and z
(K)2
⊥ /β̄K ·z(K)

can be chosen as normal variables for this jet. We will refer to Eq. (4.2.3)
as the soft-collinear approximation. For the special case of z(K) a vertex
on the Kth Wilson line, we can identify z(K)µ = τ (K)βµ

K .

3. Gluon propagators attaching jet subdiagram JI to the hard subdiagram
are contracted only to the complementary vector, β̄µ

I .

4. Gluon propagators attaching jet subdiagram I to the hard subdiagram
depend on the coordinates, y(I) of the hard vertices to which they attach
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by vector βI · y(I)β̄µ
I , and may be approximated as

Dµν(z − y(I))Hν(y
(I)) =

gµν

[−(z − y(I))2 + iε]1−ε
Hν(y

(I))

→ β̄µ
I β

ν
I

[−2 βI · (z − y(I)) β̄I · z + z2
⊥ + iε]1−ε

Hν(y
(I)) .

(4.2.5)

Notice the similarity between this approximation, which we refer to as
the hard-collinear approximation, and the soft-collinear approximation,
Eq. (4.2.3). We have dropped terms that are of order λ3/2 near the pinch
surface, where the denominator is O(λ). Then, similarly to Eq. (4.2.4)
we define

dDy(I) ≡ dζ(I) dD−1y(I) ,

ζ(I) = βI · y(I) . (4.2.6)

In the hard subdiagram, all components of the positions yµ are normal
variables. In the generic case, where all components of yµ appear lin-
early in the denominators of jet lines shown in Eq. (4.2.5), all of these
components are naturally taken to scale linearly in λ. When there are
precisely two incoming and two outgoing jets at the pinch surface hard
scattering, however, one spacelike component of yµ, which we may call
yout, does not appear in any factor βI · y, I = 1, . . . , 4. Rather, it ap-
pears quadratically in every propagator attached to the vertex at yµ.
This coordinate defines the direction normal to the scattering plane in a
center-of-momentum frame of the physical picture at the pinch surface.
In this case, the single variable yout scales as λ1/2, and the integral is
correspondingly enhanced. This enhancement is also a feature of the
lowest-order, tree-level scattering, however, and does not change the log-
arithmic nature of radiative corrections [32], which are the focus of our
discussion.

5. In the case of partonic amplitudes, a leading PS requires that (exactly)
one partonic propagator attaches each jet subdiagram to the hard scat-
tering with a physical (transverse) polarization for fermions or vectors.
For these propagators, the corresponding hard-collinear approximation
may be represented as

∆αβ(z − y(I)) Hβ(y(I)) → ∆αβ(z) Tβ
β′Hβ′(y

(I)) , (4.2.7)
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where Tβ
β′ is an appropriate projection for the leading physical polariza-

tions with ∆αβ the corresponding propagator, depending on the spin of
the field. The action of this approximation is to fix the position of the
partonic field that initiates the jet subdiagram to the origin, which is
the position of the hard scattering when the external points xI approach
the light cone.

In summary, for a partonic amplitude with hard scattering at the origin
and external points on the light cone x2

I → 0, all pinch surfaces are specified

by a list of vertices {z(K)
µ } that specify jet subdiagram JK , and a list of vertices

{yµ} that specify the hard subdiagram H, while the remaining vertices {xµ}
specify the soft subdiagram S. From these lists of vertices, we find the normal
variables of an arbitrary pinch surface ρ,

{s(ρ)
i } =

{{
βK · z(K),

z
(K)2
⊥

β̄K · z(K)

}
, {yµ}

}
, (4.2.8)

that is, the opposite-moving and the square of the perpendicular components
normalized by the longitudinal distance for each vertex in each jet, and all
components of vertices in the hard subdiagram. All other independent com-
ponents are intrinsic variables,

{r(ρ)
j } =

{
{xµ

i } , {βK · z(K)}
}
. (4.2.9)

We emphasize that the number of pinch surfaces is finite for any diagram of
finite order, and is determined simply by the ways of assigning vertices to the
jet, soft and hard subdiagrams.

The choice of subdiagrams can be pictured directly in coordinate space. In
Fig. 4.2, each point represents the projection of the position of an interaction
vertex in some very high-order diagram onto the plane defined by two non-
collinear Wilson lines, for example. The closed curves represent the jets and
hard scatterings in a transparent fashion. The normal variables for vertices
in either jet are given simply by their distances to the corresponding lines in
this diagram, and normal variables for vertices in the hard function are their
distances from the origin, as in Eq. (4.2.8). We denote these subdiagrams by

S(ρ), J
(ρ)
I and H(ρ), respectively. We suppress their explicit orders, which are

implicit in the choice of PS ρ. It is also clear from the figure that assignments
of vertices to jet, hard and soft subdiagrams are shared by many diagrams,
that is, all the perturbative diagrams that are found by connecting the points
in the figure.

To organize integrals in the presence of this large but finite number of pinch
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S(ρ)

H(ρ)

xKxI

J
(ρ)
KJ

(ρ)
I

Figure 4.2: Representation of the arrangement of vertices near a leading pinch
surface ρ directly in coordinate space and their assignments to jet, J

(ρ)
I , hard,

H(ρ), and soft, S(ρ) subdiagrams. For every region, the direction of the jet J
(ρ)
I

is determined by the relative position of the external point xI with respect to
the position of the hard scattering.

surfaces, we define a neighborhoods n[ρ] of pinch surfaces (PS) ρ by require-

ments on normal variables, s
(ρ)
i , given in Eq. (4.2.8), and intrinsic variables

r
(ρ)
j from Eq. (4.2.9),∑

i

|s(ρ)
i |2 ≤ d2

0 ,

|r(ρ)
j |2 ≥

(∑
i

|s(ρ)
i |2

)δj

d
2−2δj

0

≥ λ2δj

(∑
i

|s′i(ρ)|2
)δj

d
2−2δj

0 , (4.2.10)

for some finite distance scale d0. A power 0 < δj < 1/2 is chosen for each

intrinsic variable r
(ρ)
j , and the s

′(ρ)
i are rescaled normal variables, Eq. (4.2.1).

The inequalities for power δj ensures that the leading terms involving normal
variables in the soft-collinear and hard-collinear approximations, Eqs. (4.2.3)
and (4.2.5), remain dominant by a power over the first corrections to these
approximations, which are relatively suppressed by λ1/2 in both cases. With
this definition, the soft-collinear and hard-collinear approximations associated
with pinch surface ρ remain accurate for λ → 0 in Eq. (4.2.2) throughout
neighborhood n(ρ). We can think of Eq. (4.2.10) as specifying the closed
curves of Fig. 4.2.
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4.2.3 Approximation operators and region-by-region
finiteness

We will now employ the approximations identified above to define a set of
approximation operators, denoted tρ, one for each leading pinch surface ρ.
Each operator tρ is defined to act on any diagram γ(n) that possesses the
corresponding PS and to give an expression that corresponds to the leading,
singular behavior of γ(n) in the neighborhood of PS ρ. As is always the case
in discussions of renormalization, the operator tρ is defined only up to a finite
ambiguity, which specifies a regularization, and eventually a renormalization
scheme. We may, for example, think of minimal subtraction schemes, but
for our purposes it will be most useful to define subtractions similar to those
employed in proofs of factorization [53].

We define the action of the approximation operator as precisely the soft-
collinear and hard-collinear approximations given above in Eqs. (4.2.3) and
(4.2.5) respectively, given schematically by

tργ
(n) ≡

∏
I

∫
dτ (I) S

(ρ)
{µI}(τ

(I)) βµI

I β̄I,µ′I

×
∫
dζ(I)

∫
dD−1z(I) J

(ρ)µ′Iν′I
I (z(I), ζ(I)) β̄I,ν′I

βνI
I

×
∫
dD−1y(I) H

(ρ)
{νI}(y

(I)) . (4.2.11)

In this expression, each vector index and vertex position, for example, µI and
z(I), represents arbitrary numbers of such indices for gluons connecting the
subdiagrams specific to this leading region, S(ρ), J

(ρ)
I and H(ρ). As mentioned

above, the “soft-collinear” and “hard-collinear approximations” defined for
coordinate-space integrals in [32] are equivalent to approximations with sim-
ilar names in discussions of factorization in momentum space [31, 106]. In
this case, however, the approximation isolates ultraviolet divergences in the
neighborhood of the PS in coordinate space, so long as the soft-collinear and
hard-collinear approximations apply. We represent this result by

tρ γ
(n)
∣∣
div n[ρ]

= γ(n)
∣∣
div n[ρ]

, (4.2.12)

where the subscript “div n[ρ]” represents the divergent UV behavior, from
short-distance and/or collinear configurations of region ρ where the soft-collinear
and hard-collinear approximations apply. We will explore the consequences of
this relation by introducing the concept of nested pinch surfaces, in the fol-
lowing discussion. We emphasize first, however, that the equality (4.2.12)
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refers to the result of an integral over the neighborhood, n[ρ] of PS ρ, where
the approximation is accurate, but the definition tργ

(n) refers to the full inte-
gral, extended over the full integration region in coordinate space, including
other PSs and regions where tρ no longer gives a good approximation to the
integrand.

As in any multi-loop diagram, multiple ultraviolet divergences can arise
from sets of vertices that approach the hard scattering or the collinear direc-
tions in partonic amplitudes, or the cusp and/or the Wilson lines in multi-
eikonal amplitudes, at different rates, just as loop momenta may go to infinity
faster in some subdiagrams than in others. As for the renormalization of Green
functions, we can classify sets of divergences as either nested or overlapping,
in terms of the limiting process in coordinate space.

Nesting in coordinate space can be classified directly in terms of pinch
surfaces. We say PS ρ1 is nested in PS ρ2 when some subset of vertices in ρ1

approaches the light cone and/or the origin faster than other vertices in ρ2,
while others remain fixed. The smaller nested PS has larger subdiagrams with
vertices near the light cone (jets) or the origin (hard subdiagram). Otherwise,
we will say that the PSs are overlapping.

To be specific, for two leading pinch surfaces, ρ1 is a nested subsurface of
ρ2, denoted

ρ1 ⊆ ρ2 , (4.2.13)

if and only if

H(ρ2) ⊆ H(ρ1) ,

H(ρ2) ∪ J (ρ2)
I ⊆ H(ρ1) ∪ J (ρ1)

I , (4.2.14)

for all jets JI . That is, the jet and/or hard subdiagrams grow as the dimension
of the pinch surface decreases. The equality holds only when ρ1 = ρ2, in which
case all these relations are equalities. Otherwise, we say that ρ1 is contained
in ρ2. Without specifying their ordering, we say that ρ1 and ρ2 nest. The
subsurface, or nesting, relation is transitive,

ρ3 ⊂ ρ2 and ρ2 ⊂ ρ1 ⇒ ρ3 ⊂ ρ1 . (4.2.15)

We note that the smaller the pinch surface in the sense of Eq. (4.2.14), the
larger the number of its normal variables, and the smaller the number of its
intrinsic variables. Another way of putting this is that smaller pinch surfaces
have the larger “codimension”. We will denote any fully nested set with MN

pinch surfaces by N = {σ1 ⊂ σ2 ⊂ · · · ⊂ σMN
}, and the set of all such nested
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sets for diagram γ as N [γ].
We now use nesting of pinch surfaces and the definitions of neighborhoods

above to help us construct a set of regions in coordinate space that cover all
pinch surfaces, and in each of which an operator, tρ gives a valid approxima-
tion to the singular behavior of the diagram. Our choice for this “reduced
neighborhood” is

n̂[ρ] = n[ρ]\ ∪σ⊃ρ (n[ρ] ∩ n[σ]) . (4.2.16)

By construction, region n̂[ρ] is the neighborhood n[ρ] where the soft- and hard-
collinear approximations of PS ρ remain accurate, less its intersection with
the neighborhoods n[σ] of all larger pinch surfaces, σ ⊃ ρ. Pinch surface σ
has more intrinsic (and fewer normal) variables than pinch surface ρ, and
one or more of the instrinsic variables of σ are normal variables of ρ, and in
neighborhood n[σ] the normal variables of ρ that are instrinsic variables of σ
do not vanish rapidly enough to produce a divergence. Although pinch surface
ρ is a subpace of lower dimension in surface σ, the neighborhoods n[ρ] and
n[σ] are of the same dimension, and ρ ⊂ σ does not imply that n[ρ] ⊂ n[σ].
The neighborhoods n̂[ρ] cover all pinch surfaces without duplication.

Not all pairs of regions can satisfy the nesting criterion, Eq. (4.2.14). We
say two pinch surfaces are overlapping when ρ 6⊂ σ and σ 6⊂ ρ, which we denote
as

ρ φ σ . (4.2.17)

By definition, if ρ φ σ, then ρ and σ cannot appear any set N of nested PSs of
γ. The overlap relation, φ has a property analogous to transitivity of nesting,
Eq. (4.2.15), which also follows easily from the defining properties of nesting,
Eq. (4.2.14),

given : σ1 ⊂ σ2 ⊂ σ3 , σ3 φ ρ and σ1 φ ρ

then : σ2 φ ρ . (4.2.18)

Any pair of PSs is either nested or overlapping. Note that the pinch surface
where all vertices are in the hard subdiagram is nested with all other pinch
surfaces, so that no pair of pinch surfaces is fully disjoint.

