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LONGITUDINAL STABILITY OF A COASTING BEAM IN A
CORRUGATED RESISTIVE VACUUM CHAMBER

E. KEIL AND B. ZOTTER
ISR Division, CERN, Geneva, Switzerland

An analysis is made of the electromagnetic fields excited by longitudinal density fluctuations of an unbunched,
relativistic particle beam drifting in a corrugated vacuum chamber of circular cross section. From these fields the
coupling impedance is calculated, which is a measure of the reaction of an oscillating beam upon itself, and deter­
mines its stability. The coupling impedances of bellows and cross-section variations are investigated as functions of
various geometric and beam parameters. Corrugations of a vacuum chamber may become resonant cavities at
higher frequencies. The coupling impedance (divided by the mode number) may become several orders of magnitude
larger than its value at lower frequencies, and severely endanger beam stability. The resonant coupling impedances
can be found directly by computer solution of the matrix equations for the field coefficients.

INTRODUCTION

The increasing intensity in circular accelerators
and especially storage rings causes growing con­
cern about the stability of the circulating particle
beam which is affected by the nature of the sur­
roundings of the beam and has been described by
well-known phenomena like the negative-mass
instability(l) or the resistive-wall instability.(2)

Additional effects of this nature occur when the
cross section of the vacuum chamber varies along
the circumference of the machine. We investigate
the effect of such corrugations on the longitudinal
stability of an unbunched relativistic particle beam.
We express our results in terms of the coupling
impedance between the beam and its surroundings.
Stability criteria for longitudinal oscillations have
been expressed in this parameter.(3,4) It has also
been shown that the coupling impedance is equal
to the shunt impedance(5) which can be measured
by rf techniques.

Section 1 contains the general field analysis for a
model geometry shown in Fig. 1. The general
solution for the electromagnetic field is obtained
for the case where the tube connecting the cavities
and the outer cavity wall have finite conductivity.
The effect of finite conductivity of the cavity end
walls can be approximately allowed for by aug­
menting the outer cavity resistivity in the ratio of
the wall surfaces. The solution is formulated in
compact matrix notation. The coupling impedance
is defined in detail in 1.9.

Section 2 gives the effect of corrugations in the
long wavelength limit. It turns out that each jump

in the cross section of the vacuum chamber adds
an inductive term to the coupling impedance. In a
large relativistic machine like the CERN Inter­
secting Storage Rings the total inductance due to
the cross-section variations is about equal to the
total resistive-wall effect, and much bigger than the
capacitive negative-mass effect.

At higher frequencies the corrugations of the
vacuum chamber become resonant cavities, and
the coupling impedance may increase by their
quality factor which is typically of the order of
a few thousand. Section 3 is devoted to a detailed
analysis of this resonant effect. Numerical results
obtained by computer are shown in the form of
graphs which give the resonant frequency, the
coupling impedance and the quality factor for a
wide range of cavity shapes. When the coupling
impedance exceeds the permissible value, a beam
instability may occur. Conversely, stability of
circulating beams of a given intensity imposes an
upper limit on the coupling impedance which must
be achieved in the design of the machine by making
the vacuum chamber sufficiently smooth and by
damping the unavoidable resonant cavities to
obtain sufficiently low values of the quality factors.

1. FIELD ANALYSIS OF A
LONGITUDINALLY OSCILLATING
PARTICLE BEAM IN A CORRUGATED
VACUUM CHAMBER

1.1. The coupling impedance can be calculated
from the electromagnetic fields generated by a
perturbation on a beam of charged particles.
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FIG. 1. Schematic cross-section of a few periods of the model geometry.

p = pexp [ik(z-tg)]

1 op ikp
--- iOJJlJz = -Z exp [ik(z-tg)], (1.3)
eoZ eoy

The 'separation constant' C Z must be chosen to
fulfil the boundary conditions. The general
solution is found by summing over all functions

(1.4)

!~(rdR)_(CZ _ (

2)R = 0rdr dr e2

dZZ
dz 2 +CzZ = o.

where k = n/R is the axial wave number. The
perturbed current density is, from the continuity
equation, Jz = pcp. With e = eo and Jl = Jlo, the
rhs of (1.1) becomes

Here Zo = (Jlo/eo)! = 120n n is the impedance of
free space.

