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1 . FINITE-ENERGY SUM RULE BOOTSTRAPS 

A very exciting "new bootstrap" scheme is pro

vided by the finite-energy sum rules (FESR), which 

have already shown their utility in another session 

of this Conference, where they were used to deter

mine parameters for high-energy Regge-pole fits from 

low-energy data. This type of work was pioneered 

by Igi1) in 1962, but the current wave of activity 

came about through an unusually tortuous route. 

Motivated by current algebra (which turned out to be 

irrelevant) de Alfaro, Fubini, Furlan and Rossetti2) 

formulated superconvergence relations. They observed 

that if an amplitude A(v,t), where v = (s-u)/4, satis

fies a dispersion relation 

OO 

I f , Im A v', T) , , 
- dv* ^ 1 = A v,T (1) 
ir J v -v 

— OO 

and if, moreover, A(v,t) falls off faster than 1/v 

as v -* 00, then it must be true that 

OO 

j dv Im A(v,t] = 0 (2) 

This is a superconvergence relation. At the time of 

the Berkeley Conference two years ago, attempts were 

being made to extract dynamics from superconvergence 

relations by saturating the integrals with resonance 

contributions. Some success was achieved, but the 

results were uneven. 

The improvement over superconvergence relations 

which made possible the work I am going to describe 

was made independently by several groups 3" 6). They 

followed Igi's technique of subtracting from A(v,t) 

a function R(v,t) which is asymptotically equal to 

A(v,t), and which is usually taken to be a sum of 

Regge-pole terms. By including enough Regge poles 

in R it is then possible to write a superconvergence 

relation for any scattering amplitude of the form 

J dv Im [A(v,t] - R(v,t)] = 0 . (3) 

If one then divides the region of integration into 

the parts v < N and v > N such that the amplitude is 

well-represented by its Regge expansion for v > N, 

one obtains the famous FESR: 
N r Ï 

o r 

Here we have taken the high-energy form to be 

Im A(v,t) ~ £ 6 R ( T K R W , ( 5 ) 

r 

although in principle branch points as well as poles 

can be included. We have also generalized the sum 
th 

rule by taking the n moment and by using a crossing-

symmetric amplitude. 

Now a bootstrap equation results if the left-

hand side of Eq. (4) can be saturated by resonance 

contributions, and if the same resonances give rise 

to the Regge terms on the right-hand side. Although 

the pioneering works already cited contain the sug

gestion of bootstrap possibilities, the first elabo

rating of these possibilities was made by Mandelstam7), 

followed closely by several authors 8" 1 0). An exam

ple, which we shall consider in detail in a moment, 

is the reaction ÏÏÏÏ + ÏÏOJ, where a reasonable hypothe

sis is to saturate both sides by the p contribution. 

A delicate point arises here: where should one 

choose the cut-off N? If it is very large, then the 

Regge-pole approximation should be valid and the use 

of the FESR would provoke no controversy. But like 
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most ideas that provoke no controversy, it would not 

be very interesting. Saturation of the integral by 

a small number of resonances would not be likely to 

produce a reasonable approximation. Therefore the 

cut-off is usually chosen quite low — 1 to 2 GeV. 

Such a low cut-off means that we are using the 

Regge representation in an energy region where no 

one would have had the temerity to apply it a few 

years ago. In fact, it means using the Regge repre

sentation in a region where there are still reso

nances. Now our FESR [Eq. (4)] tells us that in fact 

the extrapolated high-energy fit should indeed re

produce the average behaviour of the amplitude in 

the resonance region, where the average is taken from 

threshold to N. Dolen, Horn and Schmid3) verified 

this phenomenon in pion-nucleon scattering, but went 

on to make the more striking hypothesis now known as 

the Dolen-Horn-Schmid duality: the Regge-pole fit 

to the high-energy data is equal to a local average 

of the scattering amplitude in the low-energy region. 

The term "local average" is intentionally vague, but 

qualitatively it means that the resonating low-energy 

amplitude oscillates about the tail of the Regge 

term, as in the example shown in Fig. 1. 

We have heard in other sessions about the reper

cussions of this idea on data fitting in the inter

mediate energy region and even on the concept of a 

F i g . 1 Comparison of extrapolated Regge pole fit to high-
energy region with actual low-energy amplitude for forward 
pion-nucleon scattering [from C. Chiu and A. Stirling, Phys. 
Letters 26B, 236 (1968)]. 

resonance. If it is true that a whole sequence of 

s-channel resonances can be approximately described 

by a t-channel Regge pole, an exciting advance has 

been made in our understanding of the S-matrix. 