As we have seen, each pinch surface, and corresponding neighborhood is
associated with a distinct matching of the list of vertices to the jet, hard
and soft subdiagrams. In these terms, we can give an explicit form for the
requirement of Eq. (4.2.12), that the divergences from PS ρ are equal for γ(n)
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and tργ
(n),

tργ
(n)
∣∣
div n̂[ρ]

− γ(n)
∣∣
div n̂[ρ]

=∏
I

∫
dτ (I)

∫
dζ(I)

∫
dD−1z(I)

∫
dζ(I)

∫
dD−1y(I) Θ(n̂[ρ])

×
[
S

(ρ)
{µI}(τ

(I)) βµI

I β̄I,µ′I
J

(ρ)µ′Iν′I
I (z(I), ζ(I)) β̄I,ν′I

βνI
I H

(ρ)
{νI}(y

(I))

− S
(ρ)
{µI}(z

(I)) J
(ρ)µIνI

I (z(I), y(I))H
(ρ)
{νI}(y

(I))
] ∣∣∣

div n̂[ρ]

= 0 ,

(4.2.19)

where Θ(n̂[ρ]) restricts the integration to reduced neighborhood n̂[ρ], Eq.
(4.2.16). This integral over the reduced nieghborhood converges because of
the accuracy of the soft-collinear and hard-collinear approximations in the
entire neighborhood n[ρ], and therefore in the smaller neighborhood, n̂[ρ].

Equation (4.2.19) is the main result we will use for applications in the fol-
lowing sections, treating the neighborhood of each PS separately. As a more
general result, however, we will show that all divergent contributions to ampli-
tudes can be written without restriction to specific regions, by a construction
involving nested subtractions [53], which we now discuss.

4.2.4 Nested subtractions

The quantities tργ, Eq. (4.2.11), can also be thought of as counterterms for
ultraviolet divergences associated with Wilson lines and/or the limits x2

I → 0
in the partonic matrix elements, Eq. (4.1.2). Following the reasoning of [53],
we define an n-loop regulated version of γ(n) by

R(n) γ(n) = γ(n) +
∑

N∈N [γ(n)]

∏
ρ∈N

(
− tρ

)
γ(n) , (4.2.20)

so that we may write for the full nth order amplitude, Γ(n) =
∑
γ(n),

Γ(n) = −
∑
γ(n)

∑
N∈N [γ(n)]

∏
σ∈N

(
− tσ

)
γ(n) + R(n) Γ(n) . (4.2.21)

The sets N of PSs σ include not only “proper” pinch surfaces, but also those
for which the pinch surfaces involve setting all vertices of the diagram on the
light cone or at the hard scattering. These products are ordered with the
larger PSs to the right of smaller PSs. As in Eq. (4.2.11), the approximation
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operators act on the diagram over the full integration region, not restricted to
the neighborhood of the corresponding pinch surface. Thus, the first appoxi-
mation operators tρ to act on γ involve the fewest points on the light cones or
at short distances.

We will argue that the nesting, from regions to subregions, eliminates dou-
ble counting, allowing the subtractions tρ for each leading region PS ρ to be
extended from n̂[ρ] to the full space, as in the momentum space discussion
described in Ref. [53]. We can also think of individual subtractions acting
region by region; the purpose of the nested products is to cancel the action
of subtractions outside their corresponding reduced neighborhoods n̂[ρ]. In
summary, we claim that for each diagram γ(n), the action of R(n) is to remove
divergences from every leading pinch surface ρ,

R(n) γ(n)|div n̂[ρ] = 0 . (4.2.22)

Combining this result with the definition of nested subtractions in Eq. (4.2.21)
and the requirement Eq. (4.2.19), we find

∑
Nρ 6=ρ

∏
σ∈Nρ

(
− tσ

)
+

∏
σ∈Nρ\ρ

(
− tσ

)γ(n)
∣∣
div n̂[ρ]

+
∑
N̄ρ

∏
σ∈N̄ρ

(
− tσ

)
γ(n)

∣∣
div n̂[ρ]

= 0 .

(4.2.23)

That is, for (4.2.22) to hold in each neighborhood n̂[ρ], the divergent parts
of all subtraction terms except for tρΓ alone must cancel (or vanish) in region
n̂[ρ] defined by Eq. (4.2.16).

Thus, to prove the absence of divergences in R(n)Γ(n) for an arbitrary n̂[ρ],
we must examine all nestings in Eq. (4.2.21). We consider separately those
nestings denoted Nρ that include ρ, along with the set Nρ\ρ, in which region
ρ can nest but is excluded, and finally the set of nestings, denoted, N̄ρ, in
which ρ cannot nest because ρ φ σ for at least one element σ ∈ N̄ρ.

It is worth noting the relationship between the subtraction approach here,
and the momentum space “strategy of regions” [107]. In the latter, approx-
imations tailored to regions of loop momenta that are the sources of leading
behavior are also extended to all of loop momentum space. We are doing
something very similar here; each of the subtraction terms in each nesting is
associated with a particular PS, but we extend each such exppression over the
full coordinate integration space. The list of PSs specifies the list of regions
about which to expand. By showing that all double counting is eliminated
in the sum over all nestings, we will verify in this section that the sum of
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subtractions is an acceptable representation of the original amplitude, up to
well-defined finite corrections. In Sec. 4.4, we will show that the sum over
nestings is also equivalent to a single factorized expression in coordinate space
for both multieikonal and partonic amplitudes, by using the exponentiation
properties of webs.

We start with those nestings, Nρ in which ρ appears along with at least one
other PS. For all such nestings, in neighborhood n̂[ρ], the term corresponding
to nesting Nρ cancels the nesting, Nρ\ρ. This is because the action of tρ is
equivalent to the identity in region n̂[ρ], so that

∑
Nρ 6=ρ

∏
σ∈Nρ

(
− tσ

)
+

∏
σ∈Nρ\ρ

(
− tσ

) γ(n)
∣∣∣
div n̂[ρ]

= 0 , (4.2.24)

where, as in Eq. (4.2.12), the subscript “div n̂[ρ]” on the right-hand side refers
to the sum of all divergent parts from the integral over n̂[ρ]. This implies that
the proof of Eq. (4.2.22) requires that we show that the sum of all overlapping
subtractions cancels independently,∑

N̄ρ

∏
σ∈N̄ρ

(
− tσ

)
γ(n)

∣∣∣
div n̂[ρ]

= 0 . (4.2.25)

Here, nestings N̄ρ in Eq. (4.2.21) are not consistent with a leading region ρ
because one or more of the regions σ overlap with ρ. Because we are interested
in singular contributions, we need to consider only those nestings, N̄ρ that are
divergent in region ρ, and we will use this condition below.

To motivate our approach, we consider an arbitrary nesting N̄ρ that con-
tains elements σ that overlap with PS ρ. Because of the transitive nature of
nesting, Eq. (4.2.15), we can partition the PSs σi ∈ N̄ρ into three ordered
sets [53]: those that are larger than ρ, those that are smaller than ρ and those
that overlap with ρ,

N̄ρ = NL ∪Nφ ∪NS , (4.2.26)

with

NL[ρ] = {σj ⊃ ρ} ,
Nφ[ρ] = {σk φ ρ} ,
NS[ρ] = {σl ⊂ ρ} , (4.2.27)

where all σj ⊃ σk ⊃ σl. Note that the set NS[ρ] may include the element, σγ,
corresponding to the smallest PS of diagram γ, where all of its vertices are in
H(σγ) and move to the cusp or multieikonal vertex at the PS.
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In the following, we will identify an “induced” PS σind, which is interme-
diate between the sets Nφ[ρ] and NS[ρ] in Eq. (4.2.27). This PS, σind will be
a proper subregion of both region ρ and of every element σk ∈ Nφ. It will
at the same time contain every element σl ∈ NS[ρ], including the case when
it equals the largest element of NS[ρ]. The induced region, σind[σi, ρ] will be
constructed to act as the identity on tσi

γ(n) in neighborhood n̂[ρ] up to finite
corrections,[ (

− tσind[σi,ρ]

)(
− tσi

)
γ(n) +

(
− tσi

)
γ(n)

] ∣∣∣
div n̂[ρ]

= 0 , (4.2.28)

for every PS σi included in Nφ[ρ]. That is, the integral of this combination
over region n̂[ρ] is nondivergent, and the resulting integral confined to n̂[ρ]
should be considered as a finite contribution to the full diagram. Equation
(4.2.28) assures that in region n̂[ρ], nestings that include PS σind cancel with
those that do not include σind.

The induced PS σind[σ, ρ] is defined as usual by its hard, jet and soft sub-
diagrams. These subdiagrams are determined in turn by the subdiagrams of
PSs σ and ρ in the following manner,

H(σind) =

[
H(σ) ∪H(ρ) ∪

∏
I,K, I 6=K

(
J

(σ)
I ∩ J (ρ)

K

) ]
connected

, (4.2.29)

J
(σind)
I = J

(σ)
I ∪ J (ρ)

I

∖
H(σind) , (4.2.30)

S(σind) = S(σ) ∩ S(ρ)

= γ
∖ (

H(σind) ∪
∏

I

J
(σind)
I

)
. (4.2.31)

As indicated in the first relation, an induced PS is found only when the union
of the hard subdiagrams and adjacent intersections of jets is itself connected.
For consistency, we also demand that the soft subdiagram be connected only
to jet subdiagrams and not to the hard subdiagram by the power counting of
Ref. [32]. We note that although the construction is symmetric in σ and ρ,
only the approximant tσ has been applied to the diagram. The construction
(4.2.29)–(4.2.31) “favors” hard subdiagrams H(σind) and then jet subdiagrams

J
(σind)
I compared to the soft subdiagram S(σind). That is, we go from larger to

smaller PSs.
Much of the subtlety in this construction involves “overlapping jets” in

different directions, in which some subsets of lines shift from one lightcone in σ
to another lightcone in ρ. Many such subdiagrams, J

(σ)
I ∩J (ρ), are possible, and

are defined by the list of PSs of each diagram γ. We now observe an important
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result, which follows from the action of the approximation operator tσ. In the
integral tσγ, including the approximation operator for region σ, certain PSs
are modified. We find that PSs involving overlaps J

(σ)
I ∩ J (ρ)

K are replaced by

PSs where the lines in J
(σ)
I ∩J

(ρ)
K are either pinched at the origin, or move only

in the direction β̄I (of the jet in region σ), complementary to the direction of

J
(σ)
I and independent of direction βK (of the jet in region ρ).

To see how such “complementary” collinear singularities, along with pinches
at the origin, occur, and why there are no other singularities in J

(σ)
I ∩ J (ρ)

K , we

consider a gluon line in J
(σ)
K , attached at one end to an arbitrary vertex at a

point y in J
(ρ)
K , K 6= I, and at the other end to a vertex x that is in J

(σ)
I ∩ J (ρ)

K .

Because this line is not in J
(σ)
I , it must be in S(σ). For the denominator of this

line, the action of tσ is then

− (y − x)2 + iε → −(y − (x · β̄I)βI)
2 + iε

= −y2 + 2(x · β̄I)y · βI + iε . (4.2.32)

When y approaches the collinear configuration, y ∝ βK , y − x is lightlike if
and only if x · β̄I = 0 or x = 0. These conditions require that the vertex in
J

(σ)
I ∩ J

(ρ)
K be either on the β̄I lightcone, or at the origin.

The foregoing result has consequences for the couplings of soft lines that
would attach to lines in subdiagrams J

(σ)
I ∩ J

(ρ)
K . The power counting de-

scribed in Ref. [32] shows that for leading behavior at PS ρ, that is, ultraviolet
divergence, the soft polarization tensor (gµν for us) of a line connected to a
jet subdiagram must contract with vectors proportional to the direction of the
jet lines on the light cone to which they attach. The action of tσ applies the
soft-collinear approximation, Eq. (4.2.11), appropriate to region σ, in which
soft lines couple to jet lines moving in direction βI . As we have seen, however,
in region ρ the jet lines of J

(σ)
I ∩ J (ρ)

K move in the complementary, β̄I , direction.
This leads to a relative suppression, which eliminates UV divergences in this
region. To illustrate the point, consider a PS σ where a soft gluon is attached
to a jet fermion line at point z. The resulting product on the fermion line after
the action of tσ is of the form

S(z′′ − z) γ · β̄I S(z − z′) , (4.2.33)

with S(y) the coordinate-space fermion propagator,

S(y) =
Γ(2− ε)
2π2−ε

γ · y
(−y2 + iε)2−ε

, (4.2.34)

in D = 4− 2ε dimensions. The product in Eq. (4.2.33) is suppressed relative
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FIG. 3: Example of nested overlapping subdivergences, involving jets at two loops for the cusp. Dashed lines represent soft
lines, and circles denote hard subdiagrams. The hard subdiagram of the rightmost figure is H

(σind), from Eq. (32) applied to
the diagrams on the left.
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FIG. 4: An example of non-overlapping hard subdiagrams that lead to a connected induced hard subdiagram.

Figure 4 illustrates Eq. (32) with a case when the hard scattering subdiagrams of σ and ρ PSs are disjoint, but

are connected in the sense of Eq. (32), through the overlaps of jet subdiagrams. In the figure, the hard scattering

may be associated with the propagator connecting the vertices y1 and y2 (PS σ) when y1 → y2 → 0, while y3 and y4

remain at finite distances from each other, or alternately when y3 → y4 → 0 (PS ρ), where y1 and y2 remain at finite

distances. At PS ρ, the lines (y1, y3) and (y2, y4) are in the jet subdiagrams associated with external points x1 and x2

respectively. At PS σ, they are in the jet subdiagrams associated with external points x3 and x4. These two regions

cannot be nested. The action of tσ, however, decouples the internal integrals of the hard subdiagram (y1, y2) from

the σ jet functions, because these vertices are where physically-polarized parton lines attach to the hard scattering at

PS σ, and are hence set to the origin, as in Eq. (11). In the neighborhood of PS ρ, on the other hand, y3 and y4 are

set to the origin. When the integral of tσγ is taken into region ρ, the lines y1 − y3 and y2 − y4 are squeezed to the

origin, and we are led precisely to PS σind of Eq. (32), where all the vertices y1, . . . , y4 shrink to the origin.

We now turn to general arguments on how the construction of Eqs. (32)–(34) satisfies Eq. (31), which states that

the combination tσind tσ γ is a good approximation to tσ γ near PS ρ, where σ ∈ Nφ[ρ]. We must verify that:

• (i) The hard-collinear approximation should hold for lines that connect each J
(σind)
I to H

(σind).

