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String theory has T -duality symmetry when the target space has Abelian isometries. A gen-
eralization of T -duality, where the isometry group is non-Abelian, is known as non-Abelian
T -duality, which works well as a solution-generating technique in supergravity. In this paper we
describe non-Abelian T -duality as a kind of O(D, D) transformation when the isometry group
acts without isotropy. We then provide a duality transformation rule for the Ramond–Ramond
fields by using the technique of double field theory (DFT). We also study a more general class
of solution-generating technique, the Poisson–Lie (PL) T -duality or T -plurality. We describe
the PL T -plurality as an O(n, n) transformation and clearly show the covariance of the DFT
equations of motion by using the gauged DFT. We further discuss the PL T -plurality with spec-
tator fields, and study an application to the AdS5 × S5 solution. The dilaton puzzle known in the
context of the PL T -plurality is resolved with the help of DFT.
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subject Index B11, B20, B80

1. Introduction

T -duality was discovered and reported in Ref. [1] as a symmetry of string theory compactified on
a circle. The mass spectrum or the partition function of string theory on a D-dimensional torus was
studied, for example, in Refs. [2–6], and T -duality was identified as an O(D, D; Z) symmetry. It
was further studied from a different approach [7,8], and the transformation rules for the background
fields (i.e. metric, the Kalb–Ramond B-field, and the dilaton) under T -duality were determined. In
Refs. [9,10], T -duality was understood as an O(D, D) symmetry of the classical equations of motion
of string theory. The classical symmetry was clarified in Ref. [11] by using the gauged sigma model,
and this approach has proved quite useful, for example when we discuss the global structure of the
T -dualized background [12]. The transformation rules for the Ramond–Ramond (R–R) fields and
spacetime fermions were determined in Refs. [13–16]. This well-established symmetry of string
theory is called Abelian T -duality since it relies on the existence of Killing vectors which commute
with each other (see Refs. [17,18] for reviews).

An extension of T -duality to the case of non-commuting Killing vectors was explored in Ref. [19]
(see Refs. [20,21] for earlier works), and this is known as non-Abelian T -duality (NATD). Various
aspects have been studied in Refs. [12,22–35], but unlike Abelian T -duality, there are still many
things to be clarified. For example, the partition function in the dual model may not be the same
as that of the original model (see Ref. [36] for a recent study), and NATD may rather be regarded
as a map between two string theories. The global structure of the dual geometry is also not clearly
understood [12]. However, NATD at least generates many new solutions of supergravity, and it can
be utilized as a useful solution-generating technique.
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Under NATD the isometries are generally broken, and naively we cannot recover the original model
from the dual model. However, this issue was resolved by relaxing the condition for the dualizability
[37]. The generalized duality is called the Poisson–Lie (PL) T -duality [38], and it can be performed
even in the absence of the usual Killing vectors. The PL T -duality is based on a pair of groups with
the same dimension, G and G̃, that form a larger Lie group known as the Drinfel’d double D. The
PL T -duality is a symmetry that exchanges the role of the subgroups G and G̃. Conventional NATD
can be reproduced as a special case where one of the two groups is an Abelian group. Aspects of the
PL T -duality and generalizations have been studied in Refs. [39–47], and concrete applications are
given, for example, in Refs. [38,48–51].

Low-dimensional Drinfel’d doubles were classified in Refs. [52–54], and it was stressed that
some Drinfel’d double d can be decomposed into several different pairs of subalgebras g and g̃,
(d, g, g̃) ∼= (d, g′, g̃′) ∼= · · · . The decomposition is called the Manin triple, and each Manin
triple corresponds to a sigma model. The existence of several decompositions suggests that
many sigma models are related through a Drinfel’d double. This idea was explicitly realized
in Ref. [55], and the classical equivalence of the sigma models was called the PL T -plurality
(see Refs. [56–60] for more examples). Various aspects of the PL T -plurality were discussed
in refs. [61,62], and in particular quantum aspects of the PL T -duality/plurality were studied in
Refs. [55,63–71].

Recent developments in NATD were triggered by Ref. [72], which provided the transformation
rule for the R–R fields under NATD.Although the analysis was limited to the case where the isometry
group acts freely, that restriction was relaxed in Ref. [73]. By exploiting the techniques, NATD for
an SU(2) isometry was extensively studied in Refs. [74–100] (mainly in the context of AdS/CFT
correspondence) and many novel solutions were constructed. Subsequently, the transformation rules
that can also be applied to the fermionic T -duality were obtained in Ref. [101].

More recently, NATD has received much attention in the context of integrable deformations of string
theory, since a class of integrable deformation called the homogeneousYang–Baxter deformation was
shown to be a subclass of NATD [102–105]. Other integrable deformations such as the λ-deformation
and the η-deformations can also be understood in the framework of the so-called E-model [106],
which was developed in the PL T -duality [37,39]. Moreover, as discussed in Refs. [106–109], the λ-
deformation and the η-deformations are related by a PL T -duality and an analytic continuation. Thus,
there is a close relationship between the PL T -duality and integrable deformations (see Refs. [110–
113] for recent studies on the E-model).

Another approach to T -duality has been developed in Refs. [114–130] and is called the double field
theory (DFT). This manifests the Abelian O(D, D) T -duality symmetry at the level of supergravity
by formally doubling the dimensions of the spacetime. Several formulations of DFT have been
proposed, such as the flux formulation (or the gauged DFT) [131–134] and DFT on group manifolds
(or DFTWZW) [135–137]. Recently, by applying the idea of DFTWZW, a formulation of DFT which
manifests the Poisson–Lie T -duality was proposed in Ref. [138] and the transformation of the
R–R fields under the PL T -duality was discussed for the first time. The idea was developed in
Ref. [139], and applications to various integrable deformations were studied (see also Ref. [140] for
discussion on the PL T -duality, O(D, D) symmetry, and integrable deformations). The covariance
of the supergravity equations of motion under the PL T -duality was also shown in Refs. [141,142]
using mathematical approaches.

In this paper we revisit the traditional NATD in a general setup where the non-vanishing B-field and
the R–R fields are included. By assuming that the isometry group acts freely on the target space, we
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describe NATD as a kind of O(D, D) rotation of the supergravity fields. From the obtained O(D, D)
matrix, we can easily determine the transformation rule for the R–R fields by using the technique
of DFT. Indeed, by using the information of given isometry generators, we provide simple duality
transformation rules for bosonic fields.

We then demonstrate the efficiency of the formula by studying some concrete examples. Since
many examples have already been studied in the literature, in this paper we will just consider
the cases where the isometry group is non-unimodular, fab

a �= 0. This type of NATD is not well
studied because the resulting dual geometry does not satisfy the supergravity equations of motion
[23,25,28]. However, as pointed out in Refs. [143,144], the dual geometry in fact satisfies the gener-
alized supergravity equations of motion (GSE) [145,146]. When the target space satisfies the GSE,
string theory has scale invariance [145,147] and the κ-symmetry [146]. The conformal symmetry
may be broken, but recently a local counterterm that cancels out the Weyl anomaly was constructed
in Ref. [148] (see also Ref. [149]), and string theory may be consistently defined even in the gen-
eralized background. Even if it is not the case, NATD for a non-unimodular algebra still works as
a solution-generating technique in supergravity, because an arbitrary GSE solution can be mapped
to a solution of the usual supergravity [145,149–151] by performing a (formal) T -duality. Then,
combining the NATD with fab

a �= 0 and the formal T -duality, we can generate a new supergravity
solution.

We also study the PL T -plurality with the R–R fields. In fact, the PL T -plurality can be regarded as a
constant O(n, n) transformation acting on “untwisted fields” {ĤAB, d̂, F̂}. By requiring the untwisted
fields to satisfy the dualizability condition or the E-model condition of Ref. [148], we show that the
DFT equations of motion in the original and the transformed background are covariantly related by
the O(n, n) transformation. This shows that if the original background satisfies the DFT equations
of motion, the transformed background is also a solution of DFT. We also discuss the PL T -plurality
with spectator fields. Again, by requiring certain conditions for the untwisted fields, we show that
the DFT equations of motion are satisfied in the dual background. By using the proposed duality
rules, we study an example of the PL T -plurality with the R–R fields.

In studies of the PL T -plurality the so-called dilaton puzzle has been discussed, for example in
Refs. [55–58]. Under a PL T -plurality transformation, a dual-coordinate dependence (i.e. dependence
on the coordinates of the dual group G̃) can appear in the dilaton. When such coordinate dependence
appears, the background does not have the usual supergravity interpretation, and we are forced to
disallow such transformation. However, in DFT we can treat the dual coordinates and the usual
coordinates on an equal footing and we do not need to worry about the dilaton puzzle. As discussed
in Refs. [149,151], a DFT solution with a dual-coordinate-dependent dilaton can be regarded as a
solution of GSE, and by performing a further formal T -duality, we can obtain a linear dilaton solution
of the usual supergravity. In this way the issue of the dilaton puzzle is totally resolved and we can
consider an arbitrary PL T -plurality transformation.

This paper is organized as follows. In Sect. 2 we briefly review DFT and GSE. In Sect. 3 we begin
with a review of the traditional NATD, and translate the results into the language of DFT. We then
provide a general transformation rule for the R–R fields. Examples of NATD without and with the
R–R fields are studied in Sects. 4 and 5. In Sect. 6, we study the PL T -plurality in terms of DFT
and determine the transformation rules from the DFT equations of motion. As an example of the PL
T -plurality, in Sect. 7 we study the PL T -plurality transformation of AdS5 × S5 solution. Section 8
is devoted to conclusions and discussions.
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2. A review of DFT and GSE
2.1. Generalized-metric formulation of DFT

There are several equivalent formulations of DFT, but the generalized-metric formulation [120,121,
123,127] may be the most accessible; we thus utilize it as much as possible in this paper. In this
formulation, the fundamental fields are a symmetric tensor, called the generalized metric HMN (x),
and a scalar density e−2 d(x) called the DFT dilaton. The Lagrangian of DFT is given by

LDFT = e−2 dS,

S ≡ 1

8
HMN ∂M HPQ∂N HPQ − 1

2
HPQ ∂QHMN ∂N HPM + 4 ∂M d ∂N HMN

− 4 HMN ∂M d ∂N d − ∂M∂N HMN + 4 HMN ∂M∂N d. (2.1)

Here, the fields are supposed to depend on the generalized coordinates (xM ) = (xm, x̃m) (M =
1, . . . , 2D, m = 1, . . . , D), and we raise or lower the indices M , N by using the O(D, D)-invariant
metric ηMN and its inverse ηMN :

ηMN =
(

0 δn
m

δm
n 0

)
, ηMN =

(
0 δm

n

δn
m 0

)
. (2.2)

The generalized metric HMN is defined to be an O(D, D) matrix,

HM
P HN

Q ηPQ = ηMN , (2.3)

and this property allows us to define projection operators as

PMN ≡ 1

2

(
ηMN + HMN ), P̄MN ≡ 1

2

(
ηMN − HMN ), (2.4)

which satisfy PM
N +P̄M

N = δN
M . For consistency, we assume that arbitrary fields or gauge parameters

A(x) and B(x) satisfy the so-called section condition,

ηMN ∂M∂N A = 0, ηMN ∂M A ∂N B = 0. (2.5)

According to this requirement, none of the fields can depend on more than D coordinates. Under the
section condition, the DFT action is invariant under the generalized Lie derivative

£̂V HMN ≡ V P ∂PHMN + (
∂M V P − ∂PVM

)HPN + (
∂N V P − ∂PVN

)HMP,

£̂V d ≡ V M ∂M d − 1

2
∂M V M . (2.6)

Namely, the generalized Lie derivative generates the gauge symmetry of DFT, known as the gen-
eralized diffeomorphisms. Under the section condition, we can also check that the generalized Lie
derivative is closed, [£̂V1 , £̂V2] = £̂[V1, V2]C, by means of the C-bracket,

[V1, V2]M
C ≡ 1

2

(
£̂V1V M

2 − £̂V2V M
1

)
= V N

1 ∂N V M
2 − V N

2 ∂N V M
1 − V N[1 ∂M V2]N . (2.7)
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In particular, when the gauge parameters V M
a satisfy ηMN V M

a V N
b = 2 cab (cab a constant), we can

show that the C-bracket coincides with the generalized Lie derivative,

[Va, Vb]C = £̂Va V M
b = −£̂VbV M

a , (2.8)

similar to the case of the usual Lie derivative £va vm
b = [va, vb]m.

In fact, the scalar S in Eq. (2.1) can be understood as the generalized Ricci scalar curvature,

S ≡ 1

2

(
PMK PNL − P̄MK P̄NL) SMNKL, (2.9)

where the (semi-covariant) curvature SMNPQ is defined by

SMNPQ ≡ RMNPQ + RPQMN − �RMN �
R

PQ,

RMNPQ ≡ ∂M�NPQ − ∂N�MPQ + �MPR �N
R

Q − �NPR �M
R

Q. (2.10)

If we use the curvature S, the invariance of the DFT action under generalized diffeomorphisms is
manifest. Then, the DFT action can be understood as a natural generalization of the Einstein–Hilbert
action.

The equations of motion are also summarized in a covariant form as1

S = 0, SMN = 0, (2.11)

where the generalized Ricci tensor is defined by

SMN ≡ (
PM

P P̄N
Q + P̄M

P PN
Q) SRPQ

R. (2.12)

For concrete computation, the following expression may be more useful:

SMN = −2
(
PM

P P̄N
Q + P̄M

P PN
Q)KPQ, (2.13)

KMN ≡ 1

8
∂M HPQ ∂N HPQ − 1

2
∂(M |HPQ ∂PH|N )Q + 2 ∂M∂N d

+ (
∂P − 2 ∂Pd

) (1

2
HPQ ∂(M HN )Q + 1

2
HQ

(M | ∂QHP |N ) − 1

4
HPQ ∂QHMN

)
. (2.14)

When we make the connection to conventional supergravity, we suppose ∂̃m = 0 and parameterize
the generalized metric and the DFT dilaton as

(HMN ) =
(

gmn − Bmp gpq Bqn Bmp gpn

−gmp Bpn gmn

)
, e−2 d = e−2�

√|g|, (2.15)

by using the standard NS–NS fields {gmn, Bmn, �}. Then, S and SMN reduce to

S = R + 4 Dm∂m�− 4 Dm�Dm�− 1

12
Hmnp H mnp,

(SMN ) =
(

2 g(m|k s[kl] Bl|n) − s(mn) − Bmk s(kl) Bln Bmk s(kn) − gmk s[kn]
s[mk] gkn − s(mk) Bkm s(mn)

)
,

1 They are summarized as GMN ≡ SMN − 1
2 S HMN = 0. Here, the generalized Einstein tensor GMN satisfies

the Bianchi identity ∇M GMN = 0 [152], where ∇M is the covariant derivative for the connection �MNP.
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smn ≡ Rmn − 1

4
Hmpq Hn

pq + 2Dm∂n�− 1

2
DkHkmn + ∂k�H k

mn, (2.16)

and the following standard supergravity Lagrangian and the equations of motion are reproduced
from the DFT Lagrangian in Eq. (2.1) and the DFT equations of motion in Eq. (2.11):

L = √|g|e−2�
(

R + 4 Dm∂m�− 4 Dm�Dm�− 1

12
Hmnp H mnp

)
, (2.17)

R + 4 Dm∂m�− 4 Dm�Dm�− 1

12
Hmnp H mnp = 0, s(mn) = 0, s[mn] = 0. (2.18)

We can also introduce the R–R fields in a manifestly O(D, D) covariant manner. However, the
treatment of the R–R fields is slightly involved, and we will not write out the covariant expression
explicitly here (see Appendix B, and also Refs. [149,153] for the detail). In the following, aimed at
readers who are not familiar with DFT, we will try to describe the R–R fields as the usual p-form
fields as much as possible.

2.2. Gauged DFT

When we manifest the covariance under the PL T -plurality, it is convenient to rewrite the DFT
equations of motion in Eq. (2.11) by using the technique of the gauged DFT [131–134].

Suppose that the generalized metric HMN has the form

HMN (x) = [
U (x) Ĥ Uᵀ

(x)
]

MN , U ≡ (UM
A), (2.19)

where ĤAB is a constant matrix, which we call the untwisted metric. In this case it is useful to define
FABC and FA, called the gaugings or the generalized fluxes, as

FABC ≡ 3	[ABC], FA ≡ 	B
AB + 2 DAd,

	ABC ≡ −DAUB
M UMC = 	A[BC] DA ≡ UA

M ∂M UA
M ≡ (U−1)A

M . (2.20)

They behave as scalars under generalized diffeomorphisms.
By using the generalized fluxes, we can show that the DFT equations of motion in Eq. (2.11),

under the section condition, are equivalent to

R = 0, GAB = 0, (2.21)

where

R ≡ −2 P̄AB (2 DAFB − FA FB
) − 1

3
P̄ABCDEF FABC FDEF ,

GAB ≡ −4 P̄C[A DB]FC + 2 (FC − DC) F̌C[AB] − 2 F̌CD[A FCD
B]. (2.22)

Here, we have defined

(ηAB) ≡
(

0 δb
a

δa
b 0

)
, (ηAB) ≡

(
0 δa

b
δb

a 0

)
, F̌ABC ≡ P̄ABCDEF FDEF ,

PAB ≡ 1

2

(
ηAB + ĤAB

)
, P̄AB ≡ 1

2

(
ηAB − ĤAB

)
,

P̄ABCDEF ≡ P̄AD P̄BE P̄CF + PAD P̄BE P̄CF + P̄AD PBE P̄CF + P̄AD P̄BE PCF
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= 1
4

(ĤAD ĤBE ĤCF − ĤAD ηBE ηCF − ηAD ĤBE ηCF − ηAD ηBE ĤCF)
+ 1

2 η
AD ηBE ηCF , (2.23)

and the indices A, B are raised or lowered with ηAB and ηAB. Under the section condition we can
check that R = S. The equivalence between SMN = 0 and GAB = 0 is slightly more non-trivial, but
it is concisely explained in Ref. [134] (see also Appendix B).

In the flux formulation of DFT [134], we take the untwisted metric ĤAB as a diagonal Minkowski
metric, and then EA

M ≡ UA
M is regarded as the generalized vielbein. The fundamental fields are

EM
A and d, and the equations of motion in Eq. (2.21) can be derived from

L = e−2 d R. (2.24)

On the other hand, in this paper we rather interpret Eq. (2.19) as a reduction ansatz and the equations
of motion in Eq. (2.21) are just rewritings of Eq. (2.14), similar to the gauged DFT [131–133]. For
our purpose, it is enough to consider the cases where the generalized fluxes are constant. In that case,
the equations of motion are simple algebraic equations,

R = 1

12
FABC FDEF

(
3 ĤAD ηBE ηCF − ĤAD ĤBE ĤCF) − ĤAB FA FB = 0, (2.25)

GAB = 1

2

(
ηCE ηDF − ĤCE ĤDF) ĤG[A FCD

B] FEFG + 2 FD F̌D[AB] = 0, (2.26)

where we have again used the section condition.
In general, the untwisted metric and the DFT dilaton may depend on the coordinates yμ on the

uncompactified external spacetime. In this case, we denote the extended coordinates as (xM ) =
(yμ, xi, ỹμ, x̃i) and consider

HMN = [
U (xI ) Ĥ(yμ)Uᵀ

(xI )
]

MN , d = d̂(yμ)+ d(xI ), (2.27)

where (xI ) ≡ (xi, x̃i). By following Ref. [133], we assume that ĤAB(y) and d̂(y) satisfy

DAĤBC(y) = ∂AĤBC(y), DAd̂(y) = ∂Ad̂(y) (∂A ≡ δM
A ∂M ), (2.28)

and then the generalized Ricci scalar (under the section condition) becomes [133] [see Eq. (B.18)]

S = Ŝ + 1

12
FABC FDEF

(
3 ĤAD ηBE ηCF − ĤAD ĤBE ĤCF) − ĤAB FA FB

− 1

2
FA

BC ĤBD ĤCE DDĤAE + 2 FA DBĤAB − 4 FA ĤAB DBd̂, (2.29)

where Ŝ denotes the generalized Ricci scalar associated with {ĤAB, d̂}, and the fluxes FA and FABC

are now made of {UM
A(x), d(x)}. It is important to note that the equation of motion S = 0 is invariant

under a constant O(D, D) rotation

ĤAB → (C Ĥ Cᵀ
)AB, UA

M → CA
B UB

M , (2.30)

which also transforms the generalized fluxes covariantly. This transformation looks similar to the PL
T -plurality discussed in Sect. 6, but they are totally different transformations since Eq. (2.30) does
not change HMN while the PL T -plurality changes HMN .
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2.3. GSE from DFT

As already explained, if we choose a section ∂̃m = 0, the DFT equations of motion reproduce the
usual supergravity equations of motion. On the other hand, we can derive the GSE by choosing
another solution of the section condition [149,151],

HMN = HMN (x
m), d = d0(x

m)+ I m x̃m (I m a constant), (2.31)

where the DFT dilaton has a linear dependence on the dual coordinates. In order to satisfy the section
condition, we require the vector field I m to satisfy

£̂X HMN = £̂X d = 0, (X M ) ≡
(

I m

0

)
, (2.32)

which are equivalent to

X P ∂PHMN = X P ∂Pd = X P ∂Pd0 = 0, (2.33)

and indeed ensure the section condition,

ηMN ∂M HPQ ∂N d = X P ∂PHMN = 0, ηMN ∂M d ∂N d = 2 X P ∂Pd0 = 0. (2.34)

If we make the ansatz in Eq. (2.31) and parameterize HMN as usual in terms of {gmn, Bmn} and d0

as e−2 d0 = e−2�√|g|, the DFT equations of motion (without R–R fields) become

R + 4 Dm∂m�− 4 |∂�|2 − 1

2
|H3|2 − 4

(
I mIm + U mUm + 2 U m ∂m�− DmU m) = 0,

Rmn − 1

4
Hmpq Hn

pq + 2Dm∂n�+ DmUn + DnUm = 0, (2.35)

−1

2
DpHpmn + ∂p�H p

mn + U p Hpmn + DmIn − DnIm = 0,

where Um ≡ I n Bnm. They are precisely the GSE studied in Refs. [145–147]. When I m = 0 (where
the Killing equations are trivial), they reduce to the usual supergravity equations of motion.

Another way to derive the GSE is to make the modification

∂M d → ∂M d + X M (X M a generalized vector) (2.36)

everywhere in the DFT equations of motion [151]. As long as X M satisfies

£̂X HMN = £̂X d = 0, ηMN X M X N = 0, (2.37)

we can choose a gauge such that X M takes the form in Eq. (2.32) [149]. In terms of the generalized
flux, obviously this modification corresponds to

FA → FA + 2 X A
(
X A ≡ UA

M X M
)
. (2.38)

Even in the presence of the R–R fields, this replacement is enough to derive the type II GSE, although
we additionally need to require the isometry condition for the R–R fields,

£I F = 0. (2.39)
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2.4. A formal T -duality

In generalized backgrounds, where the supergravity fields satisfy the GSE, string theory may not have
conformal symmetry. Accordingly, when we obtain a generalized background as a result of NATD,
it is usually regarded as a problematic example and such backgrounds have not been considered
seriously. However, as discussed in Refs. [145,149–151], by performing a formal T -duality we can
always transform a generalized background to a linear-dilaton solution of the usual supergravity.
Here, we review what the formal T -duality is.

The DFT equations of motion are covariant under a constant O(D, D) transformation,

xM → 
M
N xN , HMN → (


H

ᵀ)

MN , ∂M d → ∂M d. (2.40)

In particular, if we consider an O(D, D) matrix,


 =
(

1 − ez ez

ez 1 − ez

)
, ez ≡ diag(0, . . . , 0, 1︸︷︷︸

xz

, 0, . . . , 0), (2.41)

it corresponds to the (factorized) T -duality along the xz-direction. For a given GSE solution with
d = d0 + I z x̃z, the O(D, D) rotation in Eq. (2.40) with Eq. (2.41) exchanges the coordinates xz and
x̃z, and the dilaton becomes d = d0 + I z xz. According to the Killing equation, the generalized metric
and d0 are independent of xz, and the dual coordinate x̃z does not appear in the resulting background.
This means that the GSE background is transformed to a solution of the usual supergravity with a
linear dilaton d = d0 + I z xz.

