A Measurement of the Branching Ratio R(B) = Gamma ($Z(0) \rightarrow B$ Anti-B)/Gamma ($Z(0) \rightarrow Hadrons$) Using a Minimum Missing P(T) Corrected Mass Tag^*

Eric Ross Weiss

Stanford Linear Accelerator Center Stanford University Stanford, CA 94309

> SLAC-Report-672 February 1998

Prepared for the Department of Energy under contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

Ph.D. thesis, University of Washington, Seattle, WA 98195

University of Washington

Abstract

A Measurement of the branching ratio $R_b = \frac{\Gamma(Z^0 \to b\overline{b})}{\Gamma(Z^0 \to hadrons)}$ using a minimum missing P_t corrected mass tag.

by Eric Ross Weiss

Chairperson of Supervisory Committee:

Professor Victor Cook

Department of Physics

Presented here is a new measurement of $R_b = \Gamma(Z^0 - b\bar{b})/\Gamma(Z^0 - hadrons)$ using a self-calibrating double tag technique where the b selection is based on topological and kinematic reconstruction of the mass of the B-decay vertex. The measurement was performed using a sample of 72074 hadronic Z^0 events out of the 150k hadronic Z^0 decays collected with the SLD at the SLAC Linear Collider during 1993-1993. The method utilizes the 3-D vertexing abilities of the SLD CCD pixel vertex detector and the small stable SLC beams to obtain a high b tagging efficiency of 35.3% for a purity of 98.0%. The high purity reduces the systematic uncertainty introduced by charm contamination and correlations with R_c . We obtain a result of $R_b = 0.2142 \pm 0.0034_{EGL} \pm 0.0015_{EGL} \pm 0.0002_{R_c}$ (corrected for the $e^+e^- \rightarrow \gamma$ exchange contribution).

TABLE OF CONTENTS

List of	Figur	한 병	v
List of	Table	\$	viil
Chapt	er 1:	Introduction	1
1.1	Motiv	ation for Performing this Measurement	2
1.2	b-tag	Used in This Analysis	3
Chapter 2:		Theory	4
2.1	The S	tandard Model	4
	2.1.1	Fundamental Particles	5
	2.1.2	Strong Interactions	6
	2.1.3	Weak Interactions	7
	2.1.4	B-Hadrons and Their Decays	9
2.2	R_{\bullet} .		10
	2.2.1	Tree-Level Calculation of R_b	11
	2.2.2	Corrections to Rb due to Top Quark Mass	11
	2.2.3	Sensitivity of R ₈ to New Physics	13
	2.2.4	Theoretical Uncertainty in $R_{m{k}}$	16
Chapter 3:		Experimental Apparatus	17
3.1	SLAC	Linear Collider (SLC)	17
	9 1 1	Dartarmonca	20

	3.1.2	Beam Energy	21
3.2	The S	LAC Large Detector (SLD)	23
	3.2.1	The SLD Coordinate System	26
	3.2.2	The Vertex Detector (VXD)	27
	3.2.3	The Central Drift Chamber (CDC)	3 1
	3.2.4	Track Reconstruction	33
	3.2.5	The Liquid Argon Calorimeter (LAC)	35
Chapte	er 4:	SLD Monte Carlo	39
4.1	Physic	s Simulation	39
	4.1.1	Simulation of B Hadron Decays	40
	4.1.2	Simulation of Charm Hadron Decays	42
	4.1.3	QCD Simulation Parameters	42
4.2	Detec	tor Simulation	44
4.3	Monte	: Carlo Corrections	45
	4.3.1	Tracking Resolution Corrections	45
	4.3.2	Tracking Efficiency Corrections	48
	4.3.3	Applying the Tracking Corrections	49
Chapt	er 5:	Primary Vertex Determination	52
5.1	Deter:	mining the Transverse Components of the Primary Vertex	53
	5.1.1	Fitting the < IP >	53
	5.1.2	Errors on $\langle IP \rangle$	54
	5.1.3	Non-Gaussian Tails	56
5.2	Deten	mining the Longitudinal Component of the Primary Vertex	57
Chapter 6:		Event and Track Selection	58
6.1	Hadro	mic Event Selection	58