It is most important to find out to what extent 

the duality is true. I am unable to present you a 

careful compilation of evidence made by an objective, 

dispassionate investigator, because I have not yet 

located the said investigator. The evidence I have 

seen looks encouraging, but I stress the importance 

of establishing the limits of validity of the dual

ity hypothesis. 

Why do we expect the duality on theoretical 

grounds? Schmid argues that the validity of a set 

of several higher-moment FESR1 s [Eq. (4)] requires 

some sort of local average equality. But the fact 

that the FESR is only an approximate equality makes 

this argument difficult to quantify. 

Now let us get back to our subject of bootstrap 

dynamics by looking in some detail at the ÏÏTT m 

system, which Ademollo, Rubinstein, Veneziano and 

Virasoro11) have analysed so successfully. This 

reaction is a particularly felicitous choice because 

it is described by a single invariant amplitude A, 

symmetric in s, t, and u. The only possible reso

nances have I = 1, G = +, normal parity, and odd J. 

Among reasonably well-known particles there are only 

the p and the G(1650), which is probably 3", and 

lies on the p trajectory. So we assume, for the 

moment, a single Regge pole on the right-hand side 

of the FESR, which takes the form 

where Vi is the usual arbitrary scale factor, and 

v = (s-u)/4. The authors take 

in agreement with usual Reggeization procedure, but 

then make the arbitrary simplifying assumption that 

6(t) is a constant. Moreover, the p trajectory is 

assumed linear, a(t) = a 0 + a
ft. The left-hand side 

is assumed to be saturated by the p (at this stage 

N is chosen to be below the G mass), whose contribu-
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tion is calculated in the narrow-width approximation. 
It turns out, reassuringly, that the optimum choice 
for N is half-way between the last resonance included, 
the p, and the first one left out, the G. This turns 
out to be quite general, but I will not go into de
tail. Then evaluation of Eq. (6) yields 

O t - 1 

The left-hand side has a zero at t = m 2 - 2m2 + 3m2 = 
0) P IT 

= - 0 . 5 3 GeV2, which implies a zero of a at this point, 
in good agreement with the value deteraiined from the 
dip in TTN charge exchange scattering! Imposing this 
condition on a reduces Eq. (8) to the form 

This equation is well satisfied for a wide range of 
t with the choice 

With this choice the two sides of Eq. (8) agree, as 
shown in Fig. 2. 

Now ARW go on to check the stability of the 
bootstrap scheme under displacement of the cut-off 
N. They find that if one more resonance is included 
in the integral, the G, then the dip prediction is 
stable, and the equation is satisfied for an even 
wider range of t (Fig. 3 ). But then when they re
peated this process to include still more resonances, 

Fig . 2 Comparison of left- and right-hand sides of Eq. ( 8 ) 
(from Ref. 1 1 ) . 

Fig. 3 Saturation of the same sum rule as in Fig. 2 with the 
p and its first Regge recurrence ( 3 ). In the upper left side 
the most important region is shown in larger scale (from Ref. 
1 1 ) . 

they found the resonance side becoming smaller and 
smaller with respect to the Regge side. They could 
not achieve a bootstrap model in which one trajec
tory sustains itself. 

The resolution of this dilemma was suggested by 
the Schmid12) partial-wave projection of the Regge 
exchange. Every partial wave continues to circle as 
the energy increases, suggesting further resonances. 
Moreover, the masses of these resonances are such 
that they lie on parallel daughter trajectories with 
AJ = 2 spacing. These daughters were then included 
in their bootstrap by ARW, and good results were ob
tained only if the daughter trajectories were taken 
parallel to the parent. If r resonances are included, 
the dip remains stable and the bootstrap condition 
takes the form 

This is a very amusing function, as you will see from 
Fig. 4, where $ is shown. Furthermore, it has the 
property 

$ r(a) ^ 1 for a fixed , (14) 
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Fig. 4 The function $ 3 (from Ref. 11). 

so a consistent bootstrap can be achieved as the cut

off is made large. 

