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Abstract: We review the existing results on the exotic XYZ states and their decays obtained within
the confined covariant quark model. This dynamical approach is based on a non-local Lagrangian
of hadrons with quarks, has built-in quark confinement, and is suited well for the description of
different multiquark states, including the four quark ones. We focus our analysis on the various decay
modes of five exotic states, X(3872), Zc(3900), Y(4260), Zb(10610), and Z′b(10650), aiming to clarify
their internal quark structures. By considering mostly branching fractions and decay widths using
the molecular-type or the tetraquark-type interpolating currents, conclusions about the nature of
these particles are drawn: the molecular structure is favored for Zc(3900), Zb(10610), and Z′b(10650)
and the tetraquark for X(3872) and Y(4260).

Keywords: exotic states; confined covariant quark model; strong and radiative decays

1. Introduction

The concept of multiquark states composed of more then three quarks hypothesized decades
ago [1] was for the first time confirmed in 2003 where multiquark state candidates were measured
by the BES [2], BaBar [3], and Belle [4] experiments. The latter observation, seen in the π+π− J/ψ

invariant mass spectrum, was the first observation of a charmonium-like state X(3872), which did
not fit expectations of existing quark models for any conventional hadronic particle. The reason was
mainly its measured mass 3872 MeV, not predicted by models, and also the difficulty in interpreting
it as an excited charmonium ψ′: its eventual decay into ρJ/ψ is strongly suppressed because of
isospin violation. In the following years, other heavy quarkonium-like states X, Y, Z were discovered,
where Y usually denotes electrically neutral exotic (i.e., non-cc̄) charmonia having quantum numbers
JPC = 1−−, Z is used for charged states, and X labels any non-Y and non-Z cases. With the aim to
report on the results and achievements of the confined covariant quark model, we narrow our review
of experimental outcomes to a relevant subset of the whole exotic meson family.

The first observation of the X(3872) mentioned in the previous paragraph was later confirmed in
the pp̄ collisions by the CDF [5] and D0 [6] experiments in 2004, by the LHCb experiment [7] in 2011,
and also by the BESIIIcollaboration [8] in 2014. Further experimental investigations [9–12] increased the
mass measurement precision, established the quantum numbers, and put limits on several decay related
observables. As of now [13], X(3872) is a particle with the mass mX(3872) = 3871.69± 0.17 MeV, width

ΓX(3872) < 1.2 MeV, and quantum numbers IG(JPC) = 0+(1++), mostly decaying to D∗ 0
(→ D0

π0)D0.
Charmonium-like state Y(4260) was for the first time observed by the BaBar experiment [14]

in 2005 in the J/ψπ+π− mass distribution. Its existence was further confirmed by the CLEO [15]
(2006), Belle [16] (2007), and BESII [17] (2013) collaborations. Later investigations by BaBar [18]
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and BESIII [19] provided further updates on the mass and width parameters. With mass above the
DD̄ threshold, the Y(4260) was also searched for in the open charm decay channels, however with
negative results [20–24]. The Y(4260) is [13] an IG(JPC) = 0−(1−−) state with the mass and width
mY(4260) = 4230± 8 MeV, ΓY(4260) = 55± 19 MeV.

The study of the Y(4260) decay channel J/ψπ+π− by BESII [17] and Belle [25] in 2013 led
to the discovery of the charged Zc(3900) resonance in the invariant mass distribution of J/ψπ±.
The Z±c particle was in the same year observed also by the CLEO-c detector [26]. In addition,
the latter experiment provided the first evidence of the neutral member of the Zc isotriplet, the Z0

c
state, discovered in the π0 J/ψ channel. A state Zc(3885) was seen in the DD̄∗ spectrum of the
e+e− → π±(DD̄∗)∓ reaction at BESIII in 2014 [27]. Assuming it can be identified with the Zc(3900)
particle, the measurement provided arguments in favor of JP = 1+ quantum numbers. The same
experiment reaffirmed in 2015 the existence of the neutral Zc state [28], in 2017 confirmed with high
significance the JP = 1+ assignment [29], and in 2019 provided the evidence for the ρ±ηc decay
channel [30]. The D0 collaboration published the observation of the Zc(3900) state in pp̄ collision
data in 2018 [31] and studied its mass and width in [32] (2019). The current Zc parameters are [13]
mZc(3900) = 3887.2± 2.3 MeV, ΓZc(3900) = 28.2± 2.6 MeV and IG(JPC) = 1+(1+−). Zc(3900) as a
charmonium-like state with an electric charge is a prominent candidate for an exotic multiquark state
and is largely discussed in the existing literature.

Two narrow bottomonium-like four quark state candidates were detected in the Belle detector [33]
in 2012. They were labeled Zb(10610) and Z′b(10650) and were observed as peaks in the mass spectra
of π±Υ(ns), (n = 1, 2, 3) and π±hb(ms), (m = 1, 2). The same experiment published two other
papers dedicated to these exotics. In [34], the evidence was given for the quantum number assignment
IG(JP) = 1+(1+) for both of the states. In [35], they were observed in different decay channels
Zb(10610) → [BB̄∗ + cc]± and Z′b(10650) → [B∗ B̄∗ + cc]±, where one can notice the proximity of
the two states to the corresponding B(∗)B̄∗ thresholds. These decays dominated the studied final
states, which besides two bottom mesons, included also a pion and for which the Born cross-section
was given. The decay into BB̄ was found to be suppressed with respect to the two previous final
states, and an upper limit was given. The masses and widths are mZ±b (10610) = 10,607.2 ±2.0 MeV,
mZ′b(10650) = 10,652.2 ±1.5 MeV, ΓZ±b (10610) = 18.4± 2.4 MeV, and ΓZ′b(10650) = 11.5± 2.2 MeV.

Growing evidence suggests that the mentioned and also other, unmentioned exotic heavy
quarkonium-like states observed since 2003 cannot be described as simple hadrons in the usual
quark model. The effort to understand their nature combined with the non-applicability of the
perturbative approach in the low energy domain of quantum chromodynamics (QCD) resulted in a
large number of more or less model dependent strategies. In existing reviews [36–49], different ideas
are analyzed. The proximity of the X, Y, Z masses to meson pair thresholds naturally leads to a
popular concept of the hadronic molecule, more closely reviewed in different contexts. In [50], the
authors studied the implications of the heavy quark flavor symmetry on molecular states. The
authors of [51] argued in favor of a molecular picture using an isospin-exchange model, and a nice
review of the molecular approach was given in [52]. A frequent treatment of four quark states is
represented also by QCD sum rules [53–55] and different quark models. A dynamical approach
based on a relativistic quark model with a diquark-antidiquark assumption was proposed in [56,57],
where tetraquark masses were computed. A non-relativistic screened potential model, presented
in [58], was used to compute the masses, electromagnetic decays, and E1 transitions of charmonium
states. Treatment of tetraquarks as compact dynamical diquark-antidiquark systems in [59] had
the ambition to explain why some of the exotic states preferred to decay into excited charmonia.
Several hypotheses (molecular description, tetraquark description, hadro-charmonium picture) for
different exotic states were investigated in [60] using tools based on the heavy quark spin symmetry:
besides drawing conclusions for some XYZparticles, also possible discovery channels were given.
The hybrid and tetraquark interpretation for several exotic states were discussed in paper [61] using
the Born–Oppenheimer approximation. A very complete review of exotic states with some emphasis



Symmetry 2020, 12, 884 3 of 42

on the chromomagnetic interaction was provided in a recent publication [62]. The ideas of coupled
channels ([63]) and heavy quark limit ([64]) are also often seen in the context of the exotic quarkonia.
Finally, one has to mention the possibility of peaks in invariant mass distributions being explained by
the kinematic effect. This was investigated in detail in a recent text [65]. The arguments for X, Y, and
Z states not being purely kinematic effects were given in [66].

In the present paper, we want to review the description of the exotic heavy quarkonia-like states
by the confined covariant quark model (CCQM). The model [67–69] was proposed and developed as a
practical and reliable tool for the theoretical description of exclusive reactions involving the mesons,
baryons, and other multiquark states. It was based on a non-local interaction Lagrangian, which
introduces a coupling between a hadron and its constituent quarks. The Lagrangian guarantees a
full frame independence and the computations relay on standard quantum field theory techniques
where matrix elements are given by the set of quark-loop Feynman diagrams according to the 1/Nc

expansion. Earlier, a confinement was not implemented in the model, and thus, it was not suited
for heavy particles (with baryon mass exceeding those of the constituent quarks summed). This was
changed in [69], where a smart cutoff was introduced for integration over the space of Schwinger
parameters. Since then, arbitrary heavy hadrons could be treated by the CCQM. The CCQM represents
a framework where the hadron and the quarks coexist, which raises questions about the proper
description of bound states and the double counting. They are solved using a so-called compositeness
condition. It guarantees, by setting the hadron renormalization constant ZH to zero, that the dressed
state and the bare one have a vanishing overlap. In order to describe radiative decays, one also needs to
introduce gauge fields properly in a non-local theory such as CCQM. This was done by the formalism
developed in [70] where the path integral of gauge field appeared in the quark-field transformation
exponential. One should also mention that the model had no gluons: their dynamics was effectively
taken into account by the quark-hadron vertex functions, which depended on one hadron size related
parameter. The model has a limited number of free parameters; besides the hadron related ones, it
has six “global” parameters: five constituent quark masses and one universal cutoff. The model was
applied to with success light and heavy mesons and baryons (e.g., [71–76]) and also to exotic four
quark states [77–83]. The latter will be reviewed in the rest of this article.

All sketched features of the CCQM (interaction Lagrangian, confinement, compositeness
condition, implementation of electromagnetic interaction) are addressed in more detail in Section 2.
Section 3 is dedicated to the X(3872) state and its decays to J/ψ + ρ and D̄ + D∗. Its radiative decays
are analyzed in Section 4. In Section 5, molecular and tetraquark hypotheses for the nature of Zc(3900)
are put in place and the results compared with experimental data. The exotic to exotic reaction
Y(4260) → Zc(3900)± + π∓ and the decay of Y(4260) to open charm are presented in Section 6.
Decays of the bottomonium-like states Zb(10610) and Z′b(10650) to several different final states are
studied within the molecular picture in Section 7. We close the text by a summary and conclusion
given in Section 8.

2. Confined Covariant Quark Model

2.1. Interaction Lagrangian

The dynamical description of hadrons in the CCQM follows from the interaction Lagrangian:

Lint = gH · H(x) · JH(x), (1)

where the hadronic field is coupled to a non-local quark current. The latter takes different forms for
different hadrons:

JM(x) =
∫

dx1

∫
dx2 FM(x; x1, x2) · q̄a

1(x1) ΓM qa
2(x2)
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for the mesons,

JB(x) =
∫

dx1

∫
dx2

∫
dx3 FB(x; x1, x2, x3) · Γ1 qa1

1 (x1)
(

qa2
2 (x2)C Γ2 qa3

3 (x3)
)
· εa1a2a3

for the baryons, and

Jµ
T(x) =

∫
dx1 . . .

∫
dx4 FT(x; x1, . . . , x4) ·

(
qa1

1 (x1)CΓ1 qa2
2 (x2)

)
·
(

q̄a3
3 (x3) Γ2C q̄a4

4 (x4)
)
· εa1a2cεa3a4c

for the tetraquarks. Here, C stands for the charge conjugation matrix C = γ0γ2 with C = C† =

C−1 = −CT and Γ is an appropriate Dirac matrix (or string of Dirac matrices) to describe the spin
quantum numbers of the hadron. One has CΓTC−1 = Γ for the (pseudo)scalar and axial-vector fields
and CΓTC−1 = −Γ for vectors and tensors. The color indices are denoted by superscripts ai, and
FH(x; x1, . . . , xn) represents a non-local vertex function, which characterizes the quark distribution
inside the hadron. We assume it takes the form:

FH(x; x1, . . . , xn) = δ(4)

(
x−

n

∑
i=1

wixi

)
ΦH

(
∑
i<j

(xi − xj)
2

)
, where wi =

mi

∑n
i=1 mi

. (2)

The first factor reflects the natural expectation that the barycenter of the quark system corresponds to
the position of the hadron, and the second term has a general form dependent on the relative quark
coordinates. Obviously, the vertex function is invariant under translations:

FH(x + a; x1 + a, . . . , xn + a) = FH(x; x1, . . . , xn)

for any four-vector a. In principle, any form of the function ΦH is allowed as long as it has
an appropriate fall-off behavior in the Euclidean momentum space to guarantee the ultraviolet
convergence of the Feynman diagrams. Various alternatives of the vertex function for non-local
quark currents were analyzed in [84], and it was found that the dependence of the observables on
different choices was small. Because of convenience of performing calculations, the exponential form
for the Fourier transform of the function ΦH was adopted:

Φ̃H(−K2) = exp

(
K2

Λ2
H

)
(3)

where K2 is the combination of the loop and external momenta. The minus sign indicates that we are
working in the Minkowski space, and the wicked-rotated argument K2 → −K2

E makes explicit the
appropriate fall-off behavior in the Euclidean region. ΛH is an adjustable parameter of the CCQM,
which can be related to the hadron size. Additional free parameters are the constituent quark masses
and a universal infrared cutoff (discussed in more detail later). Their values, summarized in Table 1,
were determined by adjusting the model predictions to experimental data.