	6.1.1	Event triggers	59
	6.1.2	Event Selection	60
6.2	Event	Selection Bias	63
	6.2.1	Bias Measured Directly from MC	64
	6.2.2	Bias Error due to the Greater Than 3 Jet Rate used in Jetset	64
	6.2.3	Gluon Splitting Rate Bias	67
6.3	Track	Selection	67
Chapte	er 7:	Pt Corrected Vertex Mass Tag	70
7.1	Tag O	verview	70
7.2	Verte	dag	71
	7.2.1	Topological Vertexing	71
	7.2.2	Seed Vertex	72
	7.2.3	Track Attachment	73
7.3	The &	Mass Tag	74
	7.3.1	Raw Vertex Mass	74
	7.3.2	P. Correction	75
	7.3.3	P. Corrected Mass Tag	78
Chapt	er 8:	Measuring R _b	81
8.1	Intro	fuction	81
8.2	Deter	mining Rt from Tag Counts	81
	8.2.1	Advantages of double tagging and the use of λ_b	83
	8.2.2	Statistical Uncertainties with Correlation Effects Included	84
8.3	Meas	urement Results	85
8.4	Syste	matica	87
8.5	-	ics Systematics	89

	8.5.1	Light Quark Systematics	89		
	8.5.2	Charm Quark Systematics	93		
	8.5.3	Hemisphere Correlation Systematics	96		
	8.5.4	Correlation Components	100		
8.6	Detec	tor Systematic Uncertainties	105		
	8.6.1	Tracking Resolution Error	106		
	8.6.2	Tracking Efficiency Error	107		
	8.6.3	< IP > Tail Smearing	107		
	8.6.4	Monte Carlo Statistics	107		
8.7	Final	Results	108		
Chapt	er 9:	Future Prospects	112		
9.1	The \	/XD3 Vertex Detector	112		
9.2	Prelin	ninary 1996 R. Measurement with VXD3	113		
Bibliography					
	nandin A. The SID Collaboration				

LIST OF FIGURES

2.I	Tree-level Feynman diagrams for e ⁺ e ⁻ ff	8
2.2	Oblique correction to $Z^0 \rightarrow b \bar{b}$ vertex	10
2.3	Correction to $Z^0 \rightarrow b\overline{b}$ due to top and W	11
2.4	Correction to $Zb\overline{b}$ vertex due to second Higgs doublet	14
2.5	Correction to $Zb\overline{b}$ vertex due to SUSY particles	14
2.6	Rb vs. Me for MSM, MSSM, and MSM with a second Higgs doublet.	15
2.7	Example of gluon splitting into bb pair	16
3.1	The SLAC Linear Collider	18
3.2	History of the SLC luminosity	22
3.3	The Wire Imaging Synchrotron Radiation Detector (WISRD)	23
3.4	Perspective cut-away view of the SLD	24
3.5	Cross section of a quadrant of the SLD	26
3.6	SLD coordinate definitions.	27
3.7	Perspective view of the SLD Vertex Detector	28
3.8	xy cross section view of the SLD Vertex Detector	29
3.9	Geometry of the Central Drift Chamber	32
3.10	Barrel LAC EM and HAD modules	36
3.11	A LAC cell.	37
4.1	B Decay Lepton Spectrum	40
4.2	D Spectrum from B Decays	41
4.3	The Peterson and LUND Symmetric fragmentation functions	43

4.4	Data and MC b _{norm} and Z _{norm} comparison	46
4.5	Unsmeared and smeared DOCAZ data and MC comparison	47
4.6	Tracks vs Momentum data and MC comparison and Correction	48
4.7	Total Number of Tracks Before and After Tracking Efficiency Corrections	49
4.8	Effects of Random Number Generator Seed on λ_b and R_b	51
5.1	Beam positions from SLC Feedback System	54
5.2	$\mu^+\mu^-$ Impact Parameter Distribution	55
6.1	CDC Track Distribution as a Function of $\cos \theta$	60
6.2	Event Selection Variables	61
7.1	(a) Parameterized tracks as Gaussian probability tubes in 3D, (b) re-	
	gions of high tube overlap.	72
7.2	Illustration of T, L and D	74
7.3	Vertex mass distribution (a), and the P_t corrected mass distribution	
	(b). The data is plotted with boxes where MC b, c, and uds are repre-	
	sented by the open, hatched and cross hatched histograms respectively.	76
7.4	Illustration of the secondary vertex P_i	77
7.5	Illustration of the method to calculate the minimum P_1,\ldots,\ldots	78
7.6	A comparison of efficiencies vs purities for each step in the mass re-	
	construction from the invariant mass (mraw) to the final Mass Tag	
	M	79
8.1	The purity of the b sample (II _b) and the MC efficiencies for tagging	
	different flavors $(\epsilon_b, \epsilon_c, \epsilon_{ads})$ are shown together with the b-tag efficiency	
	measured in the data, as a function of M cut	86
9.9	R. ve a function of M	\$7