After all this work was done, Veneziano13) inven

ted a simple formula which summarizes almost all of 

it, and which answers many questions which sceptics 

of the duality question have been asking. He under

took to write down a representation of a scattering 

amplitude which has Regge asymptotic behaviour in 

all channels, and resonances in all channels. For 

ÏÏTT TTU) his representation is 

r[2 -a(s)-a(t)] 

(15) 

Look at the first term. The s-channel resonances, 

which have zero width, are given by the poles of 

T(l-as). The r function in the denominator is just 

right to make the residues of these poles polynomials 

in t. The polynomials are not Legendre polynomials, 

so daughters appear, but with unit spacing AJ = 1. 

To avoid these odd daughters Veneziano imposes the 

condition 

Assuming again a linear trajectory with ot(MP = 1, 

one finds that Eq. (16) is just the dip condition 

again, that a(m2 - 2m2 + 3m2) 

From the relation 

r(z+a] 

the asymptotic behaviour of the first term in Eq. (15) 

can be found to be 

Since a(s) = a 0 + a's this is Regge behaviour 
a -i 

( v / v i )
 r , with the scale factor vi = l/2a! just as 

A R W 1 1 ) found. Moreover, the residue contains the 

required factor l/rfa^) and no further t-dependence. 

Of course, the zero-width approximation is a 

shortcoming of the Veneziano representation. In 

fact, the asymptotic formulae I have used are not 

valid for s + «> along the line of poles, and Regge 

behaviour holds asymptotically only for arg s f 0. 

In order to obtain Regge behaviour on the real axis, 

the poles must be displaced; for example, by giving 

a(s) an imaginary part. If Im a + 0 0 one finds that 

Regge behaviour is approached after low-energy os

cillations, similar to those in Fig. 1. Such modi

fication of the Veneziano representation requires 

further study, however. 

As a second example, Veneziano13) applies his 

representation to the reaction TJTI -> TIP, where it 

yields the result aT(0) = aI (0), as well as the re-

P A 2 

markable mass relation (implicit in Ref. 13) 

Using the right-hand side to predict the mass of the 

A 2, one finds m A = 1340 MeV, versus 1315 experimen-

A2 

tally. 

I have concentrated on a single FESR bootstrap 

calculation in the hope of making the method clear 

to you, at the expense of being manifestly unfair to 

the work of other authors 1 4" 2 1 1). I have only enough 

time left to sketch the direction in which other work 

is going. One extension is to drop some of the sim

plifying assumptions, such as zero width, linear tra

jectories, etc The paper by Chu, Epstein, Kaus, 

Slansky and Zachariasen14) does this by using a modi

fied Cheng-Sharp representation for the trajectory, 

which leads to a bootstrap scheme which they solve 

numerically. One qualitative conclusion is that the 

straight-line approximation is remarkably good. 

Another extension of the FESR bootstrap is to 

include more channels, usually with some degeneracy 

or symmetry assumption. One then obtains coupling 
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constant relations of the form 

gi=*Z Cijgj> (20) 
3 

where $ is the function defined in Eq. (13), or some 
similar function, and where is a crossing matrix. 
Assuming the consistency of the bootstrap, that 
$ ̂  1, one is left with coupling constant relations 
of the type studied by Capps, Cutkosky, and others 
several years ago, and pursued further by Mandelstam15) 
in a paper presented here. All the FESR bootstrap 
has done in this connection is to present a cleaner 
derivation of the relations, in the context of a 
scheme which seems to be making quantitatively accu
rate predictions. 

The multichannel FESR bootstrap goes on to give 
mass relations, such as the ones obtained by ARW 
and other Weizmann Institute collaborators16'17), 

(21) 

m B = m A 2 - m ¥ , 

and others. They are well satisfied (~ 10%). 
To summarize, the FESR bootstrap is a tremendous 

advance over older schemes, both in the palatability 
of its approximations and in its predictive power. 
Its claims are still, however, relatively modest. 
There is no prospect of its leading to a complete 
dynamical theory. 
2. MULTIPERIPHERAL BOOTSTRAP 

Another new bootstrap scheme has been presented 
to this Conference; in fact, so new that no written 
report of it exists at this time. I hope you will 
forgive the inaccuracies in my reporting of it. 