Table 1. Constituent quark masses and universal cutoff λ in GeV.

mu,d ms mc mb λ

0.241 0.428 1.67 5.04 0.181

2.2. Compositeness Condition

In the Lagrangian of the CCQM, quarks and hadrons are treated equally. However in nature,
hadrons are made of quarks. Therefore, questions about an appropriate description of the bound
states and double counting arise. The issue is resolved by imposing the so-called compositeness
condition [85,86], which requires the renormalization constant of the hadron field to vanish. Since the
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renormalization constant Z1/2
H can be interpreted as the matrix element between the physical state and

the corresponding bare state, Z1/2
H = 0 implies that the physical state has no overlap with the bare state

and is therefore described as a bound state. For a spin-one particle, the compositeness condition reads:

ZH = 1− g2
HΠ′H(m

2
H) = 0, (4)

where Π′H is the derivative of the scalar part of the vector-meson mass operator:

Πµν
H (p) = gµνΠH(p2) + pµ pνΠ(1)

H (p2),

ΠH(p2) =
1
3

(
gµν −

pµ pν

p2

)
Πµν

H (p).

The condition Z1/2
H = 0 also effectively removes the constituent degrees of freedom from the space of

physical states and so eliminates the double counting. A general tetraquark self-energy diagram to be
used for the compositeness condition is show in Figure 1.

One should also notice that the application of the compositeness condition lowers the number of
model parameters because its fulfillment is reached by tuning the coupling constant value. Equation (4)
thus fixes the coupling and increases the predictive power of the CCQM over the wide range of
hadronic data. The determination of gH for all participating hadrons by means of the compositeness
condition is the first step in the application of the CCQM. It should be remarked that the compositeness
condition can be interpreted also in terms of the normalization of the electric form factor at q2 = 0,
as shown in [69].

Figure 1. General confined covariant quark model (CCQM) tetraquark self-energy diagram.

2.3. Infrared Confinement

If the mass of a hadron reaches the limit defined by the sum of the masses of constituent quarks,
then in a model without a confinement, the hadron becomes unstable and decays into its constituents.
In order to correct this unphysical behavior and enlarge the applicability of the model also to the
(increasing) experimental data on heavy hadrons, the confinement of quarks was introduced in [69].
Its implementation assumes the Schwinger representation of quark propagators:

S(k) =
(m + �k)
m2 − k2 = (m + �k)

∞∫
0

dβ exp{−β(m2 − k2)} (5)

with the subsequent cutoff in the upper integration limit applied, in a clever way, to the whole
structure of a Feynman diagram. The latter, containing l loops, m vertices, and n propagators, can be
schematically written as:

Π(p1, . . . , pm) =
∫
(d4k)l

m

∏
i=1

Φi+n

{
−∑

j
(κ

(j)
i+n + v(j)

i+n)
2
}
·

n

∏
k=1

Sk(κk + vk)

=

∞∫
0

dnβ F(β1, . . . , βn), (6)
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where Φ symbolizes vertex functions, p denotes external momenta, v linear combinations of external
momenta, k represents loop momenta, and κ linear combinations of the latter. The expression in curly
brackets is the argument of the vertex function in the momentum representation. The second line makes
explicit the integration over the space of the Schwinger parameters with the whole structure of the first
line catch in the F symbol. The next step is to go from the integration over the Schwinger parameters
to the integration over the n− 1 simplex of the dimensionless Feynman parameters combined with
a one-dimensional integral over a dimension variable t by using the simple insertion of unity in the
above expression:

1 =

∞∫
0

dtδ

(
t−

n

∑
i=1

βi

)
.

One has:

Π =

∞∫
0

dt tn−1
∫

dnα δ

(
1−

n

∑
i=1

αi

)
F(tα1, . . . , tαn). (7)

Note that a dimension variable t is analogous of the Fock–Schwinger proper time. By performing an
analytical continuation of the kinematical variables to the Minkowski space, one can encounter the
branch points, which, in particular, correspond to the quark unitary thresholds. The appearance of the
imaginary parts in Equation (7) is witnessed on the quark production in the physical spectrum, i.e., on
the absence of the quark confinement. One possibility to resolve this problem is to cut the upper limit
of the integration over the proper time t, i.e., ∞→ 1/λ2 with λ being the “infrared” cutoff parameter.
This allows one to remove all singularities of the diagram related to the local quark propagators.
The integral becomes smooth and always convergent. For clarity, one can demonstrate the approach
on a scalar one-loop two-point function. One starts with the loop integral in the Euclidean space:

Π(p2) =
∫ d4kE

π2
exp(−sk2

E)

[m2 + (kE + pE/2)2][m2 + (kE − pE/2)2]
. (8)

By using the above transformations, one gets:

Π(p2) =

∞→ 1
λ2∫

0

dt
t

(s + t)2

∫ 1

0
dαe−t[m2−α(1−α)p2]+ st

s+t (α−1/2)2 p2
, (9)

where p2 = −p2
E. The expression has a branch point at p2 = 4m2 as follows from the vanishing of the

first term inside the exponential at α = 1/2. However, this singularity is removed by the cutoff.
We take the value of the cutoff parameter λ presented in Table 1 as universal for all processes

we describe.

2.4. Electromagnetic Interactions

Inclusion of the electromagnetic (EM) interaction into the non-local CCQM in a gauge invariant
way requires a dedicated approach. Our main interest will be in the radiative decays of neutral particles
(i.e., the X(3872) tetraquark; see [79]), and so, we will focus on the EM interactions of quarks. The free
part of the quark Lagrangian is gauged using the standard minimal coupling prescription:

∂µq→ (∂µ − ieq Aµ)q, ∂µ q̄→ (∂µ + ieq Aµ)q̄, (10)

with eu = 2/3, ed = −1/3 in units of the proton charge. This defines the first part of the interaction
Lagrangian of quarks with photons:

LEM(1)
int = ∑

q
eq Aµ(x)Jµ

q (x), with Jµ
q (x) = q̄(x)γµq(x). (11)
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A second term comes from gauging the non-local quark-hadron interaction Lagrangian (1). First,
one multiplies each quark field by an exponential expression, which depends on the gauge field:

q(xi)→ exp{−ieq I(xi, x, P) }q(xi), q̄(xi)→ exp{ ieq I(xi, x, P) }q̄(xi), (12)

with I being defined as the integral:

I(xi, x, P) =
∫ xi

x
Aµ(z)dzµ

over the path that connects the hadron and quark positions. It can be readily seen that the local gauge
transformations:

q(xi) → exp{ ieq f (xi) }q(xi), q̄(xi)→ exp{−ieq f (xi) }q̄(xi),

Aµ(z) → Aµ(z) + ∂µ f (z), (13)

leave the Lagrangian unchanged for any arbitrary function f . Indeed, the gauge field induced
modification of the path integral I(xi, x, P)→ I(xi, x, P) + f (xi)− f (x) is canceled by the contribution
coming from the quark transformations. The exact form of the gauged non-local Lagrangian LEM(2)

depends on the quark current structure (i.e., hadron quantum numbers), and we will write down an
explicit form of it in the dedicated section. To use the gauged Lagrangian in perturbative calculations,
one expands the gauge exponentials into the powers of the coupling constant (and thus, powers of Aµ)
up to a desired order. The expansion contains only the derivatives of the path integral I, and using the
approach proposed in [70,87], one can define them in a path independent manner:

lim
dxµ→0

dxµ ∂

∂xµ I(x, y, P) = lim
dxµ→0

[
I(x + dx, y, P′)− I(x, y, P)

]
. (14)

Here, P′ denotes a path derived from P by extending P from its endpoint by dx. This definition gives:

∂

∂xµ I(x, y, P) = Aµ(x), (15)

where the independence of the derivative on the path P becomes explicit.

2.5. Selected Computational Aspects

To proceed with the calculations, it is convenient to use the following representation for the
correlation function:

ΦX

(
∑

1≤i<j≤4
(xi − xj)

2

)
=
[ 3

∏
n=1

∫ dqn

(2π)4

]
e
−i

3
∑

i=1
qi(xi−x4)

Φ̃X

(
− 1

2 ∑
1≤i<j≤3

qiqj

)
. (16)

It may be easily obtained by using the Jacobi coordinates. The Gaussian function form of the
correlation function Φ̃X in Equation (3) can be joined with the exponents coming from the Schwinger
representation of quark propagators given by Equation (5) into a single exponential function.
Its argument takes a Gaussian form in loop momenta:

exp(kak + 2kr + R), (17)

where a is a 3× 3 matrix, r = (r1, r2, r3) is a vector constructed from external momenta, and the constant
R behaves as a quadratic form of external momenta. As a result, one observes that, with respect to
loop momenta, the general expression (6) is a product of a polynomial P (originating from evaluation
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of traces) with an exponential function. The tensorial loop momenta integration is then performed
using the differential identity:

P
(

kµ
i

)
e2kr = P

(
1
2

∂

∂riµ

)
e2kr, (18)

which allows us the move the k independent differential operator in front of the integral. The action
of the latter operator on the result of the integration is further simplified by applying a second
operator identity:

P
(

1
2

∂

∂ri

)
e−ra−1r = e−ra−1rP

(
1
2

∂

∂ri
− [a−1r]i

)
, (19)

which permits commuting the differential operator with the exponential. The next steps are automated
using a FORM program [88]. It repeatedly performs the differentiation using the chain rule, thus
effectively commuting the differential operator to the right (and eventually making it vanish by acting
on a constant).

At last, one is left with an integral over the space of the Schwinger parameters (see Section 2.3).
The latter is computed numerically with the help of a FORTRAN code. Most of the time, one is
interested in the q2 dependent hadronic form factors: for the purposes of this text, the CCQM should
be seen as a smart and effective tool that provides these form factors from the assumed quark currents
as inputs.

3. Strong Decays of X(3872)

3.1. Decays X → D∗ 0(→ D0π0)D̄0, X → ρ0(→ π+π−) J̄/ψ, and X → ω(→ π+π−π0) J̄/ψ

The controversy raised by the discovery of the X(3872) state can be best seen in the large number of
publications it provoked (with many different interpretations). The proximity of the D∗0 D0 threshold:

MX(3872) − (MD∗0 + MD0) = −0.30± 0.40 MeV (20)

naturally suggests the idea of a loosely bound charm meson molecule. This idea was studied in several
texts: implications of the molecular hypothesis for interference and binding effects were discussed
in [89]; the authors of [90] found support for the molecular interpretation within a non-relativistic
quark model; a published text [91] analyzed the molecular assumption in an effective field theory
approach; and further works [92–94] based their analyses on an effective field theory with pion
exchange, Monte Carlo simulations, and heavy quark spin symmetry. A rather strong support for
the molecular picture was given in [95] (line shapes study) and [96] (potential model). The lattice
study [97] found an explanation for X(3872) in both the molecular and tetraquark scenario. An
important group of analyses focused on charmonium [98–100] or mixed charmonium [101–104]
explanations. Further arguments in favor of a charmonium structure followed from the Flatté analysis
performed in [105], and both molecular and charmonium hypotheses were discussed in [106]. Several
works [107–110] disfavored the molecular description. The authors of [107] based their conclusion on
a non-relativistic quark model with the pion exchange, and the analysis presented in [108] favored
the charmonium picture instead, while the conclusions in [109] were based on the pion and sigma
exchange model. More rare were approaches based on the glueball picture [111] and chromomagnetic
interaction [112]. The authors of [113] put in question the existence of a bound state at all. A hybrid
hypothesis was considered in [114] and [115] (here, together with the molecular and charmonium
one). Lattice computations in relation to X(3872) were used in [116,117], QCD sum rules in [118,119],
and the coupled channel approach in [120–122]. One should also mention the studies based on quark
models [56,123,124] and other strategies [125–127].

The description of the X(3872) state by the CCQM was presented in [78]. There, one assumed a
tetraquark structure, and within this assumption, decays X → J/ψ + 2π(3π) and X → D̄0 + D0 + π0,
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proceeding through the off-shell ρ/ω and D∗ states respectively, were computed. In addition, possible
implications of the X(3872) dominance in the s-channel dissociation of J/ψ were discussed.