The reason we call this O(D, D) transformation a “formal” T -duality is as follows. The usual
Abelian T -duality in the presence of D Abelian isometries is an O(D, D) transformation,

HMN → 
M
P 
N

Q HPQ, ∂M d → ∂M d. (2.42)

The difference from Eq. (2.40) is whether the coordinates are transformed or not. If we transform the
coordinates, Eq. (2.40) is always a symmetry of the DFT equations of motion even without isometries.
In the presence of Abelian isometries, due to the coordinate independence, the transformation xM →

M

N xN is trivial and the formal T -duality reduces to the usual T -duality of Eq. (2.42). To stress the
difference, when we perform the transformation in Eq. (2.40) with Eq. (2.41) along a non-isometric
direction, we call it a formal T -duality.

3. Non-Abelian T -duality

In this section we study the traditional NATD in general curved backgrounds. We begin with a review
of NATD for the NS–NS sector. We then describe the duality as a kind of local O(D, D) rotation
and provide the general transformation rule for the R–R fields by employing the results of DFT. To
provide a closed-form expression for the duality rule, we restrict our discussion to the case where
we can take a simple gauge choice, xi(σ ) = const.

3.1. NS–NS sector

In the case of the Abelian T -duality, the dual action is obtained with the procedure of Refs. [8,11].
When a target space has a set of Killing vector fields vm

a that commute with each other, [va, vb] = 0,
the sigma model has a global symmetry generated by xm(σ ) → xm(σ ) + εa vm

a (σ ). This global
symmetry can be made a local symmetry by introducing gauge fields Aa(σ ) and replacing dxm →
Dxm ≡ dxm − Aa vm

a . We also introduce the Lagrange multipliers x̃a(σ ), which constrain the field
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strengths to vanish. Then, by integrating out the gauge fields Aa we obtain the dual action, where
the Lagrange multiplier x̃a becomes the embedding function in the dual geometry. In Ref. [19], this
procedure was generalized to the case of non-commuting Killing vectors. It was further developed
later, and in the following we review NATD in a general setup as discussed in Refs. [25,35].

We consider a target space with n generalized Killing vectors Va (a = 1, . . . , n) satisfying

£̂VaHMN = 0, [Va, Vb]C = fab
c Vc, ηMN V M

a V N
b = 2 cab, fab

d cdc = 0. (3.1)

Here, cab is a constant symmetric matrix. If we choose a section ∂̃m = 0 and parameterize the
generalized Killing vectors as

(V M
a ) ≡

(
vm

a

ṽam

)
≡
(

vm
a

v̂am + Bmn vn
a

)
, (3.2)

these conditions reduce to2

£va gmn = 0, ιva H3 + dv̂a = 0, v(a · v̂b) = cab,

£va vb = fab
c vc, £va v̂b = fab

c v̂c, fab
d cdc = 0, (3.3)

where the dot denotes a contraction of the index m. They are precisely the requirements to perform
NATD [25,35] (see Refs. [154,155] for the origin of the conditions).

Under the setup, we consider the gauged action by following the standard procedure [8,11].
Ignoring the dilaton term, the gauged action takes the form [25,35,154,155]

S ≡ 1

4πα′

∫
�

(
gmn Dxm ∧ ∗ Dxn − 2 Aa ∧ v̂a + Bab Aa ∧ Ab) + 1

2πα′

∫
B

H3

+ 1

4πα′

∫
�

(
2 Aa ∧ dx̃a + fab

c x̃c Aa ∧ Ab) (∂B = �), (3.4)

where we have introduced gauge fields Aa(σ ) ≡ Aa
a(σ ) dσ a (a = 0, 1) and have defined

Daxm ≡ ∂axm − Aa
a vm

a , Fa ≡ dAa + 1

2
fbc

a Ab ∧ Ac, Bab ≡ v̂[a · vb]. (3.5)

Under the conditions in Eq. (3.1), this action is invariant under the local symmetry,

δεx
m(σ ) = εa(σ ) vm

a (x), δεA
a(σ ) = dεa(σ )+ fbc

a Ab(σ ) εc(σ ),

δε x̃a(σ ) = cab ε
b(σ )− fab

c εb(σ ) x̃c(σ ). (3.6)

If we first use the equations of motion for the Lagrange multipliers x̃a, the field strengths Fa are
constrained to vanish and the gauge fields will become a pure gauge. Then, at least locally, we can
choose a gauge Aa = 0 and the original theory will be recovered,

S0 = 1

4πα′

∫
�

gmn dxm ∧ ∗ dxn + 1

2πα′

∫
B

H3. (3.7)

2 We can easily show that fca
d cdb + fcb

d cda = 0, and then the last condition can be expressed as fc[ad cb]d = 0.
We can further rewrite the same condition as 1

3 ιva ιvb ιvcH3 + ιv[a fbc]d v̂d = 0, which was used in Ref. [35].
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On the other hand, by using the equations of motion for Aa first, we obtain the dual model. For this
purpose, it is convenient to rewrite the action as

S = 1

4πα′

∫
�

gmn dxm ∧ ∗ dxn + 1

2πα′

∫
�

B2

+ 1

4πα′

∫
�

[
2 Aa ∧ νa + gab Aa ∧ ∗Ab + (Bab + fab

c x̃c)Aa ∧ Ab], (3.8)

where

νa ≡ dx̃a − vm
a gmn ∗ dxn − v̂a, gab ≡ gmn vm

a vn
b. (3.9)

Then, the equations of motion for Aa become3

νa = −gab ∗ Ab − (Bab + fab
c x̃c)Ab, (3.10)

and this can be solved for Aa as

Aa = −N (ab) ∗ νb − N [ab] νb, (3.11)

where we have defined

(N ab) ≡ (Eab + fab
c x̃c)

−1. (3.12)

After eliminating the gauge fields, the action becomes

S = 1

4πα′

∫
�

(
gmn dxm ∧ ∗ dxn + Bmn dxm ∧ dxn + N (ab) νa ∧ ∗νb + N [ab] νa ∧ νb

)
= − 1

4πα′

∫
�

d2σ
√−γ (γ ab − εab)

(
Emn ∂axm ∂bxn + N ab νaa νbb

)
, (3.13)

where Emn ≡ gmn + Bmn. In the above computation, we have assumed that the matrix (Eab + fab
c x̃c)

is invertible,4 but other than that the computation is general.
Now, a major difference from theAbelian case appears. In theAbelian case, by choosing the adapted

coordinates vm
a = δm

a we can always realize a gauge xa(σ ) = 0. However, in the non-Abelian case,
such a gauge choice is not always possible since we cannot realize vm

a = δm
a . In order to provide a

closed-form expression for the duality transformation rule, in this paper we assume that the gauge
symmetries can be fixed as xi(σ ) = ci (ci constant) under a suitable decomposition of spacetime
coordinates (xm) = (yμ, xi). This gauge choice removes n coordinates xi and instead introduces n
dual coordinates x̃a. Then, the situation is the same as the Abelian case.

Under the gauge choice xi(σ ) = ci, the action in Eq. (3.13) reproduces the dual action for the dual
coordinates x′m = (yμ, x̃a),

S = − 1

4πα′

∫
�

d2σ
√−γ (γ ab − εab)E′

mn ∂ax′m ∂bx′n, (3.14)

3 They can also be expressed as

dx̃a − (cab − fab
c x̃c)Ab = vm

a

(
gmn ∗ Dxn + Bmn Dxn

) + ṽam Dxm,

and reduce to the standard self-duality relation when ṽa = 0 and fab
c = 0.

4 Note that the invertibility is not ensured even in the Abelian case fab
c = 0.
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(
E′

mn

) ≡
(

Eμν − (
vaμ − v̂aμ

)
N ab

(
vbν + v̂bν

) (
vcμ − v̂cμ

)
N cb

−N ac
(
vcν + v̂cν

)
N ab

)∣∣∣∣
xi=ci

. (3.15)

Then, the NATD can be understood as a transformation of the target space geometry,

Emn → E′
mn. (3.16)

Regarding the transformation rule for the dilaton, we employ the result of Ref. [19],

e−2�′ = 1

|det(N ab)|e
−2�. (3.17)

3.2. NATD as O(D, D) transformation

In order to show a general transformation rule for the R–R fields, it is convenient to describe NATD
as O(D, D) rotations. Starting with the original background,

(Emn) =
(

Eμν Eμj

Eiν Eij

)
, (3.18)

we construct the dual background of Eq. (3.15) through the following three steps.

(1) We first perform a GL(D) transformation,

E → E(1) = 
v E
ᵀ
v , 
v ≡

(
δνμ 0

vνa vj
a

)
. (3.19)

As we have assumed, we can fix the gauge symmetry δεxi = εa vi
a such that xi(σ ) = ci is

realized. For this to be possible, det(vi
a) �= 0 should be satisfied and the GL(D) matrix 
v is

invertible. We then obtain

E(1) =
(

Eμν Eμn vn
b

vm
a Emν vm

a vn
b Emn

)
=
(

Eμν (vbμ − v̂bμ)+ ṽbμ

(vaν + v̂aν)− ṽaν Eab + v[a · ṽb]

)
, (3.20)

where we have used

vm
a Bmν = v̂aν − ṽaν , Bab = v̂[a · vb]. (3.21)

(2) We next perform a B-transformation,

E(1) → E(2) ≡ E(1) +
f , 
f ≡
(

0 −ṽbμ

ṽaν fab
c x̃c − v[a · ṽb]

)
, (3.22)

and obtain

E(2) =
(

Eμν (vbμ − v̂bμ)

(vaν + v̂aν) Eab + fab
c x̃c

)
. (3.23)

(3) Finally, we perform a T -duality transformation,

E(2) → E(3) ≡ (

̃T +
T E(2)

) (

T + 
̃T E(2)

)−1,


T ≡
(

1d−n 0
0 0

)
, 
̃T ≡

(
0 0
0 1n

)
, (3.24)
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and obtain

E(3) =
(

Eμρ (vcμ − v̂cμ)

0 1

)(
1 0

(vcν + v̂cν) Ecb + fcb
d x̃d

)−1

=
(

Eμν − (
vaμ − v̂aμ

)
N ab

(
vbν + v̂bν

) (
vcμ − v̂cμ

)
N cb

−N ac
(
vcν + v̂cν

)
N ab

)
. (3.25)

By choosing the gauge xi = ci, this precisely reproduces the dual background of Eq. (3.15).

Of course, each step is not a symmetry of supergravity, but this decomposition is useful when we
determine the transformation rule of the R–R fields. In terms of the generalized metric HMN , the
above NATD is expressed as a local O(D, D) transformation,

HMN → H′
MN = (h H hᵀ

)MN
∣∣
xi=ci ,

(hM
N ) ≡

(

T 
̃T


̃T 
T

)(
1 
f

0 1

)(

v 0
0 (
v)

−ᵀ

)
, (3.26)

and the O(D, D)matrix hM
N can be straightforwardly constructed from the given set of generalized

Killing vectors Va = (vm
a , ṽam).

Under a general O(D, D) rotation,

HMN → H′
MN = (h H hᵀ

)MN , hM
N ≡

(
pm

n qmn

rmn sm
n

)
,

Emn → E′
mn = [(q + p E) (s + r E)−1]mn = [(sᵀ − E rᵀ

)−1 (−qᵀ + E pᵀ
)]mn, (3.27)

the determinant of the metric transforms as (see, for example, Ref. [156])√|g| → √|g′| = |det(s + r E)|−1
√|g|. (3.28)

Therefore, under the NATD of Eq. (3.26) we obtain√|g′| = |det(
T + 
̃T E(2))|−1 |det(
v)|
√|g| ∣∣xi=ci

= |det(N ab)| |det(vi
a)|
√|g| ∣∣xi=ci . (3.29)

Combining this with Eq. (3.17), we obtain the transformation rule for the DFT dilaton:

e−2 d ′ = |det(vi
a)|e−2 d

∣∣
xi=ci . (3.30)

This shows that the DFT dilaton e−2 d transforms covariantly under the O(D, D) rotation.

3.3. R–R sector

Since the NS–NS fields are transformed covariantly under NATD, it is natural to expect that the R–R
fields are also transformed covariantly under the same O(D, D) rotation. Indeed, as we see from
many examples, under NATD HMN → H′

MN = (h H hᵀ
)MN

∣∣
xi=ci , the generalized Ricci tensors are

always transformed covariantly,

S ′
MN = (h S hᵀ

)MN
∣∣
xi=ci , S ′ = S∣∣xi=ci . (3.31)
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This shows that the R–R fields should also transform covariantly, in order to satisfy the equations of
motion of type II DFT (see Appendix B),

SMN = EMN , S = 0, (3.32)

where EMN is an O(D, D)-covariant energy–momentum tensor that contains the R–R fields.
In DFT, there are basically two approaches to describe the R–R fields. One treats the R–R fields

as an O(D, D) spinor [125], based on the earlier work in Ref. [157], and the other treats them as an
O(D)× O(D) bi-spinor [128], which is based on the approach of Refs. [158,159].

3.3.1. R–R fields as a polyform
We first explain the former because it is simpler. Since the treatment of the O(D, D) spinor can be
rephrased in terms of the differential form, here we treat the R–R field strength as the usual polyform
(see Appendices A and B for our convention),

F =
∑

p:even/odd

1

p! Fm1···mp dxm1 ∧ · · · ∧ dxmp (type IIA/IIB). (3.33)

Let us summarize the behavior of an O(D, D) spinor in terms of the polyform.

(1) Under a GL(D) subgroup of O(D, D) transformation,

(hM
N ) =

(
M 0
0 M−ᵀ

)
, M ∈ GL(D), (3.34)

a polyform F transforms as a GL(D) tensor,

F ′ = F (M ) ≡
∑

p

1

p! F (M )
m1···mp

dxm1 ∧ · · · ∧ dxmp ,

F (M )
m1···mp

≡ Mm1
n1 · · · Mmp

np Fn1···np . (3.35)

(2) Under the B-transformation,

(hM
N ) =

(
1d ω

0 1d

)
, (3.36)

a polyform F transforms as

F ′ = eω∧F ≡ F + ω ∧ F + 1

2! ω ∧ ω ∧ F + · · · . (3.37)

(3) Under the (factorized) T -duality along the xm-direction, it transforms as

F ′ = F · Txm , F · Txm ≡ F ∧ dx̃m + F ∨ dxm, (3.38)

where x̃m is the coordinate dual to xm, and ∨dxm denotes the interior product acting from the
right.

(4) An arbitrary O(D, D) transformation can be decomposed into the above three types of
transformations, but for later convenience we also show that under the β-transformation,

(hM
N ) =

(
1d 0
χ 1d

)
, (3.39)
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the transformation rule is given by

F ′ = eχ∨F ≡ F + χ ∨ F + 1

2! χ ∨ χ ∨ F + · · · , χ ∨ F ≡ 1

2
χmn ιmιn. (3.40)

By using the rules, the general formula for the R–R fields under the NATD of Eq. (3.26) becomes

F ′ = [
e�f ∧ F (
v)

] · Ty1 · · · Tyn
∣∣
xi=ci , �f ≡ 1

2
(
f )mn dxm ∧ dxn, (3.41)

where the order of Ty1 · · · Tyn is not important since the overall sign flip is a trivial symmetry.
Note that the field strength F = dA is known as the field strength in the A-basis [160] (which is

sometimes called the Page form). Another definition, G ≡ dC + H3 ∧ C, is known as the C-basis
(see Appendix A). In the dual background, G can be obtained as

G′ = e−B′
2∧F ′. (3.42)

We also note that the approach of Ref. [80] based on the Fourier–Mukai transformation (see also
Ref. [96] for an application) will be closely related to the procedure explained here.

3.3.2. R–R fields as a bi-spinor
Next, let us also explain the treatment of the R–R fields as a bi-spinor Gαβ . Starting with a polyform G
and a vielbein em

a associated with gmn, we define the flat components as Ga1···ap = em1
a1 · · · e

mp
ap Gm1···mp

and then define the bi-spinor G as

G =
∑

p

e�

p! Ga1···ap γ
a1···ap , (3.43)

where γ a1···ap ≡ γ [a1 · · · γ ap] and (γ a)αβ is the usual gamma matrix satisfying {γ a, γ b} = 2 ηab.
According to Refs. [128,158,159] (see also Ref. [153]), under a general O(D, D) rotation

HMN → (h H hᵀ
)MN , h =

(
p q
r s

)
, (3.44)

the bi-spinor transforms as

G → G	−1, (3.45)

where 	 is a spinor representation of the Lorentz transformation 
a
b,

	−1 γ̄ a	 = 
a
b γ̄

b, 
a
b ≡ [

eᵀ
(s + r E)−1(s − r Eᵀ

) e−ᵀ]a
b, (3.46)

and γ̄ a ≡ γ 11 γ a. In particular, under a T -duality along a (spatial) xz-direction, we have

	 = 	−1 = ea
z γa√
gzz

. (3.47)

When the vielbein ea
m has a diagonal form,	 is just the gamma matrix	 = γz. The	 corresponding

to the β-transformation

h =
(

1 0
χ 1

)
(3.48)
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was obtained in Ref. [153] as

	 = [det(E ′ E)ef ]− 1
2 Æ

(1
2 β

′ab γab
)

Æ
(−1

2 β
ab γab

)
, (3.49)

where Æ is similar to an exponential function defined in Ref. [158],

Æ
(1

2 β
ab γab

) ≡
5∑

p=0

1

2p p! β
a1a2 · · ·βa2p−1a2p γa1···a2p , (3.50)

the position of the indices a, b are changed with ηab, and we have also defined

Eab ≡ eam ebn Eᵀ
mn, βab ≡ −E [ab] , ẽm

a ≡ em
b (Eᵀ

)b
a,

E ′ab ≡ ẽa
m ẽb

n (E
mn + χmn), β ′ab ≡ −E ′[ab]. (3.51)

Now, let us consider the NATD in Eq. (3.26). Since it is not easy to find a general expression for
	, let us truncate the B-field and restrict ourselves to a simple background,

(Emn) =
(

gμν 0
0 ea

i eb
j ηab

)
. (3.52)

We also suppose the generalized Killing vectors have simple forms Va = vi
a ∂i

(
vi

a eb
j = δb

a

)
. Then,

the vielbein ea
m has the block-diagonal form

(ea
m) =

(
êâ
μ 0
0 ea

i

)
, (3.53)

and using this, we define the R–R bi-spinor as

G =
∑

p

e�

p! Ga1···ap γ
a1···ap , Ga1···ap ≡ em1

a1
· · · e

mp
ap Gm1···mp . (3.54)

Under the first GL(D) transformation, G is invariant while the internal part of the vielbein becomes
an identity matrix ea

i = δa
i . We then perform the B-transformation and T -dualities, but it is more

useful to perform the T -dualities first, because the vielbein is now just an identity matrix. Namely, we
rewrite the B-transformation and T -dualities as T -dualities and the β-transformation with parameter
χab ≡ fab

c x̃c,(

T 
̃T


̃T 
T

)(
1 
f

0 1

)
=
(

1 0

f 1

)(

T 
̃T


̃T 
T

)
, 
f =

(
0 0
0 χab

)
. (3.55)

Under the T -dualities and the β-transformation, the bi-spinor is transformed as

G → G	−1, 	−1 = [det(δd
c + χc

d)]− 1
2 Æ

(1
2 χ

ab γab
) n∏

a=1

γa. (3.56)

This appears to be consistent with the formula given in Eq. (3.8) of Ref. [73] up to convention.
If we need to consider the spacetime fermions such as the gravitino and the dilatino, they are

also transformed by this 	, and this approach will be important. However, in order to determine the
transformation rule for the R–R fields, the first approach will be more useful.
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4. Examples without R–R fields

In this section we study examples of NATD without the R–R fields. In the absence of the R–R fields,
our setup is basically the same as the standard one. In order to find new solutions, we consider NATD
for non-unimodular algebras fba

b �= 0.
As found in Ref. [23], in non-unimodular cases the dual geometry does not solve the supergravity

equations of motion. However, as recently found in Ref. [143], the dual geometry is a solution of
GSE. Additional examples were discussed in Ref. [144], and there, by using the result of Ref. [28],
it was shown that the Killing vector I in GSE is given by a simple formula,

I = fba
b ∂̃a. (4.1)

As we reviewed in Sect. 2, an arbitrary solution of GSE can be regarded as a solution of DFT with
linear dual-coordinate dependence. Then, through a formal T -duality in DFT, the GSE solution can
be mapped to a solution of the conventional supergravity. In this section we generate new solutions
of supergravity by combining the NATD for a non-unimodular algebra and the formal T -duality.

In fact, by allowing for non-unimodular algebras, we can perform a rich variety of NATD. In
order to demonstrate that, we consider several non-Abelian T -dualities of a single solution, the
AdS3 × S3 × T4 background with the H -flux.

4.1. AdS3 × S3 × T4: Example 1

In the first example, we introduce the coordinates as

ds2 = 2 dx+ dx− + dz2

z2 + ds2
S3 + ds2

T4 B2 = dx+ ∧ dx−

z2 + ω2,

ds2
S3 ≡ 1

4

[
dθ2 + sin2 θ dφ2 + (dψ + cos θ dφ)2

]
, ω2 ≡ −1

4
cos θ dφ ∧ dψ . (4.2)

We then consider the generalized isometries generated by two generalized Killing vectors,

V1 ≡ (v1, ṽ1) ≡ (−(x+)2 ∂+ + z2

2 ∂− − x+ z ∂z , dx+ − x+
z dz

)
,

V2 ≡ (v2, ṽ2) ≡ (−x+ ∂+ − z
2 ∂z , − 1

2 z dz
)
, (4.3)

which satisfy the algebra [V1, V2]C = V1. The structure constant has the non-vanishing trace fb2
b =

f12
1 = 1, and the dual background will be a solution of GSE.

The B-field is not isometric along the v1 direction, £v1B2 �= 0, and the dual component ṽ1 is
necessary to satisfy the generalized Killing equations £v1B2 +dṽ1 = 0. Moreover, in order to realize
[V1, V2]C = V1, the dual component of V2 is also necessary. In this case, we find

(cab) =
(

0 0
0 1

2

)
�= 0, (4.4)

but the requirement fab
d cdc = 0 in Eq. (3.1) is not violated and we can perform the NATD. The

gauge symmetry associated with the generalized Killing vector V2,

δε2x+(σ ) = ε2 v+
2 (x) = −ε2(σ ) x+(σ ), (4.5)
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can be fixed by realizing x+(σ ) = 1. Similarly, the gauge symmetry associated with V1,

δε1z(σ ) = ε1 vz
1(x)

∣∣
x+=1 = −ε1(σ ) z(σ ), (4.6)

can be also fixed as z(σ ) = 1.
The AdS parts of the matrices in Eq. (3.26) (before the gauge fixing) become

(
v) =
⎛⎜⎝−(x+)2 z2

2 −x+ z
0 1 0

−x+ 0 − z
2

⎞⎟⎠, (
f ) =
⎛⎜⎝ 0 0 0

0 0 x̃+ − x+
2

−x̃+ + x+
2 0 0

⎞⎟⎠, (4.7)

and under the gauge x+ = 1 and z = 1, the dual background becomes

ds′2 = dx̃2+ + 2 (1 − 4 x̃+) dx̃+ dx−

4 x̃2+
+ 2 dx− dz̃

x̃+
+ ds2

S3×T4, e−2�′ = x̃2+,

B′
2 = (1 − 4 x̃+) dx̃+ ∧ dx−

4 x̃2+
− (dx̃+ + dx−) ∧ dz̃

x̃+
+ ω2. (4.8)

As expected, this background does not solve the conventional supergravity equations of motion, but
instead satisfies the GSE with the Killing vector

I ′ = fab
a ∂̃b = ∂̃z. (4.9)

Interestingly, this geometry is locally the same as the original AdS3 × S3 spacetime. Indeed, by
changing coordinates as

x′+ ≡ z̃ − x̃+ + 1

4
ln x̃+, x′− ≡ x−, z′ ≡ √

x̃+, (4.10)

we obtain the expressions

ds2 = 2 dx′+ dx′− + dz′2

z′2 + ds2
S3×T4, e−2� = z′4,

B2 = dx′+ ∧ dx−

z′2 + 2 dx′+ ∧ dz′

z′ + ω2, I = ∂ ′+. (4.11)

In fact, we can find a two-parameter family of solutions,

ds2 = 2 dx+ dx− + dz2

z2 + ds2
S3×T4, e−2� = z4 c0 c1 ,

B2 = dx+ ∧ dx−

z2 + 2 c1 dx+ ∧ dz

z
+ ω2, I = c0 ∂+, (4.12)

and NATD maps the original solution (c0, c1) = (0, 0) to the dual solution (c0, c1) = (1, 1).
The metric in Eq. (4.11) is the same as the original one in Eq. (4.2), and the B-field is also just

shifted by a closed form B2 → B2 + 2 dx+ ∧ d ln z. The essential difference from the original
background is in the dilaton and I m. We note that, unlike the case of “trivial solutions” [161], we
cannot remove the Killing vector I m in the dual geometry of Eq. (4.11).5

5 According to Ref. [162], a solution of GSE is a trivial solution (namely, it also satisfies the supergravity
equations of motion with I = 0) only when K̃m ≡ I n Bnp gpm satisfies £K̃ gmn = 0, £K̃� + (I + K̃)2 = 0, and
dI1 + ιK̃ H3 = 0 (I1 ≡ I m gmn dxn), but they are not satisfied here.
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It is natural to consider performing a B-field gauge transformation in order to undo the shift in
the B-field. However, in the standard GSE (where the only modification is given by the Killing
vector I m), the gauge symmetry for the B-field is already fixed and we cannot perform a B-field
gauge transformation. Indeed, if we remove the closed form in the B-field by hand, we find another
solution:

ds2 = 2 dx+ dx− + dz2

z2 + ds2
S3×T4, e−2� = z4 c1 ,

B2 = dx+ ∧ dx−

z2 + ω2, I = c0 ∂+, (4.13)

where c0 is a free parameter and c1 can take two values, c1 = 0 or c1 = 1. This is an example of the
trivial solution and c0 can be chosen as c0 = 0. Then, we get two AdS3 × S3 × T4 solutions of the
supergravity with two different dilatons, c1 = 0 and c1 = 1.