• (ii) The soft-collinear approximation should hold for lines that connect S
(σind) to each J

(σind)
I .

• (iii) Configurations in which lines from S
(σind) attach to H

(σind) can be neglected. That is, whenever the

construction of Eqs. (32)–(34) produces such a PS, this configuration should not be associated with a divergence.

• (iv) Configurations for which the construction gives a multiply-connected subdiagram H
(σind) must also be finite.

Figure 4.3: Example of nested overlapping subdivergences, involving jets at
two loops for the cusp. Dashed lines represent soft lines, and circles denote
hard subdiagrams. The hard subdiagram of the rightmost figure is H(σind),
from Eq. (4.2.29) applied to the diagrams on the left.

to leading behavior when z′′ − z and z − z′ are in the β̄I direction. Similar
suppressions hold for three-gluon and other relevant vertices (See Ref. [32].) In
summary, after the action of the soft approximation tσ, any lines in S(σ)∩ S(ρ)

are coupled to J
(σ)
I ∩ J

(ρ)
K through the combination β̄IµI

J
(σ)µIνI

I (z) and are
not UV divergent in region ρ, where internal lines are either parallel to β̄I in
region, ρ 6= σ or shrink to the origin. This result is an important ingredient in
showing the consistency of the construction outlined above for induced PSs,.

An example of the construction of Eq. (4.2.29) applied to the cusp is shown
in Fig. 4.3, where the circles isolate the hard subdiagrams H(σ), H(ρ) and
H(σind). The gluon line in these diagrams attaching the three-gluon vertex
to the inner vertex on the βK Wilson line appears in different jets in the
overlapping regions, and so appears in the hard subdiagram in the induced
PS. In region ρ, after the action of tσ, this line is pinched in the β̄I direction
or at the origin, independent of βK , and the diagram gives examples both of
a pinch in the “complementary direction” and of a pinch at the origin.

Figure 4.4 illustrates Eq. (4.2.29) with a case when the hard scattering
subdiagrams of σ and ρ PSs are disjoint, but are connected in the sense of
Eq. (4.2.29), through the overlaps of jet subdiagrams. In the figure, the hard
scattering may be associated with the propagator connecting the vertices y1

and y2 (PS σ) when y1 → y2 → 0, while y3 and y4 remain at finite distances
from each other, or alternately when y3 → y4 → 0 (PS ρ), where y1 and y2

remain at finite distances. At PS ρ, the lines (y1, y3) and (y2, y4) are in the
jet subdiagrams associated with external points x1 and x2 respectively. At
PS σ, they are in the jet subdiagrams associated with external points x3 and
x4. These two regions cannot be nested. The action of tσ, however, decouples
the internal integrals of the hard subdiagram (y1, y2) from the σ jet functions,
because these vertices are where physically-polarized parton lines attach to the
hard scattering at PS σ, and are hence set to the origin, as in Eq. (4.2.7). In
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Figure 4.4: An example of non-overlapping hard subdiagrams that lead to a
connected induced hard subdiagram.

the neighborhood of PS ρ, on the other hand, y3 and y4 are set to the origin.
When the integral of tσγ is taken into region ρ, the lines y1 − y3 and y2 − y4

are squeezed to the origin, and we are led precisely to PS σind of Eq. (4.2.29),
where all the vertices y1, . . . , y4 shrink to the origin.

We now turn to general arguments on how the construction of Eqs. (4.2.29)–
(4.2.31) satisfies Eq. (4.2.28), which states that the combination tσind

tσ γ is a
good approximation to tσ γ near PS ρ, where σ ∈ Nφ[ρ]. We must verify that:

• (i) The hard-collinear approximation should hold for lines that connect

each J
(σind)
I to H(σind).

• (ii) The soft-collinear approximation should hold for lines that connect

S(σind) to each J
(σind)
I .

• (iii) Configurations in which lines from S(σind) attach to H(σind) can be
neglected. That is, whenever the construction of Eqs. (4.2.29)–(4.2.31)
produces such a PS, this configuration should not be associated with a
divergence.

• (iv) Configurations for which the construction gives a multiply-connected
subdiagram H(σind) must also be finite.

These four criteria are met as follows.

• (i) There are two classes of collinear lines from any jet J
(σind)
I that attach

to H(σind) in the construction of Eqs. (4.2.29)–(4.2.30), whose elements
are distinguished by the vertices in H(σind) to which they attach. Ac-
cording to Eq. (4.2.29), this vertex is either in the union of the two hard

subdiagrams, H(σ) ∪ H(ρ) or in one of the jet intersections J
(σ)
I ∩ J (ρ)

K .
These two sets of vertices are disjoint.
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1. First, consider a vertex of H(σind) that is in H(σ) ∪ H(ρ), and to
which a line from J

(σind)
I attaches. Any external line of H(σ) ∪H(ρ)

must be an external line of either H(σ) or H(ρ) (or both), and hence

must be in J
(σ)
I or J

(ρ)
I (or both). (By Eq. (4.2.30) these lines are

certainly in J
(σind)
I .) Jet lines in this class connect J

(σ)
I to H(σ)

or J
(ρ)
I to H(ρ) (or both). If the line in question connects J

(σ)
I to

H(σ), the hard-collinear approximation is already imposed by tσ;
if it connects J

(ρ)
I to H(ρ), tσind

will then apply the hard-collinear
approximation, which is accurate at PS ρ for this line.

2. Second, the vertex that connects jet lines of J (σind) to H(σind) may be
in the intersection J

(σ)
I ∩J

(ρ)
K . Such vertices cannot be connected to

lines that are in J
(ρ)
I , because in region ρ, any vertex that connects

to collinear lines in both J
(ρ)
I and J

(ρ)
K is in H(ρ). This would reduce

to the case we have just discussed. The only other possibility for
an I-jet line in σind is a line in S(ρ), that is, soft in region ρ, which
is attached to J

(ρ)
K , but is also in J

(σ)
I . Such lines are attached by

the vertex in question to J
(σ)
I ∩ J

(ρ)
K , K 6= I, but are not themselves

in it. By Eq. (4.2.30), these lines are in J
(σind)
I .

We now consider such a line, which is in J
(σ)
I , and is also attached

to J
(ρ)
K ∩ J

(σ)
I from S(ρ). As we have seen below Eq. (4.2.32), how-

ever, the only pinch surfaces of J
(ρ)
K ∩ J

(σ)
I on the light cone are in

the β̄I direction after the action of tσ. The gluons from S(ρ) there-
fore couple to veloctiy β̄I , which is identical to the hard-collinear
approximation for their attachment to H(σind), given by Eq. (4.2.5).
Thus, the hard-collinear approximation of tσind

is again accurate at
PS ρ.

• (ii) By Eq. (4.2.31), a line in S(σind) must be in both S(σ) and S(ρ), and
hence must be a soft line in region ρ. Lines in S(σind) that attach to the
jets J

(σind)
I must, by Eq. (4.2.30), attach to vertices that are either in J

(σ)
I

or J
(ρ)
I . In the former case, the soft-collinear approximation is already

carried out by tσ; in the latter case, the soft-collinear approximation of
tσind

is accurate in ρ.

• (iii) The diagrammatic construction of Eqs. (4.2.29)–(4.2.31) can result
in soft lines attached to the hard scattering. This can happen when a
line is part of both S(σ) and S(ρ), and is hence part of S(σind) by Eq.
(4.2.31), and connects to a vertex that is in both J

(σ)
I and J

(ρ)
K , with

K 6= I, which by (4.2.29) is a vertex in H(σind) . We give a four-loop
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Figure 4.5: Four-loop example illustrating the two overlapping jets defined
by Eq. (4.2.35).

example in Fig. 4.5, where the two overlapping jets and the induced hard
function are determined by the set of vanishing normal variables

J
(σ)
1 : {β1 · x, β1 · y, τ1}
J

(ρ)
2 : {β2 · x, β2 · y}

H(σind) : {xµ, yµ, τ1} . (4.2.35)

In this case, the soft gluon that would be connected to the hard function
H(σind) is the line z−y. In this and all related cases, such contributions are
suppressed in region ρ, because, as shown above, when lines in S(σ)∩ S(ρ)

are coupled to J
(σ)
I ∩ J

(ρ)
K , the corresponding PS ρ is suppressed.

In the example in Fig. 4.5, we immediately see that the terms that
remain after the action of tσ are suppressed, because tσ replaces the
polarization of gluon z−y by the complementary light-cone direction, β̄1

at vertex y, giving a product of the form β̄1µ′1
J

(σ)µ′1ν′1
1 (y) for jet J1, which

is suppressed in region ρ. After the action of tσ, in the neighborhood of
PS ρ, however, the lines in subdiagram J

(σ)
1 ∩ J (ρ)

2 to which the soft lines
attach can have pinch singularities only in precisely the β̄1 direction,
even if β̄1 6= β2. The line τ2β2 − x in the figure illustrates this point.

• (iv) For amplitudes involving physical processes with both incoming and
outgoing external partons or Wilson lines, there are in general discon-
nected hard subdiagrams at pinch surfaces, as illustrated by the diagram
of Fig. 4.6(a), where the solid lines represent fermion or Wilson lines.
Such pinch surfaces, however, are not associated with leading singular
behavior, because, as in momentum space [53], the Ward identities of
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Figure 4.6: Examples of disconnected hard subdiagrams.

the theory require that each jet subdiagram is connected to the hard
subdiagram by at least one line that is not scalar polarized. Similar
suppressions are described for cross sections in Refs. [108] and [109]. We
may therefore assume that leading pinch surfaces for partonic ampli-
tudes involve at most a single, connected hard scattering. Similarly, for
multieikonal amplitudes, the local multieikonal vertex must be part of
every hard subdiagram, so that the union of hard parts in (4.2.29) is
always connected. For partonic amplitudes, however, it is still possible
that disconnected subdiagrams H(σ) and H(ρ) mediate the hard scatter-
ing in overlapping regions, as we have seen in the example of Fig. 4.4,
where the construction of Eq. (4.2.29) led to a connected H(σind). We
must, however, confirm that disconnected hard scatterings that might
result from the construction of the induced PS are suppressed.

The induced hard scattering may fail to be connected if either a con-
nected component of J

(σ)
I ∩ J

(ρ)
K is disconnected from the hard subdia-

grams or if the hard subdiagrams H(σ) and H(ρ) are themselves discon-
nected, and not connected by intersecting jet subdiagrams, as required
in Eq. (4.2.29). (As we have seen, the latter is only possible in partonic
scattering amplitudes.) We treat these cases in turn.

Consider the case in which a connected subdiagram X ∈ J (σ)
I ∩ J

(ρ)
K of

the overlap between J
(σ)
I and J

(ρ)
K is not directly connected to the either

H(σ) or H(ρ). Each external line of this intersection can be in S(σ) and
J

(ρ)
K or in S(ρ) and J

(σ)
I , or in both S(σ) and S(ρ). We have seen that lines

in S(σ) are suppressed when attached to J
(σ)
I ∩ J (ρ)

K . Therefore, all lines
external to subdiagram X must be in S(ρ). But such an arrangement is
not consistent with the requirement of a physical process at the PS, in
which each jet subdiagram J

(ρ)
K must be connected and must include one

external parton field or Wilson lines. We conclude that tσγ is suppressed
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at all PSs ρ that would produce induced PSs of this type. For amplitudes
defined by products of Wilson lines, this is the only possibility, because
every hard subdiagram will include the multi-eikonal vertex at which the
Wilson lines connect. For these amplitudes, the union of H(σ) and H(ρ)

is always connected.

The induced hard part H(σind), however, will remain disconnected under
Eq. (4.2.29) if (and only if) every path between the hard subdiagrams
H(ρ) and H(σ) includes lines that are in S(σ) and/or S(ρ). This require-
ment, however, turns out to eliminate leading behavior in region ρ. The
reason is illustrated by the example of Fig. 4.6(a), which at the PS σ
describes the scattering of (massless) fermions. The alternative physi-
cal process, with a hard scattering involving gluons, would require the
fermions to be in soft region S(ρ), a configuration that is always sup-
pressed [32]. This reasoning applies to any order and diagram: restrict-
ing ourselves to fermion-fermion scattering to be specific, at any leading
PSs, the fermions must only appear as jet lines, and as external lines
of both hard subdiagrams H(σ) and H(ρ). But then, since the fermion
lines are continuous, the hard subdiagrams must be connected by these
jet lines, which must be in different directions in the two PSs. The
definition of Eq. (4.2.29) is then guaranteed to give a connected hard
subdiagram H(σind). In a similar fashion, for external gluons, the role of
fermion lines is taken by gluon lines that carry the external physical po-
larizations of the gluons. Such polarizations cannot be radiated into soft
subdiagrams at leading PSs [32], and the same reasoning as for external
fermions applies.

In summary, we have shown how to construct the induced leading region
σind[σ, ρ] and have confirmed that tσind

tσγ is a good approximation to tσ γ in
region ρ, so that Eq. (4.2.28) is satisfied. We note that showing Eq. (4.2.28) for
tσγ implies the same result for tσ tσ′γ for any nested pair, σ ⊂ σ′, because the
approximations in tσ′ do not modify the list of pinch surfaces or power counting
in region σind, which was all that was used in the discussion above. Therefore
the same approximations in tσ apply to both γ and tσ′γ in neighborhood n̂[σ].