When describing the X(3872) state, one follows the suggestions of [123,128], where a symmetric
spin distribution of this JPC = 1++ state was proposed:

[cq]S=0[c̄q̄]S=1 + [cq]S=1[c̄q̄]S=0 (q = u, d). (21)

A non-local generalization of this diquark-antidiquark current is written as:

Jµ
Xq
(x) =

∫
dx1 . . .

∫
dx4 δ

(
x−

4

∑
i=1

wixi

)
ΦX

(
∑
i<j

(xi − xj)
2
)

Jµ
4q(x1 . . . , x4) ,

Jµ
4q = 1√

2
εabcεdec

{
[qa(x4)Cγ5cb(x1)][q̄d(x3)γ

µCc̄e(x2)] + (γ5 ↔ γµ)
}

, (22)

with simplified weights resulting from only two quark flavors being present:

w1 = w2 = wc =
mc

2(mq + mc)
, w3 = w4 = wq =

mq

2(mq + mc)
. (23)

The strong isospin violation observed by comparing the ρ and ω vector meson mediated decays:

B(X → J/ψπ+π−π0)

B(X → J/ψπ+π−)
= 1.0± 0.4(stat)± 0.3(syst) (24)

experimentally established by Belle [129] suggested a mixed nature of the physical states Xl , Xh:

Xl ≡ Xlow = Xu cos θ + Xd sin θ,

Xh ≡ Xhigh = −Xu sin θ + Xd cos θ,

where θ is the mixing angle. The state Xu breaks the isospin symmetry maximally:

Xu =
1√
2

{ Xu + Xd√
2︸ ︷︷ ︸

I=0

+
Xu − Xd√

2︸ ︷︷ ︸
I=1

}
.

The mixing angle is to be adjusted to fit the branching fraction ratio (24).
The first step in our calculation is to determine the coupling constant gX by using the so-called

compositeness condition discussed before. The derivative of the tetraquark mass operator needed for
this can be written as:

Π′X(p2) =
1

2p2 pα ∂

∂pα
ΠX(p2) (25)

=
2 g2

X
3 p2

(
gµν −

pµ pν

p2

) 3

∏
i=1

∫ d4ki
(2π)4i

Φ̃2
X

(
−K2

)
×
{
−wctr

[
S[12]

c �pS[12]
c γ5S[2]

q γ5
]

tr
[
S[3]

c γµS[13]
q γν

]
+ wqtr

[
S[12]

c γ5S[2]
q �pS[2]

q γ5
]

tr
[
S[3]

c γµS[13]
q γν

]
−wctr

[
S[12]

c γ5S[2]
q γ5

]
tr
[
S[3]

c �pS[3]
c γµS[13]

q γν
]
+ wqtr

[
S[12]

c γ5S[2]
q γ5

]
tr
[
S[3]

c γµS[13]
q �pS[13]

q γν
] }

,
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where the short notations for the quark propagators and loop momenta are:

S[12]
c = Sc(k1 + k2 − wc p), S[3]

c = Sc(k3 − wc p),

S[2]
q = Sq(k2 + wq p), S[13]

q = Sq(k1 + k3 + wq p),

K2 =
1
2 ∑

i≤j
kik j.

The evaluation of this expression is related to the determination of the size parameter ΛX value and
allows us to study the ΛX dependence of the results.

Because the X(3872) mass lies close to the studied thresholds:

mX − (mJ/ψ + mρ) = −0.90± 0.41 MeV,

mX − (mD0 + mD∗ 0) = −0.30± 0.34 MeV,

the off-mass-shell character of the ρ, ω, and D∗ vector mesons has to be taken into account when
evaluating the transition amplitudes X → J/ψ + ρ(ω) and X → D∗0D̄0. The Feynman diagrams to be
considered within the CCQM are depicted in Figure 2.

Figure 2. Feynman diagrams describing the decays X → J/ψ + ρ(ω) and X → D + D̄∗.

In what follows, we use the notation for the light vector mesons v0 = ρ, ω. The amplitude of the
decay Xu → D̄ + D∗ is written as:

Mµν
(

Xu(p, µ)→ D̄(q1) + D∗(q2, ν)
)
= 3
√

2 gX gD gD∗

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃X

(
− K2

2

)
× Φ̃D

(
− (k1 + wcq1)

2
)

Φ̃D∗
(
− (k2 + wcq2)

2
)

× tr
[
γ5Sc(k1)γ

5Su(k1 + q1)γ
µSc(k2)γ

νSu(k2 + q2)
]
+ (mu ↔ mc, wu ↔ wc)

= gµν M(1)
XDD∗ + qµ

1 qν
1 M(2)

XDD∗ + qµ
1 qν

2 M(3)
XDD∗ + qµ

2 qν
1 M(4)

XDD∗ + qµ
2 qν

2 M(5)
XDD∗ (26)

where the argument of the X-vertex function is equal to:

K2
2 = 1

8 (k1 − k2)
2 + 1

8 (k1 − k2 + q1 − q2)
2 + 1

4 (k1 + k2 + wc p)2.
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The amplitude of the decay Xu → J/ψ + v0 is written as:

Mµνρ
(

Xu(p, µ)→ J/ψ(q1, ν) + v0(q2, ρ)
)
= 6 gX gJ/ψ gv0

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃X

(
− K2

1

)
× Φ̃J/ψ

(
− (k1 +

1
2 q1)

2
)

Φ̃v0

(
− (k2 +

1
2 q2)

2
)

× tr
[
iγ5Sc(k1)γ

νSc(k1 + q1)γ
µSu(k2)γ

ρSu(k2 + q2)
]

= εq1q2µνqρ
1 M(1)

XJv + εq1q2µνqρ
2 M(2)

XJv + εq1q2µρqν
2 M(3)

XJv + εq1q2νρqµ
1 M(4)

XJv

+ εq1µνρ M(5)
XJv + εq2µνρ M(6)

XJv + εq1q2µρqν
1 M(7)

XJv + εq1q2νρqµ
2 M(8)

XJv (27)

where the argument of the X-vertex function is equal to:

K2
1 = 1

2 (k1 +
1
2 q1)

2 + 1
2 (k2 +

1
2 q2)

2 + 1
4 (wuq1 − wcq2)

2.

In the latter expression, the number of Lorentz structures is reduced to six when X and J/ψ are on the
mass-shell because, in that case, one has εµ(q

µ
1 + qµ

2 ) = 0 and ενqν
1 = 0.

Obvious relations:

M(Xd → J/ψ + ρ) = −M(Xu → J/ψ + ρ), M(Xd → J/ψ + ω) = M(Xu → J/ψ + ω)

allow expressing all amplitudes of physical states transitions in terms of the Xu ones:

M(X`/h → J/ψ + ω) = (cos θ ± sin θ) M(Xu → J/ψ + ω),

M(X`/h → J/ψ + ρ) = (± cos θ − sin θ) M(Xu → J/ψ + ρ).

The differential decay rate in the narrow-width approximation is written as [130]:

dΓ(X → J/ψ + nπ)

dq2 =
1

8 m2
X π
· 1

3
|MXJv|2

Γv0 mv0

π

p∗(q2)

(m2
v0 − q2)2 + Γ2

v0 m2
v0

B(v0 → nπ), (28)

1
3
|MXJv|2 =

1
3 ∑

pol
|εµ

X εν
J/ψ ε

ρ

v0 Mµνρ|2,

where p∗(q2) = λ1/2(m2
X , m2

J/ψ, q2)/2mX is the momentum of the v0 in the X rest frame. The allowed
kinematic range is given by:

(n mπ)
2 ≤ q2 ≤ (mX −mJ/ψ)

2,

where n = 2 for the ρ meson and n = 3 for the ω meson. The masses, decay widths, and branching
fractions appearing in (28) were taken from PDG [13]. In addition to the model parameter values
presented in Table 1, further model parameters are needed, namely the size parameters of the appearing
mesons. Their values have been settled earlier and are presented in Table 2.

Table 2. Size parameters for selected mesons in GeV.

Λπ Λρ/ω ΛD ΛD∗ ΛJ/ψ Ληc

0.711 0.295 1.4 2.3 3.3 3.0

Two adjustable parameters remain, the size parameter ΛX and the mixing angle θ. It was found
out that the dependence of the branching fraction:

Γ(Xu → J/ψ + 3 π)

Γ(Xu → J/ψ + 2 π)
≈ 0.25 (29)
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on the size parameter Λx is in the CCQM small and close to 1/4. Using this observation and the central
value of the experimental ratio in Equation (24), one can deduce the mixing angle from:

Γ(Xl,h → J/ψ + 3 π)

Γ(Xl,h → J/ψ + 2 π)
≈ 0.25 ·

(1± tan θ

1∓ tan θ

)2
≈ 1. (30)

The latter equation yields θ ≈ 18.4◦ for Xl and θ ≈ −18.4◦ for Xh. When not considering the ratio,
the sensitivity of the decay widths on the size parameter is more important. One may expect the
size parameter value to be close to those of the charmonia ΛJ/ψ and Ληc , i.e., to be in the range
3 GeV < ΛX < 4 GeV. This range was scanned, and the behavior of the decay width is depicted in
Figure 3.

2.5 3 3.5 4
Λ

X
 (GeV)

0

0.5

1

1.5

Γ(X -> D
0
 + D

0
 + π

0
),  MeV

Γ(X -> J/ψ + nπ),  MeV

Figure 3. The dependence of the decay widths Γ(Xl → D̄0D0π0) and Γ(X → J/ψ + nπ) on the size
parameter ΛX .

One can conclude that the predicted values in the interval 2.5 ≤ q2 ≤ 3.5 GeV lie in the range
0.05 MeV < ΓX(3872) < 0.23 MeV, which is in agreement with the upper limit of 1.2 MeV.

The differential rate of the decay X(3872) → D̄0D0π0 in the narrow-width approximation is
written as:

dΓ(Xu → D̄0D0π0)

dq2 =
1

2m2
Xπ
· 1

3
|MXDD∗ |2 ·

ΓD∗ 0 mD∗ 0

π

p∗(q2)B(D∗ 0 → D0π0)

(m2
D∗ 0 − q2)2 + Γ2

D∗ 0 m2
D∗ 0

, (31)

1
3
|MXDD∗ |2 =

1
3 ∑

pol
|εµ

X εν
D∗ 0 Mµν|2 ,

where p∗(q2) = λ1/2(m2
X, m2

D0 , q2)/2mX is the momentum of D∗ 0 in the X rest frame. The matrix
element Mµν was defined above by Equation (26). One has to note that the allowed kinematic range:

3.99928 GeV2 ≈ (mD0 + mπ0)2 ≤ q2 ≤ (mX −mD0)2 ≈ 4.02672 GeV2

is very narrow. Taking the masses, widths, and branching fractions of appearing D∗ mesons
from [13,89,131–134], we can calculate the decay width:

Γ(Xl → D̄0D0π0) = cos2 θ Γ(Xu → D̄0D0π0)
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and study its dependence on the size parameter ΛX. This is shown in Figure 3. By using the
experimental data from PDG [13] for the ratio:

105B(B± → K±X) · B(X → J/ψπ+π−) = 0.95± 0.19,

105B(B± → K±X) · B(X → D0D̄0π0) = 10.0± 4.0, (32)

one finds:
Γ(X → D0D̄0π0)

Γ(X → J/ψπ+π−)
= 10.5± 4.7. (33)

The latter is to be compared to the CCQM prediction:

Γ(X → D0D̄0π0)

Γ(X → J/ψπ+π−)

∣∣∣
CCQM

= 6.0± 0.2 , (34)

where the uncertainty of the result reflects the uncertainty on ΛX . One can see that the two numbers
agree within errors.

3.2. Implications of X(3872) in the Charm Dissociation Process by Light Mesons

It is interesting to check the significance of X(3872) in the reaction of the charm dissociation
process J/ψ+ ρ (ω)→ X(3872)→ D̄D∗, which plays an important role in heavy ion physics. This state
will contribute to the s channel of the process. The X-addition to the full cross-section is written as:

σ(J/ψ + v0 → D(D̄) + D̄∗(D∗)) = 2 (cos θ ∓ sin θ)2 σ(J/ψ + v0 → Xu → D̄ + D∗), (35)

σ(J/ψ + v0 → Xu → D̄ + D∗) =
1

16 π s
λ1/2(s, m2

D, m2
D∗)

λ1/2(s, m2
J/ψ, m2

v0)
· 1

9 ∑
pol

|A|2

(s−m2
X)

2 + Γ2
Xm2

X
,

A = εν
J/ψε

ρ

v0 Mµνρ

(
− gµα +

pµ pα

m2
X

)
ε

β
D∗Mαβ ,

where p = p1 + p2 = q1 + q2. The ∓ sign in the first equation is negative for the ρ meson and positive
for ω. A Breit–Wigner propagator is used with ΓX = 1 MeV, and the size parameter value is fixed to
ΛX = 3.5 GeV. With this setting, the dependence of the cross-section on the energy E =

√
s is shown

in Figure 4.

