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ABSTRACT 

We perform calculations of the thermodynamic properties of uniform dense matter at finite 
temperature using the Skyrme nuclear interaction. The calculations are valid for arbitrary proton 
concentrations and temperatures. The equation of state is compared with earlier investigations 
done for a few restricted cases. In order to understand the conditions under which one might 
expect to find nuclei immersed in a sea of nucleons, we explore the coexistence of two fluid phases 
with different proton concentrations. At zero temperature, nuclei with proton fractions in the 
range 0.044-0.335 may coexist with a pure neutron fluid, but at lower proton fractions protons 
“drip” as well. At finite temperatures, nuclear droplets with proton fractions up to 0.5 may coexist 
with fluid also containing up to 50% protons. A phase diagram for nuclear matter is presented. 
The critical temperature, as a function of proton concentration, above which no coexistence is 
possible and nuclei evaporate, is established. Its maximum value is kBT = 20 MeV, which occurs 
in the case of symmetric nuclear matter. 
Subject headings: dense matter — equation of state — stars: collapsed 

I. INTRODUCTION 

One of the most important current problems in astrophysics is the understanding of supernovae. In supernova 
models, a high-temperature equation of state for a system of interacting nucleons is crucial. Necessary information 
includes not only the relationship between the pressure, density, and temperature, but also the abundance and 
composition of the nuclei present, in order correctly to estimate the neutrino opacities and electron capture rates 
of hot, dense matter. A finite-temperature nuclear model is also needed in calculations of the decompression of 
neutron star matter (Lattimer et al. 1977) where nuclear fission processes are expected to raise the temperature to 
greater than 1010 K. Hot dense matter may also be ejected in the aftermath of a supernova explosion and may 
eventually nucleosynthesize the so-called r-process nuclei (Schramm and Norman 1976). 

Much of the recent work on nuclear matter equations of state starting from a microscopic viewpoint has been 
confined to zero-temperature models (see Baym and Pethick 1975 for a review), or to finite-temperature homoge- 
neous interacting nucleon gases (Buchler and Coon 1977 ; El Eid and Hilf 1977). It is known, however, that at zero 
temperature dense matter in the range 1011 g cm-3 to 1014 g cm“3 consists of nuclei immersed in a pure neutron 
fluid (Baym and Pethick 1975). The problem of the coexistence of two nuclear phases with different proton concen- 
trations (i.e., the nucleus and a “dripped” neutron fluid) has been examined at zero temperature by Baym, Bethe, 
and Pethick (1971), hereafter referred to as BBP. Their treatment has been revised by Ravenhall, Bennett, and 
Pethick (1972), hereafter referred to as RBP. Coexistence at finite temperature has theretofore been investigated 
only for the case of symmetric nuclear matter (Küpper, Wegmann, and Hilf 1974), which, however, is physically 
far removed from neutron star matter. As a first step toward calculating a realistic finite-temperature equation of 
state, we shall investigate the coexistence problem for arbitrary proton concentrations and temperatures. We 
address ourselves to these problems by studying a system of interacting nucleons, employing a Skyrme contact 
pseudopotential (Vautherin and Brink 1970). A major advantage of the Skyrme model is that the thermodynamic 
properties of the matter are described by relatively simple equations: only the appearance of the well-known 
Fermi integrals renders them nonanalytic. The Skyrme interaction is discussed in § II, and the bulk properties of 
dense matter are determined in § III. In § IV the coexistence problem is investigated by determining the equilibrium 
phases possible in this matter. In § V we evaluate the equation of state of uniform dense matter in special limits in 
order to compare results with other recent investigations. In another paper (Ravenhall and Lattimer 1978) the 
surface energy of finite temperature nuclei will be calculated in the Thomas-Fermi approximation. The full equation 
of state of hot neutron star matter may then be determined, following the compressible liquid drop nuclear model 
of BBP and RBP. 
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NEUTRON STAR MATTER 315 

II. THE NUCLEAR HAMILTONIAN 

The approximate representation of the nucleon-nucleon interaction by a contact pseudopotential, as suggested 
by Skyrme (1956, 1959), produces the great simplification that the Hamiltonian density, as well as the single- 
particle potential and effective mass, are local functions of the proton and neutron particle densities pt(x) and the 
kinetic-energy densities Tt(x), 