We are now ready show that with this definition of σind, Eq. (4.2.22) is sat-
isfied, that is, that all subtractions for overlapping regions cancel. To proceed,
assuming that Nφ[ρ] is not empty, we construct the induced region for the pair
ρ and the smallest region within Nφ[ρ], which we denote by σφ min. By con-
struction, both ρ and σφ min are larger in the sense of nesting, by Eq. (4.2.14),
than every element in NS[ρ]. In fact, σind[σφ min, ρ] is also larger than all ele-
ments of NS[ρ] in the sense of Eq. (4.2.14). To confirm this, consider a region τ
in NS. Because τ nests with both ρ and σφ min, the union of each jet in τ with
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the hard subdiagram in τ contains the union of hard and each jet subdiagram
in both ρ and σφ min. At the same time, τ can nest separately with both ρ

and σφ min only if all lines in the overlaps of different jets, J
(σφ min)
I and J

(ρ)
K are

contained within H(τ). As a result H(σind[σφ min]) is contained within H(τ).
We conclude that the induced region σind either contains all of the elements

of NS[ρ] or is equal to the largest element in NS[ρ]. At the same time, it is itself
contained within region σφ min, the smallest of the regions in Nφ[ρ]. Therefore,
σind[σφ min, ρ] nests with all the elements of N̄ (ρ), and either σind[σφ min, ρ] is
already contained in N̄ρ or the set Nσind ≡ {N̄ρ, σind[σφ min, ρ]} is an accept-
able nesting. At the same time, tσind[σφ min,ρ]tσγ is a good approximation to
tσγ, so that in region ρ Eq. (4.2.28) holds, and leading contributions cancel
between arbitrary nesting N̄ρ and its induced pair nesting Nσind . Thus, we
have verified the cancellation of all terms in the sum over N̄ρ in Eq. (4.2.25)
and the ultraviolet finiteness of the subtracted diagram, Eq. (4.2.22), which is
what we were after.

4.2.5 Factorization for the subtraction terms

In the following, we will use the term “leading region” to refer to both leading
pinch surfaces and their corresponding reduced neighborhoods, except where
a distinction is required for clarity.

The action of tρ is to perform the soft- and hard-collinear approximations
on gluons that attach S(ρ) to the jet subdiagrams and gluons that attach the
jet subdiagrams to the hard subdiagram of PS ρ, such that the leading singu-
larity of γ in neighborhood n̂[ρ] is given by Eq. (4.2.11). Ref. [32] shows how
the soft-jet and jet-hard gluon connections, approximated by their dominant
polarization states as in Eq. (4.2.11), may be replaced by scalar polarizations
(equivalent to longitudinal polarizations for massless particles). For the sake
of brevity, let us illustrate the idea for a soft-jet connection, as specified by Eq.
(4.2.3). The same reasoning also applies to the hard-collinear approximation.
We start by rewriting the propagator given in Eq. (4.2.3) as

Dµν(x− τ (K)β(K)) =
∂

∂τ (K)

∫ τ (K)

∞
dτK

′Dµν(z − τKβ(K)) , (4.2.36)

and integrate by parts in Eq. (4.2.11) such that the derivative now acts on the
jet function. We can add the derivatives with respect to the other components
of the jet vertex z(K) to the integrand, as these terms are total derivatives and
vanish after the integration. The soft-collinear approximation, Eq. (4.2.3),
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Figure 4.7: Factorization in a leading region illustrated for a vertex function,
illustrating Eq. (4.2.38). Each line ending in an arrow represents arbitrary
numbers of gluons in the soft-collinear or hard-collinear approximation defined
in the text. As in Fig. 4.1, the double lines passing through the jet functions
may represent either Wilson lines or partons.

then becomes [32]

Dµν(x− z(K)) Jν(z
(K))→

∫ τ (K)

∞
dτKD

µν′(z − τKβ(K))βν′
(
− ∂νJ

ν(z(K))
)
,

(4.2.37)
where the first factor is to be interpreted as the integral over an eikonal line in
the jet direction β(K), with the parameter τK the position of the attachment
of the soft line z − τKβ(K) to this eikonal. This summarizes the soft-collinear
approximation defined in [32] for coordinate-space integrals, and can be carried
out independently for each gluon to which we apply the soft-collinear or hard-
collinear approximation.

Equation (4.2.37) is simply the Fourier transform of the soft approximation
in momentum space to any order in perturbation theory, as discussed exten-
sively in Refs. [31, 54, 55], for example. Replacing the jet-soft connections
by scalar-polarized gluon lines that are associated with the scalar operator
∂µA

µ(x) allows us to apply the gauge theory Ward identities. After the sum
over all diagrams, the Ward identities then ensure the factorization of the soft
lines from jet subdiagrams exactly in the same way as in momentum space
in Refs. [31, 54, 55]. We note that the Ward identity we need for showing the
factorization in the case of the cusp was given in the proof of renormalizability
of smooth Wilson lines in Ref. [89].

Proceeding in this fashion, the action of tρ on amplitudeG gives a factorized

91



form,

tρ Γ = Sρ ×
∏

I

JI,ρ ×Hρ , (4.2.38)

where the product × indicates a product in color space. In the spirit of the
notation of Eq. (4.2.11) for individual subtracted diagrams, the factorized soft
and jet functions may be represented as

Sρ =

∫
dτK Sρ,{µK}(τK) βµK

K , (4.2.39)

JI,ρ =

∫
dζI J

ν′I
I,ρ(ζI) β̄I,ν′I

. (4.2.40)

Relative to Eq. (4.2.11), the integrals over distances along light-cone directions,
τK and ζI , originating from τ (K) in Eq. (4.2.4) and ζ(I) in Eq. (4.2.6), act only
on the soft and jet functions, and are no longer in convolution with the jet and
hard functions, respectively. These integrals are ordered along the relevant
eikonals, which we indicate by an overline. The hard function Hρ is an overall
color factor, with no scalar-polarized external gluons, and hence no longer in
convolution with the jet functions.

The factorized soft functions constructed this way are identical to mul-
tieikonal amplitudes, evaluated at the order of the soft subdiagram of the
original diagrams in region ρ. This is the case whether we are analyzing a
multieikonal or a partonic amplitude. The difference between the two cases is
in the jet functions, which for multieikonal amplitudes are given by the square
roots of the singlet cusp operators,

J eik[f]
I (ε) =

〈
0

∣∣∣∣T(Φ
[f ]
βI

(∞, 0) Φ
[f ]

β̄I

†(∞, 0)

)∣∣∣∣ 0〉1/2

, (4.2.41)

which, as indicated by its argument, may be regulated dimensionally. For
partonic amplitudes, the jet functions are given by square roots of vacuum
expectation values of partonic fields, φ, recoiling against an eikonal in the
conjugate color representation,

J part[fφ]
I (xI , β̄I) =

〈
0

∣∣∣∣T(φ(xI)φ
†(0)Φ

[fφ]

β̄I

†(∞, 0)

)∣∣∣∣ 0〉1/2

, (4.2.42)

where fφ is the color representation of parton φ, where again β̄I is the com-
plementary lightlike vector defined by xI , and where x2

I serves as to regulate
collinear singularities. In region ρ we identify the factorized functions with the
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“leading” singularities of these matrix elements, where all vertices approach
the light cone.

Because Eq. (4.2.38) holds for the appoximation operation associated with
every leading PS ρ, independently of the order of the amplitude, a sum over all
diagrams and regions produces a fully factorized amplitude, originally shown
for fixed-angle scattering amplitudes in momentum space in Ref. [101],

Γ = S ×
∏

I

J eik[f]
I ×Heik ,

G = S ×
∏

I

J part[fφ]
I ×Hpart , (4.2.43)

where now the jet functions depend on the regulators appropriate to the ampli-
tude in question, x2

I in partonic amplitudes like Eq. (4.1.1), or ε in expectations
of Wilson lines like Eq. (4.1.4). As noted above, in every leading region, the soft
function is the same whether the jets are eikonal or partonic. The construction
of the soft function in a manner that avoids double counting is discussed in
Secs. 4.3 and 4.4, where we will make important use of the exponentiation
properties of the cusp and multieikonal amplitudes.

4.3 Webs and regularization

In this section we give a detailed treatment of the simplest of the eikonal
amplitudes, the “cusp”, defined by Eq. (4.2.41), with a gauge-singlet vertex.
Our goal is to relate the regularization procedure developed in the previous
section, where we exhibited an expression for cusp and other amplitudes in
terms of nested leading regions, Eq. (4.2.21), to the exponentiation properties
of the cusp. We first recall the graphical interpretation of exponentiation.

4.3.1 Cusp webs and exponentiation

All multi-eikonal amplitudes, of the type of Eqs. (4.1.3) and (4.2.41) may
conveniently be written as exponentials

Γ = exp W , (4.3.1)

where W is determined by a set of diagrammatic rules in terms of so-called
web diagrams, which were first identified and analyzed for the special case of
the cusp, the square of J eik

I , Eq. (4.2.41). In all cases, the exponent W is
a sum of diagrams with modified color factors. For the special case of the
cusp, these diagrams, which we label by w, are (all) elements of the set of

93



diagrams that are irreducible under cuts of the two Wilson lines [86–88] (thus
their name, “webs”). For the cusp, the exponent can be represented as

W =
∑

webs w

C̄ (w) I (w) , (4.3.2)

with I(w) the corresponding diagrammatic integral over the positions of all
the internal vertices of web w. Each web integral is mulitplied by a color factor
C̄(w), modified from the factor C(w) that would normally be associated with
diagram w. It is possible to give a closed form for C̄(w) [79], but in the
following discussion, we will use the recursive definition [87], given for each
diagram by

C̄
(
w(n)

)
= C

(
w(n)

)
−
∑
d∈D

∏
w

(ni)
i ∈d

C̄
(
w

(ni)
i

)
, (4.3.3)

where the w
(ni)
i are lower order webs, of order ni, in the decompositions d of

the original diagrams γ(n), contributing to W (n), into lower order webs, with∑
i ni = n. As usual, we denote the coefficient of (αs/π)n in W as W (n), and

similarly for all other functions.
The sum in Eq. (4.3.3) is over all “proper” web decompositions D[γ(n)], not

including γ(n) itself, and the right-hand side vanishes identically for diagrams
γ(n) that are not webs, for which we have [87,88]∑

D[v]

∏
wi∈D[v]

C̄(wi) = C(v) . (4.3.4)

As a result, the nth-order coefficient W (n) to the sum of all diagrams that
contribute to the cusp at the same order can be written as

W (n) =
∑
γ(n)

 γ(n) − I(γ(n))
∑

D[γ(n)]

∏
w∈D[γ(n)]

C̄(w)

 . (4.3.5)

We will use this form below. The web prescription for W , the logarithm of
the cusp was originally identified in momentum space [87, 88], but also has a
very simple coordinate-space derivation [97]. Webs can be used to show the
exponentiation of double logarithms and double poles, and of power corrections
related to singularities in the perturbative running coupling [36, 66, 90–94].
They help organize calculations at two loops and beyond in the cusp and in
closed Wilson loops [33,44,57]. As we shall review below, the concept of webs

94



can also be generalized beyond the color-singlet cusp and also as a starting
point for a beyond-eikonal expansion [79,97,110,111].

Considering the sum of virtual diagrams associated with a cusp vertex,
web diagrams for massive eikonals (Wilson lines) have only a single, overall
ultraviolet (and infrared) divergence [84], up to multiple poles associated with
the running of the coupling. In the massless limit, they develop a double pole
times the cusp anomalous dimension, again with higher-order poles that can
be predicted by the running of the coupling order-by-order [36, 57, 90]. The
treatment of vanishing mass in the cusp was developed in [57] in momentum
space, employing physical gauges.

We will study the fully massless case. Each diagram w in Eq. (4.3.2) or
(4.3.5) can be written as an integral over its “leading” vertices, that is, vertices
at the furthest distances from the cusp vertex along each Wilson line,

W =

∫
0

dτdτ̄

τ τ̄
fW (αs(µ

2), µ2τ τ̄ , ε) , (4.3.6)

where in the absence of masses, the dependence of the integrand reduces to just
a few variables. On a diagram-by-diagram basis, the integrals that define fW

have many subdivergences, involving jet and hard subdiagrams, which show
up as logarithmic enhancements, as analyzed in Ref. [32]. For the sum of web
diagrams we write

W =

∫
0

dτdτ̄

τ τ̄
fW (αs(µ), µ2τ τ̄ , ε)

=

∫
0

dτdτ̄

τ τ̄
fW (αs(1/τ τ̄), 1, ε) . (4.3.7)

We may think of these integrals as cut off at some large length scale to avoid
explicit infrared singularities. The integrand fW is a renormalization scale
independent function that is itself the result of all the remaining integrals, as
in the two-loop example treated in detail in Ref. [33], where the interpretation
of the result (4.3.7) is discussed. We shall refer to the sum over webs at fixed
τ and τ̄ as the “web integrand”, and we shall argue that after a sum over all
diagrams, the full web integrand fW is ultraviolet finite for ε → 0. Renor-
malization for the web functions is then manifestly additive, and associated
with the singular τ, τ̄ → 0 limits of the integral. The connection between
multiplicative renormalizability and the structure of web functions has been
reviewed recently for both color-singlet cusps and multieikonal vertices in [110].
In Sec. 4.4, we will use the exponentiation in terms of webs to discuss factor-
ization for multieikonal amplitudes, and also discuss subdivergences in web
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integrands for these cases. In fact, we will identify a rather general argument
that applies to cusp as well as multieikonal amplitudes. First, however, we
shall discuss the web construction for the cusp in its own terms. Although
the demonstration of finiteness below for the cusp function is in some ways
more elaborate than the general discussion of Sec. 4.4, it is more explicit, and
gives insight into the manner in which perturbative corrections conspire at
each order to produce an ultraviolet-finite web function.

4.3.2 Subtractions, webs and decompositions

Consider the n-loop web, W (n) given in Eq. (4.3.5). In this equation, we add
and subtract the sum over all nested subtractions subdivergences in the full
n-loop cusp, R(n) Γ(n), defined in Eq. (4.2.21). This gives

W (n) = R(n) Γ(n) + ∆W (n) , (4.3.8)

with

∆W (n) = −
∑
γ(n)

∑
N∈N [γ(n)]

∏
ρ∈N

(
− tρ

)
γ(n)

−
∑
γ(n)

I(γ(n))

 ∑
D[γ(n)]

∏
w∈D[γ(n)]

C̄(w)

 ,

(4.3.9)

which is the difference between the sum of subtractions for nth order diagrams
and the subtractions in Eq. (4.3.5) that define the webs, also summed over
all diagrams. In the following, we shall show that in every leading region
ρ involving a subdivergence, ∆W (n) is integrable. This in turn implies that
the nth order web, Eq. (4.3.5), is itself integrable over all subspaces where
individual diagrams are ultraviolet singular. Ultraviolet divergences can then
arise only when all the vertices of the web approach the origin or the light
cone together.