For an arbitrary GSE solution, by taking a coordinate system with I = I z ∂z we can regard it as
a DFT solution with the DFT dilaton d = d0 + I z x̃z (e−2 d0 ≡ e−2�√|g|). Then, if we perform
a formal T -duality that exchanges x̃z with the physical coordinate xz, we can get a solution of the
conventional supergravity where the DFT dilaton is d = d0+I z xz. In the present example, Eq. (4.12),
we perform a formal T -duality along the x+-direction, and then the DFT dilaton becomes a function
of the physical coordinates,

e−2 d = e−2 c0 x+
z4 c0 c1

√
sin2 θ

64 z6 . (4.14)

Then, the dual-coordinate dependence disappears from the background fields. However, in this case
the AdS part of the dualized generalized metric becomes

(HMN ) =
(

gmn − Bmp gpq Bqn Bmp gpn

−gmp Bpn gmn

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 z2 0

0 0 0 0 −1 0

0 0 1
z2 −2 c1

z −2 c1 z 0

1 0 −2 c1
z 4 c2

1 0 2 c1 z

z2 −1 −2 c1 z 0 0 0

0 0 0 2 c1 z 0 z2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(4.15)

and we cannot extract the supergravity fields {gmn, Bmn, �} from HMN due to det(gmn) = 0. This
type of (genuinely) DFT solution is called the non-Riemannian background [163], and is studied in
detail in Refs. [164–167]. Using a parameterization given in Ref. [165], we find that

(HMN ) =
(
δ

p
m Bmp

0 δm
p

)(
Kpq X 1

p Y q
1 − X̄ 1̄

p Ȳ q
1̄

Y p
1 X 1

q − Ȳ p
1̄

X̄ 1̄
q H pq

)(
δ

q
n 0

−Bqn δn
q

)
,

H =
⎛⎜⎝ 4 c2

1 0 2 c1 z
0 0 0

2 c1 z 0 z2

⎞⎟⎠, K =
⎛⎜⎝

1
4 c2

1
0 0

0 0 0
0 0 0

⎞⎟⎠, B =
⎛⎜⎝ 0 0 − 1

2 c1 z

0 0 0
1

2 c1 z 0 0

⎞⎟⎠,

X 1 =
⎛⎜⎝− z

2
0
c1

⎞⎟⎠, X̄ 1̄ =
⎛⎜⎝− z

2
1
z

c1

⎞⎟⎠, Y1 =
⎛⎜⎝ 0

−z
1
c1

⎞⎟⎠, Ȳ1̄ =
⎛⎜⎝0

z
0

⎞⎟⎠. (4.16)
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In the parameterization of Ref. [165], there are in general n pairs of vectors (X i, Y i) and ñ pairs of vec-
tors (X̄ī, Ȳī), and such a non-Riemannian background is called a (n, ñ) solution. In this classification,
this background is a (1, 1) solution.

In this way, in the first example of NATD, the formal T -duality does not produce the usual
supergravity solution, and we instead obtain a (1, 1) non-Riemannian background.

4.2. AdS3 × S3 × T4: Example 2

In the second example, we take the coordinates

ds2 = −dt2 + dx2 + dz2

z2 + ds2
S3×T4, B2 = dt ∧ dx

z2 + ω2, (4.17)

and consider the translation and the dilatation generators as the generalized Killing vectors,

V1 ≡ (v1, ṽ1) ≡ (
∂x , 0

)
, V2 ≡ (v2, ṽ2) ≡ (

t ∂t + x ∂x + z ∂z , 0
)
, (4.18)

which satisfy [V1, V2]C = V1 and cab = 0. Here, we fix the gauge as x(σ ) = 0 and z(σ ) = 1.
The AdS3 parts of the transformation matrices are

(
v) =
⎛⎜⎝1 0 0

0 1 0
t x z

⎞⎟⎠, (
f ) =
⎛⎜⎝ 0 0 0

0 0 x̃
−x̃ 0 0

⎞⎟⎠, (4.19)

and the NATD gives

ds′2 = −x̃2 dt2 + 2 (1 − t x̃) dt dx + (1 − t2) dx̃2 + dz̃2

1 − 2 t x̃ + x̃2 + ds2
S3×T4,

B′
2 = [ (t − x̃) dx̃ − x̃ dt ] ∧ dz̃

1 − 2 t x̃ + x̃2 + ω2, e−2�′ = 1 − 2 t x̃ + x̃2. (4.20)

This satisfies the GSE by introducing the Killing vector as I ′ = fab
a ∂̃b = ∂̃z.

Again, in order to remove the Killing vector I , let us perform a formal T -duality along the z̃-
direction. This yields a simple linear-dilaton solution of the supergravity,

ds2 = 2 dt dx̃ + dx̃2 − 2 x̃ dt dz + 2 (t − x̃) dx̃ dz + (
1 − 2 t x̃ + x̃2) dz2 + ds2

S3×T4,

B2 = ω2, � = z, (4.21)

where the AdS part of the B-field has disappeared.

4.3. AdS3 × S3 × T4: Example 3

We next use the Rindler-type coordinates,

ds2 = −x2 dt2 + dx2 + dz2

z2 + ds2
S3×T4, B2 = x dt ∧ dx

z2 + ω2, (4.22)

and consider the generalized Killing vectors

V1 ≡ (v1, ṽ1) ≡ (
∂t , 0

)
, V2 ≡ (v2, ṽ2) ≡ (

e−t(x−1 ∂t + ∂x
)

, 0
)
, (4.23)

which satisfy [V1, V2]C = −V2 and cab = 0. Here, we take a gauge t(σ ) = 0 and x(σ ) = 1.
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The AdS parts of the transformation matrices are

(
v) =
⎛⎜⎝ 1 0 0

e−tx−1 e−t 0
0 0 1

⎞⎟⎠, (
f ) =
⎛⎜⎝0 0 0

0 0 −x̃
x̃ 0 0

⎞⎟⎠, (4.24)

and the dual background, which satisfies the GSE, becomes

ds′2 = dx̃2 − 2 dt̃ dx̃

x̃ (2 − x̃ z2)
+ dz2

z2 + ds2
S3×T4, e−2�′ = x̃ (x̃ z2 − 2)

z2 ,

B′
2 = 1 − x̃ z2

x̃ (2 − x̃ z2)
dt̃ ∧ dx̃ + ω2, I ′ = ∂̃ t . (4.25)

In order to obtain a solution of the supergravity, we again perform a formal T -duality along the
t̃-direction. Again, we find a non-Riemannian background,

(HMN ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x̃ (x̃ z2 − 2) 1 − x̃ z2 0 x̃ z2 − 1 x̃ (x̃ z2 − 2) 0
1 − x̃ z2 z2 0 −z2 1 − x̃ z2 0

0 0 1
z2 0 0 0

x̃ z2 − 1 −z2 0 0 0 0
x̃(x̃ z2 − 2) 1 − x̃ z2 0 0 0 0

0 0 0 0 0 z2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4.26)

where the S3 × T4 part of the generalized metric is not displayed. This is also a (1, 1) solution,

(HMN ) =
(
δ

p
m Bmp

0 δm
p

)(
Kpq X 1

p Y q
1 − X̄ 1̄

p Ȳ q
1̄

Y p
1 X 1

q − Ȳ p
1̄

X̄ 1̄
q H pq

)(
δ

q
n 0

−Bqn δn
q

)
,

H =
⎛⎜⎝0 0 0

0 0 0
0 0 z2

⎞⎟⎠, K =
⎛⎜⎝0 0 0

0 0 0
0 0 1

z2

⎞⎟⎠, B =
⎛⎜⎝0 −1

2 0
1
2 0 0
0 0 0

⎞⎟⎠,

X 1 =
⎛⎜⎝ x̃ z2

2

− z2

2
0

⎞⎟⎠, X̄ 1̄ =
⎛⎜⎝

2
z2 − x̃

1
0

⎞⎟⎠, Y1 =
⎛⎜⎝ 1

x̃ − 2
z2

0

⎞⎟⎠, Ȳ1̄ =
⎛⎜⎝ z2

2
x̃ z2

2
0

⎞⎟⎠. (4.27)

To briefly summarize, NATD works well as a solution-generating technique of DFT even if the
isometry algebra is non-unimodular. If we additionally perform a formal T -duality, we usually
obtain the usual supergravity solution. Sometimes, the parameterization of the generalized metric
becomes singular and we obtain a non-Riemannian background, which does not have the usual
supergravity interpretation. However, they are interesting backgrounds by themselves, as discussed
in Refs. [164–167]. Therefore, it is important to study NATD for non-unimodular algebras more
seriously.

5. Examples with R–R fields

In this section we consider NATD with non-vanishing R–R fields. After reproducing a known
example, we again consider examples for non-unimodular algebras.

For convenience, let us display the summary of the duality rules. Under the setup

£̂VaHMN = 0, [Va, Vb]C = fab
c Vc, ηMN V M

a V N
b = 2 cab, fab

d cdc = 0, (5.1)
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where (V M
a ) = (vm

a , ṽam), the dual background is given by

H′
MN = (h H hᵀ

)MN
∣∣
xi=ci , e−2 d ′ = |det(vi

a)|e−2 d
∣∣
xi=ci ,

F ′ = [
e�f ∧ F (
v)

] · Ty1 · · · Tyn
∣∣
xi=ci , I = fba

b ∂̃a, (5.2)

where

(hM
N ) ≡

(

T 
̃T


̃T 
T

)(
1 
f

0 1

)(

v 0
0 (
v)

−ᵀ

)
, �f ≡ 1

2
(
f )mn dxm ∧ dxn, (5.3)


v ≡
(
δνμ 0

vνa vj
a

)
, 
f ≡

(
0 −ṽbμ

ṽaν fab
c x̃c − v[a · ṽb]

)
, 
T ≡

(
1d−n 0

0 0

)
, 
̃T ≡

(
0 0
0 1n

)
,

and the coordinates are transformed as (xm) = (yμ, xi) → (x′m) = (yμ, x̃a).

5.1. AdS3 × S3 × T4

As the first example of NATD with the R–R fields, let us review the example of Ref. [72] and
demonstrate that our formula gives the same result. The original background is

ds2 = −dt2 + dx2 + dz2

�2 z2 + 1

4 �2

[
dθ2 + sin2 θ dφ2 + (dψ + cos θ dφ)2

] + ds2
T4,

G3 = 2 dt ∧ dx ∧ dz

�2 z3 − sin θ

4 �2 dθ ∧ dφ ∧ dψ , (5.4)

where the AdS3 and S3 part has the curvature R = ∓6 �2.
We perform NATD associated with three generalized Killing vectors on the S3,

V1 = (
cosψ ∂θ + sinψ

sin θ ∂φ − sinψ
tan θ ∂ψ , 0

)
,

V2 = (− sinψ ∂θ + cosψ
sin θ ∂φ − cosψ

tan θ ∂ψ , 0
)
, V3 = (∂ψ , 0), (5.5)

which satisfy

[V1, V2]C = V3, [V2, V3]C = V1, [V3, V1]C = V2. (5.6)

As is clear from the explicit form of the Killing vectors, we can choose a gauge

θ(σ ) = π

2
, φ(σ) = 0, ψ(σ) = 0. (5.7)

The (θ , φ, ψ) parts of the transformation matrices are

(
v) =
⎛⎜⎝ cosψ sinψ

sin θ − sinψ
tan θ

− sinψ cosψ
sin θ − cosψ

tan θ
0 0 1

⎞⎟⎠, (
f ) =
⎛⎜⎝ 0 ψ̃ −φ̃

−ψ̃ 0 θ̃

φ̃ −θ̃ 0

⎞⎟⎠, (5.8)

and the NS–NS fields in the dual background are

ds′2 = −dt2 + dx2 + dz2

�2 z2 + 4 �2
(
δij + 16 �4 ui uj

)
dui duj

1 + 16 �4 uk uk
+ ds2

T 4 ,
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B′
2 = −8 �4 εijk ui duj ∧ duk

1 + 16 �4 uk uk
, e−2�′ = 1 + 16 �4 uk uk

64 �6 , (5.9)

where we have denoted (ui) ≡ (θ̃ , φ̃, ψ̃), ui ≡ ui, and ε123 = 1.
Now, let us consider the R–R fields. Under the gauge in Eq. (5.7), the Page form becomes

F =
(2 dt ∧ dx ∧ dz

�2 z3 − dθ ∧ dφ ∧ dψ

4 �2

)
∧ [

1 − vol(T 4)
]
. (5.10)

The first GL(D) transformation is trivial,
v = 1, under the gauge in Eq. (5.7). We next perform the
B-transformation F → e�f ∧F where

�f = u1 dφ ∧ dψ + u2 dψ ∧ dθ + u3 dθ ∧ dφ. (5.11)

Finally, by performing T -dualities along the (θ , φ, ψ)-directions, we obtain

F ′ = (
F + �f ∧ F

)
(∧du1 + ∨dθ) (∧du2 + ∨dφ) (∧du3 + ∨dψ)

=
[ 1

4 �2 − 2 dt ∧ dx ∧ dz ∧ (ui dui − du1 ∧ du2 ∧ du3)

�2 z3

]
∧ [

1 − vol(T 4)
]
. (5.12)

From this Page form we get the R–R field strengths in the C-basis as

G′
0 = 1

4 �2 , G′
2 = 2 �2 εijk ui duj ∧ duk

1 + 16 �4 ul ul
,

G′
4 = −2 dt ∧ dx ∧ dz ∧ ui dui

�2 z3 − vol(T 4)

4 �2 . (5.13)

These are precisely the solution of the massive type IIA supergravity obtained in Ref. [72].
Since the R–R potential also behaves as an O(D, D) spinor in DFT, let us also explain how to

determine the R–R potential in the dual background. Due to the gauge fixing of Eq. (5.7), the Page
form takes the form in Eq. (5.10). Then the R–R potential in the A-basis is

A = −
(dt ∧ dx

�2 z2 + θ dφ ∧ dψ

4 �2

)
∧ [

1 − vol(T 4)
]
, (5.14)

where θ should not be set to θ = π/2 in order to realize F = dA. Similar to the field strength,
GL(D) transformation is trivial, and the B-transformation A → e�f ∧A and T -dualities along the
(θ , φ, ψ)-directions give

A′ =
[ ũ1 du1

4 �2 + dt ∧ dx ∧ (ui dui − du1 ∧ du2 ∧ du3)

�2 z2

]
∧ [

1 − vol(T 4)
]
, (5.15)

where we have denoted ũ1 ≡ θ as it is dual to u1 = θ̃ . Since A depends on the dual coordinate
explicitly, the relation between F and A is generalized as [see Eq. (B.38)]

F = dA, d ≡ dxm ∧ ∂m + ιm ∂̃
m, (5.16)

and the A′ in Eq. (5.15) correctly reproduces the F ′ obtained in Eq. (5.12). This result is consistent
with Ref. [126], where the massive type IIA supergravity was reproduced from DFT by introducing
a linear dual-coordinate dependence into the R–R one-form potential. The potential in the C-basis
can also be obtained by computing C ′ = e−B′

2∧A′.
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5.2. AdS5 × S5

As the second example, let us consider a NATD of the AdS5 × S5 background associated with a
non-unimodular algebra. The original AdS5 × S5 background is

ds2 = ημν dxμ dxν + dz2

z2 + ds2
S5 , (ημν) ≡ diag(−1, 1, 1, 1),

G = 4
(−dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dz + ω5

)
, (5.17)

where

ds2
S5 ≡ dr2 + sin2 r dξ2 + sin2 r cos2 ξ dφ2

1 + sin2 r sin2 ξ dφ2
2 + cos2 r dφ2

3 ,

ω5 ≡ sin3 r cos r sin ξ cos ξ dr ∧ dξ ∧ dφ1 ∧ dφ2 ∧ dφ3. (5.18)

We consider a NATD associated with two Killing vectors,

V M
1 = (z ∂z + xμ ∂μ, 0), V M

2 = (∂1, 0), (5.19)

which satisfy [V1, V2]C = −V2. The gauge symmetry can be fixed as z(σ ) = 1 and x1(σ ) = 0, and
the AdS parts of the transformation matrices are

(
v) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
x0 x1 x2 x3 z

⎞⎟⎟⎟⎟⎟⎠, (
f ) =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 x̃1

0 0 0 0 0
0 0 0 0 0
0 −x̃1 0 0 0

⎞⎟⎟⎟⎟⎟⎠. (5.20)

For simplicity, we denote (uμ) ≡ (x0, x̃1, x2, x3); then the dual background becomes

ds′2 = dz̃2 + aμν duμ duν

1 + ηρσ uρ uσ
+ ημν duμ duν + ds2

S5 , e−2�′ = 1 + ημν uμ uν ,

B′
2 = (−u0 du0 − u1 du1 + u2 du2 + u3 du3) ∧ dz̃

1 + ηρσ uρ uσ
, (5.21)

where

(aμν) =

⎛⎜⎜⎜⎝
−u0 u0 −u0 u1 u0 u2 u0 u3

−u1 u0 −u1 u1 u1 u2 u1 u3

u2 u0 u2 u1 −u2 u2 −u2 u3

u3 u0 u3 u1 −u3 u2 −u3 u3

⎞⎟⎟⎟⎠. (5.22)

Regarding the R–R fields, the first GL(D) transformation does not change the Page form and the
next B-transformation gives

F = 4
(−du0 ∧ du1 ∧ du2 ∧ du3 ∧ dz + ω5

) + 4 u1 ω5 ∧ du1 ∧ dz. (5.23)

The Abelian T -dualities along the z and x1 directions give

F ′ = −4 du0 ∧ du2 ∧ du3 + 4ω5 ∧ dz̃ ∧ du1 + 4 u1 ω5. (5.24)
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From this Page form, we find that

G′
3 = −4 du0 ∧ du2 ∧ du3, G′

5 = −4 u1 du0 ∧ du1 ∧ du2 ∧ du3 ∧ dz̃

1 + ημν uμ uν
+ u1 dω4. (5.25)

Then, by introducing I = fba
b ∂̃a = ∂̃z, they satisfy the type IIB GSE.

In order to obtain a solution of the usual supergravity, we perform a formal T -duality along the
z̃-direction. By using the T -duality rule in Eq. (A.14), we obtain a simple type IIA solution:

ds2 = (1 + ημν uμ uν) dz2 + 2
(−u0 du0 − u1 du1 + u2 du2 + u3 du3) dz

+ ημν duμ duν + ds2
S5 , � = z, G4 = 4e−zdz ∧ du0 ∧ du2 ∧ du3. (5.26)

5.3. AdS3 × S3 × T4 with NS–NS and R–R fluxes

In order to demonstrate the efficiency of our formula, let us consider a more involved example. We
start with the AdS3 × S3 × T4 solution with the NS–NS and the R–R fluxes,

ds2 = −dt2 + dx2 + dz2

z2 + 1

4

[
dθ2 + sin2 θ dφ2 + (dψ + cos θ dφ)2

] + ds2
T4,

B2 = p
(dt ∧ dx

z2 − cos θ dφ ∧ dψ

4

)
, G3 = q

(2 dt ∧ dx ∧ dz

z3 − sin θ dθ ∧ dφ ∧ dψ

4

)
,

(5.27)

where p and q are constants satisfying p2 + q2 = 1 . The Page form is

F = G3 + F5 − (G3 + F5) ∧ volT4, F5 ≡ d
(p q cos θ

4 z2

)
∧ dt ∧ dx ∧ dφ ∧ dψ . (5.28)

Then, we consider two generalized Killing vectors,

V1 ≡ (v1, ṽ1) ≡ (
t ∂t + x ∂x + z ∂z , 0

)
,

V2 ≡ (v2, ṽ2) ≡ (−2 t x ∂t + (−t2 − x2 + z2) ∂x − 2 x z ∂z , 2 p dt − 2 p t
z dz

)
, (5.29)

which satisfy [V1, V2]C = V2 and cab = 0. The B-field is isometric along the dilatation generator
£v1B2 = 0, but it is not isometric along the special-conformal generator £v2B2 �= 0 and the dual
component ṽ2 is important. Here, we choose the gauge as t(σ ) = 1 and x(σ ) = 1.

The AdS parts of the transformation matrices are

(
v) =
⎛⎜⎝ t x z

−2 t x −t2 − x2 + z2 −2 x z
0 0 1

⎞⎟⎠, (
f ) =
⎛⎜⎝ 0 x̃ 0

−x̃ 0 −2 p
z

2 p
z 0 0

⎞⎟⎠, (5.30)

and the NS–NS fields and the Killing vector take the form

ds′2 = z2 dt̃2 + 2 dt̃ dx̃ + dx̃2 + (x̃−p)2−1
z2 dz2 − 2

z

[
2 x̃ dt̃ + (x̃ − p) dx̃

]
dz

z2 + (x̃ + p)2 − 1
+ ds2

S3 + ds2
T4,

B′
2 = −z (x̃ + p) dt̃ ∧ dx̃ − [

z2 + 2 p (x̃ + p)− 2
]

dt̃ ∧ dz + dx̃ ∧ dz

z
[
z2 + (x̃ + p)2 − 1

] − p cos θ dφ ∧ dψ

4
,

e−2�′ = z2 + (x̃ + p)2 − 1, I ′ = −∂̃ t . (5.31)
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For the R–R fields, the first GL(D) transformation makes the replacement

dt ∧ dx ∧ dz → z2 dt ∧ dx ∧ dz (5.32)

in the Page form of Eq. (5.28), and by further acting e�f ∧ and Tt · Tx, we obtain the Page form in
the dual background,

F ′
1 = −2 q dz

z
, F ′

3 = 2 q

z

[
p dz ∧ cos θ dφ ∧ dψ

4
+ z (x̃ + p) ωS3

]
,

F ′
5 = 2 q

z

[
dz ∧ volT4 − (

z dt̃ ∧ dx̃ + 2 p dt̃ ∧ dz
) ∧ ωS3

]
,

F ′
7 = −2 q

z

[
p dz ∧ cos θ dφ ∧ dψ

4
+ z (x̃ + p) ωS3

]
∧ volT4,

F ′
9 = 2 q

z

(
z dt̃ ∧ dx̃ + 2 p dt̃ ∧ dz

) ∧ ωS3 ∧ volT4, (5.33)

where ωS3 ≡ 1
8 sin θ dθ ∧ dφ ∧ dψ . Finally, the field strength G′ = e−B′

2∧F ′ becomes

G′
1 = −2 q dz

z
, G′

3 = 2 q (x̃ + p)

[
− z−1 dt̃ ∧ dx̃ ∧ dz

(x̃ + p)2 + z2 − 1
+ ωS3

]
,

G′
5 = 2 q

[
x̃ (z2 − 2)− p z2

]
dt̃ ∧ dz − (x̃ + p) dx̃ ∧ dz − z (z2 − 1) dt̃ ∧ dx̃

z
[
(x̃ + p)2 + z2 − 1

] ∧ ωS3

+ 2 q dz ∧ volT4

z
. (5.34)

These satisfy type IIB GSE under the original constraint p2 + q2 = 1.
By performing a formal T -duality along the t̃-direction, we obtain

ds2 = (z2 + 4 p2 − 4) dz2

z4 + 2
[
(z2 + 2 p x̃ + 2 p2 − 2) dt + 2 p dx

]
dz

z3

+ (z2 + x̃2 + 2 p x̃ + p2 − 1) dt2 + 2 (x̃ + p) dt dx̃ + dx̃2

z2 + ds2
S3 + ds2

T4,

B2 = −dt ∧ dx̃

z2 + 2
(
x dt + dx̃) ∧ dz

z3 − p cos θ dφ ∧ dψ

4
, e−2� = z2e2 t ,

G2 = 2 qetdt ∧ dz

z
, G4 = −2 qet

[
z (x̃ + p) dt + z dx̃ + 2 p dz

] ∧ ωS3

z
, (5.35)

which is a solution of type IIA supergravity.