Ptix) = 2 «o.íl^a.íWI2 ’ T<(*) = 2 MalWa,t(*)|2 • (1) 
a a 

Here na>t are the occupation numbers of the single-particle orbitals <£a,i(jc), and t = nor p. The Hamiltonian density 
we use, very similar to that obtained by Vautherin and Brink (1970), has the form 

ft2 h2 

H'i.Pni Pp> Tns Tp] 2æ~ Tn 2ffî Tp ^Xo)(Pn 'b Pp) ('2‘ "b Xo)(Pn2 “b Pp2)] 

+ Uh + ^2)(Pn + pp)(rn + Tp) + — íi)(pnTn + Pptp) 

“b i^atPnPp “b ^(i(Pn “b Pp) PpPn)](Pn “b Pp) 

+ TëOh - t2)(Vpn + VPpf - + i2)[(VPn)2 + (VPp)2] . (2) 
The adjustable parameters t0, x0, tl9 t2, and t3 (with an extra parameter for a spin-orbit term which we do not use) 
were determined, by Vautherin and Brink (1970), by fitting properties of a range of physical nuclei, including rms 
radii and shapes of charge distributions and total binding energies. We have added the parameter À in the three-body 
interaction, and modified the two-body parameter x0, so as to also obtain agreement with the properties of pure 
neutron matter as calculated by Siemens and Pandharipande (1971). These modifications have been designed to 
have zero effect both when x = % and when p = 0.154 fm “ 3, the saturation density at x = Thus the modification 
has little effect in the interior of normal nuclei, and in the surface regions the Hamiltonian is dominated by the 
gradient two-body terms. It is not expected to disturb the Brink and Vautherin fits to normal nuclei. The adopted 
values of these parameters are t0 = -1057.3 MeVfm3, ^ = 235.9 MeV fm5, t2 = -100 MeV fm5, t3 = 14,463.5 
MeV fm6, x0 = 0.2885, and A = 0.5162. 

A tacit assumption we have made is that the only temperature dependence possessed by the model is that 
contained in the occupation numbers natt in pt and rt. This is not necessarily true since the effective interaction 
itself may be temperature dependent. The various terms associated with the adjustable parameters are a pheno- 
menological representation of an s-wave finite range interaction (t09 x091^)9 a p-wave two-body interaction (i2), 
and an effect of three-body correlations (¿3, A). The evaluation of those constants may be approached alternatively 
from the viewpoint of a microscopic two-nucleon finite-range interaction, as has been done by Negele and Vautherin 
(1973). But even there the ultimate choice of parameters comes from an empirical fit to some properties of physical 
nuclei. An alternative procedure to the one we propose has been used by Buchler and Coon (1977), who start with 
a realistic potential, the Reid potential, and calculate a finite-temperature two-body AT-matrix using the method 
of Bloch and De Dominicis (1958). It is to be observed, however, that more accurate calculations of uniform 
nuclear matter using the Reid potential fail to give proper saturation properties (Day 1978 ; Wiringa and Pandhari- 
pande 1978). Thus while the calculations of Buchler and Coon (1977) could contain finite-temperature effects 
additional to those our method includes, their results may not be accurate, even at zero temperature, for matter at 
nuclear densities. We do not know of any way to include such additional finite-temperature contributions into our 
Skyrme scheme, since the interaction must, as we have noted, be determined by comparison with properties of 
physical nuclei at zero temperature. To the extent that the Skyrme model fits also the excited states of closed shell 
nuclei (see, for example, Liu and Brown 1976), these additional finite-temperature contributions may not be very 
important. 

We note here an approach similar to ours by Küpper, Wegmann, and Hilf (1974) and El Eid and Hilf (1977), 
who also employ an effective interaction based on fitting properties of physical nuclei. However, our interaction 
has more adjustable parameters and also contains a density dependence, which theirs lacks. Our objectives also 
differ, in that we wish to examine the coexistence problem for arbitrary proton concentrations. 