3.88 3.9 3.92 3.94
E (GeV)

0
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σ
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)

ρ-meson
ω-meson

Charged D-mesons

3.88 3.9 3.92 3.94
E (GeV)

0
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20
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ρ-meson
ω-meson

Neutral D-mesons

Figure 4. The cross-sections of the processes J/ψ + v0 → X → D + D∗. Charged D-mesons in left
panel; neutral D-mesons in the right panel.

One can compare the predicted behavior to available results for the charged D-mesons: At
E = 4.0 GeV, a theoretical evaluation [135] predicts σ(J/ψ + π → D + D̄∗) = 0.9 mb, and the work
in [136] predicted σ(J/ψ + ρ → D + D̄∗) = 2.9 mb at E = 3.9 GeV. In the case of X(3872), the
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cross-section reaches the maximum of approximately 0.32 mb at E = 3.88 GeV, and one can conclude
that the expected contribution of X(3872) in the charm dissociation is non-negligible.

4. Radiative Decays of X(3872)

The first experimental evidence for the radiative decay of the X(3872) particle was given in [129]
by the Belle experiment. From the measured branching fraction product:

B(B→ XK) · B(X → γ + J/ψ) = (1.8± 0.6 (stat)± 0.1 (syst))× 10−6 (36)

the partial width ratio was deduced:

Γ(X → γ + J/ψ)

Γ(X → π+π− J/ψ)
= 0.14± 0.05. (37)

This finding was supported by the BaBar observation [137]:

B(B+ → XK+) · B(X → γ + J/ψ) = (3.3± 1.0 (stat)± 0.3 (syst))× 10−6 (38)

which had a limited significance of 3.4 σ. The same experiment reaffirmed the observation in 2009 [138]
with smaller errors:

B(B± → XK±) · B(X → γ + J/ψ) = (2.8± 0.8 (stat)± 0.1 (syst))× 10−6 (39)

from which one can deduce [36]:

Γ(X → γ + J/ψ)

Γ(X → π+π− J/ψ)
= 0.22± 0.06. (40)

BaBar also presented a result related to ψ(2s):

B(B± → XK±) · B(X → γ + ψ(2S)) = (9.5± 2.7 (stat)± 0.6 (syst))× 10−6. (41)

In 2011, the Belle collaboration published measurements with J/ψ and ψ(2s) in the final state [139]:

B(B± → XK±) · B(X → γ + J/ψ) = (1.78+0.48
−0.44 (stat)± 0.12 (syst))× 10−6,

B(B± → XK±) · B(X → γ + ψ(2S)) < 3.45× 10−6. (42)

The first result was in good agreement with the previous one from the same experiment (36);
however, the second number brought some tension when compared to BaBar and a later LHCb
measurement [140]:

Γ(X → ψ(2s) + γ)

Γ(X → J/ψ + γ)
=


3.4± 1.4 BaBar

< 2.0 (90% CL) Belle

2.46± 0.64 (stat)± 0.29 (sys) LHCb

. (43)

The theoretical study of radiative X(3872) decays includes several different approaches. Such
decays were analyzed in [98] in the charmonium picture. The authors studied excited 1D and 2P
states and their decays in relation with the electric dipole radiation and provided implications for
quantum number assignments. The molecular hypothesis was considered in [106]. There, the
authors argued that the validity of the molecular picture could be determined from the study of
several X(3872) decay channels (including some with the photon emission). The work in [141]
was dedicated to radiative decays with two D mesons in the final state. It was claimed that the



Symmetry 2020, 12, 884 15 of 42

discrimination between the molecular and charmonium picture could be obtained via analysis of
the photon spectrum. Several decay modes, which also included J/ψ + γ, were examined in [142]
within a phenomenological Lagrangian approach. The predicted value of the radiative decay width
depended on the model parameters and varied from 125 KeV to 250 KeV. In [143], X(3872) was
described as a mixture of charmonium and exotic molecular states and treated using QCD sum
rules. The predicted radiative decay width ratio ΓX(J/ψγ)/ΓX(J/ψπ+π−) = 0.19± 0.13 was in
agreement with experimental measurements. The excited charmonium hypothesis and study of E1
decay widths within the relativistic Salpeter method was presented in [144]. A description based
on a charmonium-like picture with high spin 2−+ using a light front quark model was proposed
in [145]. Later works [146–149] were mostly interested in the puzzling ΓX(ψ(2s)γ)/ΓX(J/ψγ) ratio (43)
and analyzed it with different approaches (quark potential model, single-channel approximation,
coupled-channel approach, charmonium-molecule hybrid model, and an effective theory framework).

Here, we focus on the J/ψ decay channel, which was studied using the CCQM in [79].
The non-local quark current for the X(3872) hadron was given in the previous section; see Equation (22).
The J/ψ quark current is written as:

Jµ
J/ψ(y) =

∫
dy1

∫
dy2 δ

(
y− 1

2
(y1 + y2)

)
×ΦJ/ψ

(
(y1 − y2)

2
)

c̄a(y1)γ
µca(y2). (44)

The related size parameter was established in earlier works and has the value of ΛJ/ψ = 1.738 GeV.
The knowledge of the quark currents enables us to give more details concerning the interaction with
photons, addressed before in Section 2.4. The second part of the electromagnetic interaction Lagrangian
stands:

LEM(2)
int (x) = gX Xq µ(x) · Jµ

Xq−em(x) + gJ/ψ J/ψµ(x) · Jµ
J/ψ−em(x), (q = u, d)

Jµ
Xq−em =

∫
d~ρ ΦX(~ρ

2) Jµ
4q(x1, . . . , x4)

{
ieq [I

x3
x − Ix4

x ] + iec [I
x2
x − Ix1

x ]
}

,

Jµ
J/ψ−em =

∫
dρ ΦJ/ψ(ρ

2) Jµ
2q(x1, x2) iec [I

x1
x − Ix2

x ], Ixi
x ≡ I(xi, x, P).

where Jµ
4q and Jµ

2q correspond to the parts of usual currents (22), (44) not containing the vertex function.
In order to make use of the definition (15), it is convenient to switch to the Fourier transforms of the
vertex functions and quark fields:

ΦX(~ρ
2) =

∫ d4~ω

(2π)4 Φ̃X(−~ω 2)e−i~ρ~ω = Φ̃X(~∂
2
ρ ) δ(4)(~ρ),

ΦJ/ψ(ρ
2) =

∫ d4ω

(2π)4 Φ̃J/ψ(−ω 2)e−iρω = Φ̃J/ψ(∂
2
ρ ) δ(4)(ρ),

q(xi) =
∫ d4 pi

(2π)4 e−ipixi q̃(pi), q̄(xi) =
∫ d4 pi

(2π)4 eipixi ˜̄q(pi) ,

so that the differential operator can be placed in front of the path integrals:

Jµ
Xq−em =

4

∏
i=1

∫ d4 pi

(2π)4 J̃µ
4q(p1, . . . , p4)

∫
d~ρ δ(4)(~ρ)Φ̃X(~∂

2
ρ )e
−i(p1x1−p2x2−p3x3+p4x4) ·QX

=
4

∏
i=1

∫ d4 pi

(2π)4 J̃µ
4q(p1, . . . , p4)e−i(p1−p2−p3+p4)x

∫
d~ρ δ(4)(~ρ)e−i~ρ~ωΦ̃X(~D 2

ρ ) ·QX

QX = ieq [I
x3
x − Ix4

x ] + iec [I
x2
x − Ix1

x ],
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Jµ
J/ψ−em =

2

∏
i=1

∫ d4 pi

(2π)4 J̃µ
2q(p1, p2)

∫
dρ δ(4)(ρ)Φ̃J/ψ(∂

2
ρ) ei(p1x1−p2x2) ·QJ/ψ

=
2

∏
i=1

∫ d4 pi

(2π)4 J̃µ
2q(p1, p2)ei(p1−p2)x

∫
dρ δ(4)(ρ)eipρΦ̃J/ψ(D2

ρ) ·QJ/ψ

QJ/ψ = iec [I
x1
x − Ix2

x ],

where the long derivatives are defined as Dµ
ρi = ∂

µ
ρi − iωµ

i and Dµ
ρ = ∂

µ
ρ + ipµ, p = 1

2 (p1 + p2) with
ωi being combinations of the integration four-vectors pi and mass parameters wq and wc. Next,
the identity involving the operator function action on the path integral [150] is applied:

F(D2
ρj
)Ixi

x =

1∫
0

dτF′(τD2
ρj
− (1− τ)ω2

j )wij ·
(

∂ν
ρj

Aν(xi)− 2 i ων
j Aν(xi)

)
+ F(−ω2

j )Ixi
x . (45)

Its validity extends to all functions F analytic at zero. The result for X(3872) reads:

Jµ
Xq−em(x) =

4

∏
i=1

∫
d4xi

∫
d4y Jµ

4q(x1, . . . , x4) Aρ(y) · Eρ
X(x; x1, . . . , x4, y), (46)

Eρ
X(x; x1, . . . , x4, y) =

4

∏
i=1

∫ d4 pi
(2π)4

∫ d4r
(2π)4 e−ip1(x−x1)+ip2(x−x2)+ip3(x−x3)−ip4(x−x4)−ir(x−y) Ẽρ

X(p1, . . . , p4, r),

Ẽρ
X(p1, . . . , p4, r) =

1∫
0

dτ
3

∑
j=1

{
ec

[
−Φ̃′X(−z1j) lρ

1j + Φ̃′X(−z2j) lρ
2j

]
+eq

[
−Φ̃′X(−z4j) lρ

4j + Φ̃′X(−z3j) lρ
3j

] }
,

lij = wij (wijr + 2 ωj), (i = 1, . . . , 4; j = 1, . . . , 3),

zi1 = τ (wi1r + ω1)
2 + (1− τ)ω2

1 + ω2
2 + ω2

3 ,

zi2 = (wi1r + ω1)
2 + τ (wi2r + ω2)

2 + (1− τ)ω2
2 + ω2

3 ,

zi3 = (wi1r + ω1)
2 + (wi2r + ω2)

2 + τ (wi3r + ω3)
2 + (1− τ)ω2

3 .

For J/ψ, one obtains:

Jν
J/ψ−em(y) =

∫
d4y1

∫
d4y2

∫
d4z Jν

2q(y1, y2) Aρ(z) Eρ
J/ψ(y; y1, y2, z), (47)

Eρ
J/ψ(y; y1, y2, z) =

∫ d4 p1

(2π)4

∫ d4 p2

(2π)4

∫ d4q
(2π)4 e−ip1(y1−y)+ip2(y2−y)+iq(z−y) Ẽρ

J/ψ(p1, p2, q) ,

Ẽρ
J/ψ(p1, p2, q) = ec

1∫
0

dτ
{
− Φ̃′J/ψ(−z−) lρ

− − Φ̃′J/ψ(−z+) lρ
+

}
,

z∓ = τ (p∓ 1
2 q)− (1− τ) p2, l∓ = p∓ 1

4 q, p = 1
2 (p1 + p2) .

The amplitude evaluation requires evaluation of four Feynman diagrams displayed in Figure 5.
The corresponding expression stands:

M(Xq(p)→ J/ψ(q1) γ(q2)) = i(2π)4δ(4)(p− q1 − q2) ε
µ
X ε

ρ
γ εν

J/ψ Tµρν(q1, q2) , (48)

where Tµρν(q1, q2) can be expanded in terms of appropriate Lorentz structures. Using the on-mass shell
condition, gauge invariance, and Schouten identities [151], one can show that only two independent
structures remain:

Tµρν = WA εq1q2µρq2ν + WB εq1q2νρq1µ. (49)
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The functions WA/B are to be extracted from the expression following from the CCQM computation:

Tµρν(q1, q2) = ∑
i=a,b,c,d

T(i)
µρν(q1, q2) , (50)

where the separate contributions are written down:

T(a)
µρν = 6

√
2 gX gJ/ψ eq

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃X

(
− K2

a

)
Φ̃J/ψ

(
− (k1 +

1
2 q1)

2
)

× 1
2 tr
[
γ5Sc(k1)γνSc(k1 + q1)γµSq(k2)γρSq(k2 + q2)− (γ5 ↔ γµ)

]
,

K2
a = 1

2 (k1 +
1
2 q1)

2 + 1
2 (k2 +

1
2 q2)

2 + 1
4 (wqq1 − wcq2)

2 ,

T(b)
µρν = 6

√
2 gX gJ/ψ

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃J/ψ

(
− (k2 +

1
2 q1)

2
)

ẼX ρ(p1, . . . , p4, r)

× 1
2 tr
[
γ5Sq(k1)γµSc(k2)γνSc(k2 + q1)− (γ5 ↔ γµ)

]
,

p1 = k2, p2 = k2 + q1, p3 = p4 = −k1, r = −q2 ,

T(c)
µρν = 6

√
2 gX gJ/ψ ec

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃X

(
− K2

c

)
Φ̃J/ψ

(
− (k2 + q2 +

1
2 q1)

2
)

× 1
2 tr
[
γ5Sq(k1)γµSc(k2)γρSc(k2 + q2)γνSc(k2 + p)− (γ5 ↔ γµ)

]
,

K2
c = 1

2 k2
1 +

1
2 (k2 +

1
2 p)2 + 1

4 w2
q p2 ,

T(d)
µρν = 6

√
2 gX gJ/ψ ec

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃X

(
− K2

c

)
ẼJ/ψ ρ(p1, p2, q)

× 1
2 tr
[
γµSq(k1)γ5Sc(k2)γνSc(k2 + p)− (γ5 ↔ γµ)

]
,

p1 = −k2 − p, p2 = −k2, q = −q2 .