5.4. Extremal black D3-brane background

In order to show that the AdS factor is not important, let us consider an extremal black D3-brane
background. To manifest the Bianchi type V symmetry we employ a non-standard coordinate system,

ds2 = H
1
2 (r)

{−dt2 + t2 [dx2
1 + e2 x1

(dx2
2 + dx2

3)
]} + dr2

H 2(r)

+ r2 (dθ2 + sin2 θ dξ2 + sin2 θ cos2 ξ dφ2
1 + sin2 θ sin2 ξ dφ2

2 + cos2 θ dφ2
3

)
,
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G5 = −4 r4+ t3e2 x1
dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr

r5

+ 4 r4+ sin3 θ cos θ sin ξ cos ξ dθ ∧ dξ ∧ dφ1 ∧ dφ2 ∧ dφ3, (5.36)

where H (r) ≡ 1 − (r+/r)4 and the four-dimensional metric inside the brackets {· · · } is flat. We
consider the following three Killing vectors,

V1 ≡ (
∂1 + x2 ∂2 + x3 ∂3 , 0

)
, V2 ≡ (

∂2 , 0
)
, V3 ≡ (

∂3 , 0
)
, (5.37)

that satisfy the algebra

[V1, V2]C = −V2, [V1, V3]C = −V3, [V2, V3]C = 0. (5.38)

The (x1, x2, x3) parts of the matrices are

(
v) =
⎛⎜⎝1 x2 x3

0 1 0
0 0 1

⎞⎟⎠, (
f ) =
⎛⎜⎝ 0 −x̃2 −x̃3

x̃2 0 0
x̃3 0 0

⎞⎟⎠, (5.39)

and the gauge symmetry is fixed as xi(σ ) = 0 (i = 1, 2, 3). The dual background becomes

ds′2 = −H
1
2 dt2 + t4 H (dx̃2

1 + dx̃2
2 + dx̃2

3)+ x̃2
3 dx̃2

2 − 2 x̃2 x̃3 dx̃2 dx̃3 + x̃2
2 dx̃2

3

t2 H
1
2
(
H t4 + x̃2

2 + x̃2
3

) + dr2

H 2

+ r2 (dθ2 + sin2 θ dξ2 + sin2 θ cos2 ξ dφ2
1 + sin2 θ sin2 ξ dφ2

2 + cos2 θ dφ2
3

)
,

B′
2 = dx̃1 ∧ (x̃2 dx̃2 + x̃3 dx̃3)

H t4 + x̃2
2 + x̃2

3

, e−2�′ = t2 H
1
2
(
H t4 + x̃2

2 + x̃2
3

)
, I ′ = 2 ∂̃1,

G′
2 = −4 r4+ t3 dt ∧ dr

r5 , G′
4 = −4 r4+ t3 dt ∧ dx̃1 ∧ (x̃2 dx̃2 + x̃3 dx̃3) ∧ dr

r5 (H t4 + x̃2
2 + x̃2

3)
, (5.40)

and this is a solution of type IIA GSE.
Again, by performing a formal T -duality along the x̃1-direction we obtain a solution of type IIB

supergravity,

ds2 = H
1
2
(−dt2 + t2 dx2

1

) + (dx̃2 − x̃2 dx1)2 + (dx̃3 − x̃3 dx1)2

H
1
2 t2

+ dr2

H 2

+ r2 (dθ2 + sin2 θ dξ2 + sin2 θ cos2 ξ dφ2
1 + sin2 θ sin2 ξ dφ2

2 + cos2 θ dφ2
3

)
,

e−2� = t4e−4 x1
H (r), G3 = e−2 x1 4 r4+ t3 dt ∧ dx1 ∧ dr

r5 . (5.41)

We note that, as discussed in Ref. [148], some supergravity solutions obtained by a combination of
NATD and a formal T -duality can also be obtained from another route, a combination of diffeomor-
phisms and Abelian T -dualities. Similarly, the solutions obtained in this paper may also be realized
from such procedure.

6. Poisson–Lie T -duality/plurality

Here we study a more general class of T -duality known as the Poisson–Lie T -duality [37,38] or T -
plurality [55]. We can perform the PL T -duality/plurality when the target space has a set of vectors
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va satisfying the dualizability conditions [37]

[va, vb] = fab
c vc, £va Emn = −f̃ bc

a Emp vp
b vq

c Eqn. (6.1)

The traditional NATD (with ṽa = 0) can be regarded as a special case, f̃ bc
a = 0. We begin with a

brief review of the idea and techniques, and show the covariance of the DFT equations of motion
under the PL T -plurality. Namely, we show that if we start with a DFT solution, the PL T -dualized
background is also a DFT solution. In some examples the Killing vector I m appears, and the dualized
DFT solutions are regarded as GSE solutions. However, through a formal T -duality the GSE solutions
can always be transformed into linear-dilaton solutions of the conventional supergravity.

6.1. Review of PL T-duality

We review the PL T -duality as a symmetry of the classical equations of motion of the string sigma
model. To make the discussion transparent, we first ignore spectator fields yμ(σ ), which are invariant
under the PL T -duality. As studied in Refs. [37,38] it is straightforward to introduce spectators, and
their treatment is discussed in Sect. 6.2.4.

Let us consider a sigma model with a target space M , on which a group G acts transitively and
freely (i.e. M itself can be regarded as a group manifold),

S = 1

4πα′

∫
�

Emn(x)
(
dxm ∧ ∗ dxn + dxm ∧ dxn). (6.2)

Under an infinitesimal right action of a group G, the coordinates xm are shifted as

g(x) → g(x) (1 + εa Ta) ≡ g(x + δx), δxm = εa(σ ) vm
a (x), (6.3)

where Ta (a = 1, . . . , n) are the generators of the algebra g satisfying

[Ta, Tb] = fab
c Tc, (6.4)

and vm
a are the left-invariant vector fields satisfying

[va, vb] = fab
c vc, vm

a �
b
m = δb

a , � ≡ �a Ta ≡ g−1 dg. (6.5)

In general, the variation of the action becomes

δεS = 1

2πα′

∫
�

{
−εa

[
dJa − 1

2
£va Emn

(
dxm ∧ ∗dxn + dxm ∧ dxn)] + d

(
εa Ja

)}
, (6.6)

where

Ja ≡ vm
a

(
gmn ∗ dxn + Bmn dxn). (6.7)

If the vm
a satisfy the Killing equation £va Emn = 0, equations of motion for xm can be written as

dJa = 0. (6.8)

In particular, if vm
a further satisfy [va, vb] = 0 we can find a coordinate system where vm

a = δm
a

is realized. Then, the Abelian T -duality can be realized as the exchange of xm(σ ) with the dual
coordinates x̃a(σ ) , which are defined as

dx̃a ≡ Ja. (6.9)
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The Bianchi identity d2x̃a = 0 corresponds to the equations of motion in the original theory.
The PL T -duality is a generalization of this duality when the vector fields va satisfy

£va Emn = −f̃ bc
a Emp vp

b vq
c Eqn. (6.10)

In this case, the variation becomes

δS = 1

2πα′

∫
�

[
−εa

(
dJa − 1

2
f̃a

bc Jb ∧ Jc

)
+ d(εa Ja)

]
, (6.11)

and the equations of motion for xm become the Maurer–Cartan equation,

dJa − 1

2
f̃a

bc Jb ∧ Jc = 0. (6.12)

This suggests introducing the dual coordinates x̃m(σ ) through a non-Abelian generalization of
Eq. (6.9), namely,

r̃a ≡ Ja
(
r̃ ≡ r̃a T̃ a ≡ dg̃ g̃−1, g̃ ≡ g̃(x̃) ∈ G̃

)
, (6.13)

where T̃ a are the generators of the dual algebra g̃ (associated with a dual group G̃) satisfying

[T̃ a, T̃ b] = f̃ ab
c T̃ c. (6.14)

Then, under the equations of motion, the physical coordinates xm(σ ) describe the motion of the
string on the group G while the dual coordinates x̃m(σ ) describe the motion of the string on the dual
group G̃.

It is important to note that the condition in Eq. (6.10) and the identity

[£va , £vb]Emn = £[va, vb]Emn (6.15)

show the relation

fae
c f̃ ed

b + fae
d f̃ ce

b − fbe
c f̃ ed

a − fbe
d f̃ ce

a = fab
e f̃ cd

e. (6.16)

By considering the vector space g̃ as the dual space of g, 〈Ta, T̃ b〉 = δb
a , the relation gives the

structure of the Lie bialgebra. By further introducing an ad-invariant bilinear form as

〈TA, TB〉 = ηAB, (ηAB) =
(

0 δb
a

δa
b 0

)
, (TA) ≡ (Ta, T̃ a), (6.17)

the commutation relations on a direct sum d ≡ g ⊕ g̃ are determined as

[Ta, Tb] = fab
c Tc, [Ta, T̃ b] = f̃ bc

a Tc − fac
b T̃ c, [T̃ a, T̃ b] = f̃ ab

c T̃ c, (6.18)

and the pair of algebras can be regarded as that of the Drinfel’d double D. Given the structure of the
Drinfel’d double, the differential equation in Eq. (6.10) can be integrated [37,38] as

Eab ≡ vm
a vn

b Emn = [
a−1 Ê (aᵀ + bᵀ Ê)−1]

ab, (6.19)

where the matrices a and b are defined by

g−1 TA g = (Adg−1)A
B TB, Adg−1 =

(
aa

b 0
bab (a−ᵀ

)ab

)
, (6.20)
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and Êab is an arbitrary constant matrix (that corresponds to Eab(x) at g = 1). We can check that the
Emn given by Eq. (6.19) indeed satisfy Eq. (6.10).6

Now, we rewrite the relation in Eq. (6.13), namely

r̃a = Ja = gab ∗ �b + Bab �
b (

gab ≡ E(ab), Bab ≡ E[ab]
)
, (6.21)

into two equivalent expressions (by following the standard trick [10] in the Abelian case),

�a = −(g−1 B)ab ∗ �b + gab ∗ r̃b,

r̃a = (g − B g−1 B)ab ∗ �b + (B g)ab ∗ r̃b. (6.22)

They can be neatly expressed as a self-duality relation,

PA = HA
B(x) ∗ PB, (PA) ≡

(
�a

r̃a

)
,

(HAB) ≡
(
(g − B g−1 B)ab Bac gcb

−gac Bcb gab

)
, (6.23)

where the indices A, B, . . . are raised or lowered with ηAB and its inverse ηAB. In terms of the metric
HAB, the relation in Eq. (6.19) can be expressed as

HAB(x) = (Adg)A
C (Adg)B

D ĤCD, (ĤAB) ≡
(
(ĝ − B̂ ĝ−1 B̂)ab B̂ac ĝcb

−ĝac B̂cb ĝab

)
, (6.24)

where ĝab ≡ Ê(ab) , B̂ab ≡ Ê[ab]. Then, Eq. (6.23) gives the important relation

P̂A = ĤA
B ∗ P̂B, P̂(σ ) ≡ P̂A TA ≡ dl l−1, l ≡ g g̃, (6.25)

where we have used7

P̂(σ ) ≡ dl l−1 = g
(
�a Ta + r̃a T̃ a) g−1 = PB (Adg)B

A TA. (6.26)

Expressed in this form, the equations of motion are given in terms of the Drinfel’d double D; the
decomposition l = g g̃ is no longer important.

Similar to the Abelian T -duality, we can recover the same equations of motion from the dual model
by exchanging the role of g and g̃. Starting with the dual background Ẽmn, which has a set of vector
fields ṽa satisfying

[ṽa, ṽb] = f̃ ab
c ṽc, £ṽa Emn = −fbc

a Ẽmp ṽbp ṽcq Ẽqn, (6.27)

6 For example, when Emn is invertible, we can easily check an equivalent expression £va Emn = f̃ bc
a vm

b vn
c by

using the rewriting of Eq. (6.35) and vm
c ∂m�

ab = −(a−ᵀ
)ad (a−ᵀ

)be f̃ de
c, which can be derived from Eq. (6.20)

(see Ref. [44]).
7 If we expand the right-invariant form as P̂ = PA

M dxM TA, we find that PA
M is not an O(n, n) matrix:

(PA
M ) =

(
ra

m �ab ab
c r̃m

c

0 aa
b r̃m

b

)
.
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the equations of motion can be expressed as

P̂A = ˜̂HA
B ∗ P̂B, P̂A T A ≡ dl̃ l̃−1, l̃ ≡ h̃ h (h ∈ g, h̃ ∈ g̃) (6.28)

by using a constant matrix ˜̂HA
B. For the duality equivalence, we demand that Eqs. (6.25) and (6.28)

are equivalent. This leads to the identifications

ĤAB = ˜̂HAB, g g̃ = l = l̃ ≡ h̃ h. (6.29)

After this identification, string theory defined on the original background Emn and the dual background
E′

mn give the same equations of motion, and are classically equivalent.
In summary, in PL T -dualizable backgrounds the generalized metric HMN (x) is always related to

a constant matrix ĤAB as

HMN = (U Ĥ Uᵀ
)MN , (6.30)

where the matrix U is defined as

UM
A ≡ LM

B (Adg)B
A, (LM

A) ≡
(
�a

m 0
0 vm

a

)
. (6.31)

By comparing this with Eq. (2.19), we call the matrix U the twist matrix and call the constant matrix
ĤAB the untwisted metric. The dual geometry also has the same structure, where the twist matrix is
ŨMA ≡ L̃MB (Adg̃)

B
A. The relation between the original and the dual background becomes

H̃MN = (h H hᵀ
)MN , hM

N ≡ ŨMA η
AB UB

N . (6.32)

For later convenience, we rewrite the twist matrix as

U = LAdg = R �, (6.33)

where we have defined

(RM
A) ≡

(
ra

m 0
0 em

a

)
, (�A

B) ≡
(

δb
a 0

−�ab δa
b

)
,

r ≡ ra Ta ≡ dg g−1, ra
m em

b = δa
b, �ab ≡ (b a−1)ab = −(a−ᵀ bᵀ

)ab, (6.34)

and used ra = (a−ᵀ
)ab �

b. Then, in terms of Emn(x), Eq. (6.30) can be expressed as

Emn(x) = [
(Ê−1 −�)−1]

ab ra
m rb

n , (6.35)

and, similarly, the dual background is

Ẽmn(x̃) = [
(Ê − �̃)−1]ab r̃am r̃bn. (6.36)

In the special case where f̃ ab
c = 0, by parameterizing g̃ = ex̃a T̃ a

we obtain r̃ = dx̃a T̃ a, �ab = 0,
and �̃ab = −fab

c x̃c. This is precisely the case of NATD. In the dualized background, in general the
isometries are broken, and in the traditional NATD we cannot recover the original model. However,
the dual background has the form

Ẽmn = (Ê − �̃)ab ẽam ẽbn = (Êa + fab
c x̃c) ṽam ṽbn, (6.37)
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where ẽa = ṽa = ∂̃a, and we find that the dual background is T -dualizable,

£ṽa Emn = ∂̃aEmn = fbc
a ṽbm ṽcn. (6.38)

Thus, through the PL T -duality we can recover the original background Emn = Eab ra
m rb

n .
As a side remark, we note that in the case of the Abelian O(D, D) T -duality, the covariant equations

of motion of string dxM = ĤM
N ∗ dxN [10] can be derived from the double sigma model (DSM)

[163,168–172]. The correspondent of the DSM for the PL T -duality has been studied in Refs. [40,
41,64,173–175], and this approach will be useful to manifest the PL T -duality.

6.2. PL T-plurality

The Lie algebra d of the Drinfel’d double D can be constructed as a direct sum of two algebras, g

and g̃, which are maximally isotropic with respect to the bilinear form 〈·, ·〉, and (d, g, g̃) is called
the Manin triple. In general, a Drinfel’d double has several decompositions into Manin triples, and
this leads to the notion of the PL T -plurality [55]. More concretely, let us consider a redefinition of
the generators TA of d,

T ′
A ≡ CA

B TB, (6.39)

such that the new generators also satisfy the algebra of the Drinfel’d double,

[T ′
a, T ′

b] = f ′
ab

c T ′
c, [T ′

a, T̃ ′b] = f̃ ′bc
a T ′

c − f ′
ac

b T̃ ′c, [T̃ ′a, T̃ ′b] = f̃ ′ab
c T̃ ′c, (6.40)

and the bilinear form is preserved,

〈T ′
A, T ′

B〉 = ηAB. (6.41)

The latter condition shows that the matrix CA
B should be a certain O(n, n)matrix. Since the rescaling

of the generators is trivial, we choose CA
B as a “volume-preserving” O(n, n) transformation that does

not change the DFT dilaton.
The transformation of the background fields under the O(n, n) transformation can be found in the

same manner as the PL T -duality. Starting with a background E′
mn satisfying

[v′
a, v′

b] = f ′
ab

c v′
c, £v′

a
E′

mn = −f̃ ′bc
a E′

mp v′p
b v′q

c E′
qn, (6.42)

we again obtain the same equations of motion,

P ′A = Ĥ′A
B ∗ P ′B, P ′A T ′

A ≡ dl′ l′−1, l′ ≡ g′ g̃′. (6.43)

From the identification l = l′ we obtain

P̂A TA = dl l−1 = dl′ l′−1 = P̂ ′A T ′
A = P̂ ′A CA

B TB, (6.44)

and the relation between the untwisted metrics becomes

Ĥ′
AB = (C Ĥ Cᵀ

)AB. (6.45)

The generalized metric in the transformed frame has the form

Ĥ′
MN = (U ′ Ĥ′ Uᵀ

)MN , (6.46)
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and the relation between the original and the dual generalized metric is

H′
MN = (h H hᵀ

)MN , (hM
N ) ≡ U ′ C U−1. (6.47)

In terms of Emn(x), the original background is

Emn(x) = [
(Ê−1 −�)−1]

ab ra
m rb

n , (6.48)

while the dual background is

E′
mn(x

′) = [
(Ê′−1 −�′)−1]

ab r′a
m r′b

n , E′
mn = [(q + p Ê) (s + r Ê)−1]mn, (6.49)

where we parameterized the O(n, n) matrix C as

C =
(

pm
n qmn

rmn sm
n

)
. (6.50)

Note that the PL T -duality is a special case of the T -plurality where

C =
(

0 1
1 0

)
, (6.51)

and the original background corresponds to the trivial choice C = 1.

6.2.1. Duality rule for the dilaton
The transformation rule for the dilaton was studied in Ref. [64] in the context of the PL T -duality.
This was improved in Ref. [55] in the study of the PL T -plurality. In our convention, the result is

e−2�′ = e−2 �̄ |det(q + p Ê)|
|det(E′

ab)| |det a′−1|
(
E′

ab ≡ e′m
a e′n

b E′
mn

)
, (6.52)

where �̄(x) is an arbitrary function. By using the formula in Eq. (3.28), we obtain√|g′| = |det(r′a
m)| |det(1 −�′ Ê′)|−1 |det(s + r Ê)|−1

√|ĝ|
= |det(r′a

m)| |det E′
ab| |det(q + p Ê)|−1

√|ĝ|, (6.53)

and the DFT dilaton in the dual background becomes

e−2 d ′ = e−2 d̄ |det(r′a
m)| |det a′| = e−2 d̄ |det(�′am)|, e−2 d̄ ≡ e−2 �̄

√|ĝ|. (6.54)

Namely, the duality rule for the DFT dilaton is

|det(v′m
a )|e−2 (d ′−d̄) = 1 = |det(vm

a )|e−2 (d−d̄). (6.55)

If d̄ (or equivalently �̄) is constant, this duality rule coincides with the recent proposal of Ref. [139],
where the PL T -duality was studied by utilizing “the DFT on a Drinfel’d double” proposed in
Ref. [138]. There, it was shown that the dilaton transformation rule is also consistent with Ref. [141].
Moreover, when the dual algebra is Abelian, f̃ ab

c = 0, we have |det(v′m
a )| = 1 and the result in

Eq. (3.30) known in NATD is also reproduced as a particular case.
In fact, as demonstrated in Ref. [55], the PL T -plurality works even if d̄ has a coordinate depen-

dence. A subtle point is that when e−2 d̄ depends on the original coordinates xm it is not clear how to
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understand the xm-dependence in the dual model. A prescription proposed in Ref. [55] is as follows.
We first identify the relation between coordinates (xM ) = (xm, x̃m) and (x′M ) = (x′m, x̃′

m) through
the identification

g′(x′) g̃′(x̃′) = l = g(x) g̃(x̃). (6.56)

We next substitute the relation xM = xM (x′) into e−2 d̄(x) as e−2 d̄(x) = e−2 d̄(x(x′)) ≡ e−2 d̄(x′). Then,
the relation in Eq. (6.55) can be understood on both sides:

|det(v′m
a )|e−2 [d ′−d̄(x′)] = 1 = |det(vm

a )|e−2 [d−d̄(x)]. (6.57)

In general, d̄(x′) may depend on the dual coordinates x̃′
m, and the background does not have

the usual supergravity description. However, in our examples the DFT dilaton has at most a linear
dependence on the dual coordinates, and it can be absorbed into the Killing vector I m in the GSE.

6.2.2. Covariance of equations of motion
In the approach of Refs. [138,139], the PL T -duality was realized as a manifest symmetry of DFT.
We discuss here the covariance under a more general PL T -plurality by using the gauged DFT. The
approach may be slightly different from Refs. [138,139] but the essence will be the same.

In PL T -dualizable backgrounds, the generalized metric always has the simple form

HMN = [U (x) Ĥ Uᵀ
(x)]MN . (6.58)

Since the twist matrix U is explicitly determined, we can compute the generalized fluxes FABC

and FA defined in Eq. (2.20). In fact, as shown in Ref. [139], in PL T -dualizable backgrounds the
three-index flux is precisely the structure constant of the Drinfel’d double,

Fabc = 0, Fab
c = fab

c, Fab
c = f̃ ab

c, Fabc = 0. (6.59)

We can check this by using the explicit form of the twist matrix and its inverse,

(UM
A) =

(
ra

m 0
−em

b �
ba em

a

)
, (UA

M ) =
(

em
a 0

�ab em
b ra

m

)
, (6.60)

and the relations £ea eb = −fab
c ec, £ea rb = fac

b rc, ∂m�
ab = −(a−ᵀ

)ad (a−ᵀ
)be f̃ de

f af
c rc

m, and
f̃ ab

c = (a−ᵀ
)ad (a−ᵀ

)be ac
f f̃ de

f − 2 fce
[a �b]e (see Ref. [44] for useful identities).