The Hartree-Fock equations for the single-particle orbitals ^a>t(x) are 

{-V[/z2/2m^ (3) 

They contain effective masses mt* and single-particle potentials Ut for both protons and neutrons of the form 

ñ2 ñ2 

2m¡* = 2mt 
+ + *2^n + ^2 — ^ 

^n,p =: ^o[(Pn F Pp)(\ "b ’I'^o) Pn,pQ[ “1“ Xq)] + i(^l F ¿2)(Tn "b Tp) 

+ K*2 — tl)rn,p + ihlîKPn + Pp)2 + Pp,n(pn + Pp + Pn,p)(\ ““ ^) 

Í(3¿i — Í2W2(pn + Pp) + + t2)V
2pntP . (5) 
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316 LATTIMER AND RAVENHALL Vol. 223 

We now assume the matter to be uniform, with the intention of using the compressible liquid drop model to 
obtain the equation of state. In this approximation, the single-particle energies ea>t associated with the plane-wave 
orbital oc exp (ik*x) become 

ektt = (ñ*l2mt*)k2+Vt\ (6) 

where Vt is given by equation (5) for />n and pp constant (i.e., not dependent on x), so that Vpt = 0. 

III. THERMODYNAMIC PROPERTIES OF BULK NUCLEAR MATTER 

The densities pt9 rt of equation (1) become in the uniform-density case 

Pt = K T k2ft{k)dk , (7) 
** JO 

Tt = ^ r k%(k)dk , (8) 
K Jo 

where 
ft(k) = {exp [ß(€k t — + l}”1 (9) 

is the Fermi distribution function, pt are the chemical potentials, and ß = (kBT)~1. The internal energy density E 
of the uniform nuclear matter is given by equation (2) with Vpt = 0. To the same approximation as equations (1) 
and (2) the entropy densities St are given by 

St = -kB 2 [»a,i log na,t + (1 - na,t) log (1 - n0,t)], (10) 
a 

which for uniform matter can be manipulated upon integration by parts into the particularly simple form 

S* = T-'m2l2mñTt + pt(Vt - ^)]. (11) 

The pressure P of the matter is found from the thermodynamic relationship 

P = T(Sn + Sp) + p,npn + UpPp - E . (12) 

We note that E and P when expressed in terms of pt and rt contain no explicit temperature dependence, a 
conceptually simplifying property. 

The expression (7), (8) for pt and rt each depend not only on the chemical potentials p,u as yet undetermined, 
but also on pt and themselves through the single-particle energies ektt. For given values of pn, pP9 and ß, the 
consistent values of rt and /x¿ may be obtained as follows. Equations (7) and (8) are rewritten in terms of Fermi 
integrals 

Fi(y) = Í 
Jo 

uidu/(eu+y + 1): 

Pt = ¿ (fi2ß/2mt*) ~ 312Fl/2(>’¡) , (13) 

n = ¿(Wm,*)-5'2^;^), (14) 

where 
* = ß(Vt - Mt) . (15) 

The first of these equations can be inverted numerically to obtain yn and yp because mt* depends only on pt and 
not on rt. Equation (14) is then used to find r¿, after which Vt can be determined from equation (5), allowing pLt 
to be found from equation (15). Equations (2), (11), and (12) may then be used to calculate the nucleon contribu- 
tions to the equation of state. 

IV. DELINEATION OF PHASES 

At zero temperature and at densities between ~3 x 1011gcm-3 and ~2 x 1014gcm“3, neutron-rich nuclei 
coexist with a sea of surrounding neutrons. That range of densities corresponds to a proton fraction x = pp/(pp + pn) 
inside the nuclei ranging from ~0.34 down to ~0.05. As is demonstrated in BBP, the most important criterion for 
coexistence of the nuclei and the neutron sea is the equilibrium of the two kinds of bulk matter. The quantities 
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p and x inside the nuclei, and the density pd of the dripped neutrons, must be adjusted until the pressure and 
neutron chemical potentials are equal for the two fluids. 

At finite but small temperatures the same possibilities for equilibrium must occur. Because of the tail on the 
Fermi distribution at finite T, protons in the nuclei may also cross the boundary into the sea, so that there are 
dripped protons also. Thus equilibrium at finite temperatures must involve p and x for the nuclei and pd and xd 
for the sea. It requires that the three quantities P, /¿n, and be made equal across the boundary. Compared to 
the zero-temperature problem, this adds one dimension of difficulty into the process. As a first step toward extending 
the compressible liquid-drop model of BBP, we have explored computationally the bulk equilibrium described 
above. 