One evaluates the traces and the loop momenta integrals, and the expression is re-arranged in two
terms following the mentioned Lorentz structure. The behavior of coefficient functions WA/B is
predicted using a numerical integration over the Schwinger parameters:

WA,B =

∞∫
0

dt
1∫

0

d3β FA,B(t, β1, β2, β3) . (51)

The decay width is expressed as:

Γ(X → γ J/ψ) =
1

12π

|~q2|
m2

X

(
|HL|2 + |HT |2

)
, (52)

where Hi denote the helicity amplitudes:

HL = i
m2

X
mJ/ψ

|~q2|2WA , HT = −imX |~q2|2WB (53)
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with |~q2| =
(

m2
X −m2

J/ψ

)
/(2mX). The dependence of the predicted decay width on the size parameter

ΛX is shown in Figure 6.

Figure 5. Four Feynman diagrams describing the decay X → γ + J/ψ. One with the photon emission
form the light quark line (a) and three bubble graphs (b)–(d).

2.5 3 3.5 4
Λ

X
 (GeV)

0

0.1

0.2

Γ(X -> J/ψ + 2π),  MeV

Γ(X -> J/ψ + γ),  MeV

Figure 6. The dependence of the decay widths Γ(Xl → γ + J/ψ) and Γ(Xl → J/ψ 2π) on the size
parameter ΛX .

If we follow the approach from the previous section and take ΛX = 3.0± 0.5 GeV, then the
model predicts:

Γ(Xl → γ + J/ψ)

Γ(Xl → J/ψ + 2π)

∣∣∣
CCQM

= 0.15± 0.03 , (54)
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which is to be compared with the experimental results Equation (37) and Equation (40). One may
conclude that the bound-tetraquark description of the X(3872) state by the CCQM is in an agreement
with the experimental observations.

5. Nature of Zc(3900)

As stated in the Introduction, the detected Zc(3900) decays include both the π± J/ψ and D∗D
final states (assuming Zc(3885) and Zc(3900) are the same particle). The ratio of the decay widths of
these two channels was measured by BESIII [27]:

Γ(Zc → DD̄∗)
Γ(Zc → π J/ψ)

= 6.2± 1.1(stat)± 2.7(syst) (55)

and represents a quantitative observation to be explained by the theorists. There are many different
theoretical approaches that are trying to understand the nature of this state.

The tetraquark interpretation was intensively discussed within QCD sum rules [152–154] and also
in the color flux-tube model [155]. The molecular scenario seems to be more abundant in the literature
and is discussed or preferred in several theoretical frameworks. A light front theory description was
presented in [156]; an effective field theory description was proposed in [157]; and QCD sum rules
were used in [158,159]. The molecular interpretation was also supported by the quark model developed
in [160]. The authors of [161] made a proposal for BESIII and forthcoming Belle II measurements by
using also the molecular scenario. Further molecular picture oriented works can be found in [162]
(constituent quark model, coupled channels) and in [163] (quark interchange model). It is interesting
to note that most of the lattice QCD based studies obtained different results from previous ones:
some did not see (within the approach they used) a bound state at all [164–167], invoked a threshold
cusp explanation [168,169], or indicated that the understanding of Zc within the lattice QCD was
only approaching [170]. For completeness, one can mention the charmonium hybrid interpretation
studied in [171], the hadro charmonium picture presented in [172] with the tetraquark and molecular
interpretation and the color magnetic interaction [173]. Further ideas can be found in [174–184].

The description of Zc(3900) in the framework of the CCQM was presented in [80]. Two options were
tested: the molecular interpretation and the tetraquark hypothesis. For each option, the strong decays into
J/ψπ+, ηcρ+, D̄0D∗+, and D̄∗0D+ were computed and compared to available experimental data. First,
we investigate the tetraquark hypothesis. In this scenario, the non-local Zc current is written as:

Jµ
Zc
(x) =

∫
dx1 . . .

∫
dx4 δ

(
x−

4

∑
i=1

wixi

)
·ΦZc

(
∑
i<j

(xi − xj)
2
)

Jµ
4q(x1, . . . , x4), (56)

Jµ
4q =

i√
2

εabcεdec

{
[ua(x4)Cγ5cb(x1)][d̄d(x3)γ

µCc̄e(x2)]− (γ5 ↔ γµ)
}

.

The tetraquark mass operator looks like:

Πµν
Zc
(p) = 6

3

∏
i=1

∫ d4ki

(2π)4i
Φ̃2

Zc

(
− ~ω 2

)
(57)

×
{

tr
(

S4(k̂4)γ5S1(k̂1)γ5

)
tr
(

S3(k̂3)γ
µS2(k̂2)γ

ν
)

+ tr
(

S4(k̂4)γ
νS2(k̂2)γ

µ
)

tr
(

S3(k̂3)γ5S(
1k̂1)γ5

) }
,

where the momenta are defined by:

k̂1 = k1 − w1 p, k̂2 = k2 − w2 p, k̂3 = k3 + w3 p, k̂4 = k1 + k2 − k3 + w4 p,

~ω 2 = 1/2 (k2
1 + k2

2 + k2
3 + k1k2 − k1k3 − k2k3).
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The matrix elements of the decays Z+
c → J/ψ + π+ and Z+

c → ηc + ρ+ are written down:

Mµν
(

Zc(p, ε
µ
p)→ J/ψ(q1, εν

q1
) + π+(q2)

)
=

6√
2

gZc gJ/ψgπ

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−~η 2

)
Φ̃J/ψ

(
− (k1 + v2q1)

2
)

Φ̃π

(
− (k2 + u4q2)

2
)

×
{

tr (γ5S4(k2)γ5S3(k2 + q2)γ
µS2(k1)γ

νS1(k1 + q1)) + (γ5 ↔ γµ)
}

= AJ/ψπ gµν + BJ/ψπ qµ
1 qν

2 , (58)

Mµα
(

Zc(p, ε
µ
p)→ ηc(q1) + ρ(q2, εα

q2
)
)
=

6√
2

gZc gηc gρ

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−~η 2

)
Φ̃ηc

(
− (k1 + v2q1)

2
)

Φ̃ρ

(
− (k2 + u4q2)

2
)

×
{

tr [γ5S4(k2)γ
αS3(k2 + q2)γ

µS2(k1)γ5S1(k1 + q1)] + (γ5 ↔ γµ)
}

= Aηcρ gµα − Bηcρ qµ
2 qα

1 , (59)

where the argument of the Zc-vertex function is given by:

η1 = 1
2
√

2
(2k1 + (1− w1 + w2)q1 − (w1 − w2)q2) ,

η2 = 1
2
√

2
(2k2 − (w3 − w4)q1 + (1− w3 + w4)q2) ,

η3 = 1
2 ((w3 + w4)q1 − (w1 + w2)q2) , ~η 2 = η2

1 + η2
2 + η2

3 .

The notations used are as follows: m1 = m2 = mc, m3 = m4 = md = mu, v1 = m1/(m1 + m2),
v2 = m2/(m1 + m2), u3 = m3/(m3 + m4), and u4 = m4/(m3 + m4).

The amplitudes of the Z+
c → D̄0 + D∗+ and Z+

c → D̄∗ 0 + D+ decays are:

Mµν
(

Zc(p, ε
µ
p)→ D̄0(q1) + D∗+(q2, εν

q2
)
)
=

6√
2

gZc gDgD∗

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−~δ 2

)
Φ̃D

(
− (k2 + v2q2)

2
)

Φ̃D∗
(
− (k1 + u1q2)

2
)

×
{

tr (γ5S4(k2 + q1)γ5S1(k1)γ
νS3(k1 + q2)γ

µS2(k2))− (γ5 ↔ γµ)
}

= AD̄D∗ gµν − BD̄D∗ qµ
2 qν

1 , (60)

Mµα
(

Zc(p, ε
µ
p)→ D̄∗ 0(q1, εα

q1
) + D+(q2, )

)
=

6√
2

gZc gD∗gD

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−~δ 2

)
Φ̃D∗

(
− (k1 + v̂1q1)

2
)

Φ̃D

(
− (k2 + û4q2)

2
)

×
{

tr (S4(k2 + q1)γ5S1(k1)γ5S3(k1 + q2)γ
µS2(k2)γ

α)− (γ5 ↔ γµ)
}

= AD∗D gµα + BD∗D qµ
1 qα

2 , (61)
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with the argument of the Zc-vertex function being:

δ1 = − 1
2
√

2
(k1 − k2 + (w1 − w2)(q1 + q2)) ,

δ2 = + 1
2
√

2
(k1 − k2 − (1 + w3 − w4)q1 + (1− w3 + w4)q2) ,

δ3 = − 1
2 (k1 + k2 + (w1 + w2)(q1 + q2)) , ~δ 2 = δ2

1 + δ2
2 + δ2

3 . (62)

Now, the notation used is m1 = m2 = mc, m3 = m4 = md = mu, v̂2 = m2/(m2 + m4),
v̂4 = m4/(m2 + m4), û1 = m1/(m1 + m3), and û3 = m3/(m1 + m3).

The decay width for the 1+(p)→ 1−(qv) + 0−(qs) transition is given by:

Γ =
1

8π

1
2s + 1

|qv|
m2 (|H+1+1|2 + |H−1−1|2 + |H00|2), (63)

where H denotes the helicity amplitudes and qv is the three-momentum of the final state vector particle
qµ

v = (Ev, 0, 0, |qv|). The helicity amplitudes can be related to the invariant amplitudes A1 and A2,
which parametrize the matrix element in terms of the Lorentz structures:

M = A1 m gµρ +A2
1
m

qµ
1 qρ

2 (64)

by means of the relations:

H00 = − m
m1

EvA1 −
1

m1
|qv|2A2, H+1+1 = H−1−1 = −mA1.

From the comparison of Equation (64) with Equations (58)–(61), one can express A1,2 as a function
of Axy, Bxy. The results are importantly influenced by the fact that the amplitudes AD̄D∗ and
AD∗D (Formulas (60) and (61)) vanish exactly within the CCQM description AD̄D∗ = AD∗D = 0,
and the contributions from the non-zero B amplitudes are strongly suppressed by the |qv|5 factor.
Before arriving at the numerical predictions, the size parameters need to be specified, and a strategy
with respect to the choice of ΛZc value has to be settled. The numerical values of the size parameters
were in [80] (i.e., the herein presented Zc analysis) re-adjusted with respect to those in [78] and are
shown in Table 3.

Table 3. The size parameters for selected mesons in GeV used in the Zc(3900) analysis.

Λπ Λρ/ω ΛD ΛD∗ ΛJ/ψ Ληc

0.711 0.295 1.4 2.3 3.3 3.0

As concerns the ΛZc parameter, first, it is taken as ΛZc = 2.24± 0.10 GeV to make the predicted
value of the decay width Γ(Z+

c → J/ψ + π+) close to the one from [152,176]. One obtains:

Γ(Z+
c → J/ψ + π+) = (27.9+6.3

−5.0)MeV , Γ(Z+
c → D̄0 + D∗+) ∝ 10−8 MeV ,

Γ(Z+
c → ηc + ρ+) = (35.7+6.3

−5.2)MeV , Γ(Z+
c → D̄∗ 0 + D+) ∝ 10−8 MeV . (65)

These outputs contradict the experimental number (see Equation (55)), which indicates a larger
coupling to DD∗ than to the J/ψπ mode. If trying to adjust the ΛZc parameter to a more realistic value,
the results do not become any better. Assuming ΛZc = 3.3± 1.1 GeV, one gets:

Γ(Z+
c → J/ψ + π+) = (4.3+0.7

−0.6)MeV , Γ(Z+
c → D̄0 + D∗+) ∝ 10−9 MeV ,

Γ(Z+
c → ηc + ρ+) = (8.0+1.2

−1.0)MeV , Γ(Z+
c → D̄∗ 0 + D+) ∝ 10−9 MeV . (66)
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These predictions suggest that the tetraquark picture is not appropriate for the Zc(3900) state.