Let us thus consider ∆W (n), Eq. (4.3.9), restricted to the neighborhood

of ρ, which we denote by ∆W
(n)
ρ . As we have seen in Eq. (4.2.22) and the

subsequent discussion, in each region ρ the ultraviolet behavior of the vertex
is well-approximated by the single subtraction term, tρΓ

(n), while all other
nestings cancel. Then, up to nonsingular corrections, when restricted to the
neighborhood of ρ, Eq. (4.3.9) becomes

∆W (n)
ρ = −

∑
γ(n)

(−tρ)γ(n)
ρ −

∑
γ(n)

I(γ(n)
ρ )

∑
D[γ(n)]

∏
w∈D[γ(n)]

C̄(w) . (4.3.10)
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We will now argue that the sum of diagrams in region ρ, the first sum on
the right-hand side, cancels against those web decompositions (D[γ(n)]) in the
second sum, that “match” the structure of leading region ρ, and that other,
“unmatched” contributions to the sum either cancel or are suppressed in region
ρ. We begin our argument by recalling the result of using Ward identities in
the first term, as discussed at the end of Sec. 4.2.

For definiteness, we assume that there is a non-trivial soft function, which
we now denote by Sρ, in region ρ, as in the factorized form, Eq. (4.2.38),

tρ
∑
γ(n)

γ(n)
ρ = S(n−mρ)

ρ ×R(mρ)
ρ

=
∑

sρ∈Sρ

s(n−mρ)
ρ ×

∑
rρ∈Rρ

r(mρ)
ρ . (4.3.11)

In this rewriting of Eq. (4.2.38), the soft function Sρ multiplies a “remainder”
function, Rρ, which (to avoid clutter) includes sums over the jet and hard sub-
diagrams in region ρ. Function Sρ =

∑
sρ is the sum of the soft subdiagrams,

sρ, of each γ(n) in region ρ, connected directly to β and β̄ Wilson lines, and
similarly for Rρ =

∑
rρ. We let mρ be the order of the remainder function

in region ρ. In summary, in each leading region ρ, after a sum over all γ(n)

Ward identities factorize the subdiagrams that make up Sρ and Rρ. The sum
over all γ(n) in region ρ can then be replaced by independent sums over soft
subdiagrams sρ and remainder subdiagrams rρ.

Next, we separate color and coordinate factors of each s
(n−mρ)
ρ and r

(mρ)
ρ in

Eq. (4.3.11),

tρ
∑
γ(n)

γ(n)
ρ = S(n−mρ)

ρ ×R(mρ)
ρ

=
∑

sρ∈Sρ

C
(
s(n−mρ)

ρ

)
I
(
s(n−mρ)

ρ

)
×
∑

rρ∈Rρ

C
(
r(mρ)
ρ

)
I
(
r(mρ)
ρ

)
.

(4.3.12)

This is the form that we will compare to the sum of web subtractions, the
second sum in Eq. (4.3.9), which becomes

∆W (n)
ρ =

∑
sρ∈Sρ

C
(
s(n−mρ)

ρ

)
I
(
s(n−mρ)

ρ

) ∑
rρ∈Rρ

C
(
r(mρ)
ρ

)
I
(
r(mρ)
ρ

)
−
∑
γ(n)

I(γ(n)
ρ )

∑
D[γ(n)]

∏
w∈D[γ(n)]

C̄(w) .
(4.3.13)
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As indicated below Eq. (4.3.10), it is useful to split the set of decompositions,
D[γ(n)] into the set of those that match the factorization of soft and remainder
functions in the first term of this expression, and those that do not. More
specifically, matched decompositions of a diagram γ(n) are those in which no
web contains lines in both the soft subdiagram of γ(n), sρ[γ

(n)], and the remain-
der subdiagram, rρ[γ

(n)]. Correspondingly, in unmatched decompositions, at
least one web contains lines of both the soft subdiagram and the remainder in
region ρ. In these terms, every decomposition of diagram γ(n) is either matched
or unmatched in region ρ. We represent this division of decomposiitons for
the second term in (4.3.13) as∑
γ(n)

Iρ(γ
(n))

∑
D[γ(n)]

∏
w∈D[γ(n)]

C̄(w)

=
∑
γ(n)

Iρ(γ
(n))

 ∑
DSρ⊗Rρ [γ(n)]

∏
w∈DSρ⊗Rρ

C̄(w) +
∑

DSρ∩Rρ [γ(n)]

∏
w∈DSρ∩Rρ

C̄(w)



≡ w(n)
ρ [Sρ ⊗Rρ] + w(n)

ρ [Sρ ∩Rρ] ,

(4.3.14)

where the first term on the right of the second equality represents the sum
over the set of matched decompositions, DSρ⊗Rρ and the second is the sum
over unmatched decompositions, DSρ∩Rρ .

In the following, we will show that the matched decompositions cancel the
factorized subtraction terms of Eq. (4.3.12) in region ρ,

0 = tρ
∑
γ(n)

γ(n)
ρ − w(n)

ρ [Sρ ⊗Rρ]

= S(n−mρ)
ρ ×R(mρ)

ρ − w(n)
ρ [Sρ ⊗Rρ]

=
∑

sρ∈Sρ

C
(
s(n−mρ)

ρ

)
I
(
s(n−mρ)

ρ

) ∑
rρ∈Rρ

C
(
r(mρ)
ρ

)
I
(
r(mρ)
ρ

)
− w(n)

ρ [Sρ ⊗Rρ] ,

(4.3.15)

while the unmatched decompositions are suppressed,

w(n)
ρ [Sρ ∩Rρ] = 0 . (4.3.16)
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Substituted into Eq. (4.3.13), these two results show that ∆W
(n)
ρ = 0, so that

the web integrand is free of ultraviolet subdivergences.
Before giving our arguments for the results (4.3.15) and (4.3.16), we recall

that we have assumed that the leading region ρ has a nontrivial soft subdia-

gram, S
(n−mρ)
ρ . For the special case of a leading region with no soft subdiagram

(mρ = n), and only jet and hard subdiagrams, we may pick any of the jet sub-

diagrams to take the place of S
(n−mρ)
ρ , with the same result. In the following,

we shall suppress the orders of S
(n−mρ)
ρ and R

(mρ)
ρ , since these are in principle

fixed by the choice of region ρ.

4.3.3 Matched decompositions

It is clear that the sum over matched decompositions of Eq. (4.3.14), denoted
DSρ⊗Rρ [γ

(n)] for each diagram γ(n), separates into two independent sums over
the web decompositions of the soft and remainder subdiagrams of γ(n). Among
these decompositions are the choices sρ[γ

(n)] and rρ[γ
(n)], the soft and remain-

der subdiagrams themselves, which appear along with all of the webs made
of their decompositions. Using the general form for webs, Eq. (4.3.5), we can
thus separate the color factors associated with the soft and the remainder
subdiagrams,

w(n)
ρ [Sρ ⊗Rρ] =

∑
γ(n)

Iρ(γ
(n))

 C̄
(
sρ[γ

(n)]
)

+
∑

D[sρ[γ(n)]]

∏
d∈D[sρ[γ(n)]]

C̄(d)


×

 C̄
(
rρ[γ

(n)]
)

+
∑

D[rρ[γ(n)]]

∏
d′∈D[rρ[γ(n)]]

C̄(d′)


=
∑
γ(n)

Iρ(γ
(n)) C

(
sρ[γ

(n)]
)
C
(
rρ[γ

(n)]
)
,

(4.3.17)

where in the second equality we have used Eq. (4.3.3) for web color factors.
In effect, after the sum over matched decompositions, the web color factors
of the soft and remainder functions revert to their normal form, the same as
in the subtraction terms of Eq. (4.3.13). As usual the sum over D[γ] of any
diagram γ refers only to its proper web decompositions. Note that the color
identity in (4.3.17) extends to all diagrams, γ. For a non-web v, for which
C̄(v) = 0, we recall Eq. (4.3.4).

Having factorized the product of color factors in the sum over matched
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decompositions, we now turn to the coordinate integrals themselves. We reex-
press the sum over diagrams γ(n) in Eq. (4.3.17) into independent sums over
soft and remainder subdiagrams sρ and rρ, and then a sum over all possible
connections of these subdiagrams to the eikonal lines, respecting the relative
orderings, O[sρ, rρ] of the connections of the gluons that attach sρ to the Wil-
son lines and those that connect rρ to the Wilson lines,∑

γ(n)

Iρ(γ
(n)) =

∑
sρ∈Sρ

∑
rρ∈Rρ

∑
eikonal

orderings O

Iρ(O[sρ, rρ]) . (4.3.18)

In (4.3.17), this gives

w(n)
ρ [Sρ ⊗Rρ] =

∑
sρ∈Sρ

∑
rρ∈Rρ

∑
eikonal

orderings O

I(O[sρ, rρ]) C (sρ) C (rρ) . (4.3.19)

To this result we apply the coordinate-space eikonal identity [97], applicable
whenever we sum over all connections of a set of web subdiagrams that are
attached to the eikonal line, respecting the order of gluon lines within each
subdiagram, ∑

eikonal
orderings O

I(O[sρ, rρ, . . . ]) = I(sρ) × I(rρ)× · · · , (4.3.20)

a “shuffle algebra” result that generalizes to any numbers of subdiagrams and
any number of eikonal lines. In Eq. (4.3.19), this gives the desired result,

w(n)
ρ [Sρ ⊗Rρ] =

∑
sρ∈Sρ

∑
rρ∈Rρ

I(sρ) C (sρ) I(rρ) C (rρ)

= Sρ ×Rρ , (4.3.21)

which shows that (4.3.15) holds for the matched decompositions.

4.3.4 Unmatched decompositions

We now treat the unmatched decompositions of Eq. (4.3.14), whose sum we

have denoted as w
(n)
ρ [Sρ ∩ Rρ]. For any diagram γ(n), this sum includes those

decompositions with at least one web that includes one or more line from the
soft subdiagram sρ[γ

(n)] and one or more line in rρ[γ
(n)]. For this discussion, we

assume that the cancellation of subdivergences has been proven to order n−1.
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From Eq. (4.3.14), we have for the unmatched decompositions

w(n)
ρ [Sρ ∩Rρ] =

∑
all γ(n)

Iρ(γ
(n))

∑
DSρ∩Rρ [γ(n)]

∏
w∈DSρ∩Rρ [γ(n)]

C̄(w) , (4.3.22)

with DSρ∩Rρ [γ
(n)] meaning D[γ(n)] ∈ {Sρ ∩Rρ}.

By analogy to our analysis of the matched distributions, we will exchange
the sum over diagrams γ(n) for sums over webs. In every element of the un-
matched decompositions D[γ(n)] ∈ {Sρ ∩ Rρ} of diagram γ(n) there is a non-
empty decomposition that includes a subdiagram uρ[γ

(n)] consisting of (one
or more) webs that are not all in the soft subdiagram, and not all in the re-
mainder of γ(n). In general, once subdiagram uρ[γ

(n)] is fixed, there are also
decompositions, s′ρ[γ

(n)] whose webs are proper subdiagrams of the soft sub-

diagram found by removing the unmatched webs of uρ from γ(n), S ′ρ[γ
(n)\uρ],

and another subdiagram, r′ρ[γ
(n)], which is a subdiagram of the remainder

Rρ[γ
(n)\uρ]. We can then write

γ(n)
ρ = s′ρ[γ

(n)] ∪ r′ρ[γ(n)] ∪ uρ[γ
(n)] . (4.3.23)

The sum over unmatched web decompositions of γ(n), then, can be reorganized
as a sum over the independent decompositions of each of these subdiagrams.
For decompositions of the soft and remainder subdiagrams, s′ρ and r′ρ, the
diagrams themselves appear in these sums, along with all of their decompo-
sitions. For each unmatched subdiagram, uρ, however, only those decompo-
sitions are included that leave uρ an unmatched decomposition. The set of
missing decompositions includes those that are matched to the soft and re-
mainder subdiagrams of uρ, which we denote by wρ[S[uρ]⊗R[uρ]], with S[uρ]
the soft subdiagram of uρ, and R[uρ] the corresponding remainder. This set
also includes decompositions that have both matched and unmatched sub-
diagrams of lower order. By the inductive hypothesis, however, unmatched
decompositions of lower order vanish. Therefore, by adding and subtracting
matched decompositions wρ[S[uρ]⊗ R[uρ]] only, we can derive a factor which
consists of the difference between all decompositions of uρ and its matched
decompositions, wρ[S[uρ]⊗ R[uρ]]. Doing the sum over all connections to the
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Wilson lines, using (4.3.20) now gives

w(n)
ρ [Sρ∩Rρ] =

 ∑
s′ρ∈S′[γ(n)\uρ]

I(s′ρ)

 ∑
r′ρ∈R′[γ(n)\uρ]

I(r′ρ)

∑
uρ∈Uρ

I(uρ)


×

C̄(s′ρ) +
∑

D[s′ρ[γ(n)]]

∏
d′∈D[s′ρ[γ(n)]]

C̄(d′)


×

C̄(r′ρ) +
∑

D[r′ρ[γ(n)]]

∏
d′′∈D[r′ρ[γ(n)]]

C̄(d′′)


×

C̄(uρ) +
∑

D[uρ[γ(n)]]

∏
d∈D[uρ[γ(n)]]

C̄(d) − wρ [S[uρ]⊗R[uρ]]

 ,

(4.3.24)

where the orders of each function are implicit. This leads to

w(n)
ρ [S ′ρ ∩R′

ρ] =

 ∑
s′ρ∈S′ρ[γ(n)\uρ]

s′ρ

  ∑
r′ρ∈R′ρ[γ(n)\uρ]

r′ρ


×

∑
uρ∈Uρ

{
uρ − wρ [S[uρ]⊗R[uρ]]

}
= S ′ρ[γ

(n)\uρ] × R′
ρ[γ

(n)\uρ] × (Uρ − wρ [S[Uρ]⊗R[Uρ]]) .