We can also compute the single-index flux as

FA =
(

2 em
a ∂md + en

c ∂nrc
m em

a

−(a−ᵀ
)ab f̃ cb

c +�ab (2 em
b ∂md + en

c ∂nrc
m em

b

) + 2 ra
m ∂̃

md

)
. (6.61)

By using the expression for the DFT dilaton in Eq. (6.54), e−2 d = e−2 d̄ |det(ra
m)| |det a|, we find

FA = UA
M FM , FM ≡ 2 ∂M d̄ +

(
0

−f̃ ba
b vm

a

)
, (6.62)

where we have used ab
e ac

f fef
a = −fcb

e ae
a and ∂maa

b = aa
c fcd

b �d
m.

As we discuss below, for the covariance of the equation of motion under the PL T -plurality, FA

needs to transform covariantly. However, even in the particular case d̄ = 0, for example, we find
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that FA does not transform covariantly. Indeed, we have FA = 0 in a duality frame where f̃ ab
a = 0,

while FA appears in a frame where f̃ ab
a �= 0. Therefore, in order to transform FA covariantly, we

eliminate the non-covariant term by adding a vector field X M as

∂M d → ∂M d + X M , (X M ) ≡
(

0
I m

)
, I m = 1

2
f̃ ba

b vm
a , (6.63)

which was suggested in Ref. [139]. This shift is a bit artificial, but without this procedure we need
to abandon all Manin triples with non-unimodular dual algebra. In fact, this shift is precisely the
modification of DFT equations of motion Eq. (2.36) that reproduces the GSE after removing the
dual-coordinate dependence. After this prescription, we obtain the simple flux

FA = 2 DAd̄. (6.64)

In fact, as we see later, FA = 2 DAd̄ are covariantly transformed under the PL T -plurality F ′
A =

CA
B FB,8 and the prescription in Eq. (6.63) works well in our examples.

Now, let us discuss the covariance of the equations of motion. Since the derivative DA generally
does not transform covariantly, we assume that FA = 2 DAd̄ is constant. Since FABC is also constant
in PL T -dualizable backgrounds, the DFT equations of motion become simple algebraic equations,
Eqs. (2.25) and (2.26).

Under the PL T -plurality T ′
A = CA

B TB, the generalized fluxes are mapped as

F ′
ABC = CA

D CB
E CC

F FDEF , F ′
A = CA

B FB (6.65)

by introducing X M when the dual algebra is non-unimodular. According to Eq. (6.45), the untwisted
metric ĤAB is also related covariantly,

Ĥ′
AB = (C Ĥ Cᵀ

)AB. (6.66)

Then, we find that the equations of motion in the original and the dual background are covariantly
related by the O(n, n) transformation C. Thus, as long as the original configuration is a DFT solution,
the dual background also satisfies the DFT equations of motion.

We note that this O(n, n) transformation is totally different from the transformation in Eq. (2.30),
which is just a redefinition of U , and the generalized metric HMN is invariant. On the other hand, in
the case of PL T -plurality, U (x) in the original model and U ′(x′) in the dual model are defined on a
different manifold and there is no clear connection between U (x) and U ′(x′). Only the constant fluxes
made out of U (x) and U ′(x′) are related by a constant O(n, n) transformation, and this non-trivial
relation connects the two equations of motion in a covariant manner.

Before moving on to the R–R sector, we make a brief comment on the vector field I m. In order
to reproduce the (generalized) supergravity from (modified) DFT, we need to choose the standard
section ∂̃m = 0. Therefore, when d̄ has a dual-coordinate dependence, we need to make an additional
field redefinition. Supposing that d̄ only has a linear dual-coordinate dependence d̄ = d̄0(xm)+dm x̃m,
we make the field redefinition

d̄ → d̄ ′ = d̄0(x
m), I m → I ′m = 1

2
f̃ ba

b vm
a + dm. (6.67)

8 This is non-trivial, because in general the derivative DA does not transform covariantly, D′
A �= CA

B DB,
which can be checked by performing the coordinate transformation x′M = x′M (x) through Eq. (6.56). Therefore,
at the present time, the covariance of FA needs to be checked on a case-by-case basis. Of course, when d̄ is
constant, the covariance is manifest because FA = 0 and F ′

A = 0.
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Then, the dual-coordinate dependence disappears from the background. Note that this is different
from the shift in Eq. (6.63) and is just a field redefinition. In the following, when we display a
(generalized) supergravity solution we always make this redefinition.

Let us also make a brief comment on the Killing vector I m. In the case of NATD, the Killing vector
I m is given by Eq. (4.1), but Eq. (4.1) is apparently different from the formula in Eq. (6.63) by the
factor 2. Here, we will roughly sketch how to resolve the discrepancy by using the redefinition in
Eq. (6.67). In the case of NATD, ∂m|det(vm

a )| = 0 and ∂m� = 0 are usually satisfied in the original
background (under the gauge fixing xm = cm). Then, we have

∂md̄ = ∂md = −1

2
∂m ln

√|g| = −1

2
∂m ln|det(ra

m)|

= 1

2
∂m ln|det a| = 1

2
fba

b �a
m. (6.68)

Namely, d̄ has a linear coordinate dependence along the vm
a direction,

vm
a ∂md̄ = 1

2
fba

b. (6.69)

After performing NATD, this gives a dual-coordinate dependence of d̄ in the dual theory,

d̄ = 1

2
f̃ ba

b x̃a, (6.70)

where the dual structure constants f̃ ab
c correspond to fab

c in the original frame. Then, the modified
I m in Eq. (6.67) recovers the formula in Eq. (4.1),

I m = 1

2
f̃ ba

b vm
a + dm = f̃ ba

b, (6.71)

where we have used vm
a = δm

a in the dual theory. In a general setup Eq. (4.1) does not work correctly,
and we use the results discussed in this section.

6.2.3. Duality rule for R–R fields
Now, let us determine the duality rule for the R–R fields. We will first find the duality rule from a
heuristic approach, and then clarify the result in terms of the gauged DFT.

In the presence of the R–R fields, the equations of motion for HMN and d are

SMN = EMN , S = 0, (6.72)

and since SMN is transformed covariantly under the PL T -duality, the energy–momentum tensor
EMN should also transform covariantly,

E ′
MN = (h E hᵀ

)MN . (6.73)

The energy–momentum tensor EMN is a bilinear form of the combination F ≡ edF and it does
not contain a derivative of F . Therefore, we can covariantly transform EMN simply by rotating the
combination F covariantly, and this gives the transformation rule for the R–R fields.

Under a PL T -plurality, H′
MN = (h H hᵀ

)MN with h = U ′ C U−1, the O(n, n)-covariant
transformation rule for a scalar density e−2 d is

e−2 d(h) = |det(em
a )|

|det(e′m
a )|

e−2 d . (6.74)
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Indeed, the twist matrix has the form U = R �, and the scalar density is invariant under the
β-transformation � while it is multiplied by |det(em

a )|−1 under the twist R. Moreover, the scalar
density is invariant under the O(n, n) transformation C by the definition of CA

B. Thus, e−2 d(h) in
Eq. (6.74) is the covariantly transformed DFT dilaton.

On the other hand, let us denote the covariantly transformed R–R polyform as F (h). By denoting
the action of an O(n, n) transformation h on the polyform as F → Sh F ,9 we have

F (h) = S
′
U SC S

−1
U F . (6.75)

Then, the energy–momentum tensor made of the combination ed(h)F (h) is the expected E ′
MN . However,

importantly, the actual DFT dilaton is given by

|det(a′−1)||det(e′m
a )|e−2 [d ′−d̄(x′)] = |det(a−1)||det(em

a )|e−2 [d−d̄(x)], (6.76)

and ed ′
is related to the covariant one ed(h) as

ed ′ =
√|det a|e−d̄(x)

√|det a′|e−d̄(x′)
ed(h) . (6.77)

Therefore, if we identify the dual R–R polyform as

F ′ ≡
√|det a′|e−d̄(x′)
√|det a|e−d̄(x)

F (h), (6.78)

the energy–momentum tensor made from ed ′
F ′ = ed(h)F (h) is E ′

MN . Namely, Eq. (6.78) is the rule
for the R–R fields.

Now, as EMN is transformed covariantly, it is already clear that the equations of motion for HMN

and d are satisfied in the dual background. However, the equation of motion for the R–R fields is
still not clear. To clarify the covariance, let us rewrite Eq. (6.78) as

F̂ ′ = SC F̂ , (6.79)

where we have defined

F̂ ≡ ed̄

√|det a| SU−1 F = ed√|det(em
a )|

SU−1 F . (6.80)

Then, we find that the F̂ is precisely the R–R field strength appearing in the gauged DFT or the flux
formulation of DFT [see Eq. (B.56)],

|F〉 =
∑

p

1

p! F̂a1···ap �
a1···ap |0〉. (6.81)

Here, �a1···ap ≡ �[a1 · · ·�ap] and (�A) ≡ (�a, �a) satisfythe algebra

{�A, �B} = ηAB, (6.82)

9 An explicit form of the operation Sh is given in Appendix B.
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and the so-called Clifford vacuum |0〉 is defined by �a |0〉 = 0. By using a nilpotent operator,

/∇ = /∂ − 1

2
�A FA + 1

3! �
ABC FABC ( /∂ ≡ �A DA), (6.83)

the Bianchi identity can be expressed as (see Appendix B)

/∇|F〉 =
(

/∂ − 1

2
�A FA + 1

3! �
ABC FABC

)
|F〉 = 0. (6.84)

As is well known in the democratic formulation [157,160], the Bianchi identity is equivalent to the

equations of motion when the self-duality relation Gp = (−1)
p(p−1)

2 ∗ G10−p is satisfied.
Now, we require the dualizability condition for the R–R fields,

/∂|F〉 = 0, (6.85)

which will be the same as the proposal of Ref. [139]. Then, the Bianchi identity or the equation of
motion for the R–R fields becomes an algebraic equation:( 1

3! �
ABC FABC − 1

2
�A FA

)
|F〉 = 0. (6.86)

Note that when the dual algebra is non-unimodular, FA should be modified as FA + 2 UA
M X M as

we explained in the discussion of the NS–NS fields. By denoting the spinor representative of the
O(n, n) transformation by SC , the duality relation of Eq. (6.79) becomes simply

|F ′〉 = SC |F〉. (6.87)

Then, the equation of motion in Eq. (6.86) after the O(n, n) PL T -plurality transformation is( 1

3! �
ABC CA

D CB
E CC

F FABC − 1

2
�A CA

B FA

)
SC |F̂〉 = 0, (6.88)

but from the relations S−1
C �A SC = CA

B �B and CA
C CB

D ηCD = ηAB this is equivalent to the
equation of motion in the original background, Eq. (6.86). In this manner, the equation of motion
for the R–R fields in Eq. (6.86) is also covariantly transformed.

We call the object F̂ the untwisted R–R fields, and once F̂ ′
a1···ap

in the dual background is determined
from Eq. (6.79), we can construct the Page form in the dual background as

F ′ = e−d̄(x′)√|det a′| SU ′ F̂ ′ = e−d̄(x′)√|det a′| e−�′∨
(∑

p

1

p! F̂ ′
a1···ap

r′a1 ∧ · · · ∧ r′ap

)
, (6.89)

where �′∨ ≡ 1
2 �

′ab ιe′
a
ιe′

a
.

6.2.4. Spectator fields
In the following, we consider more general cases where spectator fields are also included. Namely,
we suppose that the original model takes the form

S = − 1

4πα′

∫
�

d2σ
√−γ (γ ab − εab)

(
∂ayμ ra

i ∂axi
)(Eμν Eμb

Eaν Eab

)(
∂byν

rb
j ∂bxj

)
. (6.90)
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Here, we denote the coordinates as (xm) = (yμ, xi) (i = 1, . . . , n). By assuming that the background
field (Emn) = ( Eμν Eμb

Eaν Eab

)
satisfies the condition

£va Emn = −f̃ bc
a Emp vp

b vq
c Eqn, (6.91)

we can again determine Emn as [37,38]

Eμν = Êμν + Êμc Êcd Nde�
ef Êfν , Eμb = Êμc Êcd Ndb,

Eaν = Nad Êde Êeν , Eab = Nab,
(6.92)

where (Nab) ≡ (Êab −�ab)−1. This reduces to Eq. (6.48) when there is no spectator field. Now, an
important difference is that Êmn is not necessarily constant, but can depend on the spectator fields
yμ, Êmn = Êmn(y). The dependence should be determined from the DFT equations of motion and is
independent of the structure of the Drinfel’d double.

In terms of the generalized metric HMN , we can clearly see that the relation in Eq. (6.92) is a
straightforward generalization of Eq. (6.30),

HMN = [
U (x) Ĥ(y)Uᵀ

(x)
]

MN , U (x) ≡ R �,

(RM
B) ≡

⎛⎜⎜⎜⎝
δ
β
μ 0 0 0
0 rb

i 0 0
0 0 δ

μ
β 0

0 0 0 ei
b

⎞⎟⎟⎟⎠, (�A
B) ≡

⎛⎜⎜⎜⎝
δ
β
α 0 0 0
0 δb

a 0 0
0 0 δαβ 0

0 −�ab 0 δa
b

⎞⎟⎟⎟⎠, (6.93)

where (xM ) = (yμ, xi, ỹμ, x̃i). The T -plurality transformation of Eq. (6.45) is also generalized, in a
natural manner, as an O(n, n) transformation,

Ĥ′
AB = (C Ĥ Cᵀ

)AB (CA
B) =

⎛⎜⎜⎜⎝
δ
β
α 0 0 0
0 pa

b 0 qab

0 0 δαβ 0

0 rab 0 sa
b

⎞⎟⎟⎟⎠. (6.94)

The dilaton can also have an additional dependence on the spectators similar to Eq. (2.27),

e−2 d = e−2 d̂(y)e−2 d(x), e−2 d(x) ≡ e−2 d̄(x) |det(�a
i )|. (6.95)

We also suppose that the untwisted R–R fields can depend on the spectator fields F̂ = F̂(y).
Then, by defining the fluxes FABC and FA from UM

A(x) and d(x), we again obtain

Fab
c = fab

c, Fab
c = f̃ ab

c, Fabc = Fabc = FαBC = Fα
BC = 0,

(FA) = (Fα , Fa, Fα , Fa) = (0, 2 Dad, 0, 2 Dad). (6.96)

Here, we again need to perform the shift ∂M d → ∂M d + X M , Eq. (6.63), when the dual algebra is
non-unimodular.

The requirement in Eq. (2.28) is automatically satisfied with our twist matrix, and by using
Eq. (2.29) the dilaton equation of motion becomes

Ŝ + 1

12
FABC FDEF

(
3 ĤAD ηBE ηCF − ĤAD ĤBE ĤCF) − ĤAB FA FB
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− 1

2
FA

BC ĤBD ĤCE DDĤAE + 2 FA DBĤAB − 4 FA ĤAB DBd̂ = 0. (6.97)

By requiring that the untwisted fields {ĤAB(y), d̂(y), F̂(y)} in the original and the dual background
are covariantly related by the O(n, n) transformation,

ĤAB = (C Ĥ Cᵀ
)AB, d̂ ′ = d̂ , F̂ ′ = SC F̂ , (6.98)

we can easily see that DCĤAB = ∂CĤAB and DAd̂ = ∂Ad̂ are also transformed covariantly,

D′
CĤ′

AB(y) = CA
D CA

E ∂CĤDE(y) = CC
F CA

D CA
E DFĤDE(y),

D′
Ad̂(y) = ∂Ad̂(y) = CA

B DBd̂(y), D′
AF̂(y) = ∂AF̂(y) = CA

B DBF̂(y). (6.99)

Then, the dilaton equation of motion in Eq. (6.97) is satisfied in the dualized background if it
is satisfied in the original background. As long as the untwisted R–R field satisfies “the Bianchi
identity” /∂|F〉 = 0, which is equivalent to dF̂(y) = 0, the equation of motion for the R–R fields is
again a simple algebraic equation,(

1

3! �
ABC FABC − 1

2
�A FA

)
|F(y)〉 = 0, (6.100)

and its covariance is manifest. The covariance of the equations of motion for the generalized metric
SMN = EMN can also be shown in a similar manner. Since the computation is a little complicated,
the details are discussed in Appendix B.

7. PL T -plurality for AdS5 × S5

In this section we show an example of the Poisson–Lie T -plurality. As already mentioned, the Lie
algebra d of the Drinfel’d doubles can be realized as a direct sum of two maximally isotropic algebras
g and g̃, and (d, g, g̃) is called the Manin triple. Following Ref. [54], we denote the pair simply as
(g|g̃) . The classification of six-dimensional real Drinfel’d doubles was worked out in Ref. [54],
where the following series of Manin triples corresponding to a single Drinfel’d double d was found:

(5|1) ∼= (60|1) ∼= (5|2.i) ∼= (60|5.ii)

∼= (1|5) ∼= (1|60) ∼= (2.i|5) ∼= (5.ii|60). (7.1)

Here, the characters in each slot denote the Bianchi type of the three-dimensional Lie algebra,

1 : [X1, X2] = 0 [X2, X3] = 0, [X3, X1] = 0,

2.i : [X1, X2] = 0, [X2, X3] = X1, [X3, X1] = 0,

5 : [X1, X2] = −X2, [X2, X3] = 0, [X3, X1] = X3,

5.ii : [X1, X2] = −X1 + X2, [X2, X3] = X3 [X3, X1] = −X3,

60 : [X1, X2] = 0, [X2, X3] = X1, [X3, X1] = −X2.

(7.2)
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Fig. 1. The PL T -plurality procedure.

Using an O(3, 3) transformation T ′
A = CA

B TB,10 the PL T -plurality for this chain of Manin triples
was studied in Ref. [55]. However, in Ref. [55], since the initial background is the flat space (or
the Bianchi type V universe) the R–R fields were absent in any of the dual backgrounds. Moreover,
there has been an issue in the treatment of the dual-coordinate dependence of the dilaton, known as
the dilaton puzzle (see also Refs. [56–58] for detailed discussion of the issue). Accordingly, the only
three backgrounds discussed in Ref. [55] were

(5|1) ∼= (60|1) ∼= (5|2.i). (7.3)

In this section we identify the AdS5 × S5 solution as a background with the (5|1) symmetry, and
write down all of the eight backgrounds associated with the Manin triples given in Eq. (7.1).

For convenience, we summarize the procedure of the PL T -plurality in Fig. 1. We first prepare the
untwisted fields {ĤAB(y), d̂(y), F̂(y)} that satisfy

DAĤBC(y) = ∂AĤBC(y), DAd̂(y) = ∂Ad̂(y), DAF̂(y) = ∂AF̂(y). (7.4)

They are independent of the structure of the Drinfel’d double and can be chosen freely. Under the
O(n, n) PL T -plurality they are transformed covariantly,

ĤAB → (C Ĥ Cᵀ
)AB, d̂ → d̂, F̂ → SC F̂ . (7.5)

By using the generators TA in each frame, we construct the twist matrix U as

U (x) ≡ R �, �∨ ≡ 1

2
�ab ιea ιea , Adg−1 =

(
δa

c 0
�ac δa

c

)(
ac

b 0
0 (a−ᵀ

)cb

)
,

(RM
B) ≡

⎛⎜⎜⎜⎝
δ
β
μ 0 0 0
0 rb

i 0 0
0 0 δ

μ
β 0

0 0 0 ei
b

⎞⎟⎟⎟⎠, (�A
B) ≡

⎛⎜⎜⎜⎝
δ
β
α 0 0 0
0 δb

a 0 0
0 0 δαβ 0

0 −�ab 0 δa
b

⎞⎟⎟⎟⎠. (7.6)

10 As pointed out in Ref. [62], the matrix C which connects two Manin triples may not be unique, and a
different choice of C may give a different background. We will use the matrices C that are given in Ref. [54].

Originally, the indices A, B in TA and CA
B run from 1 to 2 n (n = 3 here), but we extend the matrix CA

B as
in Eq. (6.94); TA should then be understood as (TA) = (Tα , Ta, T̃ α , T̃ a) = (0, Ta, 0, T̃ a).
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Then, by twisting the untwisted fields, we construct the DFT fields as

HMN = [
U (x) Ĥ(y)Uᵀ

(x)
]

MN ,

e−2 d = e−2 d̂(y)e−2 d̄(x) |det(�a
i )|, (X M ) =

(
1
2 f̃ ba

b vi
a δ

m
i

0

)
,

F = e−d̄(x)
√|det a| e−�(x)∨

[∑
p

1

p! F̂a1···ap(y) ra1 ∧ · · · ∧ rap

]
. (7.7)

The function d̄(x) is given in the initial configuration, and after the PL T -plurality it is rewritten
in the new coordinates determined through g(xi) g̃(x̃i) = l = g′(x′i) g̃′(x̃′

i). When d̄(x) has a linear
dual-coordinate dependence di x̃i, we make a redefinition and absorb the dependence into the Killing
vector, I i = 1

2 f̃ ba
b vi

a + di.

7.1. (5|1): AdS5 × S5

We start with the AdS5 × S5 background (in a non-standard coordinate system):

ds2 = −dt2 + t2
[
dx2

1 + e−2 x1
(dx2

2 + dx2
3)
] + dz2

z2 + ds2
S5 ,

G5 = −4e−2 x1
t3 dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dz

z5 + 4ω5, (7.8)

where

ds2
S5 ≡ dr2 + sin2 r dξ2 + cos2 ξ sin2 r dφ2

1 + sin2 r sin2 ξ dφ2
2 + cos2 r dφ2

3 ,

ω5 ≡ sin3 r cos r sin ξ cos ξ dr ∧ dξ ∧ dφ1 ∧ dφ2 ∧ dφ3. (7.9)

This background has Killing vectors

v1 ≡ ∂1 + x2 ∂2 + x3 ∂3, v2 ≡ ∂2, v3 ≡ ∂3 (7.10)

satisfying the (5|1) algebra,

[va, vb] = fab
c vc, f12

2 = f13
3 = −1, £va Emn = 0. (7.11)

We can reconstruct this background by providing the parameterization

l = g g̃, g = ex1 T1ex2 T2ex3 T3 , g̃ = ex̃1 T̃ 1
ex̃2 T̃ 2

ex̃3 T̃ 3
, (7.12)

where (TA) = (Ta, T̃ a) are generators of the Manin triple (5|1). We obtain

� = dx1 T1 + (dx2 − x2 dx1)T2 + (dx3 − x3 dx1)T3,

r = dx1 T1 + e−x1(
dx2 T2 + dx3 T3

)
, (7.13)

a =
⎛⎜⎝1 −x2 −x3

0 ex1
0

0 0 ex1

⎞⎟⎠, �ab = 0, (7.14)
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and they give the twist matrix UM
A. We can easily determine the untwisted metric from the relation

ĤMN = (U−1 H U−ᵀ
)MN , and the result is

(Êmn) = diag
(− 1

z2 , t2

z2 , t2

z2 , t2

z2 , 1
z2 , 1, sin2 r, sin2 r cos2 ξ , sin2 r sin2 ξ , cos2 r

)
, (7.15)

in the coordinate system (xm) = (t, x1, x2, x3, z, r, ξ ,φ1,φ2,φ3). Since the dilaton is absent, � = 0,
the DFT dilaton becomes

e−2 d = √|g| = t3e−2 x1
sin3 r cos r sin ξ cos ξ

z5 . (7.16)

We also have |det(�a
m)| = 1, and we can identify d̂(y) and d̄(x) as

e−2 d = e−2 d̂(y)e−2 d̄(x), e−2 d̂(y) ≡ t3 sin3 r cos r sin ξ cos ξ

z5 , e−2 d̄(x) ≡ e−2 x1
. (7.17)

From this, we obtain the (x1, x2, x3, x̃1, x̃2, x̃3)-components of the single-index flux as

FA = (2, 0, 0, 0, 0, 0) ≡ F (5|1)
A . (7.18)

In addition, from e−d̄(x)√|det a| = 1, the untwisted R–R fields become

F̂ ≡
∑

p

1

p! F̂a1···ap dxa1 ∧ · · · ∧ dxap = −4 t3 dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dz

z5 + 4ω5, (7.19)

which is a function of the spectator fields (yμ) = (t, z, r, ξ ,φ1,φ2,φ3), as expected.
Note that if we choose the untwisted fields as

(Êmn) = diag
(−1, t2, t2, t2, 1, 1, 1, 1, 1, 1

)
, e−2 d̂ = t3, F̂ = 0, (7.20)

the purely NS–NS solutions studied in Ref. [55] can be recovered.