1.3. The right-hand side of the wave equation
(1.1) differs from zero only in the beam region.
We assume a density modulation

where y = (l-PZ)-!. We remove a factor ip/keo
which otherwise would appear in all expressions
for the fields. We then are left with (k/y)Z
exp [ik(z-tg)] on the right-hand side, and we
notice that -exp [ik(z-tg)] is a particular solution
of (1.1).

1.4. We find the general solution of the homo­
geneous wave equation by separating the variables.
We assume a solution in the form Ez(r, z) =

R(r)Z(z) and obtain two ordinary differential
equations

(1.2)

Since all pertinent equations are linear it is sufficient
to investigate a sinusoidal longitudinal nlodulation
of charge density with mode number n, i.e., with
n wavelengths along the machine circumference.
The perturbation wave travels with phase velocity
pc. Thus its circular frequency is w = pen/R.
We shall neglect the small difference between the
beam velocity and the phase velocity of the wave.
We also neglect the curvature of the vacuum
chamber which we replace by a straight periodic
pipe with period 2nR. We work in cylindrical
coordinates as shown in Fig. 1: a cylindrical beam
of radius a is surrounded by a concentric tube of
radius b. Periodically, with distance 2nR, the
radius of the tube is enlarged to the value d over a
length g.

1.2. The electromagnetic fields are found by
solving the wave equation for the longitudinal
electric field Ez :

1 0 (OEz ) oZEz WZ lop.
-- r- +-+-Ez = ---lWJlJz • (1.1)
ror or ozz eZ e OZ

Here we have assumed that the time dependence of
all waves is exp ( - iwt). Because a centered beam
with a density modulation only interacts with TM
modes, we can limit our treatment to those modes
and put Hz = O. Derivatives with respect to 4> in
(1.1) vanish because of the rotational symmetry.
The only nonvanishing transverse field components
are given by
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+00

E~I = L [Bmlo(Xmr)+CmKo(Xmr)]

+00

E/ = L [Am Io(Xm r)-bmn] exp [ikm(z-tg)]·
m=-oo

(1.5)

Here we have used the Kronecker symbol bmn and
the fact that k = nlR = k n• The magnetic field
component HcJ> can be found using (1.3):

• +00 A
ZOHcJ>I = _101 L ~Il(Xmr)exp[ikm(z-tg)].

C m= - 00 Xm
(1.6)

i01 + 00 1
ZoH~= -- L -[Bmll(Xmr)-CmKl(Xmr)]

C m= - 00 Xm

. exp [ikm(z-tg)].

We can immediately reduce the number of unknown
coefficients by requiring that the electric and
magnetic fields at the beam edge r = a be equal.

Ez = -(l-i)f!Jlc ZoH 4J, (1.12)

where f!Jlc = (018012(J'c}t is the (dimensionless) nor­
malized surface resistivity. It is related to the more

ZOH~I (1.10)
i01 00 1

= -- L r [DsRl(rsr)+D/Sl{rsr)]cosltsZ,
C s=O s

where

· exp [ikm(z-tg)] (1.8)

II iW~[Am ]ZoHq, = -- LJ -Il(Xmr)+aTl(xr)bmn
c m Xm

· exp [ikm(z-tg)]

where X2 == Xn 2 = k 2
- w2Ic2 = k 2ly2, and

Ti(xr) = -K1(xa)Ilxr)-( - yl1(xa)Klxr). (1.9)

They have the properties To(xa) = -llxa and
T 1(xa) = 0 for any X.

1.6. We assume that the end walls of the cavity
are perfectly conducting and hence Er must vanish
at z = 0 and at z = g. The first condition implies
sine solutions for Er which, from (1.2), lead to
cosine solutions for Ez • Calling the separation
constant lts2 we find that the condition at z = 9 is
satisfied for lts = snl9 where s is any positive'
integer or zero. The radial function again yields
modified Bessel functions of order zero but with
argument rsr, where r s

2 = lts
2 -w2Ic2

•

We write the most general solution for Ez and
Hq, in the·'cavity region' with b ~ r ~ d in the form

Equating term by term we can express Bm and Cm

by Am and thus obtain for the fields in region II:

E.~I = L[Amlo(Xmr)+XaTo(Xr)bmn]
m

00

E~II = L [DsRo(rsr) +Ds'So(rsr)] cos lts Z
s=o

Rlrr) = Ko(rd)~(rr)-( - Ylo(rd)Klrr)
. (1.11)

Slrr) = -K1(rd)Ilrr)-(- Yl1(rd)Klrr).

For any r, we have Ro(rd) = Sl(rd) = 0 and
Ri(rd) = -So(rd) = l/rd.