Chew and Pignotti have submitted to this Confer
ence a paper entitled "A Multiperipheral Bootstrap 
Model"25). Subsequent to the writing of that paper, 
the collaboration of Goldberger and Low has refined 
the mathematics into the scheme which Chew described 
in the parallel session. It is based on approximat
ing production amplitudes by multi-Regge exchange 
diagrams, such as the one shown in Fig. 5. The ampli
tude for such a diagram is of the fonn 

Fig. 5 Multi-Regge exchange graph. Double lines indicate 
Regge poles. 

where s^ are the sub-energies, as shown in the fig
ure, and the 3's are form factors at the vertices. 
I will not attempt to trace the tortuous history of 
the model, but only give a few recent references 
from which this history can be traced 2 5" 2 8). The 
comparison of this model with production data has 
been discussed extensively in a previous session by 
Dr. Czyzewski. The results are very encouraging. 

An important assumption made by Chew and 
Pignotti28) is the validity of the Dolen-Horn-Schmid 
duality, which justifies ignoring explicit resonance 
production diagrams. That is, in Fig. 5 only stable 
particles are included as outgoing lines. (In fact, 
Chew and Pignotti simplify by considering only pions 
as the dotted lines.) The resonances are supposed 
to be taken care of approximately by the Regge-pole 
exchanges, as we have already discussed in connec
tion with FESR bootstraps. Without this assumption 
it would be very difficult to avoid double counting; 
for example, by including both two-pion production 
and p production. 

Now the contribution of M^ to the total cross-
section is given by A , where 

and where /d$ n indicates n-body phase space. The 
quantity A can be represented graphically as in 
Fig. 6 J . The total cross-section is then given by 
ORP °= A = £ A . T n n 

*) Interference terms (crossed rungs) are provisionally 
neglected because, in so far as the B's favour small t, 
they contribute in different regions of phase space and 
are negligible. This argument is weakened by the small 
values of the sub-energies involved. 
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Fig . 6 Multi-Regge exchange contribution to absorptive part. Fig. 7 Inhomogeneous term in the integral equation for B. 

The familiar ladder graph in Fig. 6 reminds one 
of the work of Amati, Stanghellini and Fubini, and 
Bertocchi and Tonin29) in which such graphs are sum
med by means of a Bethe-Salpeter type integral equa
tion. Such a technique cannot immediately be applied 
here, however, because of the Regge factors s^ai^i \ 
So the following trick is employed: a new amplitude 
B is defined as follows: n 

An(q,qo)^J d ^ q ^ t f a o - q i ) " m 2 ] 8 8* ( q 0

2 > q 2 ) * 

x B n ( q 0 > q i > q ) • ( 2 4 ) 

The final integration is left undone in B. At the 
cost of having B depend on an extra variable, one 
is now able to introduce correlations such as factors 
of s,c Then if we define B = £B , we find the fol-

n lowing integral equation for B: 

B(q0>qi>q) = g2B2(q0>qi>q) + 

+ g2Jdltq2B2(qo,q1,q2)B(q1,q2,q) , (25) 

where B 2, which is derived from the amplitude shown 
in Fig. 7, is given by J 

B2(q0>qpq) = g 2 e ^ . (26) 

This equation can be simplified by a sort of 
partial-wave projection. Since this is being done 
at fixed momentum transfer, and the momentum trans

fer is a space-like vector, the appropriate little 
group is 0(2,1), not the rotation group 0(3), so 
the machinery developed by Toller is applicable (see 
Ref. 40). In fact, at t = 0, the relevant point for 
calculating total cross-sections as we are doing 
here, the little group is enlarged to 0(3,1), and the 
projection reduces Eq. (25) to an integral equation 
in a single variable, but we cannot go into detail 
here. 

The resulting equation has not yet been investi
gated in any detail, but Chew presented a simple 
model which results from assuming a factorizable 
kernel. If b(J) is the projection of B, one finds 
an algebraic equation of the form 

b(J) = q2b2(J) + q2b2(J)b(J). (27) 

The conversion from B to A via Eq. (24) introduces 
nothing new, so we can just as well write Eq. (27) 
for a(J), the projection of A. Solving this equation 
gives the result 

g2a2(j) (28) 
l-g2a2(j) 

Now this equation, admittedly derived under some 
drastic assumptions which will undoubtedly be relax
ed later, already has some very interesting proper 
ties. Note that a2(J) carries the Amati-Fubini-
Stanghellini29) branch point in the J-plane, as 

*) 
shown in Fig. 8 J. The strength of this cut is 

I oversimplify — end vertices may differ from internal 
ones, but I ignore this and other details to keep things 
simple. 