A convenient way to display the equilibrium graphically is to plot isobars on a Oz, x)-diagram. This is done, 
for uniform nuclear matter of the kind detailed in § II, at temperatures kBT = 0, 3, 10, and 20 MeV in Figures 1, 
2, 3, and 4 respectively. The dashed portion of each curve has negative compressibility, and is therefore unstable. 
At kBT = 20 MeV the curves resemble qualitatively those of a noninteracting fluid. The effects of the nucleon- 
nucleon interaction are seen in the convolutions of Figures 1, 2, and 3. The decreasing importance of these inter- 
actions, compared to the thermal motion, is seen in the progressive simplification in the structure of the curves 
as the temperature increases. This progression is best understood by representing the proton curves for 0 < x < 
0.5 as neutron curves for 0.5 < x < 1, in which case they are continuous and smooth. For example, the curve j 
of Figure 1 then has one lobe projecting from x = 0 and another lobe projecting from x = 1. As T increases from 
zero, these lobes touch, and afterwards the j curve has two branches, a central closed part resembling a figure 
eight and another monotonically decreasing branch. Both branches are used to achieve equilibrium. We note 
that as the temperature becomes large, the chemical potentials nt approach negative infinity as P tends to zero, 
which is their classical limit. At T = 0 and a given pressure P, coexistence is possible if a point (/zn, 0) (the neutron 
sea) on the isobar P can be connected to a point 0¿n, x) on the same isobar by a horizontal line. (They then have 
the same P and /xn.) Coexistence at P = 0 of the kind we have just described is indicated by the dotted line (ri) in 
Figure 1. The proton chemical potential is given also in Figure 1, the isobars for /xn and /zp being continuous 
at x = 0.5. At P = 0, the value of /zp on the coexistence curve (dotted line p) for a given P and for x values greater 
than ~0.04 is always less than the corresponding value of /zp at x = 0 on the isobar P, implying that proton 
drip does not occur over this range of x. It may be concluded from Figure 1 that coexistence between nuclei and 
a dripped sea is possible only in the domain x < 0.335, at zero temperature. To find the density range to which 
this corresponds requires evaluation of the remaining contributions to the total energy and pressure—for example, 
the surface, Coulomb, and electron contributions. This has been done at T = 0 by Ravenhall, Bennett, and 
Pethick (1973) in the spirit of BBP. 

We now consider coexistence in the presence of dripped protons. Since xd is no longer zero, coexistence is 
possible at a given P only if the pair of points (/zp, x) and (/zp, xd), as well as the pair (/zn, x) and (/zn, xd), along 
the isobar P, can be connected by horizontal lines. In other words, only if the set 0¿p, x), (pip, xd), (/zn, x), and (/zn, xd) 
form a rectangle will the two phases for a given P, with proton fractions x and xd, coexist. An example is shown 
in Figure 3, at a temperature of ^bP = 10 MeV. 

In Figures 1-4 the coexistence curves for neutrons and protons are indicated by the dotted lines n and p for 
the heavier matter, and by nd and pd for the dripped matter. The vertical slash in each coexistence curve indicates 
the point at which p = pd and thus separates the heavier and dripped portions of the curve. As in the P = 0 
results of BBP, the coexistence curves in Figure 1 go to decreasing /zn and increasing ^p as x increases. This feature 
remains at finite P, but the coexistence curves shift to larger values of x as P is increased. In fact, at finite tem- 
peratures, coexistence extends all the way to x = xd = 0.5. At temperatures below about 1 MeV, xd is nearly 
zero along most of the coexistence curve. At higher temperatures (Figs. 2, 3, and 4) the lower limit of xd, as well 
as that of x, on the coexistence curve tends to larger x values as the temperature is increased. A surprising result 
of this investigation is that protons are able to “drip” at zero temperature if x ^ 0.04. This is in contrast to the 
results of BBP, who in their consideration of bulk equilibrium at zero temperature did not find any indication of 
proton drip. 