(4.3.25)

The first factors on the right-hand side are factorized soft and remainder sub-
diagrams, while the third factor is a sum of all unmatched subdiagrams of
the same nonzero order. The third factor vanishes by Eq. (4.3.15), which says
that all subdivergences cancel against the sum of matched decompositions, up
to order n. Thus, all unmatched decompositions cancel in region ρ, and we
confirm Eq. (4.3.16) and hence the absence of subdivergences, Eq. (4.3.15) in
the logarithm of the cusp amplitude [33].
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4.4 Multieikonal and partonic amplitudes

The arguments of the previous section apply specfically to the cusp, where we
have used the inductive construction of web color factors, Eq. (4.3.3). We go
on now to study how the considerations above change for amplitudes with mul-
tiple Wilson lines connected at a local vertex, and to use their exponentiation
properties to demonstrate factorization.

4.4.1 Cancellation of web subdivergences for large Nc

For a multieikonal vertex, Γa with a > 3 Wilson lines, and a consequent mixing
of color tensors [84], it will be useful to use an alternative expression [97]. We
label each web function with an index E, simply representing a list of the
numbers of gluons attached to each Wilson line, E ≡ {e1 . . . ea} for a Wilson

lines. We then express each web w
(i)
E as an integral IE over integrand W(i)

E , of
these diagrams, written as

w
(i)
E =

a∏
α=1

eα∏
j=1

∫ ∞

τ
(a)
j−1

dτ
(α)
j W(i)

E

(
{τ (α)

j }
)

≡ IE [W(i)
E ] , (4.4.1)

where the τ
(α)
j label the locations of the vertices coupling gluons to the ath

Wilson line, ordered as τ
(α)
1 ≤ τ

(α)
2 ≤ · · · ≤ τ

(α)
eα . The functions W(i)

E represent
sums over all diagrams with the specified numbers of eikonal connections, and
are symmetric under exchange, including color, of the gluons attached at each
vertex τ

(α)
j . Summing over connections, E, we find the complete web as a sum

of the w
(i)
E , and the amplitude is given by

Γa = exp

[∑
i

W (i)
a

]

= exp

[∑
i

∑
E

IE [W(i)
E ]

]
. (4.4.2)

In these terms, we can write an iterative expression for the nth order web
function with a Wilson lines as

W (n)
a =

∑
E

∑
γ
(n)
E

(
γ

(n)
E −

{
exp

[
n−1∑
i=1

∑
E

IE [W(i)
E ]

]}(n) )
, (4.4.3)

103



where the superscript on the exponential specifies the nth order in the ex-
pansion of the exponential of webs up to order n − 1. In this expression, the
functions W(i)

E are ordered web integrands, whose color factors are matrices
that do not commute in general. In the case of two (or three) Wilson lines,
or in the “planar” limit of large Nc, however, these factors do commute [112],
and the sum over orderings is equivalent to the modified color factor C̄(wi) in
Eq. (4.3.3) above.

We shall assume that each of the web functions W
(i)
a =

∑
E IE[W(i)

E ] for
i < n gets finite contributions only when all of its vertices are integrated over
finite distances from the light cone, and when all of its vertices move to the light
cone together. This is to say that all W

(i)
a , i < n are free of subdivergences.

We shall see under what conditions we may infer this result for W
(n)
a .

The regularization discussion of Sec. 4.2 applies as well to multieikonal
vertices as to the cusp. Similarly, for any neighborhood n̂[ρ] for the diagrams

of W
(n)
a , we may construct a difference ∆W

(n)
a,ρ , by analogy to Eq. (4.3.10)

above,

∆W (n)
a,ρ =

∑
E

∑
γ
(n)
E

(−tρ)γ(n)
E −

{
exp

[
n−1∑
i=1

∑
E

IE [W(i)
E ]

]}(n)

ρ

= (−tρ)Γ(n)
a −

{
exp

[
n−1∑
i=1

W (i)
a

]}(n)

ρ

, (4.4.4)

where now the subscript ρ on the exponential term denotes the contribution of
the integrals of the expanded exponential to region ρ, which defines a potential
subdivergence of W

(n)
a . In any such region ρ, the hard function consists of

some number rρ < n vertices in the union of integrals implicit in monomials
of webs found from the expansion of the exponential, which shrink to the
origin or the light cone, along with the lines that connect them, while n − rρ

vertices are fixed at finite distances from the origin. The webs in Eq. (4.4.4),
as defined in Eq. (4.4.1), are expressed as integrals over the positions of all
vertices, including those that attach to the eikonal lines. As a result, we may
separate additively the contribution to each web function in the exponential
from the region where all of its vertices approach the light cone. We denote this
contribution, which contains the only divergence in W

(i)
a , by W

(i)
a,uv. Because

we assume that all webs commute, and that they have no subdivergences up

104



to order n− 1, we may write the result of this separation as

∆W (n)
a,ρ = (−tρ)Γ(n) −

{
exp

[
n−1∑
i=1

[W
(i)
a,fin +W (i)

a,uv]

]}(n)

ρ

= (−tρ)Γ(n) −

{
exp

[
n−1∑
i=1

W
(i)
a,fin

]
exp

[
n−1∑
i=1

W (i)
a,uv

]}(n)

ρ

.

(4.4.5)

where we define

W
(i)
a,fin = W (i)

a − W (i)
a,uv , (4.4.6)

which in effect is a regulated version of the ith order web. The separation of
the finite and ultraviolet factors of the web exponent is trivial when the web
functions commute, but once commutators are included it requires the appli-
cation of the Campbell-Baker-Hausdorf theorem. The situation is equivalent
to that in the renormalization of multieikonal webs outlined in Ref. [97]. We
shall return briefly to this question below, but here we continue with the case
in which all web functions commute, and we find simply,

∆W (n)
a,ρ = (−tρ)Γ(n)

a −

{
exp

[
n−1∑
i=1

W
(i)
a,fin

]
exp

[
n−1∑
i=1

W (i)
a,uv

]}(n)

ρ

. (4.4.7)

The restriction to region ρ now acts entirely on the exponential of theWa,uv and
picks out the order-rρ contribution to the exponential of webs. By definition,

this is the full set of diagrams Γ
(rρ)
a restricted to the neighborhood of the

light cone. Similarly, the exponential of finite parts gives the finite integral of

Γ
(n−rρ)
a , and we find

∆W (n)
a,ρ = (−tρ)Γ(n)

a −
n−1∑
rρ=1

Γ
(n−rρ)
a,fin Γ(rρ)

a,uv . (4.4.8)

Given the factorization of the full amplitude in region ρ, we conclude that
∆Wa,ρ is finite when integrated over the neighborhood n̂[ρ] of any PS. For
large-Nc, then, the full multieikonal web is free of subdivergences, just as for
the cusp. As anticipated above, the arguments we have given in this section,
relying on exponentiation, are somewhat simpler than those based directly on
the web construction itself.
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4.4.2 Collinear factorization and web exponentiation be-
yond large Nc

Relaxing the commutativity of the web functions, we can still derive an im-
portant result for QCD and other theories beyond the planar approximation,
that for an arbitrary multieikonal amplitude collinear singularities are color
diagonal and enter the web function additively. This means that all subdiver-
gences where some, but not all, vertices go to the light cone are cancelled in
the webs. The steps are just the same as for the case where all webs commute,
we only replace W

(i)
a,uv with W

(i)
a,co, defined as the contribution where all vertices

go to one or more of the light cones,

∆W (n)
a,ρ = (−tρ)Γ(n)

a −

{
exp

[
n−1∑
i=1

[W
(i)
a,central +W (i)

a,co]

]}(n)

ρ

, (4.4.9)

where W
(i)
a,central represents the remainder of the web function, where no vertex

approaches the light cone, although in this case subsets of vertices may ap-
proach the origin. This additive separation is certainly true for i = 1, because
the collinear and central singularities arise from different regions of the same
integral. In addition, the sum of all i = 1 (one-loop) collinear singularities for
any multieikonal vertex is color diagonal (the sum of Casimir invariants, one
for each Wilson line).

We now assume that W
(i)
a,co, i < n is color diagonal and thus commutes

with all W
(j)
a,central. The same steps as for the fully commuting case then lead

to a result analogous to Eq. (4.4.8),

∆W (n)
a,ρ = (−tρ)Γ(n)

a −
n−1∑
cρ=1

Γ
(n−cρ)
a,central Γ(cρ)

a,co . (4.4.10)

Given this result, all subdivergences involving collinear subdiagrams of order
i < n cancel, and the only remaining collinear divergences are those in which
all vertices approach any set of the light cones. Again, these collinear singu-
larities separate into color-diagonal factors, and we conclude that at order n
the collinear singularities of the web function are additive. Thus, to all orders,
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collinear singularities factor into a product in the amplitude,

Γa = exp

[
∞∑
i=1

(
W

(i)
a,central +W (i)

a,co

)]

= exp

[
∞∑
i=1

W
(i)
a,central

]
exp

[
∞∑
i=1

W (i)
a,co

]
, (4.4.11)

where W
(i)
a,co is the additive part of the ith order web function that includes

its collinear singularities. In principle, we could define this function up to a
constant by introducing the appropriate factorization scale. We will not need
the details of such a construction, however, and simply assume this can be
done. In the second equality, we use the color-diagonal nature of the collinear
singularities. We note that for a identical Wilson lines, W

(i)
a,co = aw

(i)
co , with w

(i)
co

the contribution from a single such line. We can put the factorized expression
Eq. (4.4.11) into a standard form, simply by multiplying and dividing by an
appropriate power of a function whose collinear singularities match those of
the exponential of W

(i)
a,co. For a jet function corresponding to direction β, let

us denote this function by JI(β, nβ), where nβ is any other vector introduced
in the definiton of JI . As this notation suggests, there is considerable freedom
in the choice of JI . An acceptable choice for JI , however, would be the square
root of the cusp itself [42, 93,113],

Jeik
I (β, nβ) ≡ Γ1/2

cusp(β, β̄) , (4.4.12)

where the square root reflects the symmetry between the vectors β and β̄,
giving the same collinear singularities associated with both directions in the
cusp defined as in Eq. (4.2.41).

Once we have defined the jet functions, we may then reorganize the fac-
torized multieikonal amplitude as

Γa =

exp

[
∞∑
i=1

W
(i)
a,central

]
exp

[∑∞
i=1 W

(i)
a,co

]
∏a

I=1 J
eik
I

 a∏
I=1

Jeik
I . (4.4.13)

Because the eikonal jets cancel all collinear singularities in the ratio, the ratio
may be factorized into soft and hard eikonal subdiagrams, which are renor-
malized locally, in the same manner as for massive, or other non-lightlike
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lines [79,84,97], (
Γa∏a

I=1 J
eik
I

)
= Sa ×Heik

a , (4.4.14)

which defines the product of soft and hard functions S and H, each of which
is free of collinear singularities. The hard function absorbs all of the short-
distance singularities of the original amplitude, in addition to those resulting
from the factors of Jeik

I in the denominator. This gives a definition for the
product of soft and hard functions in Eq. (4.2.43), which we inferred from the
singularity structure of Γ(n). We then rewrite the multieikonal amplitudes as

Γa =

(
Γa∏a

I=1 J
eik
I

) a∏
I=1

Jeik
I

≡ Sa ×Ha ×
a∏

I=1

Jeik
I . (4.4.15)

As emphasized in the discussion of Eq. (4.2.43), the factorized soft function,
with collinear singularities removed, is the same for both eikonal and partonic
amplitudes with the same velocities βI and color representations.

Finally, we may use the results above to formulate factorized partonic am-
plitudes [101,102] in coordinate space. For partonic amplitudes with a external
partons, we write

Ga = Sa ×Ha ×
a∏

I=1

Jpart
I

=

(
Γa∏a

I=1 J
eik
I

) a∏
I=1

Jpart
I . (4.4.16)

Comparing to Eq. (4.2.43), this expression reproduces the factorized form in
every leading region of the original amplitude Ga. The partonic jet functions
or the eikonal function Γa introduces singularities that are not in Ga. These
correspond to collinear subdiagrams in Γa and soft subdiagrams in Jpart

I . These
singularities exponentiate and are cancelled independently by factors of Jeik

I in
the denominator, when its web functions move into the collinear or soft region,
respectively [114]. This cancellation only requires that the complementary
eikonal vectors be chosen the same in the eikonal and partonic jet functions,
Eqs. (4.2.41) and (4.2.42), respectively. Such contributions factorize precisely
because of the exponentiation of the web functions which, as shown above, have
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no subdivergences. With an appropriate determination of the hard function
order-by-order, Eq. (4.4.16) reproduces all divergences in factorized form.

4.5 Conclusions

We have studied partonic matrix elements, along with the cusp and multi-
eikonal amplitudes for massless Wilson lines, in coordinate space and Feynman
gauge. In these amplitudes, ultraviolet collinear and short-distance divergences
arise when sets of vertices approach either Wilson lines or the eikonal vertex.
We have shown that these divergences are well-approximated by the series of
nested subtractions given in Eq. (4.2.21). The proof of this matching, in co-
variant gauge, required us to construct a set of induced pinch surfaces, given
by Eqs. (4.2.29) to (4.2.31). By comparing the action of the coordinate-space
soft-collinear and hard-collinear approximations [32] to the web expansion, we
also verified that the logarithm of the cusp is free of subdivergences. The
construction of nested subtractions, including the treatment of overlapping
subdivergences, applies not only to multieikonal amplitudes, but also to par-
tonic amplitudes for fixed-angle scattering, as studied in coordinate space in
Ref. [32].