*) The reader who remembers that Mandelstam30) proved that 
the AFS cut really was not there may be confused at this 
point. His proof was for genuine Feynman graphs, not for 
the multi-Regge graphs we are using here. 
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F i g . 8 Singularities of a 2(J): the AFS cut. 

proportional to g 2. But Eq. (28) carries a denomina
tor which damps the cut for large g 2, unless the two 
terms in the denominator almost cancel — that is, 
unless there is a nearby pole in the J-plane. We 
have the same situation as we have found to be the 
rule in the energy plane: a branch cut usually makes 
an important contribution only if there is a nearby 
pole (resonance). It seems likely that cuts in the 
J-plane will turn out to be important only if they 
are associated with a nearby pole, in which case 
they can be approximately replaced by a pole in doing 
phenomenology! Speaking more conservatively, these 
methods will at any rate lead to a relation between 
cuts and poles. 

Now to get a preview of the sort of information 
one can obtain from this multi-Regge model, let us 
make another rough approximation, replacing the cut 
in a2(J) by an effective pole, 

where we choose the effective pole position at the 
branch point, 

We use the subscript "in" to show that this Regge 
pole was put into the inhomogeneous term a 2 (J). Then 
Eq. (28) gives 

2 

Note that the pole representing the branch point has 
disappeared, and instead a pole in the J-plane has 
been generated at J = a, where 

Suppose that the input pole is the Pomeranchuk 
pole, with a- = 1 . Then we have r ' in 

which implies a total cross-section violating the 
Froissart bound. This difficulty has already been 
noted by Finkelstein and Kajantie31), and by Gribov 
and Migdal 3 2). It implies that either g 2 = 0 or 
Op f 1. The latter choice is the one of CGLP. One 
can then look for a self-consistent solution of 
Eq. (32), with Op = a^. The result is 

a P = 1 - gp2 • (34) 

This result shows that the model we have considered, 
involving only the Pomeranchuk, is incomplete. It 
is known that Op X, 0.9. Moreover, it is possible to 
calculate the average multiplicity from the model, 
with the result 

Fits by Chew and Pignotti find g 2 ~ 1.5, so clearly 
this is not the g^ of Eq. (34). There must be an
other trajectory which is coupled much more strongly. 
Chew and Pignotti introduce a "meson" trajectory, 
which is supposed to summarize the average effect of 
the meson exchanges. Letting g M represent the cou
pling at a vertex such as that in Fig. 9, and neg
lecting the Pomeranchuk contribution which we have 
found to be small, we find from Eq. (32) 

Using the observed fact that otp ~ 1, we find 

Identifying g^ with the dominant coupling in Eq. 
we find ~ 0.25, which is not unreasonable. 

The details of these crude models will undoubted
ly be refined, but the following interesting features 

(All a fs are evaluated at t = 0.) F i g . 9 The coupling ĝ . 
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should persist: 1 ) The emergence of Regge asympto

tic behaviour from Eq. (25) plus the Toller projec

tion. This is much more general than the specific 

multi-Regge form used. It depends on the recursive 

nature of the multiperipheral diagrams, which per

mits one to formulate an integral equation. 2) The 

cut-pole relationship, given in simplified form by 

Eq. (28). 3) The weak coupling of the Pomeranchuk 

pole, leading to the dominance of 0^ by meson 

exchange. 4) The emergence of a new bootstrap 

scheme in which no two-particle truncation of the 

unitarity condition is used. 

3 . GRIBOV-MIGDAL DIAGRAMS FOR REGGE POLES AND CUTS 

In the parallel session, Dr. Ter-Martirosyan 

summarized recent work by V.N. Gribov and A.A. Migdal 

on extracting Regge poles and cuts from Feynman dia

grams. It is sufficiently intricate that I can only 

attempt to give you some idea of the method and some 

important results. Earlier work on this problem by 

Gribov was discussed in the report by Qmnès at the 

Heidelberg Conference33). 

At large values of s and small values of t, the 

Regge-pole exchange graph in Fig. 1 0 , which is ob

tained from ladder graphs, contributes an amplitude 

gives the usual signature factor if k 2 « 1 . Here 

k 2 = a T K 2 , where K is the transverse momentum 

(t = - K 2 ) . It is assumed that the Pomeranchuk tra

jectory has the form otp(t) - 1 - k 2. 

F i g . 10 Single Reggeon exchange. 