The molecular description of Zc(3900) appears as a natural alternative. In such a scenario, the
non-local interpolation quark current is written as [53]:

Jµ
4q =

1√
2

{
(d̄(x3)γ5c(x1))(c̄(x2)γ

µu(x4)) + (d̄(x3)γ
µc(x1))(c̄(x2)γ5u(x4))

}
. (67)

By using similar steps as in the tetraquark analysis, one writes down the Fourier transformed Zc mass
operator in the form:

Πµν
Zc
(p) =

9
2

3

∏
i=1

∫ d4ki

(2π)4i
Φ̃2

Zc

(
− ~ω 2

)
(68)

×
{

tr
[
γ5S1(k̂1)γ5S3(k̂3)

]
· tr
[
γµS4(k̂4)γ

νS2(k̂2)
]

+tr
[
γµS1(k̂1)γ

νS3(k̂3)
]
· tr
[
γ5S4(k̂4)γ5S2(k̂2)

] }
in order to pin down the ΛZc dependence of the coupling gZc . Next, the transition amplitudes are
constructed:

Mµν
(

Zc(p, ε
µ
p)→ J/ψ(q1, εν

q1
) + π+(q2)

)
=

3√
2

gZc gJ/ψgπ

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−~η 2

)
Φ̃J/ψ

(
− (k1 + v1q1)

2
)

Φ̃π

(
− (k2 + u4q2)

2
)

×
{

tr (γ5S1(k1)γ
νS2(k1 + q1)γ

µS4(k2)γ5S3(k2 + q2)) + (γ5 ↔ γµ)
}

= AJ/ψπ gµν + BJ/ψπ qµ
1 qν

2 . (69)

Mµα
(

Zc(p, ε
µ
p)→ ηc(q1) + ρ(q2, εα

q2
)
)
=

3√
2

gZc gηc gρ

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−~η 2

)
Φ̃ηc

(
− (k1 + v1q1)

2
)

Φ̃ρ

(
− (k2 + u4q2)

2
)

×
{

tr (γ5S1(k1)γ5S2(k1 + q1)γ
µS4(k2)γ

αS3(k2 + q2)) + (γ5 ↔ γµ)
}

= Aηcρ gµα − Bηcρ qµ
2 qα

1 , (70)

Mµν
(

Zc(p, ε
µ
p)→ D̄0(q1) + D∗+(q2, εν

q2
)
)
=

9√
2

gZc gDgD∗

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−~δ 2

)
Φ̃D

(
− (k2 + v4q1)

2
)

Φ̃D∗
(
− (k1 + u1q2)

2
)

× tr (γµS1(k1)γ
νS3(k1 + q2)) · tr (γ5S4(k2)γ5S2(k2 + q1))

= AD̄D∗ gµν − BD̄D∗ qµ
2 qν

1 , (71)
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Mµα
(

Zc(p, ε
µ
p)→ D̄∗ 0(q1, εα

q1
) + D+(q2)

)
=

9√
2

gZc gD∗gD

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−~δ 2

)
Φ̃D∗

(
− (k1 + v̂1q1)

2
)

Φ̃D

(
− (k2 + û4q2)

2
)

× tr (γ5S1(k1)γ5S3(k1 + q2)) · tr (γµS4(k2)γ
αS2(k2 + q1))

= AD∗D gµα + BD∗D qµ
1 qα

2 , (72)

where the argument of the function Φ̃Zc is given by:

δ1 = − 1
2
√

2
(k1 + k2 + (1 + w1 − w2)q1 + (w1 − w2)q2)) ,

δ2 = + 1
2
√

2
(k1 + k2 − (w3 − w4)q1 + (1− w3 + w4)q2) ,

δ3 = + 1
2 (−k1 + k2 + (1− w1 − w2)q1 − (w1 + w2)q2)) , ~δ 2 = δ2

1 + δ2
2 + δ2

3 . (73)

The meaning of all other letters and symbols is the same as was in the previous paragraph dedicated to
the tetraquark description. The decay widths are also evaluated in a fully analogous way. However, the
parameter ΛZc needs to be adjusted independently. Tuning its value in such a way so as to provide
the best description of the BESIII measurement [27], one gets ΛZc = 3.3± 1.1 GeV with the following
values for the decay widths:

Γ(Z+
c → J/ψ + π+) = (1.8± 0.3)MeV , Γ(Z+

c → D̄0 + D∗+) = (10.0+1.7
−1.4)MeV ,

Γ(Z+
c → ηc + ρ+) = (3.2+0.5

−0.4)MeV , Γ(Z+
c → D̄∗ 0 + D+) = (9.0+1.6

−1.3)MeV. (74)

One can see that the obtained results at this time are in agreement with the experimental observations
by showing an enhancement of the DD∗ sector and are in agreement with the observed branching
fraction ratio in Equation (55) within the errors. One can conclude that the CCQM supports the
molecular picture of the Zc(3900) state.

6. The Nature of Y(4260)

The distinctive characteristics of the Y(4260) are its mass, which does not fit any charmonium in
the same mass region, the suppression of open charm decays with respect to the J/ψπ+π− final state,
and the appearance of the exotic charmonium Zc(3900) among its decay products. This interesting
mix of properties is addressed in quite a few theoretical works, and like in other cases, the molecular,
tetraquark, and several other explanations are invoked.

A support for the molecular picture was provided by the QCD lattice computations in [185],
by QCD sum rules in [186], by a meson exchange model in [187], and also by the authors of [188], which
favored it over the hadro-charmonium interpretation. Further arguments for Y(4260) being a molecule
were based on the line shape study in [189], and the authors of [190] proposed an unconventional state
with a large, but not completely dominant molecular component. An interesting paper [191] came up
with a baryonic molecule concept, and the molecular hypothesis was also analyzed in [192–195].

On the contrary, the molecular scenario is strongly disfavored in [196] because of reasons
related to the heavy quark spin symmetry and the molecular scenario was rejected in [197] in
favor of a charmonium hybrid one. Here, the crux of the argument lies in an important separation
between Y(4260) mass and its decay threshold. Further arguments to support the charmonium or
hybrid-charmonium picture were given in the publications [198–200].

One should also mention different quark models [201–204] with some of them favoring the
tetraquark description of Y(4260). The tetraquark hypothesis was also analyzed in the QCD sum rules
study [205], and the coupled channels approach combined with the three-particle Faddeev equations
was used to describe Y(4260) in [206].
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The analysis of Y(4260) is within the CCQM [207] done in a similar way to the Zc case: its decay
modes are analyzed in both the molecular and tetraquark scenario. With quantitative measurements
related to Y(4260) not being very numerous, one can analyze the partial decay widths to J/ψπ+π−

and open charm final states and see whether the latter ones are suppressed. The Feynman diagrams
describing the studied transitions are drawn in Figure 7. The considered open charm final states
include DD̄, DD̄∗, D∗D̄, and D∗D̄∗. As follows from the previous section, Zc(3900) is described as a
molecular state (67).

(a)

Y

D

D̄

Y Zc

π

(b)

Figure 7. Feynman diagrams of the Y(4260) decay to open charm (a) and Zcπ (b).

The molecular-type non-local interpolating current for Y(4260) is written as:

Jµ

Ymol(x) =
∫

dx1 . . .
∫

dx4 δ

(
x−

4

∑
i=1

wixi

)
Φ Y

(
∑
i<j

(xi − xj)
2
)

Jµ

Ymol; 4q(x1, . . . , x4), (75)

Jµ

Ymol; 4q = 1√
2

{
(q̄(x3)γ5c(x1)) · (c̄(x2)γ

µγ5q(x4))− (γ5 ↔ γµγ5)
}

, (q = u, d)

with:
w1 = w2 =

mc

2(mq + mc)
, w3 = w4 =

mq

2(mq + mc)
.

The matrix element corresponding to the open charm production is given by:

M
(

Yu(p, ε
µ
p)→ D0

1(p1) + D̄0
2(p2)

)
=

9√
2

gYgD1 gD2 (76)

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Y

(
−Ω 2

q

)
Φ̃D1

(
− `2

1

)
Φ̃D2

(
− `2

2

)
×

{
tr (γ5Sc(k1)Γ2Su(k3)) tr (γµγ5Su(k2)Γ1Sc(k4))− (γ5 ↔ γµγ5)

}
,

where:

Γ1 ⊗ Γ2 =


γ5 ⊗ γ5 for DD̄
ε∗ν1

γν1 ⊗ γ5 for D∗D̄
ε∗ν1

γν1 ⊗ ε∗ν2
γν2 for D∗D̄∗

(77)

and the momenta are defined as:

Ω2
q =

1
2 ∑

i≤j
qiqj, q1 = −k1 − wY

1 p, q2 = k4 − wY
2 p, q3 = k3 − wY

3 p,

`1 = k2 + wD
u p1, `2 = −k1 − wD

c p2, k3 = k1 + p2, k4 = k2 + p1.
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The decay into Zc + π involves a three-loop diagram, and the corresponding matrix element is:

M
(
Yu(p, εµ)→ Z+

c (p1, εν) + π−
)
=

9
2

gYgZc gπ (78)

×
3

∏
j=1

[ ∫ d4k j

(2π)4i

]
Φ̃Y

(
−Ω 2

q

)
Φ̃Zc

(
−Ω2

r

)
Φ̃π

(
− `2

)
εµ(p)ε∗ν(p1)

× ∑
Γ

tr (Γ1Sc(k1)Γ2Su(k2)) tr (Γ3Su(k3)Γ4Sd(k4)Γ5Sc(k5)) ,

where:

∑
Γ
[Γ1 ⊗ Γ2] · [Γ3 ⊗ Γ4 ⊗ Γ5] = [γ5 ⊗ γ5] · [γµγ5 ⊗ γ5 ⊗ γν]

− [γµγ5 ⊗ γν] · [γ5 ⊗ γ5 ⊗ γ5]− [γµγ5 ⊗ γ5] · [γ5 ⊗ γ5 ⊗ γν]

and the momenta are defined as:

Ω2
q =

1
2 ∑

i≤j
qiqj; q1 = −k1 − wY

1 p, q2 = k5 − wY
2 p, q3 = k2 − wY

3 p,

Ω2
r =

1
2 ∑

i≤j
rirj; r1 = −k5 + wZ

1 p1, r2 = k1 + wZ
2 p1, r3 = k4 − wZ

3 p1,

` = k3 + wπ
u p2, k4 = k3 + p2, k5 = k1 − k2 + k3 + p.

In the tetraquark scenario, the non-local Y(4260) current takes the form:

Jµ

Ytet(x) =
∫

dx1 . . .
∫

dx4 δ

(
x−

4

∑
i=1

wY
i xi

)
Φ Y

(
∑
i<j

(xi − xj)
2
)

Jµ

Ytet; 4q(x1, . . . , x4), (79)

Jµ

Ytet;4 q = 1√
2

εabcεdec

{
(qa(x4)Cγ5cb(x1))(q̄d(x3)γ

µγ5Cc̄e(x2))− (γ5 ↔ γµγ5)
}

. (80)

The matrix element of the decay into DD̄ is expressed as:

M
(

Ytet
u (p, ε

µ
p)→ D0

1(p1) + D̄0
2(p2)

)
=

6√
2

gYgD1 gD2 (81)

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Y

(
−Ω 2

q

)
Φ̃D1

(
− `2

1

)
Φ̃D2

(
− `2

2

)
×

{
tr
(

γ5Sc(k1)ΓD
2 Su(k3)γ

µγ5Sc(k2)ΓD
1 Su(k4)

)
− (γ5 ↔ γµγ5)

}
,

with the momenta:

Ω2
q =

1
2 ∑

i≤j
qiqj; q1 = −k1 − wY

1 p, q2 = −k2 − wY
2 p, q3 = k3 − wY

3 p,

`1 = −k2 − wD
c p1, `2 = −k1 − wD

c p2, k3 = k1 + p2, k4 = k2 + p1.

The matrix element of the decay into Zcπ is given by:

M
(
Ytet

u (p, εµ)→ Z+
c (p1, εν) + π−(p2)

)
= 3 gYgZc gπ (82)

×
3

∏
j=1

[ ∫ d4k j

(2π)4i

]
Φ̃Y

(
−Ω 2

q

)
Φ̃Zc

(
−Ω2

r

)
Φ̃π

(
− `2

)
× εµ(p)ε∗ν(p1)∑

Γ
tr
[
ΓY

1 Sc(k1)ΓZ
2 Su(k2)ΓY

2 Sc(k3)Γ̄Z
1 Sd(k4)γ5Su(k5)

]
,
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with the momenta:

Ω2
q =

1
2 ∑

i≤j
qiqj; q1 = −k1 − wY

1 p, q2 = −k3 − wY
2 p, q3 = k2 − wY

3 p,

Ω2
r =

1
2 ∑

i≤j
rirj; r1 = k3 + wZ

1 p1, r2 = k1 + wZ
2 p1, r3 = −k4 + wZ

3 p1,

` = −k4 − wπ
d p2, k4 = k1 − k2 + k3 + p1, k5 = k1 − k2 + k3 + p.