8.3	B momenta spectrum	92
8.4	Various charm and uds processes contributing to the systematic un-	
	certainty in Rb versus M cut	94
8.5	Charm Hadron True raw mass vs. efficiency	97
8.6	b-hemisphere correlation systematics versus $\mathcal M$ cut	98
8.7	Top - $ \cos\theta $ tagging rate in the data (squares) and MC (triangles),	
	bottom - the ratio tagging rate(Data)/tagging rate(MC) as function	
	of $ \cos\theta $	99
8.8	hemisphere correlation components	104
8.9	Detector Systematic Uncertainties	105
8.10	Total Systematic and Statistical Uncertainties	110
8.11	Summary of current World Rs measurements	111
9.1	Cross-section view (xy plane) of the VXD3	114
9.2	Cross-section view (rz plane) of the VXD3	115
0.3	Comparison of various hemisphere b-tag performances	116

LIST OF TABLES

2.1	Properties of fundamental fermions	5
2.2	Vector and axial coupling strengths for the neutral current interaction.	7
3.1	Important SLC parameters.	21
3.2	VXD design parameters	30
3.3	Properties of the Liquid Argon Calorimeter	38
4.1	MC Charmed Meson Lifetimes	42
6.1	Jet Fractions for b Events	65
8.1	Relevant Measurement Quantities	88
8.2	Gluon Splitting Production Rates	90
8.3	Light Quark Systematics	91
8.4	Charm quark systematic uncertainty	93
8.5	Correlation Systematic Uncertainties	101
8.6	Detector Systematic Uncertainties	106
8.7	Monte Carlo Statistics	108
8.8	Summary of Systematic Uncertainties	109
9.1	VXD3/VXD2 Comparison	113
99	Relevant Measurement Quantities for 1996	116

ACKNOWLEDGMENTS

Obtaining a Ph.D in experimental particle physics is the loftiest goal I have ever achieved. I feel very lucky to have had this opportunity. I am grateful to all the people who helped me along the way and would like to take this opportunity to thank them.

I am deeply in debt to my advisor Vic Cook, who allowed me the freedom to do what I want yet was willing to lend a hand. I am grateful for both the knowledge and friendship he gave me. It was a pleasure working for him, he has been the best boss I ever had. I would also like to thank the members of the High Energy Physics Group at the University of Washington. Specifically I would like to thank Steve Wasserbaech and Toby Burnett for taking the time to read my dissertation. Their comments were much appreciated.

I would also like to thank some of my undergraduate professors who put me on the road to graduate school. Thanks goes to Jeneane Thompson who convinced me to switch my major to physics in the first place. I would also like to thank Lynn Cominsky for making physics so fun. Special thanks to Joe Tenn who convinced me to go to graduate school in general and the University of Washington specifically.

I would like to thank all the members of the SLD collaboration. It has been an honor to work with all of them. Special thanks goes out to the members of the online and offline software groups for providing me with the data I needed to write this dissertation. I would also like to thank the members of the heavy flavor working group for all their feedback and help with this analysis. I would like to specifically thank the members of the SLD R_b group. Homer Neal, Erez Etzion and John Coller.

It was a pleasure working with you all. I owe a special debt of gratitude to our Mentor Su Dong, who for me will always be a symbol of excellence and dedication. Special thanks goes to Joe Perl for the friendship, coffee and perspective; it kept me same.

Last but definitely not least I would like to thank my family. My mother Suzanne Weiss for all the love, support and friendship she has given me. My father Ben Weiss who unwittingly introduced me to physics when I was five years old, via a radio program he was listening to on our way to go fishing. It goes to show you dad, kids are impressionable, be careful what you let them see and hear, they may end up in school forever. My sisters Lisa, Ellyn and Vikki for all the friendship and humor. Special thanks to Lisa for all the ski trips, they where a life saver. My stepmother Maureen Weiss for the friendship and laid-back attitude. My stepfather John Weiss for all the football talk; it was a pleasant distraction. Finally my grandmother Esther Weiss, the matriarch of our clan, who was always so proud of me. I hope I have provided some justification for her pride.

DEDICATION

This dissertation is dedicated to my wife Keni Renner, whose love and support make me whole.

Keni is without a doubt the best thing I got out of my graduate student experience. I don't know if I would have finished this degree without her constant encouragement. When things seemed at their bleakest and I was ready to quit, she would remind me of how far I've come and how little was left to go. Her patience and sacrifice have been of an epic proportion and I am eternally in her debt.

Keni this degree is as much yours as it is mine. Perhaps we can have a somewhat more normal life now.