Now the graph in Fig. 1 1 gives a cut in the an

gular momentum plane, whose contribution Gribov32) 

F i g . 11 Double Reggeon exchange, leading to cuts, 

has found to be 

Gribov and Migdal have been able to show that 

n 2 = g
2 + An 2, with An 2 > 0 . This leads, after an 

impressive amount of diagram-summing, to the follow

ing interesting result: the sum of all these graphs 

gives an amplitude which can be written 

M = n g 2 [ e - k 2 ç - i B 1 2 ( ç , k f | , 

where, at t = 0, 

This says that total cross-sections will approach a 

constant asymptotic limit from below, with sizeable 

deviations (y 1 0 1 ) dying out only logarithmically. 

4 . THE t = 0 PROBLEM: CONSPIRACY, L0RENTZ 
SYMMETRY, E T C 

This subject is technically one of the most in

tricate of the subjects I am trying to present today, 

so I will have to limit my report to brief, largely 

qualitative remarks. The birth of this subject occur

red in 1 9 5 9 , when MacDowell31*) found that pion-nu

cleon partial-wave amplitudes of the same J but oppo

site parity are equal at t = 0 , and when Goldberger, 

Grisaru, MacDowell and Wong 3 5) found that the 
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NN partial waves were related by analyticity at t = 0 

(these are t-channel partial waves). Then in 1962 

Volkov and Gribov36) recognized the implications of 

this relation for Regge poles: either each term 

vanishes separately at t = 0 (evasion) or several 

trajectories must coincide and have related residues 

(conspiracy). This result was ignored until some 

features of the experimental data, namely the pion 

exchange peak in backward np scattering, encouraged 

Gell-Mann and Leader to speculate that conspiring 

trajectories might exist 3 7). The first candidate 

was the pion38) and that suggestion is still with us, 

neither confirmed nor ruled out. 

In the meantime the theoretical activity in this 

subject has been intense39). Toller40) followed by 

Freedman and Wang41) showed that the conspiracy 

relations reflected an additional symmetry of the 

scattering amplitude at q = 0, where q is the four-

momentum transfer. The group is isomorphic to the 

homogeneous Lorentz group, so the symmetry is often 

called Lorentz symmetry. I will not go into detail, 

because the subject has been reviewed at previous 

conferences39). Recall, however, that Toller1 s 

approach led to the introduction of a new quantum 

number M at t = 0. All the well-known trajectories 

with intercepts a(0) > 0 have been shown to have 

M = 0. The pion may be an example of an M = 1 tra

jectory, which would involve a parity doublet tra

jectory (called the pion* s conspirator, or TT̂ ) de

generate with the pion trajectory at t = 0. 

The quantum number M has recently been given a 

more physical interpretation by a number of authors 

working both from the group-theoretic approach and 

from the analyticity-factorization approach 4 2" 4 9): 

the asymptotic form of the s-channel helicity ampli

tudes behaves at t = 0 as follows 

s r |(IMI-u)| r |(IM|-A):| 

fx 3 v.i * 2 ~ ^ ^ , (44) 
where 

x = l x i ~ XJ > y =
 | X 2 \ \ • 

This elegant formula is consistent with the earlier 

work of Sawyer50). 

At the time of the last Berkeley Conference the 

group-theory approach was in its infancy, and was 

inadequate in the following respects : it applied 

only to EE reactions (equal masses going to equal 

masses, such as NN + ÏÏTT) and only at t = 0. Formal
isms which overcame some of these limitations were 

proposed by Sawyer50), Delbourgo, Salam and 

Strathdee51), and by Domokos and Tindie 52). In par

ticular, Domokos53) remarked that in the Bethe-

Salpeter equation, the particle spectrum at t = 0 

can be classified according to 0(4) even in the un

equal-mass case where 0(4) is not a symmetry of the 

scattering amplitude. 

A very elegant approach to the problem of extend

ing the 0(3,1) symmetry to unequal masses and t f 0, 

which has been carried out by Cosenza, Sciarrino and 

Toller47), is to enlarge the group to SL(2,C). One 

apparent disadvantage of this method is that daughter 

trajectories remain parallel to the parent at t f 0, 

in contradiction to the results of Bethe-Salpeter 

models54""56). Perhaps, however, the Veneziano13) 

representation is teaching us that nature really 

chooses parallel daughters. 