7.2. (1|5): Type IIA GSE

In order to consider the NATD background, we perform a redefinition of generators,

T ′
A = CA

B T (5|1)
B , C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (7.21)

and give a parameterization,

l = g′ g̃′, g′ = ex′1 T ′
1ex′2 T ′

2ex′3 T ′
3 , g̃′ = ex̃′

1 T̃ ′1
ex̃′

2 T̃ ′2
ex̃′

3 T̃ ′3
. (7.22)

Then, from the identification with the original background,

g(x) g̃(x̃) = l = g′(x′) g̃′(x̃′), (7.23)
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we find the following relation between the coordinates:

x1 = x̃′
1, x2 = x̃′

2, x3 = x̃′
3,

x̃1 = x′1 + x′2e−x̃′
1 x̃′

2 + x′3e−x̃′
1 x̃′

3, x̃2 = e−x̃′
1x′2, x̃3 = e−x̃′

1x′3. (7.24)

From this relation, we can identify d̄ as

e−2 d̄ = e−2 x1 = e−2 x̃′
1 . (7.25)

For notational simplicity, in the following we drop the prime.
The untwisted fields in this frame become

(Êmn) = diag
(− 1

z2 , z2

t2 , z2

t2 , z2

t2 , 1
z2 , 1, sin2 r, sin2 r cos2 ξ , sin2 r sin2 ξ , cos2 r

)
,

e−2 d̂ = t3 sin3 r cos r sin ξ cos ξ

z5 , F̂ = −4 t3 dt ∧ dz

z5 + 4ω5 ∧ dx1 ∧ dx2 ∧ dx3, (7.26)

and we twist them by using the quantities

� = dx1 T1 + dx2 T2 + dx3 T3, r = dx1 T1 + dx2 T2 + dx3 T3,

v1 = ∂1, v2 = ∂2, v3 = ∂3, (7.27)

a =
⎛⎜⎝1 0 0

0 1 0
0 0 1

⎞⎟⎠, �ab = −f̃ ab
c xc. (7.28)

The resulting metric and the B-field are

ds2 = −dt2 + dz2

z2 + z2
[
t4 (dx2

1 + dx2
2 + dx2

3)+ z4 (x3 dx2 − x2 dx3)2
]

t2
[
t4 + (x2

2 + x2
3) z4

] + ds2
S5 ,

B2 = z4 dx1 ∧ (
x2 dx2 + x3 dx3

)
t4 + (x2

2 + x2
3) z4

. (7.29)

Since the dual algebra 5 is non-unimodular, we need to introduce the Killing vector

I = 1

2
f̃ ba

b vi
a ∂i = ∂1. (7.30)

We can check that the flux FA is transformed covariantly from the original one, F (5|1)
B ,

FA = (0, 0, 0, 2, 0, 0) = CA
B F (5|1)

B , (7.31)

which ensures that the equations of motion are transformed covariantly. In order to make the
background a solution of GSE we make the redefinition in Eq. (6.67), which gives

d̄ = 0, I =
(1

2
f̃ ba

b vi
a + ∂̃ id̄

)
∂i = 2 ∂1. (7.32)

After this redefinition, the dual geometry becomes

ds2 = −dt2 + dz2

z2 + z2
[
t4 (dx2

1 + dx2
2 + dx2

3)+ z4 (x3 dx2 − x2 dx3)2
]

t2
[
t4 + (x2

2 + x2
3) z4

] + ds2
S5 ,
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e−2� = t2
[
t4 + (x2

2 + x2
3) z4

]
z6 , B2 = z4 dx1 ∧ (

x2 dx2 + x3 dx3
)

t4 + (x2
2 + x2

3) z4
, (7.33)

G2 = −4 t3 dt ∧ dz

z5 , G4 = −4 t3 dt ∧ dx1 ∧ (
x2 dx2 + x3 dx3

) ∧ dz[
t4 + (x2

2 + x2
3) z4

]
z

, I = 2 ∂1,

which is a solution of type IIA GSE. We can explicitly check that this background has the (1|5)
symmetry,

[va, vb] = fab
c vc = 0, £va Emn = f̃ bc

a vm
b vn

c . (7.34)

A formal T -duality along the x1-direction gives a simple solution of type IIB supergravity,

ds2 = −dt2 + dz2 + t2 dx2
1

z2 + z2
[(

dx2 − x2 dx1)2 + (
dx3 − x3 dx1)2

]
t2 + ds2

S5 ,

� = ln
(z2

t2

)
+ 2 x1 , G3 = 4 t3e−2 x1

dt ∧ dx1 ∧ dz

z5 . (7.35)

7.3. (60|1): Type IIA SUGRA

We next perform the following redefinition of the original (5|1) generators:

T ′
A = CA

B T (5|1)
B , C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1
2 0 1 0

0 0 1
2 0 1 0

−1 0 0 0 0 0
0 1

2 0 0 0 −1
0 1

2 0 0 0 1
0 0 0 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (7.36)

This time, we provide the parameterization

l = g′ g̃′, g′ = e−x′3 T ′
3ex′2 T ′

2ex′1 T ′
1 , g̃′ = ex̃′

1 T̃ ′1
ex̃′

2 T̃ ′2
e−x̃′

3 T̃ ′3
, (7.37)

and the coordinates are related to the original ones as

x1 = x′3, x2 = x̃′
1 + x̃′

2

2
, x3 = x′2 − x′1

2
,

x̃1 = x̃′
3 + (x′1 + x′2) (x̃′

1 + x̃′
2)

2
, x̃2 = x′1 + x′2, x̃3 = x̃′

2 − x̃′
1. (7.38)

Then, in this frame, d̄ becomes

e−2 d̄ = e−2 x1 = e−2 x′3
. (7.39)

Again we remove the prime, and then the (t, x1, x2, x3, z)-part of the untwisted metric becomes

(Êmn) =

⎛⎜⎜⎜⎜⎜⎜⎝
− 1

z2 0 0 0 0

0 t2

4z2 + z2

t2
z2

t2 − t2

4z2 0 0

0 z2

t2 − t2

4z2
t2

4z2 + z2

t2 0 0

0 0 0 t2

z2 0
0 0 0 0 1

z2

⎞⎟⎟⎟⎟⎟⎟⎠. (7.40)
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In order to obtain the untwisted R–R fields, it may be useful to decompose the matrix C into products
of GL(D) transformation, B-transformation, T -dualities, and β-transformation. In this case, for
example, we can use the decomposition

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −1
2 0 0 0

0 1 1
2 0 0 0

−1 0 0 0 0 0
0 0 0 0 1

2 −1
0 0 0 0 1

2 1
0 0 0 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (7.41)

Then, the T -duality along the x2-direction and the GL(3) transformation give

F̂ = 2 t3 dt ∧ (dx1 − dx2) ∧ dx3 ∧ dz

z5 − 4 (dx1 + dx2) ∧ ω5. (7.42)

In order to obtain the twist matrix, we compute

� = (dx1 + x2 dx3)T1 + (dx2 + x2 dx3)T2 − dx3 T3,

r = (cosh x3 dx1 + sinh x3 dx2)T1 + (sinh x3 dx1 + cosh x3 dx2)T2 − dx3 T3,

v1 = ∂1, v2 = ∂2, v3 = x2 ∂1 + x1 ∂2 − ∂3, (7.43)

a =
⎛⎜⎝ cosh x3 − sinh x3 0

− sinh x3 cosh x3 0
−x2 −x1 1

⎞⎟⎠, �ab = 0. (7.44)

Again, the flux FA is transformed covariantly,

FA = (0, 0, −2, 0, 0, 0) = CA
B F (5|1)

B . (7.45)

The background fields are determined as

ds2 = −dt2 + t2 dx2
3 + dz2

z2 + e−2 x3
t2 (dx1 − dx2)2

4 z2 + e2 x3
z2 (dx1 + dx2)2

t2 + ds2
S5 ,

e−2� = e−2 x3
t2

z2 , G4 = 2e−2 x3
t3
(
dx1 − dx2

) ∧ dt ∧ dx3 ∧ dz

z5 , (7.46)

and this is a solution of type IIA supergravity.

7.4. (1|60): Type IIB GSE

The NATD of the (60|1) background, namely (1|60), can be realized by

T ′
A = CA

B T (5|1)
B , C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2 0 0 0 −1

0 1
2 0 0 0 1

0 0 0 −1 0 0
0 0 −1

2 0 1 0
0 0 1

2 0 1 0
−1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (7.47)
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We give the parameterization

l = g′ g̃′, g′ = ex′1 T ′
1ex′2 T ′

2e−x′3 T ′
3 , g̃′ = e−x̃′

3 T̃ ′3
ex̃′

2 T̃ ′2
ex̃′

1 T̃ ′1
. (7.48)

In order to determine d̄ it is enough to identify the coordinate x1, and we find

e−2 d̄ = e−2 x1 = e−2 x̃′
3 . (7.49)

Note that the appearance of the dual-coordinate dependence was discussed in Ref. [55], but at that
time DFT had not been developed and the interpretation was not clear.

We can construct the twist matrix U from

� = dx1 T1 + dx2 T2 − dx3 T3, r = dx1 T1 + dx2 T2 − dx3 T3,

v1 = ∂1, v2 = ∂2, v3 = −∂3. (7.50)

a =
⎛⎜⎝1 0 0

0 1 0
0 0 1

⎞⎟⎠, (�ab) =
⎛⎜⎝ 0 0 −x2

0 0 −x1

x2 x1 0

⎞⎟⎠, (7.51)

and the flux FA becomes

FA = (0, 0, 0, 0, 0, −2) = CA
B F (5|1)

B . (7.52)

Thus, the DFT equations of motion are covariantly transformed.
Although the dual algebra is unimodular, in order to absorb the dual coordinate dependence in d̄

we make a field redefinition, Eq. (6.67), and obtain

e−2 d̄ = 1, I = ∂3. (7.53)

After the redefinition we obtain a solution of type IIB GSE,

ds2 = −dt2 + dz2

z2 + ds2
S5

+ t6 (dx1 + dx2)2 + 4 t2 z4
[
(dx1 − dx2)2 + (x1 dx1 − x2 dx2)2 + dx2

3

]
t4 z2

[
(x1 + x2)2 + 4

] + 4 z6 (x1 − x2)2
,

B2 = t4 (x1 + x2) (dx1 + dx2)− 4 z4 (x1 − x2) (dx1 − dx2)

t4
[
(x1 + x2)2 + 4

] + 4 z4 (x1 − x2)2
∧ dx3, I = ∂3,

e−2� = t4
[
(x1 + x2)2 + 4

] + 4 z4 (x1 − x2)2

4 z4 , G3 = 2 t3 (dx1 + dx2) ∧ dt ∧ dz

z5 ,

G5 = 2 (x1 − x2)

[
8 t3 z−1 dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dz

t4
[
(x1 + x2)2 + 4

] + 4 z4 (x1 − x2)2
− 2ωS5

]
. (7.54)

It is important to note that the duality (60|1) → (1|60) is a NATD for traceless structure constants.
In the literature, it has been discussed that if the structure constants are traceless then the NATD
background satisfies the supergravity equations of motion, but here we obtained a solution of GSE.
The consistency is to be clarified in a future study. Of course, the existence of the R–R fields is not
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important here. As already mentioned, we can obtain a purely NS–NS solution by starting with the
untwisted fields, Eq. (7.20). The (60|1) background is

ds2 = −dt2 + t2 dx2
3 + 1

4
e−2 x3

t2 (dx1 − dx2)2 + e2 x3
t−2 (dx1 + dx2)2 + ds2

T6,

e−2� = e−2 x3
t2, (7.55)

while its NATD, namely the (1|60) background, is a GSE solution,

ds2 = −dt2 + ds2
T6

+ t6 (dx1 + dx2)2 + 4 t2
[
(dx1 − dx2)2 + (x1 dx1 − x2 dx2)2 + dx2

3

]
t4
[
(x1 + x2)2 + 4

] + 4 (x1 − x2)2
,

B2 = t4 (x1 + x2) (dx1 + dx2)− 4 (x1 − x2) (dx1 − dx2)

t4
[
(x1 + x2)2 + 4

] + 4 (x1 − x2)2
∧ dx3, I = ∂3,

e−2� = t4
[
(x1 + x2)2 + 4

] + 4 (x1 − x2)2

4
. (7.56)

It will be interesting to study string theory on these backgrounds in detail.
We also note that in the (1|60) background, Eq. (7.54), if we perform a formal T -duality along the

x3-direction we obtain a solution of type IIA supergravity,

ds2 = −dt2 + dz2

z2 + z2 [dx1 − dx2 − (x1 − x2) dx3]2

t2

+ t2 [(dx1 + dx2)2 + 2 (x1 + x2) (dx1 + dx2) dx3 + [(x1 + x2)2 + 4] dx2
3]

4 z2 + ds2
S5 ,

e−2� = e−2 x3
t2

z2 , G4 = −2e−x3
t3 (dx1 + dx2) ∧ dt ∧ dx3 ∧ dz

z5 . (7.57)

7.5. (5|2.i): Type IIB SUGRA

In order to obtain the Manin triple (5|2.i), we perform the redefinition

T ′
A = CA

B T (5|1)
B , C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 −1 0 0
0 1 0 0 0 −1

2
0 0 1 0 1

2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (7.58)

Again we consider the parameterization

l = g′ g̃′, g′ = ex′1 T ′
1ex′2 T ′

2e−x′3 T ′
3 , g̃′ = ex̃′

1 T̃ ′1
ex̃′

2 T̃ ′2
e−x̃′

3 T̃ ′3
, (7.59)

and from the coordinate transformation we obtain

e−2 d̄ = e−2 x1 = e2 x′1
. (7.60)
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The necessary quantities are obtained as

� = dx1 T1 + (dx2 − x2 dx1)T2 − (dx3 − x3 dx1)T3,

r = dx1 T1 + e−x1(
dx2 T2 − dx3 T3

)
,

v1 = ∂1 + x2 ∂2 + x3 ∂3, v2 = ∂2, v3 = −∂3, (7.61)

a =
⎛⎜⎝1 −x2 x3

0 ex1
0

0 0 ex1

⎞⎟⎠, (�ab) =
⎛⎜⎝0 0 0

0 0 −e−x1
sinh x1

0 e−x1
sinh x1 0

⎞⎟⎠, (7.62)

and again the flux FA is covariantly transformed,

FA = (−2, 0, 0, 0, 0, 0) = CA
B F (5|1)

B . (7.63)

A straightforward computation gives

ds2 = −dt2 + t2 dx2
1 + dz2

z2 + 4e2 x1
t2 z2 (dx2

2 + dx2
3)

4e4 x2 t4 + z4
+ ds2

S5 ,

B2 = −2 z4 dx2 ∧ dx3

4e4 x1 t4 + z4
, e−2� = 4e4 x1

t4 + z4

4 z4 ,

G3 = −e2 x1 4 t3 dt ∧ dx1 ∧ dz

z5 ,

G5 = −8e2 x1
t3

z

dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dz

4e4 x1 t4 + z4
+ 2ωS5, (7.64)

and this is a solution of type IIB supergravity.

7.6. (2.i|5): Type IIA SUGRA

We next consider the transformation

T ′
A = CA

B T (5|1)
B , C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0
0 1 0 0 0 −1

2
0 0 1 0 1

2 0
−1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (7.65)

and provide the parameterization

l = g′ g̃′, g′ = ex′1 T ′
1ex′2 T ′

2e−x′3 T ′
3 , g̃′ = ex̃′

1 T̃ ′1
ex̃′

2 T̃ ′2
e−x̃′

3 T̃ ′3
. (7.66)

The coordinate transformation gives

e−2 d̄ = e−2 x1 = e2 x̃′
1 . (7.67)

Again, we compute

� = (dx1 − x3 dx2)T1 + dx2 T2 − dx3 T3,

r = (dx1 − x2 dx3)T1 + dx2 T2 − dx3 T3,
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v1 = ∂1, v2 = x3 ∂1 + ∂2, v3 = −∂3, (7.68)

a =
⎛⎜⎝ 1 0 0

−x3 1 0
−x2 0 1

⎞⎟⎠, (�ab) =
⎛⎜⎝ 0 x2 −x3

−x2 0 0
x3 0 0

⎞⎟⎠, (7.69)

and we can check that the flux is covariantly transformed,

FA = (0, 0, 0, −2, 0, 0) = CA
B F (5|1)

B . (7.70)

Since the dual algebra 5 is non-unimodular, we have

I = 1

2
f̃ ba

b vm
a ∂m = ∂1. (7.71)

We thus expect that this background is a solution of the GSE. However, according to the field
redefinition in Eq. (6.67), we obtain

e−2 d̄ = 1, I = ∂1 − ∂1 = 0. (7.72)

As the result, we obtain a solution of the conventional type IIA supergravity,

ds2 = −dt2 + dz2

z2 + z2
[
4 dx1 (dx1 − x3 dx2 − x2 dx3)+ (x3 dx2 + x2 dx3)2

]
4 t2 (1 + x2

2 + x2
3)

+ t2
[
dx2

2 + dx2
3 + (x3 dx2 − x2 dx3)2

]
z2 (1 + x2

2 + x2
3)

+ ds2
S5 ,

B2 = dx1 ∧ (x2 dx2 + x3 dx3)

1 + x2
2 + x2

3

+ (1 + 2 x2
2) dx2 ∧ dx3

2 (1 + x2
2 + x2

3)
,

e−2� = t2 (1 + x2
2 + x2

3)

z2 , G4 = −4 t3 dt ∧ dx2 ∧ dx3 ∧ dz

z5 . (7.73)

Namely, even if the dual algebra is non-unimodular, the background can satisfy the usual supergravity
equations of motion. This is a remarkable example of such unusual cases.

7.7. (5.ii|60): Type IIB GSE

We next consider

T ′
A = CA

B T (5|1)
B , C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 −1 0 0 0 1

2
0 1 0 1 0 1

2
−1 0 1 0 1

2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (7.74)

and give the parameterization

l = g′ g̃′, g′ = ex′1 T ′
1e(x

′2−x′1)T ′
2ex′3 T ′

3 , g̃′ = ex̃′
3 T̃ ′3

ex̃′
2 T̃ ′2

e(x̃
′
1+x̃′

2) T̃ ′1
. (7.75)

We then obtain d̄ as

e−2 d̄ = e−2 x1 = e−2 (x′2−x̃′
3). (7.76)
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From a straightforward computation,

� = ex1−x2
dx1 T1 + (dx2 − ex1−x2

dx1)T2 + (dx3 + x3 dx2)T3,

r = [
ex1

dx1 + (1 − ex1
) dx2]T1 + ex1

(dx2 − dx1)T2 + ex2
dx3 T3,

v1 = ex2−x1
∂1 + ∂2 − x3 ∂3, v2 = ∂2 − x3 ∂3, v3 = ∂3, (7.77)

a =
⎛⎜⎝ ex1−x2

1 − ex1−x2
x3

e−x2
(ex1 − 1) 1 + e−x2

(1 − ex1
) x3

0 0 e−x2

⎞⎟⎠,

(�ab) =

⎛⎜⎜⎝
0 0 1−ex2

(2−2ex1+ex2
)

2

0 0 1+e2x2−2ex1+x2

2

−1−ex2
(2−2ex1+ex2

)
2 −1+e2x2−2ex1+x2

2 0

⎞⎟⎟⎠, (7.78)

we obtain the twist matrix U , and the flux is covariantly transformed

FA = (2, 2, 0, 0, 0, −2) = CA
B F (5|1)

B . (7.79)

Since the dual algebra is unimodular, originally we have I m = 0. However, due to the dual-
coordinate dependence of d̄, we make the field redefinition in Eq. (6.67) and obtain

e−2 d̄ = e−2 x2
, I = −∂3. (7.80)

After the redefinition we obtain a solution of type IIB GSE,

ds2 = −dt2 + dz2

z2 + ds2
S5

+ t2
{
4e2 x2

z4 (e2 x1
dx2

1 + dx2
3)+ [4 (t4 + z4)+ e4 x2

z4] dx2
2

}
�2

+ 4ex1
t2 z4 [ex1

(dx1 − dx2)2 − e3 x2
dx1 dx2 + 2 (dx1 − dx2) dx2]

�2 ,

B2 = −2e2 x2
z2
{
2 t4 dx2 − z4 (2ex1 − ex2 − 2)

[
ex1

dx1 − (ex1 − 1) dx2
]} ∧ dx3

�2 ,

e−2� = e−4 x2
�2

4 z4 , I = −∂3, c G3 = 4e−2 x2
t3 dt ∧ dx2 ∧ dz

z5 ,

G5 = (2ex1 − ex2 − 2)
[8 t3ex1

z dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dz

�2 − 2e−x2
ωS5

]
, (7.81)

which is defined on the region

�2 ≡ 4 t4 (e2 x2 + 1) z2 + e2 x2
z6 (2 − 2ex1 + ex2

)2 ≥ 0. (7.82)
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A formal T -duality along the x3-direction gives a solution of type IIA supergravity,

ds2 = −dt2 + dz2

z2 + (t4 + z4) (dx2 − dx3)2 + z4e2 x1
(dx1 − dx2 + dx3)2

t2 z2

+ z2ex1 2 (dx2 − dx3) (dx1 − dx2 + dx3)− ex2
(dx1 − dx2 + dx3) dx3

t2

+ z2ex2 (dx3 − dx2) dx3

t2 + e−2 x2
(4 t4 + e4 x2

z4) dx2
3

4 t2 z2 + ds2
S5 ,

e−2� = t2e2 (x3−x2)

z2 , G4 = −4ex3−2 x2
t3 dt ∧ dx2 ∧ dx3 ∧ dz

z5 .

7.8. (60|5.ii): Type IIA SUGRA

Finally, we consider the redefinition

T ′
A = CA

B T (5|1)
B , C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 1
2

0 1 0 1 0 1
2

−1 0 1 0 1
2 0

1 0 0 0 −1 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (7.83)

This time, we consider the parameterization11

l = g′ g̃′, g′ = ex′3 T ′
3ex′2 T ′

2e(x
′1+x′2)T ′

1 , g̃′ = ex̃′
1 T̃ ′1

e(x̃
′
2−x̃′

1) T̃ ′2
ex̃′

3 T̃ ′3
, (7.84)

which leads to

e−2 d̄ = e−2 x1 = e−2 (x̃′
2−x′3). (7.85)

By using

� = (dx1 + dx2 − x2 dx3)T1 + [
dx2 − (x1 + x2) dx3]T2 + dx3 T3,

r = (cosh x3 dx1 + e−x3
dx2)T1 + (− sinh x3 dx1 + e−x3

dx2)T2 + dx3 T3,

v1 = ∂1, v2 = ∂2 − ∂1, v3 = ∂3 − x1 ∂1 + (x1 + x2) ∂2, (7.86)

a =
⎛⎜⎝cosh x3 sinh x3 0

sinh x3 cosh x3 0
−x2 −x1 − x2 1

⎞⎟⎠, (�ab) =
⎛⎜⎝ 0 x1 e−x3 − 1

−x1 0 e−x3 − 1

1 − e−x3
1 − e−x3

0

⎞⎟⎠, (7.87)

we can check the covariance of the flux,

FA = (0, 0, −2, 2, 2, 0) = CA
B F (5|1)

B . (7.88)

11 We note that, in general, the parameterization should be carefully chosen such that the resulting twist
matrix U does not break the section condition.
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Since the dual algebra 5.ii is non-unimodular, the Killing vector becomes

I = 1

2
f̃ ba

b ṽa = −(v1 + v2) = −∂2
(
f̃ b1

b = −2, f̃ b2
b = −2

)
, (7.89)

but by absorbing the dual-coordinate dependence of d̄, we obtain

e−2 d̄ = e2 x3
, I m = 0. (7.90)

Then, after the redefinition, we obtain a solution of type IIA supergravity,

ds2 = −dt2 + dz2

z2 + t2 e4 x3
dx2

1 − 2e3 x3
(dx1 + x1 dx3) dx1

z2 [2 − 2ex3 + (x2
1 + 1)e2 x3]

+ z2

[
(1 − ex3

) dx1 + 2 dx2 − ex3
x1 dx3

]2

4 t2 [2 − 2ex3 + (x2
1 + 1)e2 x3] ,

+ e2 x3
t2
[
2 dx2

1 + 4 x1 dx1 dx3 + (2 x2
1 + 1) dx2

3

]
z2 [2 − 2ex3 + (1 + x2

1)e
2 x3] + ds2

S5 ,

B2 = e2 x3
x1 dx1 ∧ dx2 + [1 + e2 x3

(sinh x3 − 1
2)] dx1 ∧ dx3 + (2 − ex3

) dx2 ∧ dx3

2 − 2ex3 + (x2
1 + 1)e2 x3 ,

e−2� = t2
[
2 − 2ex3 + e2 x3

(x2
1 + 1)

]
z2 , G4 = −4 t3e2 x3

dt ∧ dx1 ∧ dx3 ∧ dz

z5 . (7.91)

8. Conclusion and outlook
8.1. Summary of results

We have discussed two approaches to the non-Abelian T -duality. One is the traditional NATD,
obtained by integrating out the gauge fields associated with non-Abelian isometries, and the other
is the PL T -duality/plurality, which is based on the Drinfel’d double.

