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Mass distribution is an important 

observable of the fission process. Studies on the 

mass distribution provide valuable information 

about the potential energy landscape of the 

fissioning nucleus and the mechanism involved 

[1,2]. A large amount of experimental data on 

the mass distribution in nuclear fission has been 

generated over the years. Early studies on low-

energy fission of actinides revealed the 

importance of the nuclear shell effects in fission. 

The main interest in the medium-energy heavy-

ion–induced fission is to study the effect of 

entrance channel parameters namely, projectile 

energy, angular momentum and entrance channel 

mass asymmetry, on the fission process. An 

analysis of the data on the variance of the mass 

distribution over a wide range of the fissility of 

the compound nucleus was reported in refs. 

[3,4]. The analysis revealed that the variance of 

the mass distribution shows fissility dependence 

when studied as a function of saddle point  

temperature “Tcn ” whereas fissility dependence  

vanishes when studied as a function of fragment 

temperature “Tf ”  [4]. Thus, the variance of the 

mass distribution provides important information 

about the fission process and can be used to test 

various models of fission such as the saddle 

point model [5] and the scission point model [6]. 

These models, although they qualitatively 

explain the gross features of the mass 

distribution, fail to quantitatively explain the 

mass distribution. Brosa et al. [7] proposed the 

random neck rupture model (RNRM) for the 

calculation of post-fission observables such as 

mass distribution, kinetic energy distribution and 

neutron multiplicity. According to this model, 

the pre-scission shape of the fissioning nucleus 

dictates the post-fission observables. This model 

has been successful in explaining the width of 

the mass distribution in low- as well as medium-

energy fission [7].  

In the present work, experimentally 

determined variances of the mass distribution 

have been compared with those calculated using 

the RNRM of Brosa et al.[7]. 

 According to this model, during the motion 

of the fissioning nucleus towards scission, a dent 

is developed in the neck region of the fissioning 

nucleus, which is deepened by the capillary 

force, finally leading to fission. The curvature of 

the fissioning nucleus changes from positive to 

negative in the motion towards scission. During 

this transition when the neck becomes flat, there 

can be a large shift in the dent without sizeable 

physical mass motion, which finally leads to 

large mass fluctuations in fission. In the RNRM 

model [7] the pre-scission shape for the 

symmetric fissions described by the following 

set of equations: 
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Equation (1) represents a shape which is 

made up of two equal spheres which are 

connected by a neck. Here we assumed 

symmetric pre-scission shape, made up of two 

equal spheres. The shape involves six parameters 

(r1, 1, r, a, c, l). “r1, r2” (r1=r2 for symmetric 

case) are the radii of the spherical heads at both 

ends of the pre-scission shape, “r” is the minimal 

neck radius and “1,2 ” (=2 for symmetric 

case) are the transitional points  where the shape 

changes from head to neck. “c” is the curvature 

of the neck. The parameter “a” is a measure of 

the extension of the neck and “2l” is the total 

elongation of the pre-scission shape. By 

imposing the conditions of continuity of the 

shape and volume conservation, a set of 

nonlinear equations are solved to determine “r1, 

r, 1, a” and “c”. Further the parameter “c” can 

be correlated to “r1, r” and “l” using the 

following equation: 
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The value of “crel” is taken so as to “”and 

“d/d” become continuous at the transitional 

points as mentioned in ref. [7] which gives 

continuous shape as well as continuously 

differentiable shape. The remaining variable “l” 

is varied to reproduce the experimentally 

observed average total kinetic energy  <TKE>. 

For a given value of “l”, the pre-scission 

shape is determined and the probability of neck 

rupture at different positions of the neck (zr) is 

calculated using the following equation: 

          scTzρzργAW ro /2π-exp  22  ,      (3) 

where “γo” is the surface tension coefficient 

given by  

       ,AZNγ cncncno ]/-1.7828-[1 0.9517
2

    (4) 

“Ncn” and “Zcn” are the neutron number and 

atomic number of the fissioning nucleus and 

“Acn” is mass number of the fissioning nucleus. 

“Tsc” is the temperature of the fissioning nucleus 

at the scission point. “Tsc” is calculated using 

formula Tsc=E
*

scission /acn , where E
*

scission is the 

excitation energy of the fissioning nucleus at the 

scission point and “acn” (=Acn/10)  is level 

density parameter of compound nucleus.  The 

fragment temperature “Tf” corresponding “Tsc”  

is  calculated using formula “Tf=E
*

f /af ”, where 

“E
*

f ” is the excitation energy of the fission 

fragment and “af”(=Af/8) is level density 

parameter of fission fragment. 

The rupture position (zr) is translated into 

fragment mass (Af) using the following relation: 
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Fig. 1 Symbols shows Experimental data whereas 

shaded area for Brosa model calculations  

  

Fig.1 shows that the experimentally 

observed mass variances (ref.4 and cited articles 

therein) follows single band increasing 

exponentially with fragment temperature “Tf” 

and independent of fissility of compound nucleus 

or any other properties as mentioned in ref.4. 

This trend is well explained by Brosa Model [7] 

which has been shown as shaded are in Fig.1. 
 The variance of the mass distribution is 

computed using the RNRM. In RNRM 

calculations, the elongation of the pre-scission 

shape is varied to reproduce the experimental 

average total kinetic energy <TKE> for the given 

compound nucleus system which also determines 

the shape at scission point. Further this shape 

ruptures at different points, on the flat neck of 

scissioning nucleus, depending on the scission 

point temperature to produce distribution of 

fragment masses. Eq.(3) indicates that the more 

is the scission point temperature,  more will be  

the variance of the mass distribution for the 

given compound nucleus system.  

The above result points out, that  the 

scission point configuration, which includes the 

excitation energy at scission point and the 

scission point deformation plays important role 

in deciding width of mass distribution. 
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