Another approach, carried out by Domokos, Kôvesi-

Domokos and Suranyi57), and by Halpern, Lipinski, 

Snider and myself 4 8), combines a perturbation expan

sion of the Bethe-Salpeter equation in the momentum 

transfer q^ with an expansion in 0(4) basis states. 

This permits the derivation of trajectory formulae 

as well as general properties of residue functions. 

The other approach to the t = 0 problem, via 

analyticity and factorization, has made impressive 

progress. Practically all the results of the group 

theorists have been recovered by these means, and 

some recent work goes further. Independently, a 

large number of authors 4 5' 5 8" 6 0) have found that the 

constraints of analyticity applied to UU and UE 

amplitudes, when coupled with the factorization re

quirement, imply that daughter Regge poles constitute 

a single Toller pole. Previously there had been the 

worrisome possibility of an "anticonspiracy" of 

Toller poles. 

In conclusion, let us examine the present status 

of the question of the Toller quantum number of the 

pion. Dr. Chan Hong-Mo has summarized the pheno

menological situation: some reactions, especially 

charged pion photoproduction, seem to call for an 
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M = 1 pion, whereas an M = 1 pion cannot be the domi

nant contribution in TTN -» pA. Arbab and Brower61) 

have got around this with a fit relying heavily on 

the Ai, but the situation is still confusing. It is 

clear from photoproduction that some important J-plane 

singularity has M = 1, but it need not be the pion. 

The theoretical situation has also been confusing. 

Mandelstam62) attempted to make a connection between 

M = 1 and PCAC, but Sawyer63) recognized a fundamen

tal difficulty, which we can see from Eq. (44) : if 

the pion has M = 1, then at t = 0 (that is, m 2 = 0) 

it will decouple from all "sense" amplitudes. This 

is much stronger than the Adler self-consistency con

dition, which only requires that soft-pion amplitudes 

vanish. A second difficulty is that an M = 1 trajec

tory is nonsense-choosing at J = 0 (implying no phys

ical pion!) as long as the continuation from t = 0 

to J = 0 is smooth. A loophole is the possibility 

of the M = 1 trajectory crossing an M = 0 trajectory, 

as seen in the models constructed by Blankenbecler 

and Sugar6k) and by Lipinski, Snider and myself65). 

But it is not clear that this differs significantly 

from the model proposed by Sawyer63), in which the 

pion lives on an M = 0 trajectory, with an M = 1 

trajectory lying very nearby. I hope we will soon 

see some clarification of this situation. 

5 . PADE APPROXIMANT METHOD 

I will conclude by briefly reviewing progress 

with the Padé Approximant method of calculating scat

tering amplitudes. The work of Bessis and Pusterla65) 

was reviewed by Qmnès33) at the Heidelberg Conference, 

so I refer you to those proceedings for a discussion 

of the basic method. Two extensions have been pre

sented to this Conference: Remiddi, Pusterla and 

Mignaco67) have used the Padé method to calculate 

low-energy pion-nucleon phase shifts. Basdevant, 

Bessis and Zinn-Justin68) have considered the coupled 

ÏÏÏÏ and KK system to calculate the resonance positions 

and widths. The results show some impressive numer

ical agreement, but are marred by the prediction of 

degeneracies not observed in nature. The latter au

thors also propose an alternative viewpoint on the 

Padé method which does not tie it so closely to field 

theory. They regard it as the summation of a foirnal 

power series in "coupling constants", which are de

fined as values of scattering amplitudes at a certain 

point. Unitarity and crossing symmetry enable one 

to determine the first few terms in the series, where

upon the Padé method is used to approximate the sum 

of the series. In this view, the Padé Approximant 

is used as a tool for constructing scattering ampli

tudes which are approximately unitary and crossing-

symmetric. 
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D I S C U S S I O N 

TER-MARTIROSYAN: I have some small comments connect- suit of inelastic multiperipheral collisions. At 
ed with the work by Chew, Low and Goldberger. As I high energy all collisions can be grouped into five 
understood they consider elastic scattering as a re- classes illustrated by the following diagrams : 
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They are of elastic (1), quasi-elastic (2), multi-
peripheral (3), ladder (4), arid contact types (5). 
They are all familiar to physicists today. Perhaps 
the two last ones have to be commented on. The most 
important is the collision of the ladder type. Its 
contribution to the elastic scattering amplitude has 
the form of a ladder 

corresponding to a Regge pole. It gives the main 
contribution to the amplitude M(0,s), In collisions 
of the contact type, all momentum transfers are large, 
the cross-section is very small and decreases rapidly 
with energy. The percentages given at the diagrams 
are taken from experiment. They indicate the order 
of magnitude of the contribution of each diagram in 
the region around 20 GeV. 