In NATD, a closed-form expression for the duality rules including the R–R fields was explicitly
known only for a certain isometry group, SU(2), but we proposed a general formula by assuming
that the isometry group freely acts on the target space. The duality rules, under the setup of Eq. (3.1),
are summarized in Eqs. (5.2) and (5.3). In order to check the formula we studied many examples,
particularly the NATD for non-unimodular isometry groups.

For the PL T -duality, the treatments of the R–R fields have been discussed in recent papers
[138,139,142], but concrete examples have not been well studied. We first considered the case
without spectator fields, and translated the known transformation rules for {gmn, Bmn, �} into the
rules for the generalized metric HMN and the DFT dilaton d. Then, using a result of the gauged DFT,
we showed that the equations of motion are transformed covariantly under the PL T -plurality (by
introducing a Killing vector I m appropriately). We also introduced the R–R fields, and determined
their transformation rule under the O(n, n) PL T -plurality transformation such that the equations
of motion are covariantly transformed. We further considered the case with spectator fields and,
requiring some dualizability conditions, we showed that the DFT equations of motion are indeed
satisfied even in the presence of spectators. Finally, we studied a concrete example of the PL T -
plurality. Starting with the AdS5 × S5 solution, we obtained the family of solutions in Fig. 2.
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Fig. 2. Family of solutions for concrete PL T -plurality example.

Three of these are solutions of GSE. There are two origins of GSE: one is the Killing vector
I i = 1

2 f̃ ba
b vi

a that appears when the dual algebra is non-unimodular, and the other is the dual-
coordinate dependence in d̄. In the examples (2.i|5) and (60|5.ii), the two contributions are canceled
with each other, and they are solutions of the usual supergravity even though their dual algebras are
non-unimodular. In the literature, when d̄ has a dual-coordinate dependence, since its interpretation
is not clear in string theory or supergravity, such a Manin triple was ignored. However, in DFT
we can treat the dual coordinates in the same ways as the physical coordinates, and we can lift the
restriction. In this way, the PL T -plurality is a solution-generating technique of the DFT, rather than
the usual supergravity.

8.2. Discussion and outlook

As we discussed, if we consider a supergravity solution that contains a four-dimensional Minkowski
spacetime, ds2 = f 2(y) ημν dxμ dxν + · · · , we can choose the coordinates such that the (5|1) sym-
metry is manifest. Then, as long as the B-field is isometric along the three Killing vectors, we will
obtain a family of eight solutions similar to the case of AdS5 × S5. Moreover, low-dimensional
Drinfel’d doubles have already been classified in Refs. [52–54], and a useful list is given in Sect. 3
of Ref. [54]. If we have a DFT solution with an isometry algebra g, we may find a series of Manin
triples,

(g|1) ∼= (g′|g′′) ∼= · · · , (8.1)

and obtain a chain of DFT solutions. We may also start from a background with a (g|g̃) symmetry. For
example, as discussed in Ref. [50], theYang–Baxter deformed backgrounds are also PL T -dualizable.
Indeed, a Yang–Baxter deformed background has the form

Emn = g̃mn − βmn, βmn ≡ 2 η rab vm
a vn

b (rab = −rba), (8.2)

where η and rab are constant, and £va g̃mn = 0 and [va, vb] = fab
c vc are satisfied. Then, we can show

that £va Emn = f̃ bc
a vm

b vn
c with f̃ bc

a = 2 η
(
rbd fda

c − rcd fda
b
)
, and this is a dualizable background

with the (g|g̃) symmetry. Then, by finding a group element g(x) which realizes the set of Killing
vectors vm

a as the left-invariant vector fields and βmn as βmn = em
a en

b �
ab [i.e. (aᵀ b)ab = 2 η rab], we

can perform the PL T -plurality transformations of the Yang–Baxter-deformed background. In this
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way, from a given solution we can find new solutions one after another, and the PL T -plurality is a
useful solution-generating technique.

In the traditional approach to NATD, we introduced the generalized Killing vector (V M
a ) =

(vm
a , ṽam). When the dual components ṽam are present, we cannot regard the NATD as a particu-

lar case of the PL T -plurality. Also when the generalized Killing vectors depend on the spectator
fields yμ, we cannot realize them as the left-invariant vector fields. In this sense, the traditional
NATD is not completely contained in the PL T -plurality discussed here. It is interesting to study
whether it is possible to generalize the PL T -plurality such that the traditional NATD can be realized
as a particular case. In the realm of NATD that is going beyond the PL T -plurality, it is not ensured
that the dual background is a solution of DFT. By the definition of NATD, the duality rules for the
metric and B-field should not be modified, but the transformation rule for the dilaton and I m may
be modified from Eq. (5.2). It will be an important task to determine the general rule for the dilaton
and I m that is consistent with the DFT equations of motion. Once the modification of the rule for the
dilaton is determined, the modification of the rule for the R–R fields (by an overall factor) can also
be determined, and then we can check the equation of motion for the R–R fields.

In the two approaches studied in this paper we have assumed that the isometry group acts on the
target space freely, or without isotropy. If the assumption is not satisfied, we cannot take a gauge
xi = ci and we need to consider a more non-trivial gauge fixing. Treatments in such cases are
discussed, for example, in Refs. [19,73,77,176] for the NATD, and in Refs. [41,45,47] for the PL
T -duality. It is an interesting future direction to check whether the DFT equations of motion are
covariantly rotated even in such general cases.

In the study of the PL T -plurality we have checked the covariance of the flux FA = 2 DAd̄ on a
case-by-case basis. The covariance is highly non-trivial but it was indeed transformed covariantly
in all of the examples, and we suspect that there is some mechanism to be clarified. To show the
covariance of FA, clear understanding of the (finite) coordinate transformation (xi, x̃i) → (x′i, x̃′

i)

on the Drinfel’d double will be indispensable. The 2D diffeomorphism in DFTWZW [135–137] may
be useful for this purpose.

8.3. Toward non-Abelian U-duality

Another important future direction is an investigation of the non-Abelian U -duality. As an attempt
toward this, let us first consider an extension of the traditional NATD. As a natural extension of
Eq. (3.3), let us consider the following setup [155]:

£va gij = 0, ιva F4 + dv̂(2)a = 0, £va vb = fab
c vc, £va v̂(2)b = fab

c v̂(2)c , (8.3)

where F4 ≡ dC3 is the four-form field strength in the eleven-dimensional supergravity. The two-form
v̂(2)a is the generalization of the one-form v̂am appearing in Eq. (3.3), and the first two relations in
Eq. (8.3) are understood as a form of generalized Killing equations. The remaining two equations
are generalizations of the C-brackets between the generalized Killing vectors.

We define v̂(1)ab ≡ ιvb v̂(2)a , and assume the following relation for simplicity:

v̂(1)
(ab) = 0, ιva v̂(1)[bc] = ιv[a v̂(1)bc]. (8.4)
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Table 1. U -duality groups En(n).

n 4 5 6 7 8

U -duality group En(n) SL(5) SO(5, 5) E6(6) E7(7) E8(8)

Dimension D 10 16 27 56 248

We also assume the existence of the one-forms �a ≡ �a
i dxi that are dual to va (ιva�

b = δb
a ), and then

we find that the action12

S =
∫
�

[ 1

2

(
gij Dxi ∧ ∗Dxj + ∗1

) + C3 + 2 yab Fa ∧ (
�b − Ab) ]

+
∫
�

[
−Aa ∧ v̂(2)a + 1

2
Aa ∧ Ab ∧ v̂(1)ab − 1

3! Aa ∧ Ab ∧ Ac ιva v̂(1)bc

]
(8.5)

is invariant under

δεx
i(σ ) = εa(σ ) vi

a(x), δεA
a(σ ) = dεa(σ )+ fbc

a Ab(σ ) εc(σ ),

δεyab = εc (fca
d ydb + fcb

d yad
)
. (8.6)

Here, by following the approach of Ref. [177] (see also Ref. [178]), we have introduced antisymmetric
Lagrange multipliers yab = −yba that will ensure Fa = 0.

In the Abelian limit we can realize vi
a = δi

a and �a = δa
i dxi, and then we can always choose a

gauge xi = 0. By further assuming v̂(2)a = −ιva C3, the action reduces to

S =
∫
�

[1

2

(
gij Ai ∧ ∗Aj + ∗1

) + 1

3! Cabc Aa ∧ Ab ∧ Ac + dyab ∧ Aa ∧ Ab
]
. (8.7)

This is precisely the action discussed in Refs. [177,178], and Eq. (8.5) can be regarded as a natural
extension. However, unlike the case of the string action, it is not clear how to eliminate the gauge
fields Aa, and at the present time we do not know how to obtain the dual action.

A more promising approach may be the following one based on a generalization of DFT. The
U -dual version of DFT is known as the exceptional field theory (EFT) [178–185] and it is actively
being studied. In DFT, the generalized coordinates are (xM ) = (xm, x̃m) and the dual coordinates
x̃m are associated with the string winding number. On the other hand, in EFT we introduce the
dual coordinates for all of the wrapped branes that are connected by U -duality transformations.
For example, in M-theory on a n-torus we have the M2-brane, the M5-brane, and the Kaluza–
Klein monopole, and more exotic branes in general. Correspondingly, we introduce the generalized
coordinates as

(xI ) = (xi, yi1i2 , yi1···i5 , yi1···i7, i, . . .) (i = 1, . . . , n). (8.8)

By understanding that the multiple indices separated by commas are totally antisymmetrized, we can
easily see that the number of dimensions of the extended space xI is the same as the dimension D
of a fundamental representation of the En(n) U -duality group, as shown in Table 1. The generalized

12 In the string action of Eq. (3.4), by adding a total-derivative term the Lagrangian multiplier was introduced
with derivative dx̃a (see Ref. [22] for the Abelian case), but here we only discuss the classical equations of
motion without investigating such a total-derivative term.
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metric MIJ has been constructed in such extended space in Refs. [178,182], and it contains the
bosonic fields, such as the metric gij, and the three-form and six-form potentials, Ci1i2i3 and Ci1···i6 .
It is a natural generalization of the generalized metric HMN in DFT.

In DFT, the section condition ηIJ ∂I ∂J = 0 reduces the doubled space to the physical subspace.
The section condition in EFT (for n ≤ 6) also has a similar form ηIJ ; K̂ ∂I ∂J = 0, where ηIJ ; K̂

is known as the η-symbol and it has an additional index K̂ transforming in another representation
(see Ref. [186] for the explicit form of the η-symbol). When all of the fields depend only on the
coordinates xi of Eq. (8.8), we find

ηIJ ; K̂ ∂I ∂J = ηij; K̂ ∂i ∂j = 0
(
∵ ηij; K̂ = 0

)
, (8.9)

and the section condition is satisfied. This n-dimensional solution is called the M-theory section.
Another solution, called the type IIB section, was found in Ref. [187], and in order to discuss the
type IIB section it is convenient to reparameterize the coordinates as13

(xM ) = (xm, yαm, ym1m2m3 , yαm1···m5
, ym1···m6,m, . . .) (m = 1, . . . , n − 1 , α = 1, 2), (8.10)

where the dual coordinates are associated with the type IIB branes. If the fields depend only on the
xm, the section condition is again satisfied because ηmn; P̂ = 0. Since we cannot introduce any more
coordinate dependence, the subspace spanned by xm is also a maximally isotropic subspace, although
it is (n − 1) dimensional unlike the M-theory section. In this way, a single EFT can be understood
from two viewpoints: M-theory and type IIB theory.

One of the key relations in the PL T -duality is the self-duality relation,

ηAB P̂B = ĤAB ∗ P̂B, P̂(σ ) = dl l−1. (8.11)

This is a covariant rewriting of the string equations of motion, but a similar equation for the M2-
or M5-brane theory has been discussed in Refs. [189,190] for the SL(5) and SO(5, 5) case, and in
Ref. [191] for higher exceptional groups. For the Mp-brane (p = 2, 5), it has a similar form,

ηIJ ∧ PJ = MIJ ∗ PJ , (8.12)

where ηIJ is some (p − 1)-form that contains dxi and the field strengths of the worldvolume gauge
fields. In the case of the flat torus, the equations of motion give dP I = 0 and we find the on-shell
expression P I = dxI . On the other hand, by requiring a certain “dualizability condition” on MIJ

appropriately, the equations of motion may lead to P = dl l−1, where l is an element of a certain
large group E with dimension D. The corresponding algebra e will be endowed with a bilinear
form, corresponding to the η-symbol. Then, the U -dual version of the PL T -plurality may be the
equivalence between sigma models with n- or (n−1)-dimensional target spaces that have an isometry
algebra [Ta, Tb] = fab

c Tc satisfying ηab; Â = 0. The identification of the detailed structure of the
group E and the systematic construction of the twist matrix U , whose flux gives the structure constant
of e, are interesting future directions.

Note added

After this paper appeared on arXiv, an interesting paper, Ref. [192], appeared, which also discusses
NATD from the perspective of the gauged DFT.

13 The explicit relation between xI and xM was determined in Ref. [188].
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Appendix A. Conventions

The symmetrization and antisymmetrization are normalized as

A(m1···mn) ≡ 1

n!
(
Am1···mn + · · · ), A[m1···mn] ≡ 1

n!
(
Am1···mn ± · · · ). (A.1)

Our conventions for differential forms are as follows, both for the spacetime and the worldsheet:

(∗αq)m1···mp+1−q = 1

q! ε
n1···nq

m1···mp+1−q αn1···nq , dDx = dx1 ∧ · · · ∧ dxD,

∗ (dxm1 ∧ · · · ∧ dxmq) = 1

(p + 1 − q)! ε
m1···mq

n1···np+1−q dxn1 ∧ · · · ∧ dxnp+1−q ,

(ιvαn) = 1

(n − 1)! vn αnm1···mn−1 dxm1 ∧ · · · ∧ dxmn−1 . (A.2)

The epsilon tensors on the spacetime and the worldsheet are defined as follows:

ε01 = 1√|γ | , ε01 = −√|γ |, ε1···D = − 1√|g| , ε1···D = √|g|. (A.3)

For the R–R fields, we have the R–R potential in the A-basis Am1···mp and the C-basis Cm1···mp

[160]. In terms of the polyform,

A ≡
∑

p

1

p! Am1···mp dxm1 ∧ · · · ∧ dxmp , C ≡
∑

p

1

p! Cm1···mp dxm1 ∧ · · · ∧ dxmp , (A.4)

they are related as

A = eB2∧C, C = e−B2∧A. (A.5)

Their field strengths are defined as

F = dA, G = dC + H3 ∧ C, (A.6)

and they are also related as

F = eB2∧G, G = e−B2∧F . (A.7)

For simplicity, in this paper we call the field strength F the Page form. In our convention, the G
satisfies the self-duality relation

∗Gp = (−1)
p(p+1)

2 +1G10−p, Gp = (−1)
p(p−1)

2 ∗ G10−p. (A.8)
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In the presence of the Killing vector I m in the GSE, which satisfies

£I gmn = £I B2 = £I� = £I F = £I G = 0, (A.9)

the relations in Eq. (A.6) are modified as

F = dA − ιI A, G = dC + H3 ∧ C − ιI B2 ∧ C − ιI C, (A.10)

and the Bianchi identities, which are equivalent to the equations of motion under Eq. (A.8), become

dF − ιI F = 0, dG + H3 ∧ G − ιI B2 ∧ G − ιI G = 0. (A.11)

The GSE for the fields in the NS–NS sector can be summarized as

R + 4 Dm∂m�− 4 |∂�|2 − 1

2
|H3|2 − 4

(
I mIm + U mUm + 2 U m ∂m�− DmU m) = 0,

Rmn − 1

4
Hmpq Hn

pq + 2Dm∂n�+ DmUn + DnUm = Tmn, (A.12)

− 1

2
DpHpmn + ∂p�H p

mn + U p Hpmn + DmIn − DnIm = Kmn,

where U1 ≡ Um dxm is defined as U1 ≡ ιI B2, and Tmn and Kmn are

Tmn ≡ e2�

4

∑
p

[ 1

(p − 1)! G(m
q1···qp−1Gn)q1···qp−1 − 1

2
gmn |Gp|2

]
,

Kmn ≡ e2�

4

∑
p

1

(p − 2)! Gq1···qp−2 Gmn
q1···qp−2 . (A.13)

In the presence of the Killing vector (I m) = (I i, I z), if we perform a formal T -duality along the
xz-direction then the supergravity fields are transformed as follows [149]:

g′
ij = gij − giz gjz − Biz Bjz

gzz
, g′

iz = Biz

gzz
, g′

zz = 1

gzz
,

B′
ij = Bij − Biz gjz − giz Bjz

gzz
, B′

iz = giz

gzz
,

�′ = �+ 1

4
ln
∣∣∣det(g′

mn)

det(gmn)

∣∣∣ + I zz, I ′i = I i, I ′z = 0,

A′
i1···ip−1z = e−I zzAi1···ip−1 , A′

i1···ip = e−I zzAi1···ipz,

C ′
i1···ip−1z = e−I zz

[
Ci1···ip−1 − (p − 1)

C[i1···ip−2|z| gip−1]z
gzz

]
,

C ′
i1···ip = e−I zz

[
Ci1···ipz + p C[i1···ip−1 Bip]z + p (p − 1)

C[i1···ip−2|z| Bip−1|z| gip]z
gzz

]
. (A.14)

Appendix B. Technical details of DFT

In this appendix we explain the technical details of (gauged) DFT and show the covariance of the
DFT equations of motion under the PL T -plurality with spectator fields.
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B.1. NS–NS sector

For convenience, let us introduce the double vielbein (VÂ
M ) ≡ (Va

M , Vā
M ) as

HMN = VM
Â VN

B̂ HÂB̂, ηMN = VM
Â VN

B̂ ηÂB̂, VM
Â VÂ

N = δN
M , (B.1)

where VM
Â is an O(D, D) matrix and we have defined

(HÂB̂) =
(
ηab 0
0 ηāb̄

)
, (ηÂB̂) =

(
ηab 0
0 −ηāb̄

)
, (B.2)

and (ηab) ≡ (ηāb̄) ≡ diag(−1, 1, . . . , 1). They can be parameterized as

(Va
M ) = 1√

2

(
em

a

(g + B)mn en
a

)
, (Vā

M ) = 1√
2

(
em

ā
(−g + B)mn en

ā

)
, (B.3)

where em
a = em

ā is the vielbein satisfying gmn = ea
m eb

n ηab = eā
m eb̄

n ηāb̄.
The equations of motion for the DFT dilaton and the generalized metric are

R ≡ −2 P̄ÂB̂ (2 DÂF B̂ − F Â F B̂

) − 1

3
P̄ÂB̂ĈD̂ÊF̂ F ÂB̂Ĉ F D̂ÊF̂ = 0,

GÂB̂ ≡ −4 P̄D̂[Â DB̂]F D̂ + 2
(F D̂ − DD̂

) F̌ D̂[ÂB̂] − 2 F̌ ĈD̂[Â F ĈD̂
B̂] = 0, (B.4)

where DÂ ≡ VÂ
M ∂M , and F Â and F ÂB̂Ĉ are defined by

F ÂB̂Ĉ ≡ 3 �[ÂB̂Ĉ], F Â ≡ �B̂
ÂB̂ + 2 DÂd, �ÂB̂Ĉ ≡ −DÂVB̂

M VMĈ , (B.5)

and F̌ ÂB̂Ĉ
is defined similarly to Eq. (2.23). We can show that R = S under the section condition,

but the equivalence of GÂB̂ = 0 and SMN = 0 is non-trivial. To see the equivalence, we show that

V āM V bN SMN = eām ebn smn, V aM V bN SMN = 0 = V āM V b̄N SMN . (B.6)

Under the section condition, we can also find

G āb = V āM V bN SMN , Gab = 0 = G āb̄, (B.7)

and they clearly show the equivalence of GAB = 0 and SMN = 0.
By using the identities [134]

Z ≡ DÂF Â − 1

2
F Â F Â + 1

12
F ÂB̂Ĉ F ÂB̂Ĉ = 0,

ZÂB̂ ≡ 2 D[ÂF B̂] + F Ĉ F ĈÂB̂ − DĈF ĈÂB̂ = 0, (B.8)

which hold under the section condition, we can simplify the expressions for R and GÂB̂ as

R = HÂB̂ (2 DÂF B̂ − F Â F B̂

)
+ 1

12
HÂD̂ (

3 ηB̂Ê ηĈF̂ − HB̂Ê HĈF̂)F ÂB̂Ĉ F D̂ÊF̂ , (B.9)

GÂB̂ = 2 HD̂[Â DB̂]F D̂ − 1

2
HD̂Ê (ηÂF̂ ηB̂Ĝ − HÂF̂ HB̂Ĝ)

(F D̂ − DD̂

)F ÊF̂Ĝ
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− HÊ
[Â (F D̂ − DD̂

)F B̂]D̂Ê + 1

2

(
ηĈÊ ηD̂F̂ − HĈÊ HD̂F̂)HĜ[Â F ĈD̂

B̂] F ÊF̂Ĝ. (B.10)

As a side remark, we note that the equations of motion GÂB̂ = 0 can also be expressed as

G̃ÂB̂ ≡ HÂ
Ĉ GĈB̂

= P̄(ÂB̂)ĈD̂ (
P̄ÊF̂ĜĤ F ĈÊF̂ F D̂ĜĤ + 2 D

(Ĉ F D̂)

) + 2 P̄ĈD̂Ê(Â (F Ê − DÊ

)F B̂)
ĈD̂

− P[ÂB̂]ĈD̂ [(F Ê − DÊ)F ÊĈD̂ + 2 D[Ĉ F D̂]
] = 0, (B.11)

where we have defined the projectors

PÂB̂ĈD̂ ≡ 1

2

(
ηÂĈ ηB̂D̂ + HÂĈ HB̂D̂), P̄ÂB̂ĈD̂ ≡ 1

2

(
ηÂĈ ηB̂D̂ − HÂĈ HB̂D̂). (B.12)

Now, let us decompose the double vielbein and the DFT dilaton as

VM
Â = UM

B(xI ) V̂B
Â(yμ), d = d̂(yμ)+ d(xI ), (B.13)

where the twist matrix UM
A is an O(D, D) matrix and the untwisted metric is defined by

ĤAB(y) ≡ V̂A
Ĉ(y) V̂B

D̂(y)HĈD̂. (B.14)

Then, by requiring

DAV̂B
Ĉ = ∂AV̂B

Ĉ , DAd̂ = ∂Ad̂
(DA ≡ UA

M ∂M
)
, (B.15)

the generalized fluxes can be decomposed as

F Â = F̂Â(y)+ V̂Â
B(y)FB,

F ÂB̂Ĉ = F̂ÂB̂Ĉ(y)+ V̂Â
D(y) V̂B̂

E(y) V̂Ĉ
F(y)FDEF , (B.16)

where F̂Â(y) and F̂ÂB̂Ĉ(y) are the generalized fluxes associated with {V̂A
B̂, d̂},