Our discussion confirmed that for the cusp the only sources of divergences
are the limits in which all lines approach the light cones or the origin together
[33]. This is the content of Eq. (4.3.6), with a function fW that is finite for finite
values of variables τ and τ̄ . For a conformal theory, this integrand is effectively
constant. For QCD and related renormalizable theories, the running coupling
produces nontrivial dependence on the variable τ τ̄ , which may be chosen as
the renormalization scale.

In the general case, due to the non-trivial group structure of the webs the
matching between UV subtraction terms, which factorize, and decompositions
of the exponential of the webs no longer holds in the same fashion. For the
large-Nc limit of gauge theory, however, the arguments go through, and each
web becomes a sum of terms involving the two-dimensional integrals found in
cusps. In this case, as for the cusp, a geometrical interpretation of the web
function applies [33].
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Chapter 5

Epilogue

In this thesis we aimed to provide a new, coordinate-space analysis applicable
to scattering amplitudes for massless gauge theories. Well-known coordinate-
space studies exist for theories of gravity in the context of QFT in curved
space-time (for instance, Ref. [115]), however, gauge theories are much less
studied in coordinate space.

The results of Chapter 2 hold not only for a specific set of massless gauge
theories but are much more general. The results for vertex functions can
be generalized for fixed-angle scattering at large angles, because there is no
interference between incoming and outgoing jets at large angles [42,92,93]. For
scattering at small angles, a different power counting for the jets is needed.
Furthermore, our discussion can be extended to S-Matrix elements, defining
the reduction from Green functions directly in coordinate space, and eventually
to cut diagrams for infrared-safe cross-sections.

The result of the cancellation of subdivergences in webs, that is the con-
firmation that the only sources of divergences for the cusp are the limits in
which all lines approach the light cones or the origin together, illustrates that
webs behave like a unit almost like a single gluon, which can be interpreted as
a “QCD string”. The web integrand depends only on a single scale through
the running of the coupling, which, in our surface interpretation, is related
to the renormalization scale that is set according to where the interactions
take place on the surface. This interpretation can be generalized to a new
formalism interpolating between the weak and strong coupling limits of gauge
theories in certain infrared-safe cross sections.

In QCD, of course, our explicit knowledge of the web function is limited to
the first few terms in the perturbative series, which run out of predictive power
as the invariant distance increases. The integral forms derived above, however,
hold to all orders in perturbation theory, and may point to an interpolation
between short and long distances.
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The subtraction procedure, which we constructed in Chapter 4, extends
the proof of multiplicative renormalizability for cusps linking massive Wilson
lines [84] to the massless case where lightcone singularities are present. This
additive regularization procedure for nonlocal ultraviolet divergences can also
be generalized as ‘infrared regularization’ for cross sections, where our subtrac-
tion terms play the role of ‘counterterms’ for (nonlocal) divergences that are
not removed by the standard renormalization procedures for quantum field
theory. Using webs, we have given a rederivation of factorization for scat-
tering amplitudes in massless QCD and related theories in Feynman gauge,
complementing momentum-space analyses in physical gauges.

Reformulating ordinary quantum field theory in coordinate space can be
useful in many ways, for instance, to find new relations with the advances
in conformal field theory and string theory. Furthermore, coordinate-space
perspectives enable us to understand the running of the coupling in real space-
time. The formalism developed for web diagrams can simplify the calculations
at higher orders for improved theoretical precision, and also give perturbative
insights to long-distance behaviour of the theory. Sharpening our knowledge
from the theory would allow us to isolate the QCD background in elementary
processes more precisely, and thus increase our ability to identify new physics.
A better understanding of the perturbative regime of QCD could also reveal
the structure of the fundamental theory that contains it.
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Appendix A

Extention of the analysis of
singularities

A.1 Massive lines

For completeness, we consider the extension of pinch analysis to massive lines
in coordinate space. Massive lines must be explored separately because the
massive propagator in coordinate space has a more complicated form, it can
be written in 4− 2ε dimensions by

∆F (x ; m) =

(
−i
8π2

)∫ ∞

0

dξ

(
2πi

ξ

)ε

exp

[
i

(
−x

2

2
ξ − m2

2ξ
+ iε

)]
. (A.1.1)

Since the massive propagator does not have a simple denominator, we can not
do a Feynman parametrization. However, using Eq. (2.2.1) we can combine
the propagators of each line of an arbitrary Feynman diagram with massive
lines,

Ĩ({xµ
i }) =

∏
lines j

∫ ∞

0

dξj
∏

vertices k

∫
dDyk exp

[
− iD̃(ξj, xi, yk)

]
× F̃ (ξj, xi, yk) ,

(A.1.2)
where ξj is now the parameter of the jth line with dimensions of mass square.
The phase D̃ of the exponent is given directly from (A.1.1) by

D̃(ξj, xi, yk) =
∑

j

ξj
z2

j

2
+
m2

j

2ξj
, (A.1.3)
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with zµ
j a linear function of the external coordinates {xµ

i } and the positions

of (internal) vertices {yµ
k} as before. The functions F̃ (ξj, xi, yk) include con-

stants and the “numerators”, which might come from derivatives of three-point
vertices acting on the exponentials.

One can obtain the Landau conditions from the integral representation
(A.1.2) for diagrams with massive lines by the method of stationary phase.
The conditions of stationary phase with respect to the positions of internal
vertices,

∂

∂yµ
k

D̃(ξj, xi, yk) =
∑

lines j at vertex k

ηjk ξj z
µ
j = 0 , (A.1.4)

where ηjk = +1 (−1) if the line j ends (begins) at vertex k, and is zero
otherwise, give exactly the same result as Eq. (2.2.9) for the massless case
because the masses of the lines do not depend on the positions of the internal
vertices. The phase is stationary with respect to the ξ-parameters when

∂

∂ξr
D̃(ξj, xi, yk) = z2

r −
m2

r

ξ2
r

= 0 . (A.1.5)

For massive lines, the stationary points are given by

ξr =
mr√
z2

r

, z2
r > 0 . (A.1.6)

If the mass of the line r is zero, Eq. (A.1.5) is only satisfied if its coordinates
have a lightlike separation, irrespective of the value of ξr.

Repeating the same reasoning as in the massless case, we identify the prod-
uct ξrz

µ
r with a momentum vector pµ

r for line r, while this time ξr is determined
by (A.1.6). The time-component of this momentum vector,

p0
r = mr

z0
r√

(z0
r )

2 − |~zr|2
=

mr√
1− β2

r

, (A.1.7)

equals the energy of a classical particle with mass mr propagating with the
speed of βr = |~zr|/z0

r . Therefore, we can interprete the stationary phases in
the integral representation (A.1.2), in the same way as pinch singularities ex-
plained in Sec. 2.2, as a physical process in space-time where classical particles
propagate between vertices with their momenta conserved at each vertex.
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A.2 Power counting for path-ordered

exponentials

We shall lastly do the power counting for the vacuum expectation value of
path ordered exponentials with constant lightlike velocities meeting at a cusp.
Consider one Wilson line, which starts from the point xµ

1 = x1 δ
µ− in βµ

1 = δµ−

direction, and meets the other line at the origin, which moves in βµ
2 = δµ+ di-

rection and ends at the point xµ
2 = x2 δ

µ+. Formally, we consider the diagrams
for the vacuum expectation value of the following operator,

Γβ1,β2(x1, x2) =

〈
0

∣∣∣∣T(Φβ2(x2, 0) Φβ1(0, x1)

)∣∣∣∣ 0〉 , (A.2.1)

with constant-velocity ordered exponentials,

Φβi
(x+ λβi, x) = P exp

(
−ig

∫ λ

0

dλ′βi · A(x+ λ′βi)

)
. (A.2.2)

As for the vertex function, there may be divergences when some vector and/or
fermion lines get collinear to the eikonal lines forming two jets, which can
interact softly at large distances and have a hard interaction at the cusp.

In analogy to Eq. (2.4.22) for the vertex function, the overall degree of di-
vergence of such path ordered exponentials in coordinate space can be written
with a bound from below,

γeik ≥ wH + 4(V H
3 + V H

4 )− 2NH
g − 3NH

f − V H
3g

+
∑

i=+,−

[
2(V

J(i)

3 + V
J(i)

4 )−NJ(i)
g − 2N

J(i)

f − V J(i)

3g (A.2.3)

+
1

2
(V

J(i)

3 − SJ
(i) − JH

(i)g + wJ(i))
]
,

with wH the total number of hard lines attached to the Wilson lines, and
wJ(±) the number of attachments of the jet in the ± direction to the Wilson
line in the same direction. The lines that connect a jet to the Wilson line in the
opposite direction are soft lines, and are counted together with the connections
of the jet to the soft subdiagram by SJ

(i).

In Eq. (A.2.3), we have added a term +wH for the integrations over the
locations of the attachments of the hard subdiagram to the eikonals to the
contributions from the hard part, because these connections have to move to
the cusp in order that all components of these hard lines vanish. Further-
more, the derivatives at each three-gluon vertex will bring vectors that form
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invariants in the numerator, which will be of the form either (βi · z) or (z · z′).
The number of vectors βi that can show up in the numerator is equal to the
sum of the number of attachments to each Wilson line. The net effect from
all three-gluon vertices in the hard subdiagram is given by the term −V H

3g as
for the vertex function. In a jet, a three-gluon vertex z that is connected to
the Wilson line in the same direction as the jet produces an invariant (βi · z)
linear in λ in the numerator, while one connected to the opposite Wilson line
produces an invariant zeroth order in λ. Therefore, we add wJ = wJ(+) +wJ(−)

to the number of jet three-point vertices for the term for the minimum nu-
merator suppressions in γeik, and subtract the connections of the jets to the
opposite eikonals with those to the soft subdiagram.

The relations of the number of lines to the number of the vertices for the jets
and the hard subdiagram are in this case slightly different than Eqs. (2.4.25)
and (2.4.26) for the vertex function,

2NH + JH + SH = wH + 3V H
3 + 4V H

4 , (A.2.4)

2NJ + SJ = wJ + JH + 3V J
3 + 4V J

4 , (A.2.5)

for the hard part and the jets, respectively. Similarly, the relation between
the number of fermion lines and the fermion-gluon vertices in the hard part is
given by

V H
3f = NH

f +
1

2
(SH

f + JH
f ) , (A.2.6)

while for the jets they are related by

V J
3f = NJ

f +
1

2
(SJ

f − JH
f ) . (A.2.7)

Note also that JH
f ≥ 0 in this case. Plugging these graphical identities for the

subdiagrams into Eq. (A.2.3), we find

γeik ≥ SH
g +

3

2
SH

f +
1

2
(SJ

f + JH
f ) . (A.2.8)

Any direct connection between the hard and soft subdiagrams and fermion
lines connecting any two subdiagrams suppress the integral as for the vertex
function. The collinear singularities of path ordered exponentials with constant
lightlike velocities are also at worst logarithmic in coordinate space [58].
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Appendix B

Two-loop integrals of webs

B.1 The 3-scalar integral

To evaluate the the 3-scalar term in Eq. (3.3.16), we integrate over the posi-
tion of the three-gluon vertex after combining the denominators by Feynman
parametrization. Introducing the Feynman parameters α1 and α2, the 3-scalar
contribution is given by

E3s = − N3g(ε)

∫ ∞

0

dλ dσ

∫
d4−2εy

Γ(3− 3ε)

Γ3(1− ε)

×
∫ 1

0

dα1

∫ 1−α1

0

dα2
(1− α1 − α2)

−εα−ε
1 α−ε

2

[−y2 + 2α2(1− α1 − α2)λσ + iε]3−3ε ,

(B.1.1)

where y ≡ x−α2λβ1− (1−α1−α2)σβ2. The integral over y is straightforward
after doing a clockwise Wick rotation,

E3s = − N3g(ε)

(
−iπ2−ε

21−2ε

Γ(1− 2ε)

Γ3(1− ε)

)∫ ∞

0

dλ dσ

(λσ)1−2ε

×
∫ 1

0

dα1

∫ 1−α1

0

dα2(1− α1 − α2)
−1+εα−ε

1 α−1+ε
2 .

(B.1.2)

The integrals over Feynman parameters α1, α2 now factor from the integrals
over eikonal parameters λ, σ. After a change of variables η ≡ α2/(1− α1), they
can be integrated independently,∫ 1

0

dα1 α
−ε
1 (1−α1)

2ε−1

∫ 1

0

dη ηε−1(1− η)ε−1 =
1

ε2
Γ(1− ε)Γ(1+ ε) . (B.1.3)
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In Eq. (B.1.2), this gives the scaleless λ, σ integral times a constant with a
double pole in ε, given in Eq. (3.3.17).

B.2 The end-point

We now return to the λ2 = Λ end-point contribution from the second term on
the right-hand side of Eq. (3.3.14), which vanishes in the Λ→∞ limit for any
fixed values of the vertex xµ. If we integrate over xµ first, however, we get a
singular contribution, associated with the renormalization of a Wilson line of
finite length. It cancels in the gauge-invariant polygons discussed in Sec. 3.4,
and extensively in Refs. [43,58]. After the xµ integral, we have

Eend = − N3g(ε)

(
−iπ2−ε

21−2ε

Γ(1− 2ε)

Γ3(1− ε)

)∫ Σ

0

dσ

σ1−2ε

∫ Λ

0

dλ

×
∫ 1

0

dα1

∫ 1−α1

0

dα2 α
ε−1
1 (1− α1 − α2)

−εα−ε
2 [α2Λ + (1− α1 − α2)λ]−1+2ε .

(B.2.1)

Changing variables to η = α2/(1−α1), we find a form that is easy to evaluate,

Eend = − N3g(ε)

(
−iπ2−ε

21−2ε

Γ(1− 2ε)

Γ3(1− ε)

)∫ Σ

0

dσ

σ1−2ε

×
∫ 1

0

dα1 α
ε−1
1

∫ 1

0

dη (1− η)−εη−ε

∫ Λ

0

dλ [ηΛ + (1− η)λ]−1+2ε

=
(αs

π

)2 CACF

64ε4

(
2πµ2ΛΣ

)2ε [
Γ(1− 2ε)Γ(1− ε)Γ(1 + ε)− Γ2(1− ε)

]
.