All this corresponds very well to the complex an
gular momentum picture, where at high energy the main 
contributions are Regge poles (i.e. inelasticity of 
the ladder type), and the corrections, which are of 
the order of l/ln(s/rf), are due mainly to elastic 
and quasi-elastic scattering. 

I want to stress that, as experiment shows, the 
multiperipheral contribution is always small (2-31 
only). Indeed, the same follows from theory if the 
vertex corresponding to the emission of a particle or 
a group of particles by a Reggeon vanishes at small 
Reggeon momentum. 

CHEW: I believe that the general answer to Ter-
Martirosyan is that the use of either duality or 
something like the Chan, Loskiewicz, Allison model, 
described in the review by Czyzewski, will produce 
the essential results of the multiperipheral equation 
described by Frazer. 

NAUENBERG: I would like to ask a question concerning 
the finite energy sum rules. You told us that a rep
resentation due to Veneziano was an example which sa
tisfies the sum rule, but the form you wrote down is 

purely real for zero width resonances. Furthermore, 
asymptotically it misses the signature factor of a 
Regge pole. Assuming this point is clarified, how 
does Veneziano's representation explain that finite-
energy sum rules work: that is, why there exist dis
crete values of the cut-off N for which the equation 
holds for different values of t? 

VENEZIANO: 1) Concerning the first question, the 
representation I wrote down for real trajectories has 
only poles and it is, for the remainder, real. Im A 
as obtained from the ie-prescription is a sum of 6-
functions. Im is defined as the average dis
continuity and can be also obtained in the limit s + c 

in the case Im a (s)s^°°. In this last case, one 
gets nice Breit-Wigner shapes at low energy, which, 
as the energy increases, are dumped and overlap until 
thç smooth asymptotic Regge form is obtained. 

2) To have a value of N which gives good results 
in a large region of t could seem quite a mystery. 
On the other hand, if one accepts the Dolen-Horn-
Schmid duality, the finite-energy sum rules require 
that a local average is taking place and consequently 
there should be a value of N for which the sum rules 
are satisfied. 

SCHMID: I should like to make a comment about the 
finite-energy sum rule bootstrap. It is addressed to 
those who wonder whether we have here just another 
scheme, as we had, for example, the N/D bootstrap be
fore. The new important element is that we can check 
the approximations and estimate the errors, which are 
typically of the order of 201. These are not a prio 
ri estimates, rather we use experiments as a guide. 
Nature tells us which terms we can drop, for example, 
how important the non-resonating background is or how 
good an approximation the leading Regge poles are at 
a rather low energy. Note that in the N/D bootstrap 
scheme there was no way to estimate the errors on the 
left-hand cut, and nobody has ever measured the left-
hand cut. 

RATTI: The idea of the multiperipheral model in the 
Reggeized version is that what happens to each vertex 
depends only on the nearly exchanged trajectories. 
If this is true, there is a way to check in some de
tail the plausibility of the extrapolation of the 
Regge model to high multiplicities. In fact, in a 
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quasi-two-body r e a c t i o n , the decay p roper t i es o f a 

g iven resonance ( f o r instance the t-dependence o f the 

sp in dens i ty ma t r i x e l e i e n t s ) are exper imenta l ly 

known, My quest ion i s whether the same p roper t i es 

have t o be shown by the same resonance produced a t an 

ex te rna l ve r tex o f a m u l t i p e r i p h e r a l process, p r o v i d 

ed the exchanged t r a j e c t o r y a t the ve r tex i s the same. 

CHEW: The ex te rna l v e r t i c e s i n a pe r iphe ra l chain 

are independent o f how many legs are i n the cha in , 

There should correspondingly be common features f o r 

the end o f the cha in , independently o f the r e s t o f 

the cha in , 

SULLIVAN: I have a quest ion concerning the r e l a t i o n 

o f the cuts obtained i n the absorpt ion (Glauber) mod

e l and the cuts obta ined i n the mult i-Regge model. 

I s i t co r rec t t h a t the absorpt ion model cuts are the 

inpu t cuts t o the l a t t e r model? 

C M : Yes, 