F̂ÂB̂Ĉ ≡ 3 	̂[ÂB̂Ĉ], F̂Â ≡ 	̂B̂
ÂB̂ + 2 D̂Âd̂, 	̂ÂB̂Ĉ ≡ −D̂ÂV̂B̂

D V̂DĈ , (B.17)

and D̂A ≡ V̂Â
B ∂B. Then, the generalized Ricci scalar can be decomposed as

R = R̂ + 1

12
ĤAD (

3 ηBE ηCF − ĤBE ĤCF)FABC FDEF − ĤAB FA FB

− 1

2
FA

BC ĤBD ĤCE DDĤAE + 2 FA DBĤAB − 4 ĤAB FA DBd̂. (B.18)

Here, we have assumed that FA and FABC are constant and have used FA
DE ∂AÊB̂

C(y) = 0, which
is satisfied under our setup Fα

BC = 0. In addition, R̂ is the generalized Ricci scalar associated with
the untwisted fields {ĤAB, d̂},

R̂ ≡ HÂB̂ (2 D̂ÂF̂B̂ − F̂Â F̂B̂

) − 1

12
HÂD̂ (HB̂Ê HĈF̂ − 3 ηB̂Ê ηĈF̂) F̂ÂB̂Ĉ F̂D̂ÊF̂ . (B.19)

Now, let us show the covariance of the equations of motion under the O(n, n) PL T -plurality
transformation,

ĤAB → (C Ĥ Cᵀ
)AB, d̂ → d̂, FA → (C F)A, FABC → CA

D CB
E CC

F FDEF . (B.20)
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From the relation in Eq. (B.14), the first rule implies the following rule for the untwisted vielbein:

V̂A
B̂ → CA

C V̂C
B̂, V̂Â

B → V̂Â
C (C−1)C

B. (B.21)

Since the untwisted fields satisfy Eq. (B.15), we can show for an arbitrary untwisted field g(y) that

D̂′
Â

g′(y) = V̂Â
B (C−1)B

C ∂Cg′(y) = V̂Â
B ∂Bg′(y) = D̂Âg′(y), (B.22)

and F̂Â(y) and F̂ÂB̂Ĉ(y) are invariant under the PL T -plurality transformation. Then, from Eq. (B.16),
the fluxes F Â and F ÂB̂Ĉ are also invariant,

F ′
Â

= F Â , F ′
ÂB̂Ĉ

= F ÂB̂Ĉ . (B.23)

Moreover, according to the constancy of FA and FABC , F Â and F ÂB̂Ĉ depend only on the spectator
fields, and from Eqs. (B.15), (B.22), and (B.23) we have

D′
Â
F ′

B̂
= D̂′

Â
F ′

B̂
= D̂ÂF ′

B̂
= DÂF B̂,

D′
Â
F ′

B̂ĈD̂
= D̂′

Â
F ′

B̂ĈD̂
= D̂ÂF ′

B̂ĈD̂
= DÂF B̂ĈD̂. (B.24)

Then, as is clear from Eqs. (B.9) and (B.10), R and GÂB̂ are also invariant,

R′ = R, G′ÂB̂ = GÂB̂. (B.25)

Note that if we define the quantity

GAB ≡ V̂Ĉ
A V̂D̂

B GĈD̂, (B.26)

we can clearly see that it transforms as GAB → (C−ᵀ G C−1)AB = CA
C GCD CD

B. This is precisely
the GAB discussed in Eq. (2.26) when the untwisted fields are constant.

In order to show the covariance of SMN , it is convenient to use the relation

V̂ āC V bD UC
M UD

N SMN = G āb = G′āb = V̂ ′āC V ′bD U ′
C

M U ′
D

N S ′
MN . (B.27)

From V̂ ′āC = V̂ āD (C−1)D
C , we find that

UA
M UB

N SMN = (C−1)A
C (C−1)B

D U ′
C

M U ′
D

N S ′
MN . (B.28)

Namely, we obtain

S ′
MN = (h S hᵀ

)MN , hM
N ≡ U ′

M
A CA

B UB
N . (B.29)

Therefore, the generalized Ricci tensor transforms covariantly in the same manner as HMN .

B.2. R–R sector

The R–R fields in the approach of Ref. [125] are defined as

|F〉 =
∑

p

1

p! Fm1···mp �
m1···mp |0〉, �m1···mp ≡ �[m1 · · ·�mp]. (B.30)

Here, the gamma matrix (�M ) ≡ (�m, �m) is real and satisfies (�M )
ᵀ = �M and

{�M , �N } = ηMN (⇔ {�m, �n} = δm
n , {�m, �n} = 0 = {�m, �n}

)
. (B.31)
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By considering �m and �n as the creation and annihilation operator, we define the Clifford vacuum
|0〉 as�m |0〉 = 0 that is normalized as 〈0|0〉 = 1 where 〈0| ≡ |0〉ᵀ. We define the charge conjugation
matrix as

C ≡ (�0 ± �0) · · · (�D−1 ± �D−1) (D even/odd),

C �A C−1 = −(�A)
ᵀ, C−1 = (−1)

D(D+1)
2 C = Cᵀ, (B.32)

and introduce the notations

〈F | ≡ (|F〉)ᵀ =
∑

p

1

p! Fm1···mp 〈0| (�mp)
ᵀ · · · (�m1)

ᵀ, 〈F | ≡ 〈F | Cᵀ. (B.33)

In type IIA/IIB theory, the R–R field strength satisfies

�11 |F〉 = ±|F〉 (type IIA/IIB), (B.34)

where the chirality operator is defined by

�11 ≡ (−1)NF , NF ≡ �m �m. (B.35)

The Bianchi identity is given by

/∂|F〉 = 0, /∂ ≡ �M ∂M , (B.36)

where the nilpotency /∂2 = 0 is ensured by the section condition. The R–R potential (in the A-basis)
is defined through

|F〉 = /∂|A〉, |A〉 =
∑

p

1

p! Am1···mp �
m1···mp |0〉, (B.37)

and in terms of differential form we have14

F = dA, d ≡ dxm ∧ ∂m + ιm ∂̃
m. (B.38)

Under an O(D, D) transformation,

HMN → H′
MN = (h H hᵀ

)MN , (B.39)

the O(D, D) spinors, |F〉 and |A〉, transform as

|F〉 → |F ′〉 = Sh |F〉, |A〉 → |A′〉 = Sh |A〉, (B.40)

where Sh is defined through

Sh �M S−1
h = (h−1)M

N �N . (B.41)

14 In GSE, the R–R fields have the dual-coordinate dependence as A = e−Im x̃m Ā(xm) and F = e−Im x̃m F̄(xm),
and the relation F = dA reproduces F̄ = eIm x̃mdA = dĀ − ιI Ā. By considering {Ā, F̄} as the dynamical fields,
we obtain the relation in Eq. (A.10). See Ref. [149] for more detail.
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We also define the corresponding operation Sh acting on the polyform F as

Sh |F〉 = |Sh F〉. (B.42)

The concrete expressions of Sh and Sh for the GL(D)-, B-, and β-transformation are as follows:

ShM = e
1
2 ρm

n [�m,�n] = 1√|det M | eρm
n �m �n

(
ρ ≡ ln M

)
(B.43)

↔ hM =
(

M 0
0 M−ᵀ

)
↔ ShM F ≡ F (M )

(
F (M )

m1···mp
≡ Mm1

n1 · · · Mmp
np Fn1···np

)
,

Shω = e
1
2 ωmn �

mn ↔ hω =
(

1d ω

0 1d

)
↔ Shω = e(

1
2 ωmn dxm∧dxn)∧, (B.44)

Shχ = e
1
2 χ

mn �mn ↔ hχ =
(

1d 0
χ 1d

)
↔ Shχ = e

1
2 χ

mn ιmιn . (B.45)

The factorized T -duality along the xz-direction is generated by

Shz = (
�z − �z

)
�11 ↔ hz =

(
1d − ez ez

ez 1d − ez

)
↔ Shz F = F ∧ dxz + F ∨ dxz. (B.46)

In fact, the R–R field |F〉 is as an O(D, D) spinor density with weight 1/2.15 Correspondingly, under
the GL(D) transformation, the above ShM needs to be corrected as

S̃hM |F〉 ≡ √|det M | ShM |F〉 = |ShM F〉 (B.47)

when acting on the O(D, D) spinor density. We can absorb the extra factor
√|det M | into the DFT

dilaton by considering a weightless O(D, D) spinor, |F〉 ≡ ed |F〉.
For later convenience, we define Sg and K as

Sg �M S−1
g = −gM

N �N , (gMN ) ≡
(

gmn 0
0 gmn

)
,

K�M K−1 = −HM
N �N , K = eBSge−B, B ≡ 1

2
Bmn �

mn. (B.48)

By using the property Sg |0〉 = √|g| |0〉, we can show that

〈α| Sg |β〉 = −√|g|
∑

p

1

p! gm1n1 · · · gmpnp αm1···mp βn1···np = 〈β| Sg |α〉 (B.49)

for O(D, D) spinors |α〉 and |β〉. Moreover, the self-duality relation in Eq. (A.8) can be expressed as

|F〉 = K |F〉. (B.50)

15 This can also be observed from the definition of the generalized Lie derivative,

£̂V |F〉 = (
V M ∂M + ∂M VN �

MN
) |F〉 + 1

2
∂M V N |F〉.
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We also define the correspondent of K for the untwisted metric as

K = SU K̂ S−1
U , K̂�A K̂−1 = −ĤA

B �B, (B.51)

where �A ≡ UA
M S−1

U �M SU = δM
A �M .

The bosonic part of the Lagrangian in type II DFT is

L = e−2 dS + 1

4
〈F | K |F〉, (B.52)

and the equations of motion for {HMN , d, |A〉} are summarized as

SMN = EMN , S = 0, /∂ K |F〉 = 0,

EMN ≡ −1

4
e2 d

[
〈F |�(M K�N ) |F〉 + 1

2
HMN 〈F | K |F〉

]
. (B.53)

Under the self-duality relation of Eq. (B.50), the equation of motion for the R–R field /∂ K |F〉 = 0
is precisely the Bianchi identity /∂ |F〉 = 0.

In the gauged DFT, we consider the reduction ansatz (see Refs. [132,134,193,194])

|F〉 = e−d(xI )SU (xI )|F̂(y)〉, (B.54)

and assume that |F̂(y)〉 satisfies the condition DA|F̂(y)〉 = ∂A|F̂(y)〉, similar to Eq. (B.15). In the
case of the twist matrix U = R �, |F̂〉 is explicitly given by

|F̂〉 = edS�−1SR−1 |F〉

= ed√|det(em
a )|

e
1
2 �

ab �ab
∑

p

1

p! em1
a1

· · · e
mp
ap Fm1···mp �

a1···ap |0〉. (B.55)

In terms of the differential form, this reads as

F̂ = ed√|det(em
a )|

SU−1 F . (B.56)

In terms of the untwisted field, the self-duality relation can be expressed as

|F̂〉 = K̂ |F̂〉. (B.57)

We can clearly see that this relation is preserved under the PL T -plurality transformation

K̂ → SC K̂ SC−1 , |F̂〉 → SC |F̂〉. (B.58)

Now, let us show the covariance of the Bianchi identity. From the reduction ansatz, we have

0 = /∂|F〉 = e−dSU
(

/∂ − �A DAd + S−1
U /∂SU

) |F̂〉

⇔
(

/∂ − 1

2
�A FA + 1

3! �
ABC FABC

)
|F̂〉 = 0, (B.59)

where we have used the identity

S−1
U /∂SU = 1

3! FABC �
ABC − 1

2
	B

AB �
A. (B.60)
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We require “the Bianchi identity” for the untwisted field /∂|F̂〉 = 0, and then the Bianchi identity in
Eq. (B.59) becomes an algebraic relation,( 1

3! �
ABC FABC − 1

2
�A FA

)
|F̂〉 = 0. (B.61)

This is manifestly covariant under the PL T -plurality transformation. Since the Bianchi identity and
the self-duality relation are covariantly transformed, the equation of motion for the R–R field is also
satisfied in the dualized background.

Finally, we show the covariance of the energy–momentum tensor. To this end, we define

ÊAB ≡ UA
M UB

N EMN = −1

4
e2 d̂

[
〈F̂ |�(A K̂�B) |F̂〉 + 1

2
ĤAB 〈F̂ | K̂ |F̂〉

]
. (B.62)

Under the PL T -plurality, Eq. (B.58), we can easily show that

U ′
A

M U ′
B

N E ′
MN = Ê ′

AB = CA
C CB

D ÊCD = CA
C CB

D UA
M UB

N EMN , (B.63)

and, similar to the generalized Ricci tensor, we obtain

E ′
MN = (h E hᵀ

)MN , hM
N ≡ U ′

M
A CA

B UB
N . (B.64)

This completes the proof for the covariance of the equations of motion.
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[173] C. Klimčík and P. Ševera, Nucl. Phys. B 488, 653 (1997) [arXiv:hep-th/9609112] [Search INSPIRE].
[174] C. M. Hull and R. A. Reid-Edwards, J. High Energy Phys. 0909, 014 (2009) [arXiv:0902.4032

[hep-th]] [Search INSPIRE].
[175] R. A. Reid-Edwards, arXiv:1001.2479 [hep-th] [Search INSPIRE].
[176] N. Mohammedi, Phys. Lett. B 414, 104 (1997) [arXiv:hep-th/9709071] [Search INSPIRE].
[177] M. J. Duff and J. X. Lu, Nucl. Phys. B 347, 394 (1990).
[178] D. S. Berman and M. J. Perry, J. High Energy Phys. 1106, 074 (2011) [arXiv:1008.1763 [hep-th]]

[Search INSPIRE].
[179] P. West, Class. Quant. Grav. 18, 4443 (2001) [arXiv:hep-th/0104081] [Search INSPIRE].
[180] P. West, Phys. Lett. B 575, 333 (2003) [arXiv:hep-th/0307098] [Search INSPIRE].
[181] C. Hillmann, arXiv:0902.1509 [hep-th] [Search INSPIRE].
[182] D. S. Berman, H. Godazgar, M. J. Perry, and P. West, J. High Energy Phys. 1202, 108 (2012)

[arXiv:1111.0459 [hep-th]] [Search INSPIRE].
[183] D. S. Berman, M. Cederwall, A. Kleinschmidt, and D. C. Thompson, J. High Energy Phys.

1301, 064 (2013) [arXiv:1208.5884 [hep-th]] [Search INSPIRE].
[184] P. West, J. High Energy Phys. 1212, 068 (2012) [arXiv:1206.7045 [hep-th]] [Search INSPIRE].
[185] O. Hohm and H. Samtleben, Phys. Rev. Lett. 111, 231601 (2013) [arXiv:1308.1673 [hep-th]] [Search

INSPIRE].
[186] Y. Sakatani and S. Uehara, Prog. Theor. Exp. Phys. 2017, 113B01 (2017) [arXiv:1708.06342 [hep-th]]

[Search INSPIRE].
[187] C. D. A. Blair, E. Malek, and J.-H. Park, J. High Energy Phys. 1401, 172 (2014) [arXiv:1311.5109

[hep-th]] [Search INSPIRE].
[188] Y. Sakatani and S. Uehara, Prog. Theor. Exp. Phys. 2017, 043B05 (2017) [arXiv:1701.07819 [hep-th]]

[Search INSPIRE].
[189] M. Hatsuda and K. Kamimura, J. High Energy Phys. 1211, 001 (2012) [arXiv:1208.1232 [hep-th]]

[Search INSPIRE].
[190] M. Hatsuda and K. Kamimura, J. High Energy Phys. 1306, 095 (2013) [arXiv:1305.2258 [hep-th]]

[Search INSPIRE].
[191] Y. Sakatani and S. Uehara, Prog. Theor. Exp. Phys. 2018, 033B05 (2018) [arXiv:1712.10316 [hep-th]]

[Search INSPIRE].
[192] A. Catal-Ozer, arXiv:1904.00362 [hep-th] [Search INSPIRE].
[193] A. Çatal-Özer, J. High Energy Phys. 1709, 044 (2017) [arXiv:1705.08181 [hep-th]] [Search INSPIRE].
[194] A. Çatal-Özer, J. High Energy Phys. 1802, 179 (2018) [arXiv:1706.08883 [hep-th]] [Search INSPIRE].

71/71

https://doi.org/10.1143/PTP.103.425
http://www.arxiv.org/abs/hep-th/9907132
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9907132
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9907132
https://doi.org/10.1016/S0550-3213(00)00337-0
http://www.arxiv.org/abs/hep-th/9912236
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9912236
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9912236
https://doi.org/10.1016/S0920-5632(01)01539-0
http://www.arxiv.org/abs/hep-th/0103149
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0103149
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0103149
https://doi.org/10.1088/0264-9381/18/17/303
http://www.arxiv.org/abs/hep-th/0103233
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0103233
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0103233
https://doi.org/10.1016/j.physletb.2018.04.025
http://www.arxiv.org/abs/1803.07391
http://www.inspirehep.net/search?p=find+EPRINT+1803.07391
http://www.inspirehep.net/search?p=find+EPRINT+1803.07391
https://doi.org/10.1088/1751-8121/ab1b9c
http://www.arxiv.org/abs/1812.07287
http://www.inspirehep.net/search?p=find+EPRINT+1812.07287
http://www.inspirehep.net/search?p=find+EPRINT+1812.07287
https://doi.org/10.1016/j.nuclphysb.2014.01.003
http://www.arxiv.org/abs/1307.8377
http://www.inspirehep.net/search?p=find+EPRINT+1307.8377
http://www.inspirehep.net/search?p=find+EPRINT+1307.8377
https://doi.org/10.1007/JHEP12(2015)144
http://www.arxiv.org/abs/1508.01121
http://www.inspirehep.net/search?p=find+EPRINT+1508.01121
http://www.inspirehep.net/search?p=find+EPRINT+1508.01121
https://doi.org/10.1140/epjc/s10052-017-5257-z
https://doi.org/10.1140/epjc/s10052-018-6394-8
http://www.arxiv.org/abs/1707.03713
http://www.inspirehep.net/search?p=find+EPRINT+1707.03713
http://www.inspirehep.net/search?p=find+EPRINT+1707.03713
https://doi.org/10.1016/j.physletb.2019.04.042
http://www.arxiv.org/abs/1808.10605
http://www.inspirehep.net/search?p=find+EPRINT+1808.10605
http://www.inspirehep.net/search?p=find+EPRINT+1808.10605
http://www.arxiv.org/abs/1902.01867
http://www.inspirehep.net/search?p=find+EPRINT+1902.01867
http://www.inspirehep.net/search?p=find+EPRINT+1902.01867
https://doi.org/10.1016/0370-2693(90)91454-J
https://doi.org/10.1016/0550-3213(91)90266-Z
https://doi.org/10.1088/1126-6708/2005/10/065
http://www.arxiv.org/abs/hep-th/0406102
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0406102
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0406102
https://doi.org/10.1088/1126-6708/2007/07/080
http://www.arxiv.org/abs/hep-th/0605149
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0605149
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0605149
https://doi.org/10.1007/JHEP04(2012)044
http://www.arxiv.org/abs/1111.1828
http://www.inspirehep.net/search?p=find+EPRINT+1111.1828
http://www.inspirehep.net/search?p=find+EPRINT+1111.1828
https://doi.org/10.1016/S0550-3213(97)00029-1
http://www.arxiv.org/abs/hep-th/9609112
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9609112
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9609112
https://doi.org/10.1088/1126-6708/2009/09/014
http://www.arxiv.org/abs/0902.4032
http://www.inspirehep.net/search?p=find+EPRINT+0902.4032
http://www.inspirehep.net/search?p=find+EPRINT+0902.4032
http://www.arxiv.org/abs/1001.2479
http://www.inspirehep.net/search?p=find+EPRINT+1001.2479
http://www.inspirehep.net/search?p=find+EPRINT+1001.2479
https://doi.org/10.1016/S0370-2693(97)01136-2
http://www.arxiv.org/abs/hep-th/9709071
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9709071
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9709071
https://doi.org/10.1016/0550-3213(90)90565-U
https://doi.org/10.1007/JHEP06(2011)074
http://www.arxiv.org/abs/1008.1763
http://www.inspirehep.net/search?p=find+EPRINT+1008.1763
http://www.inspirehep.net/search?p=find+EPRINT+1008.1763
https://doi.org/10.1088/0264-9381/18/21/305
http://www.arxiv.org/abs/hep-th/0104081
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0104081
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0104081
https://doi.org/10.1016/j.physletb.2003.09.059
http://www.arxiv.org/abs/hep-th/0307098
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0307098
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0307098
http://www.arxiv.org/abs/0902.1509
http://www.inspirehep.net/search?p=find+EPRINT+0902.1509
http://www.inspirehep.net/search?p=find+EPRINT+0902.1509
https://doi.org/10.1007/JHEP02(2012)108
http://www.arxiv.org/abs/1111.0459
http://www.inspirehep.net/search?p=find+EPRINT+1111.0459
http://www.inspirehep.net/search?p=find+EPRINT+1111.0459
https://doi.org/10.1007/JHEP01(2013)064
http://www.arxiv.org/abs/1208.5884
http://www.inspirehep.net/search?p=find+EPRINT+1208.5884
http://www.inspirehep.net/search?p=find+EPRINT+1208.5884
https://doi.org/10.1007/JHEP12(2012)068
http://www.arxiv.org/abs/1206.7045
http://www.inspirehep.net/search?p=find+EPRINT+1206.7045
http://www.inspirehep.net/search?p=find+EPRINT+1206.7045
https://doi.org/10.1103/PhysRevLett.111.231601
http://www.arxiv.org/abs/1308.1673
http://www.inspirehep.net/search?p=find+EPRINT+1308.1673
http://www.inspirehep.net/search?p=find+EPRINT+1308.1673
https://doi.org/10.1093/ptep/ptx151
http://www.arxiv.org/abs/1708.06342
http://www.inspirehep.net/search?p=find+EPRINT+1708.06342
http://www.inspirehep.net/search?p=find+EPRINT+1708.06342
https://doi.org/10.1007/JHEP01(2014)172
http://www.arxiv.org/abs/1311.5109
http://www.inspirehep.net/search?p=find+EPRINT+1311.5109
http://www.inspirehep.net/search?p=find+EPRINT+1311.5109
https://doi.org/10.1093/ptep/ptx038
http://www.arxiv.org/abs/1701.07819
http://www.inspirehep.net/search?p=find+EPRINT+1701.07819
http://www.inspirehep.net/search?p=find+EPRINT+1701.07819
https://doi.org/10.1007/JHEP11(2012)001
http://www.arxiv.org/abs/1208.1232
http://www.inspirehep.net/search?p=find+EPRINT+1208.1232
http://www.inspirehep.net/search?p=find+EPRINT+1208.1232
https://doi.org/10.1007/JHEP06(2013)095
http://www.arxiv.org/abs/1305.2258
http://www.inspirehep.net/search?p=find+EPRINT+1305.2258
http://www.inspirehep.net/search?p=find+EPRINT+1305.2258
https://doi.org/10.1093/ptep/pty021
http://www.arxiv.org/abs/1712.10316
http://www.inspirehep.net/search?p=find+EPRINT+1712.10316
http://www.inspirehep.net/search?p=find+EPRINT+1712.10316
http://www.arxiv.org/abs/1904.00362
http://www.inspirehep.net/search?p=find+EPRINT+1904.00362
http://www.inspirehep.net/search?p=find+EPRINT+1904.00362
https://doi.org/10.1007/JHEP09(2017)044
http://www.arxiv.org/abs/1705.08181
http://www.inspirehep.net/search?p=find+EPRINT+1705.08181
http://www.inspirehep.net/search?p=find+EPRINT+1705.08181
https://doi.org/10.1007/JHEP02(2018)179
http://www.arxiv.org/abs/1706.08883
http://www.inspirehep.net/search?p=find+EPRINT+1706.08883
http://www.inspirehep.net/search?p=find+EPRINT+1706.08883