Here, the summation over Γ is defined by:

∑
Γ

= [γ5 ⊗ γµγ5 − γµγ5 ⊗ γ5]
Y ⊗ [γ5 ⊗ γν − γν ⊗ γ5]

Z .

The considered decays comprise different combinations of pseudoscalar, vector, and axial-vector
particles in the final state. The relevant expressions for the matrix elements and decay widths are
written down:

M(V(p)→ P(p1) + P(p2)) = ε
µ
VqµGVPP , q = p1 − p2,

Γ(V → PP) =
|p1|3

6πm2 G2
VPP,

M(V(p)→ A(p1) + P(p2)) = ε
µ
Vε∗ ν

A
(

gµν A + p1 µ pνB
)

,

Γ(V → AP) =
|p1|

24πm2

{(
3 +
|p1|2

m2
1

)
A2 +

m2

m2
1
|p1|4B2 +

m2 + m2
1 −m2

2
m2

1
|p1|2 AB,

M(V(p)→ V(p1) + P(p2)) = ε
µ
Vε∗ ν1

V εµν1αβ pα pβ
1 GVVP,

Γ(V → VP) =
|p1|3

12π
G2

VVP,

M(V(p)→ V(p1) + V(p2)) = ε
µ
Vε∗ ν1

V ε∗ ν2
V

{
p1 µ p1 ν2 p2 ν1 A + gµν1 p1 ν2 B + gµν2 p2 ν1 C + gν1ν2 p1 µD

}
,

Γ(V → V1V2) =
|p1|3

24πm2
1m2

2

{
m2|p1|4 A2 + [|p1|2 − 3m2

1]B
2 + [|p1|2 + 3m2

2]C
2

+ [|p1|2 + 3
m2

1m2
2

m2 ]D2 + |p1|2[m2 + m2
1 −m2

2]AB + |p1|2[−m2 + m2
1 −m2

2]AC

+ |p1|2[m2 −m2
1 −m2

2]AD + [2|p1|2 −m2 + m2
1 + m2

2]BC + [2|p1|2 + m2
1 +

m2
1

m2 (m
2
2 −m2

1)]BD

+ [−2|p1|2 −m2
2 +

m2
2

m2 (m
2
2 −m2

1)]CD
}

.

The value of ΛZc is set to 3.3 GeV, and guided by our experience, we assume that ΛY(4260) = 3.3± 0.1
GeV. The numerical evaluation leads to the results presented in Table 4.

In both scenarios, the open charm decays are suppressed with respect to the J/ψπ decay channel.
The discrimination between them is provided by the total decay width Γ[Y(4260)] = 55± 19 MeV,
which is in contradiction with the molecular description. Thus, one can conclude that the CCQM
approach favors the tetraquark structure of Y(4260).
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Table 4. Decay widths of the selected Y(4260) transition in MeV.

Mode Molecular-Type Current Tetraquark Current

Y → Z+
c + π− 146± 13 5.77± 0.39

Y → D0 + D̄0 11± 2 (0.42± 0.16) · 10−3

Y → D∗ 0 + D̄0 (0.39± 0.14) · 10−2 0.32± 0.09
Y → D∗ 0 + D̄∗ 0 0 (0.19± 0.08) · 10−3

7. Bottomonium-Like States Zb(10610) and Z′b(10650)

Exotic quarkonia states appear also in the bottomonium sector: Zb(10610) and Z′b(10650) are
two examples. Even though the exotic bottomonia masses tend to be significantly higher than the
charmonia ones, the underlying dynamics is similar, and one finds the molecular, tetraquark, and
other hypotheses in theoretical approaches that describe them.

Zb(10610) and Z′b(10650) were seen as molecules in the boson exchange model of [208], and
the molecular picture was also favored in [209], where the spin structure of these two particles
was analyzed. Further support of the molecular scenario came from the quark model based on a
phenomenological Lagrangian used by the authors of [210] and also from other analyses preformed
in [211] (QCD multipole expansion), [212] (effective field theory), [213] (pion exchange model), [214]
(QCD sum rules, only Z′b(10650) included), [215] (heavy quark spin symmetry and coupled channels
analysis),and [216] (coupled channels approach with pion exchange model). A different set of works
supports, with various intensity, the tetraquark structure of the two bottomonia states. In [217], the
conclusion followed from an effective diquark-antidiquark Hamiltonian combined with meson-loop
induced effects. The authors of [218] based their analysis on the QCD sum rules and interpreted Zb
and Z′b as axial-vector tetraquarks. The two works [219,220] also drew their conclusions from the
QCD sum rules and allowed the tetraquark and molecular scenario. The former work suggested
that Zb and Z′b could have both the diquark-antidiquark and molecular components (following from
a mixed interpolating current). The latter one excluded neither the tetraquark nor molecular the
interpretation of Zb(10610), and the idea of a mixed current appeared also. The mentioned analyses
could be supplemented by numerous other works [221–241] where further ideas and approaches
were exploited.

The theoretical analysis of the Zb(10610) and Z′b(10650) states by the CCQM was performed
in [81]. The work assumed a molecular-type interpolating current, which is favored by most theoretical
approaches when interpreting the experimental results. It is a natural choice reflecting the proximity
of the particle masses to the corresponding thresholds:

m(Z+
b ) = 10607.2± 2.0 MeV, m(B∗ B̄) = 10604 MeV,

m(Z′+b ) = 10652.2± 1.5 MeV, m(B∗ B̄∗) = 10649 MeV.

The quantum numbers of the two states IG(JPC) = 1+(1+−) lead to the choice of (local)
interpolating currents:

Jµ

Z+
b

= 1√
2

[
(d̄γ5b)(b̄γµu) + (d̄γµb)(b̄γ5u)

]
, (83)

Jµν

Z′+b
= εµναβ(d̄γαb)(b̄γβu), (84)

which guarantees that, when considering the transitions into B(∗)B̄(∗), the Zb state can decay only to
the [B̄∗B + c.c.] pair, while the Z′b state can decay only to a B̄∗B∗ pair. Decays into the BB channels are
not allowed.

Further decay channels include a bottomonium particle accompanied with a charged light
meson. Taking into account the G parity, which is conserved in strong interactions and kinematic
considerations, only three possible bottomonium-meson decay channels are available: Z+

b → Υ + π+,
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Z+
b → hb + π+ and Z+

b → ηb + ρ+. All mentioned Z+
b transition can be arranged into three groups

with respect to the spin kinematics:

1+ → 1− + 0− : Z+
b → Υ + π+, Z+

b → [B̄∗ 0B+ + c.c.], Z+
b → ηb + ρ+ ,

1+ → 1+ + 0− : Z+
b → hb + π+ ,

1+ → 1− + 1− : Z+
b → B̄∗ 0B∗+ .

The classification of the bottomonia particles based on their quantum numbers is shown in Table 5.

Table 5. The bottomonium states 2S+1L J . We use the notation
↔
∂=
→
∂ −

←
∂ .

Quantum Number IG(JPC) Name Quark Current Mass (MeV)

0+(0−+) (S = 0, L = 0) 1S0 = ηb(1S) b̄ iγ5 b 9399.00± 2.30
0−(1−−) (S = 1, L = 0) 3S1 = Υ b̄ γµ b 9460.30± 0.26
0+(0++) (S = 1, L = 1) 3P0 = χb0 b̄ b 9859.44± 0.52
0+(1++) (S = 1, L = 1) 3P1 = χb1 b̄ γµγ5 b 9892.72± 0.40

0−(1+−) (S = 0, L = 1) 1P1 = hb(1P) b̄
↔
∂

µ
γ5 b 9899.30± 0.80

The expressions for matrix elements and decay widths depend on the spin structure and are for
the three cases as follows.

• For 1+ → 1− + 0− transitions, the matrix element can be parameterized with two
Lorentz structures:

〈1−(q1; δ), 0−(q2)| T |1+(p; µ)〉 = (A gµδ + B qµ
1 qδ

2) εµ ε∗1δ. (85)

The invariant amplitudes A and B can be combined into the helicity amplitudes:

H00 = − E1

M1
A− M

M1
|q1|2 B , H+1+1 = H−1−1 = − A,

which are practical to express the decay width. For the derivation of the latter, it is useful to work in
the rest frame of the initial particle, where |q1| = λ1/2(M2, M2

1, M2
2)/2M is the three-momentum

and E1 = (M2 + M2
1 − M2

2)/2M is the energy of the final state vector. Furthermore, the
on-mass-shell character of the initial and final state particles is taken into account by p2 = M2,
q2

1 = M2
1, q2

2 = M2
2, and pµεµ = 0. One arrives at:

Γ =
|q1|

24πM2

{
|H+1+1|2 + |H−1−1|2 + |H00|2

}
. (86)

• The matrix element for the 1+ → 1+ + 0− transitions is expressed through one covariant term
only:

〈1+(q1; δ), 0−(q2)| T |1+(p; µ)〉 = C q1αq2β
εαβµδ εµ ε∗1δ . (87)

The decay with the formula can be written as:

Γ =
|q1|3

12πM2 C2 , (88)

where one can note the p-wave suppression factor |q1|3.
• As shown in [81], the matrix element for 1+ → 1− + 1− decay can be parameterized using

three amplitudes:

〈1−(q1; δ), 1−(q2; ρ)| T |1+(p; µ)〉 =
(

B1 εq1q2ρδ qµ
1 + B2 εq1µρδ + B3 εq2µρδ

)
εµεδερ . (89)
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The relation between the helicity amplitudes Hλ;λ1λ2 (λ = λ1 − λ2) and the invariant amplitudes
can be shown to be:

H 0;+1+1 = −H0;−1−1 = − E1 A1 − E2 A2 −M|q1|2 A5 ,

H+1;+1 0 = −H−1;−1 0 =
(E1M−M2

1)

M2
A1 + M2 A2 −

M2

M2
|q1|2 A4 ,

H−1; 0+1 = −H+1; 0−1 = M1 A1 +
(E1M−M2

1)

M1
A2 −

M2

M1
|q1|2 A3 . (90)

The rate of the decay 1+(p)→ 1−(q1) + 1−(q2), finally, reads:

Γ =
|q1|

24πM2 · 2
{
|H 0;+1+1|2 + |H+1;+1 |2 + |H−1; 0+1 |2

}
. (91)

Coming back to the CCQM description, one can write the non-local versions of Equations (83) and (84)
as follows:

Jµ

Z+
b
(x) =

∫
dx1 . . .

∫
dx4 δ

(
x−

4

∑
i=1

wixi

)
ΦZb ; Zb ; Zb

(
∑
i<j

(xi − xj)
2
)

Jµ
4q(x1, . . . , x4), (92)

Jµ
Zb ; 4q = 1√

2

{
(d̄(x3)γ5b(x1))(b̄(x2)γ

µu(x4)) + (d̄(x3)γ
µb(x1))(b̄(x2)γ5u(x4))

}
,

Jµν

Z′+b
(x) =

∫
dx1 . . .

∫
dx4 δ

(
x−

4

∑
i=1

wixi

)
ΦZb

(
∑
i<j

(xi − xj)
2
)

Jµν

Z′b ; 4q(x1, . . . , x4), (93)

Jµν

Z′b ; 4q = εµναβ (d̄(x3)γαb(x1))(b̄(x2)γβu(x4)),

The interaction Lagrangian is constructed in the usual way for Zb; in the case of Z′b, the stress
tensor of the field is introduced Z′b, µν = ∂µZ′b, ν − ∂νZ′b, µ:

Lint,Zb = gZb Zb, µ(x) · Jµ
Zb
(x) + H.c. , (94)

Lint,Z′b
=

gZ′b
2MZ′b

Z′b, µν(x) · Jµν

Z′b
(x) + H.c.. (95)

The factor 2MZ′b
is put into the denominator in order to preserve the same physical dimensions of

the gZb and gZ′b
couplings. The link between these couplings and the size parameters is done via the

compositeness condition, which is based on the evaluation of hadronic mass operators. The latter are
written in the momentum space as:

Π̃µν
Zb
(p) =

9
2

3

∏
i=1

∫ d4ki

(2π)4i
Φ̃2

Zb

(
− ~ω 2

)
(96)

×
{

tr
[
γ5S1(k̂1)γ5S3(k̂3)

]
tr
[
γµS4(k̂4)γ

νS2(k̂2)
]

+tr
[
γµS1(k̂1)γ

νS3(k̂3)
]

tr
[
γ5S4(k̂4)γ5S2(k̂2)

] }
,

Π̃µν

Z′b
(p) = − 9

εµpαβ ενpρσ

M2
Z′b

3

∏
i=1

∫ d4ki

(2π)4i
Φ̃2

Z′b

(
− ~ω 2

)
(97)

× tr
[
γρS1(k̂1)γαS3(k̂3)

]
tr
[
γβS4(k̂4)γσS2(k̂2)

]
,
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where ~ω 2 = 1/2 (k2
1 + k2

2 + k2
3 + k1k2 − k1k3 − k2k3) and:

k̂1 = k1 − w1 p , k̂2 = k2 − w2 p , k̂3 = k3 + w3 p,

k̂4 = k1 + k2 − k3 + w4 p , εµpαβ = pν εµναβ .