(B.2.2)

If we add this result to the expressions found by integrating the σ and λ
integrals of E3s, Eq. (3.3.17) and Epse, Eq. (3.3.18), over the finite intervals of
0 to Σ and Λ, we recover the expression quoted for this diagram in Refs. [43,58].
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Appendix C

Ward identity and soft-collinear
approximation

The factorization of soft gluons from jets and of unphysical polarized collinear
gluons from the hard subdiagram has been derived and used extensively in the
literature in momentum space [31]. This procedure follows in much the same
way in coordinate as in momentum space, and for illustration we give here a
brief derivation of soft-collinear factorization for a single gluon coupled to the
matrix element of a path-ordered exponential. The extension to multiple gluon
connections has been discussed in momentum space, for example in [55] and
recently in [102], and since these discussions rely only on the Ward identities,
they hold in the same way in coordinate space.

C.1 Derivation of the Ward identity

We begin with a rederivation of the single-gluon Ward identity, which was
originally given in Ref. [89]. Here, we will use the BRST invariance to rederive
the Ward identity of interest. Consider the vacuum expectation value of the
time-ordered product of the anti-ghost field b at a point y0 with N gauge fields
Aµj at points yj where j = 1, . . . , N

〈0|T [b(yo)A
µN (yN) · · · Aµ1(y1) ]|0〉 = 0 . (C.1.1)

The BRST-variation of this vacuum expectation value also vanishes. There-
fore, varying each field in this expression according to the BRST rules we
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obtain1

〈0|T [∂ · A(y0)A
µ1(y1) · · ·AµN (yN) ]|0〉 =

〈0|T

(
b(y0)

N∑
j=1

AµN (yN) · · ·Dµj(yj)c(yj) · · ·Aµ1(y1)

)
|0〉 .

(C.1.2)

This is the basic Ward identity which we will employ in our rederivation of the
single-gluon Ward identity for path-ordered exponentials. To apply the Ward
identity to explicit calculations of the diagrams in a more direct way, we note
the following relation for the matrix element on the left-hand side above

〈0|T [∂ · A(y0)A
µ1(y1) · · ·AµN (yN) ]|0〉 =∫

d4y′ ∆(y0 − y′) 〈0|T
[
∂ν

(
∂Lint

∂Aν(y′)

)
Aµ1(y1) · · ·AµN (yN)

]
|0〉 ,

(C.1.3)

where ∆(y0−y′) is the scalar propagator and Lint is the interaction Lagrangian.
Particularly, we are interested in the BRST variation of

Ξ(y) ≡ 〈0|T
(
∂ · A(y)P exp

[
ig

∫
C

dλ β(λ) · A(λβ(λ))

])
|0〉 , (C.1.4)

where the curve C denoting the path of integration is parametrized by λ and
the velocity vector β(λ). Expanding the exponential we write Ξ(y) as

Ξ(y) =
∞∑

N=0

(ig)N〈0|T
(
∂ · A(y)

∫ λF

λI

dλN β(λN) · A(λNβ(λN))

×
∫ λN

λI

dλN−1 β(λN−1) · A(λN−1β(λN−1))× · · ·
)
|0〉 ,

(C.1.5)

where we labeled the initial point of the path by λI and the endpoint by λF .
In this form, it can be easily seen that using Eq. (C.1.2), Ξ(y) is identically

1In Feynman gauge, the BRST transformation rule for the the anti-ghost field is
δBRST b(x) = −(∂ ·A)(x)Λ while that of the gauge field is given by δBRST Aµ(x) = Dµc(x)Λ,
where Dµ = ∂µ − ig[Aµ, c] denotes the covariant derivative.
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equal to

Ξ(y) =
∞∑

N=0

(ig)N〈0|T
(
b(y)

N∑
j=1

N∏
k=j+1

∫ λk+1

λI

dλk β(λk) · A(λkβ(λk))

×
∫ λj+1

λI

dλj

{
β(λj) · ∂c(λjβ(λj))− ig[β(λj) · A(λjβ(λj)), c(λjβ(λj))]

}
×

j−1∏
i=1

∫ λi+1

λI

dλi β(λi) · A(λiβ(λi))

)
|0〉 .

(C.1.6)

Here, we labeled λN+1 ≡ λF . For convenience, we separate Ξ(y) into two parts
where the first part includes the gradient terms while the latter includes the
commutator terms

Ξ(y) = ΞI(y; β · ∂c) + ΞII(y; [β · A, c]) . (C.1.7)

We would like to change the derivatives on the ghosts in β · ∂c-terms to
derivatives with respect to λj such that the integration over them becomes
trivial. In order to do that we first note the relation

d

dλ
c(λβ(λ) + xµ) =

(
βµ(λ) + λ

∂βµ(λ)

∂λ

)
∂c

∂xµ
. (C.1.8)

From this relation we see that the two derivatives are equal only if β is constant,
therefore from now on we will assume that β(λ) = β and we have

βµ ∂c

∂xµ
= β · ∂c =

dc

dλ
. (C.1.9)

Before proceeding with integrations in Eq. (C.1.6), we shall introduce the
notation below for our path-ordered exponentials

Φβ(λF , λI) ≡ P exp

(
ig

∫ λF

λI

dλ β · A(λβ)

)
. (C.1.10)

We then note the following two identities

Φβ(λF , λ) = 1 + ig

∫ λF

λ

dσΦβ(λF , σ)× β · A(σβ) for σ > λ, (C.1.11)

Φβ(λ, λI) = 1 + ig

∫ λ

λI

dσ′ β · A(σ′β)× Φβ(σ′, λI) for λ > σ′. (C.1.12)
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Rewriting Eq. (C.1.6), the vacuum expectation value Ξ(y) is now given by

Ξ(y) = 〈0|T
(
b(y)

∫ λF

λI

dλΦβ(λF , λ)

×
{
β · ∂c(λ)− ig[β · A(λ), c(λ)]

}
× Φβ(λ, λI)

)
|0〉 .

(C.1.13)

Employing Eq. (C.1.9) and Eqs.(C.1.11)–(C.1.12), the ‘gradient’ part of Ξ(y)
becomes

ΞI(y) = 〈0|T
[
b(y)

∫ λF

λI

dλ

(
1 + ig

∫ λF

λ

dσΦβ(λF , σ)× β · A(σβ)

)
× d

dλ
c(λβ)×

(
1 + ig

∫ λ

λI

dσ′ β · A(σ′β)× Φβ(σ′, λI)

)]
|0〉 .

(C.1.14)

Multiplying every term above and changing the order of λ-integrals with σ-
and σ′-integrals in each term, and then doing the integrations over λ one finds

ΞI(y) = 〈0|T
[
b(y)

{(
c(λFβ)− c(λIβ)

)
+ ig

∫ λF

λI

dσΦβ(λF , σ)× β · A(σβ)×
(
c(σβ)− c(λIβ)

)
+ ig

∫ λF

λI

dσ′
(
c(λFβ)− c(σ′β)

)
× β · A(σ′β)× Φβ(σ′, λI)

+ (ig)2

∫ λF

λI

dσ

∫ σ

λI

dσ′ Φβ(λF , σ)× β · A(σβ)

×
(
c(σβ)− c(σ′β)

)
× β · A(σ′β)× Φβ(σ′, λI)

}]
|0〉 .

(C.1.15)

Notice that the first term in the first line above plus the first term in the third
line gives

c(λFβ)×
(
1 + ig

∫ λF

λI

dσ′ β · A(σ′β)× Φβ(σ′, λI)
)

= c(λFβ)× Φβ(λF , λI) .

(C.1.16)

Similarly, the second term in the first line plus the second term in the second
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line is equal to
− Φβ(λF , λI)× c(λIβ) . (C.1.17)

On the other hand, integrating the first term of the fourth line over σ′ and
adding it to the first term of the second line we get

+ ig

∫ λF

λI

dσΦβ(λF , σ)× β · A(σβ)× c(σβ)× Φβ(σ, λI) . (C.1.18)

Lastly, we change the order of integrations over σ and σ′ in the second term
of the fourth line, and combine it with the second term of the third line as
follows

− ig
(

1×
∫ λF

λI

dσ′ c(σ′β)× β · A(σ′β)× Φβ(σ′, λI)

+

∫ λF

λI

dσ′
[
ig

∫ λF

σ′
dσΦβ(λF , σ)× β · A(σβ)

]
× c(σ′β)× β · A(σ′β)× Φβ(σ′, λI)

)
= −ig

∫ λF

λI

dσΦβ(λF , σ)× c(σβ)× β · A(σβ)× Φβ(σ, λI) ,

(C.1.19)

where the square-brackets in the second line gives [Φβ(λF , σ
′) − 1] where −1

cancels with the first line, and we relabeled σ′ → σ in the last line. Combining
everything we find

ΞI(y) = 〈0|T
[
b(y)

{
c(λFβ)× Φβ(λF , λI)− Φβ(λF , λI)× c(λIβ)

+ ig

∫ λF

λI

dσΦβ(λF , σ)× [β · A(σβ), c(σβ)]× Φβ(σ, λI)

}]
|0〉 .

(C.1.20)

The second line above exactly cancels the ‘commutator’-part ΞII(y) of Ξ(y) in
Eq. (C.1.13), and the single-gluon Ward identity for path-ordered exponentials
is given by

〈0|T
[
∂·A(y)× Φβ(λF , λI)

]
|0〉 =

〈0|T
[
b(y)

{
c(λFβ)× Φβ(λF , λI)− Φβ(λF , λI)× c(λIβ)

}]
|0〉 .
(C.1.21)
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We can use Eq. (C.1.3) for the left-hand side, and a similar relation for the
antighost field on the right-hand side. Acting with 2y on both sides, we will
get delta functions from the propagators, which will bring the fields to the
point y. Therefore, the single-gluon Ward identity can be rewritten as

〈0|T
[
∂ν

(
∂Lint

∂Aν(y)

)
Φβ(λF , λI)

]
|0〉 =

〈0|T
[ ∂Lint

∂c(y)

{
c(λFβ) Φβ(λF , λI)− Φβ(λF , λI) c(λIβ)

}]
|0〉 .

(C.1.22)

C.2 Factorization of a single soft gluon from a

jet

The soft-collinear approximation replaces jet-soft connections by ‘scalar po-
larized’ gluons as shown in Eqs. (2.5.15) and (4.2.37), which allows us to use
the Ward identity (C.1.22) to a diagram with a single soft gluon attached to
a jet as shown in Fig. C.1.

= +

Figure C.1: Result of the Ward identity, a factorized single gluon. The differ-
ence between the original diagram and the web subtraction is given by a term
with an interacting ghost attached to the end-point, which can be neglected
by arguments given in Sections 3.3.3 and 3.3.4.

We get two terms, one for the contribution of a free ghost and another for
the interactions of the ghost field with the jet. The first term, which has a free
ghost field stuck at the end of the eikonal line, is equivalent to a soft gluon
with its arrow acting on the eikonal, because the eikonal propagators are step-
functions in coordinate space. It is, thus, simply a gluon attached to an eikonal
in the direction of the jet. Note that the Ward identity is evaluated for fixed
values of vertices internal to the jet, and as a result, we may systematically
neglect endpoint contributions that vanish in the limit the endpoint goes to
infinity, as in the second term on the right-hand side of the relation in Fig. C.1
for an interacting ghost [33]. The remainder is a factorized single gluon.
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C.3 Soft-collinear approximation for two-loop

web diagrams

We give a diagrammatic sketch of the factorization of subdivergences in two-
loop web diagrams after the soft-collinear approximation.

+ +

Figure C.2: Representation of the soft-collinear approximation with the two-
loop web diagrams.

The ‘broken’ eikonal line in these figures indicates our use of a different
vector β̄µ

2 instead of βµ
1 for the hard-collinear approximation. The double line

indicates integration over the dotted point up to the vertex x, which comes
from integration by parts in the soft-collinear approximation. The color flow
is the same through both eikonal pieces.

= −

Figure C.3: Eikonal Ward identity.

We will make use of the two identities depicted in Figs. C.3 and C.4.

=

+

+

+

Figure C.4: Graphical represention of the Ward identity for a soft gluon at a
three-gluon vertex.
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=

=

+ + +

− + −

Figure C.5: Application of the Ward identity to the first two-loop web diagram
in Fig. C.2.

The last two diagrams in the first line in Fig. C.5 vanish because β2
2 = 0,

while the second and the third in the second line vanish individually by the
integral over the β2 · x component.

= + + +

Figure C.6: Application of the Ward identity to the second diagram in Fig. C.2.

In Figure C.6, the third diagram vanishes as limβ̄2·x→0 (β̄2 ·x)ε/ε, while the
last one combines with the non-zero piece of the cross-ladder diagram to give
two factorized gluons as shown in Fig. C.10.

+ = − +

Figure C.7: The result of the eikonal Ward identity for the first two diagrams
in Fig. C.6.

In Figure C.7, the second diagram on the right-hand side vanishes after
the β2 ·x integral, while the last one exactly cancels the last in the second line
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= −

Figure C.8: Application of the eikonal Ward identity to the cross-ladder dia-
gram.

of Fig. C.5. In Figure C.8 for the cross-ladder diagram, the second diagram
on the right-hand side vanishes again as limβ̄2·x→0 (β̄2 · x)ε/ε.

+ = + +

Figure C.9: Two left-over diagrams from Figs. C.5 and C.7.

The two left-over diagrams from Figs. C.5 and C.7 give an end-point term
with three scalar propagators after integration by parts on the derivative from
the ghost-gluon vertex. The last two diagrams cancel each other.

+ = ⊗

Figure C.10: Resulting factorization of two gluons.

The last diagram in Fig. C.6 plus the nonzero diagram from the cross-ladder
diagram in Fig. C.8 give two factorized gluons.
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