These features have been summarized in Figure 5, which shows, as a function of temperature, the range of x 
and xd for which coexistence with a dripped medium is possible. Figure 5 may be interpreted as a phase diagram. 
For a given temperature, nuclear pressure P, and average proton fraction Ye, Figure 5 shows whether or not 
coexistence is possible, and if it is, what the relative mass fractions of nuclei and dripped matter are. This can be 
seen as follows. Choose P, P, and Ye. If the point (Ye, T) lies to the left of the dashed (drip) portion of the curve 
for that P, i.e., if Ye < xd(P, P), no coexistence is possible, and the state of the matter is that of a uniform medium. 
If this point lies between the dashed and solid (nuclei) portions of the P curves, i.e., if xd(P, T) < Ye < x(P, P), 
then coexistence is possible, and the mass fraction of heavy nuclei is, from mass and charge conservation, simply 

Ye - xd(P, T) 
jH x(P, T) - xd(P, T) * 

(16) 

Finally, if the point ( Ye, P) lies to the right of the solid portion of the P curve, i.e., if Ye > x(P, P), then coexistence 
is again no longer possible, and the matter again consists of a uniform medium. 
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X 
Fig. 1.—Isobars showing the neutron and proton chemical potentials, in units of MeV, of bulk matter at zero temperature 

plotted as a function of the proton concentration x. The upper curves represent iin and have pressures of (a) 0.88, (b) 0.646, (c) 
0.458, (¿0 0.31, (e) 0.198, (/), 0.115, O) 0.058, (A), 0.023, (/) 0.005, and (y) 0.001 MeV fm"3, respectively. The lower curves represent 
lip and have the same pressures, in order, from the lower to upper left. The dashed portion of each curve has negative compres- 
sibility and is unstable. Note the change in scale of the ordinate at 0.0 MeV. The dotted line n intersecting the /x„ curves is the 
coexistence curve; for a given value of iin this curve gives the proton concentration x of bulk nuclear matter that has the same 
pressure and /xn as, and is thus in equilibrium with, dripped matter with zero proton concentration. The absolute value of iiP(P, x) 
for x > 0.04 (dotted line p) is greater than ^(F, 0), so proton drip does not occur. For x < 0.04, proton drip occurs, and the 
dotted lines (n and p) show the proton fraction that has the same P, iin, and fip as, and hence is in equilibrium with, dripped matter 
with proton fraction xd (dotted lines nd and />d). The vertical slash in each coexistence curve show where the densities of the two 
phases are equal. 
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Fig. 2.—Same as Fig. 1 except for a temperature of F = 3 MeV 
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Fig. 3.—Same as Fig. 1 except for T = 10 MeV and the isobar (/)» P = 0.001 MeV fm“3, is not displayed. The superimposed 
reactangle shows graphically an example of coexistence between nuclear droplets with x = 0.308 and a dripped medium with xd = 
0.044. All four points of the rectangle lie on P = 0.115 MeV fm"3(/) isobars: the upper pair have the same /in, while the lower 
pair have the same /tp. 
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Fig. 5.—Phase diagram for nuclei and a dripped medium. Isobars, with pressures of 0.3, 0.1, 0.01, and 0.001 MeV fm“3, show 
the proton fractions in nuclei {solid curves) that are in equilibrium with a dripped sea of proton fraction xd {dashed curves). The 
critical temperature is given by the solid line labeled Tc \ coexistence is impossible at any pressure if T > Tc{x). 

Also displayed in Figure 5 is the critical temperature, Tc, which is the maximum temperature, at a given nuclear 
x, for which equilibrium with a dripped sea is possible. One way to understand its significance is as follows: 
Choose a P, T, and Ye such that the point (7e, T) lies on the Tc curve, i.e., T — TC{Y^, but that the pressure is 
low enough for coexistence to be possible [i.e., xd(P, T) < Ye < x(P, 71)]. If the pressure is gradually increased, 
one can show that the volume fraction occupied by the nuclei increases. When the pressure is such that xd(P, T) = 
x(P, T) = 7e, this fraction is unity. A further pressure increase results in a phase transition to a uniform medium. 
Thus the maximum pressure for which coexistence is possible is also given by the Tc curve. One sees that for 
symmetric nuclear matter, x = 0.5, the critical temperature is kBTc = 20.19 MeV. This compares with the result 
of Küpper, Wegmann, and Hilf (1974), using the same nuclear interaction as El Eid and Hilf (1977), who find 
kBTc =17.35 MeV. 