A list of matrix elements for different decay reactions as predicted by the CCQM is given in what
follows. For each element, we provide, in the last line of the corresponding expression, the form
factor parametrization of the matrix element to be compared with the appropriate expression from
Equations (85), (87), and (89). Beforehand, let us also define the argument of Φ̃Zb(~η

2). One has:

~η 2 =
3

∑
i=1

η2
i η1 = + 1

2
√

2
(2k1 + (1 + w1 − w2)q1 + (w1 − w2)q2) ,

η2 = +
1

2
√

2
(2k2 − (w3 − w4)q1 + (1− w3 + w4)q2) ,

η3 = +
1
2
((1− w1 − w2)q1 − (w1 + w2)q2) ,

where wi denotes four body reduced masses wi = mi/
4
∑

j=1
mj and quarks are indexed as q1 = q2 = b,

q3 = q4 = d = u.

• 1+ → 1− + 0− matrix elements parametrized as in Equation (85):

Mµδ
(
Zb(p, µ)→ Υ(q1, δ) + π+(q2)

)
=

3√
2

gZb gΥgπ (98)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zb

(
−~η 2

)
Φ̃Υ

(
− (k1 + v1q1)

2
)

Φ̃π

(
− (k2 + u4q2)

2
)

×
{

tr
[
γ5S1(k1)γ

δS2(k1 + q1)γ
µS4(k2)γ5S3(k2 + q2)

]
+ tr

[
γµS1(k1)γ

δS2(k1 + q1)γ5S4(k2)γ5S3(k2 + q2)
] }

= AZbΥπ gµδ + BZbΥπ qµ
1 qδ

2 ,

Mµδ
(
Z′b(p, µ)→ Υ(q1, δ) + π+(q2)

)
= 3 gZ′b

gΥgπ
iεµpαβ

MZ′b

(99)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Z′b

(
−~η 2

)
Φ̃Υ

(
− (k1 + v1q1)

2
)

Φ̃π

(
− (k2 + u4q2)

2
)

× tr
[
γαS1(k1)γ

δS2(k1 + q1)γβS4(k2)γ5S3(k2 + q2)
]

= AZ′bΥπ gµδ + BZ′bΥπ qµ
1 qδ

2 ,
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Mµρ (Zb(p, µ)→ ηb(q1) + ρ(q2, ρ)) =
3√
2

gZb gηb gρ (100)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zb

(
−~η 2

)
Φ̃ηb

(
− (k1 + v1q1)

2
)

Φ̃ρ

(
− (k2 + u4q2)

2
)

×
{

tr [γ5S1(k1)γ5S2(k1 + q1)γ
µS4(k2)γ

ρS3(k2 + q2)]

+ tr [γµS1(k1)γ5S2(k1 + q1)γ5S4(k2)γ
ρS3(k2 + q2)]

}
= AZbηbρ gµρ − BZbηbρ qµ

2 qρ
1 ,

Mµρ
(
Z′b(p, µ)→ ηb(q1) + ρ(q2, ρ)

)
= 3 gZ′b

gηb gρ
iεµpαβ

MZ′b

(101)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Z′b

(
−~η 2

)
Φ̃ηb

(
− (k1 + v1q1)

2
)

Φ̃ρ

(
− (k2 + u4q2)

2
)

× tr
[
γαS1(k1)γ5S2(k1 + q1)γβS4(k2)γ

ρS3(k2 + q2)
]

= AZ′bηbρ gµρ − BZ′bηbρ qµ
2 qρ

1 .

• 1+ → 1+ + 0− matrix elements parametrized as in Equation (87):

Mµδ
(
Z+

b (p, µ)→ hb(q1, δ) + π+(q2)
)
=

3√
2

gZb ghb
gπ (102)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zb

(
−~η 2

)
Φ̃hb

(
− (k1 + v1q1)

2
)

Φ̃π

(
− (k2 + u4q2)

2
)

×
{

tr
[
γ5S1(k1)γ5 · (2kδ

1)S2(k1 + q1)γ
µS4(k2)γ5S3(k2 + q2)

]
+tr

[
γµS1(k1)γ5 · (2kδ

1)S2(k1 + q1)γ5S4(k2)γ5S3(k2 + q2)
] }

= εµδq1q2 AZbhbπ ,

Mµδ
(
Z′b(p, µ)→ hb(q1, δ) + π+(q2)

)
= 3 gZ′b

ghb
gπ

iεµpαβ

MZ′b

(103)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Z′b

(
−~η 2

)
Φ̃hb

(
− (k1 + v1q1)

2
)

Φ̃π

(
− (k2 + u4q2)

2
)

× tr
[
γαS1(k1)γ5 · (2kδ

1)S2(k1 + q1)γβS4(k2)γ5S3(k2 + q2)
]

= εµδq1q2 AZ′bhbπ .

The matrix elements describing decays to a pair of B mesons can be also listed within two groups
depending on the quantum numbers. The argument of the Zb-vertex function ~δ2 is defined as:

~δ 2 =
3

∑
i=1

δ2
i ; δ1 = − 1

2
√

2
(k1 + k2 + (w1 − w2)q1 + (1 + w1 − w2)q2)) ,

δ2 = + 1
2
√

2
(k1 + k2 + (1− w3 + w4)q1 − (w3 − w4)q2) ,

δ3 = +
1
2
(k1 − k2 + (w1 + w2)q1 − (1− w1 − w2)q2)) . (104)
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The quark indices are similar to the previous case q1 = q2 = b, q3 = q4 = d = u, v̂2 = m2/(m2 + m4),
v̂4 = m4/(m2 + m4), û1 = m1/(m1 + m3), and û3 = m3/(m1 + m3).

• 1+ → 1− + 0− matrix elements parametrized as in Equation (85):

Mµρ
(

Z+
b (p, µ)→ B̄0(q1) + B∗+(q2, ρ)

)
=

9√
2

gZb gBgB∗ (105)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zb

(
−~δ 2

)
Φ̃B

(
− (k2 + v4q1)

2
)

Φ̃B∗
(
− (k1 + u1q2)

2
)

× tr [γµS1(k1)γ
ρS3(k1 + q2)] tr [γ5S4(k2)γ5S2(k2 + q1)]

= AZb B̄B∗ gµρ − BZb B̄B∗ qµ
2 qρ

1 ,

Mµα
(

Z+
b (p, µ)→ B̄∗ 0(q1, δ) + B+(q2)

)
=

9√
2

gZb gB∗gB (106)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zb

(
−~δ 2

)
Φ̃B∗

(
− (k1 + v̂1q1)

2
)

Φ̃B

(
− (k2 + û4q2)

2
)

× tr [γ5S1(k1)γ5S3(k1 + q2)] tr
[
γµS4(k2)γ

δS2(k2 + q1)
]

= AZbB∗B gµδ + BZbB∗B qµ
1 qδ

2 .

• 1+ → 1− + 1− matrix elements parametrized as in Equation (89):

Mµδρ(Z′+b (p, µ)→ B∗0(q1, δ) + B̄∗+(q2, ρ)) = 9 gZ′b
gB∗gB∗

εµpαδ

MZ′b

(107)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Z′b

(
−~δ 2

)
Φ̃B∗

(
− (k1 + v̂1q1)

2
)

Φ̃B∗
(
− (k2 + û4q2)

2
)

× tr
[
γαS1(k1)γ

δS3(k1 + q1)
]

tr
[
γβS4(k2)γ

ρS2(k2 + q2)
]

= B1qµ
1 εq1q2ρδ + B2εq1µρδ + B3εq2µρδ .

With all the above theoretical expressions, one can proceed to the numerical evaluation of the decay
widths. The first step is the adjustment of the size parameters ΛZ and Λ′Z. They are tuned so as to
respect the observables measured by the Belle collaboration [35]:

ΓZb(BB∗π) = (25± 7)MeV , B(Z+
b → [B+B̄∗ 0 + B̄0B∗+]) = 85.6+1.5+1.5

−2.0−2.1 % ,

ΓZ′b
(B∗B∗π) = (23± 8)MeV , B(Z′+b → B̄∗+B∗ 0) = 73.7+3.4+2.7

−4.4−3.5 % , (108)

leading to:
ΛZb = 3.45± 0.05 GeV ΛZ′b

= 3.00± 0.05 GeV . (109)

With the decays into B pairs dominating all other decay channels, we approximate the total decay
width as the sum of all herein evaluated channels. The CCQM gives:

ΓZb = 30.9+2.3
−2.1 MeV , ΓZ′b

= 34.1+2.8
−2.5 MeV , (110)

which is in fair agreement with (108). The predicted partial decay widths of Zb(10610) and Z′b(10650)
particles are summarized in Table 6.
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Table 6. Particle decay widths for the Z+
b (10610) and Z+

b (10650).

Channel Widths, MeV
Zb(10610) Zb(10650)

Υ(1S)π+ 5.9± 0.4 9.5+0.7
−0.6

hb(1P)π+ (0.14± 0.01) · 10−1 0.74+0.05
−0.04 · 10−3

ηbρ+ 4.4± 0.3 7.5+0.6
−0.5

B+ B̄∗0 + B̄0B∗+ 20.7+1.6
−1.5 −

B∗+ B̄∗0 − 17.1+1.5
−1.4

The Zb and Z′b decays are dominated [13] by ΓZb(B
+B∗0+B∗+B0

) = (85.6+2.1
−2.9)% and

ΓZ′b
(B∗+B∗0) = (74+4

−6)%, respectively, meaning that the bottomonia modes should not exceed 15
and 25 percent. This is observed for the hb(1P)π+ final state; the other bottomonia channels are
suppressed, but not so much as seen in the data:

Γ (Zb → Υ(1S)π)

Γ (Zb → BB̄∗ + c.c.)
≈ 0.29 ,

Γ (Zb → ηbρ)

Γ (Zb → BB̄∗ + c.c.)
≈ 0.21 ,

Γ
(
Z′b → Υ(1S)π

)
Γ
(
Z′b → B∗ B̄∗

) ≈ 0.56 ,
Γ
(
Z′b → ηbρ

)
Γ
(
Z′b → B∗ B̄∗

) ≈ 0.44 .

The model also allows us to make predictions:

RΥ(1S)π =
Γ(Zb → Υ(1S)π)

Γ(Z′b → Υ(1S)π)
= 0.62± 0.06 , Rηbρ =

Γ(Zb → ηbρ)

Γ(Z′b → ηbρ)
= 0.59± 0.06 . (111)

One can conclude that the CCQM provides, within a molecular picture, a fair description
of Zb(10610)/Z′b(10650) states and related decay observables and catches the tendencies seen in
experimental data. Some deviations are observed when the fraction of bottomonium in final states
is considered.

8. Summary and Conclusions

The confined covariant quark model is an approach based on a non-local interaction Lagrangian
of quarks and hadrons. It has many appealing features: a full Lorentz invariance, confinement, large
applicability range (from mesons to exotic hadrons), inclusion of the electromagnetic interaction, and a
limited number of free parameters. As a practical tool, it allows overcoming the difficulties related
to the non-applicability of the perturbative approach for bound states in QCD. In this text, we used
it to describe four quark exotic states X(3872), Zc(3900), Y(4260), Zb(10610), and Z′b(10650). We
demonstrated that the CCQM had enough predictive power to make the distinctions between various
hypothesis, with respect to the exotic quarkonia mostly related to their structure (molecular versus
tetraquark one). At the same time, the model provides a good description of experimental data without
large deviations and predictions for future measurements. Concerning the structure of the studied
particles, the molecular picture is favored for Zc(3900), Zb(10610), and Z′b(10650) and the tetraquark
one for X(3872) and Y(4260). These conclusions follow from the measured decay characteristics of the
considered exotic states and the related model description: with the expected increase in the number
and quality of experimental data, one may hope the quarkonia-structure puzzle will be solved in the
years to come.
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