The special situation of charge-symmetric matter {x = 0.5) can be examined analytically in the limit that T -> 0. 
The matter in nuclear droplets (subscript nuc) is degenerate, thus approximately temperature-independent, with 
approximately the values pertaining at P = 0: 2pi>nuc = />nuc = 0.155 fm-3, = —16 MeV. The dripped matter 
(subscript d) has very low density, and has the properties of a nondegenerate gas. Thus 

exp (ßixt), (17) 

and P = 2pt>dlß. When ß = 10 MeV-1, the density of the dripped gas is only 10"74 fm-3, small enough that it 
has no effect on the nuclear-matter properties. Such a treatment can be extended to values of x somewhat less 
than 0.5, although for x ^ 0.34 a regime occurs in which pntd ^ 0 as 0. 

V. COMPARISON WITH PREVIOUS CALCULATIONS 

Figures 6 and 7 compare the results of the work with those of previous investigators for uniform matter in two 
special limits. The equation of state for pure neutron matter (x = 0) is displayed in Figure 6. First, comparing the 
results of the present work (solid line) with a noninteracting neutron gas (dashed line), one sees the influence of the 
effective interaction: the pressure is lowered by the attractive nuclear potential until nuclear densities (pb ~ 0.12 
fm-3) are reached, at which point the potential becomes repulsive and the equation of state is stiffer than that of 
the noninteracting gas. (Stiffness is used in this context to mean the slope on this logarithmic plot.) Buchler and 
Coon’s (1977) neutron matter is softer at all densities than the present work, and does not become stiff at nuclear 
densities. This may be due partly to their use of the soft-core Reid potential, and partly to their neglect of three- 
body correlations. The El Eid and Hilf (1977) equation of state is initially softer than ours, at least for kBT < 
10 MeV, until nuclear densities are reached. Above nuclear densities, their pressure is considerably greater than 
ours. 

Figure 7 displays the equation of state of a neutron-proton-electron mixture in beta-equilibrium with zero 
charge density. The results of the present work, compared with those of El Eid and Hilf (1977), show the same 
tendencies as in the pure neutron matter case, Figure 6. Differences between them are a reflection of the different 
nuclear interactions assumed. Both nuclear Hamiltonians are based on a fit to the properties of physical nuclei, 
although the one used by us (Vautherin and Brink 1970) contains more adjustable parameters, including one that 
allows for a dependence on density. For physical nuclei the difference is probably not important. The nuclear 
matter involved in the comparison, however, has no protons (Fig. 6) or few (Fig. 7), and is thus far removed from 
physical nuclei. Our Hamiltonian has been adjusted, in addition, to theoretical properties of pure neutron matter 
(Siemens and Pandharipande 1971). We therefore believe that in principle its results may be superior to those of 
El Eid and Hilf. 

The forms of matter explored in Figures 6 and 7 are not, however, of primary astrophysical interest. Matter 
at subnuclear densities and below the critical temperature will be the finite-temperature extension of that explored 
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Fig. 6.—The equation of state of a pure neutron gas (* = 0) at various temperatures. Solid lines show the results of this work; 
dashed lines are for a noninteracting neutron gas, dot-dashed lines indicate the results of El Eid and Hilf (1977), and the dots are 
taken from Buchler and Coon (1977). 

Fig. 7.—The equation of state of a neutron-proton-electron mixture in beta-equilibrium with zero charge density at various 
temperatures. Solid lines show the results of this work, and dotted lines indicate the results of El Eid and Hilf (1977). 

in BBP and RBP: dense nuclear droplets surrounded by a dripped medium of lower density, the bulk properties 
of which have been explored in this paper. Of the additional ingredients required, the most important unknown 
quantity is the nuclear surface energy at finite temperature. This will be discussed in a forthcoming paper. 

In summary, we have investigated the thermodynamic properties of hot, dense, uniform nuclear matter employing 
a Skyrme nuclear interaction. The equation of state of uniform matter is harder at subnuclear densities and softer 
at supernuclear densities than that of El Eid and Hilf (1977), and harder than that of Buchler and Coon (1977) 
at all densities. The coexistence of two nuclear phases with different proton concentrations has been studied, and 
the critical temperature above which nuclei evaporate has been determined. The critical temperature of symmetric 
nuclear matter is found to be 20.19 MeV, about 2.8 MeV higher than that found by Küpper, Wegmann, and Hilf 
(1974). 

We thank Professors C. Pethick, D. Q. Lamb, and G. Baym for enlightening discussions regarding this work. 
This research was supported in part by National Science Foundation grants AST 73-05117, AST 76-22673 and 
PHY 75-21590. 
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