The Ds and Ds' are as yet unknown coefficients.
We can immediately eliminate Ds' by applying the
boundary condition at r = d. Assuming that the
outer cavity wall has conductivity (J'c we require to
first order in f!Jlc :

(1.7)

m=-oo

. exp [ikm(z-tg)]

We notice that the fields are a superposition of an
infinite number of terms with equally spaced axial
wave numbers km. Such terms are typical for
periodic systems and are usually called 'space
harmonics' .

1.5. The solutions in the 'tube region' with
a ~ r ~ b differ from (1.5) and (1.6) only by the
absence of the particular solution and by the
presence of the Ko(Xmr) terms:

belonging to the permissible values of C2
, each

multiplied by an arbitrary coefficient.
If we call the separation constant km the solutions

of the axial equation (1.4) are

Z = exp [±ikm(z-tg].

In order to have solutions that are periodic with
2nR we require km= mlR where nt is an arbitrary
integer. The solutions of the radial equation are
modified Bessel functions of order zero and
argument Xnl with Xm2 = km

2 -w2Ic2
•

In the beam region I with 0 ~ r ~ a, we must
exclude the solution Ko(Xmr) and thus we get
R(r) = Io(Xmr). The complete solution is found by
summing over all values of m, and by adding the
particular solution of the inhomogeneous equation
found above.
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familiar skin depth be by be = 2cf!Ae/ro. Combining
(1.10) and (1.12) yields:

" Ds' . roPJle " Ds- LJr dCOSltsZ = (1 +l)-Ltr 2dCOSltsz. (1.13)
sse s s

+00

L (Imm Am+Cm) exp [ikm(z -tg)]
m=-oo

<X)

= L KssDscosltsZ for O<z<g. (1.17)
s=o

+00
Dt = Rtt L N:;"(ImmAm+Cm)· (1.22)

m=-oo

+00

t(l +bto)Ktt Dt = L N:t(Imm Am+Cm)· (1.21)
m=-oo

(1.19)

00 +00

Ap+Bp= It L N ps Ds +11t L (ImmAm+Cm)
s=o m=-oo

v = sin 1tQ((P- m). (1.20)
pm nrx(p - m)

The magnetic condition (1.17) is solved for Dt by
multiplying by cos ltsZ and integrating from 0 to g.
Since the cosine is orthogonal in that interval we
find with Sb cos2 lttZ dz = tU(1 +bto):

where It = 9/2nR,

nltp {sin nltp seven
N = --::------=-

ps (nltp)2-(ns/2)2 -icosnltp s odd

and

We can solve the first two equations for .1p by
multiplying with exp [- ikp(z-tg)] and integrating
from 0 to 2nR. Since the exponential function is
orthogonal in that interval we find

Introducing R tt = 2/(1 +bto)Ktt and Nt;" = N~,

the Hermitian conjugate of Nmt' we obtain

1.8. If we remember that the indices m and p
always run from - 00 to + 00, and the indices sand
t from 0 to 00, we may leave off the indices and
write the equations in matrix form

.1+13 = ltND+11t(U-ltV)(I.1+C) (1.23)

D=RN+(IA+C)

Here A, Ii, C and 15 are column vectors (Ii and C
with a single nonzero element at m = n), and Rand
I are diagonal matrices (U is the unit matrix).
Only the matrices N and V are full two-dimensional
matrices. The elements of N are either real or
imaginary because of our choice of origin along
the z axis in Sec. 1.3. Eliminating l5 from t1.23)

(1.14)

+00

L (Am+Iim)exp [ikm(z--!g)]
m=-oo

for 9 < z < 2nR

00

L 15scosltsZ for 0 < 9 < z
s=o

+00

11t L (ImmAm+Cm)exp[ikm(z--!g)]
m=-oo

Equating term by term we find Ds' = I1cDs/rsb
where l1e = (1 + i)robfllc/c. Therefore the field com­
ponents (1.10) can be written in the form:

E~I = s~oDs[ Ro(rsr)- r~cb so(rsr)]cosQ(sZ

-[R I (rsr)- r~cbSI(rs r)Jcos Q(sZ.

1.7. The final step in the field calculation is the
matching of the tangential field components at
r = b. Assuming that the tube wall has finite
conductivity (Jt we want to fulfil the conditions
(f!/t t and 11 t are derived from (J t as &Jc and 11e from
(Jc) :

E~I Ir=b = E~II Ir=b 0 < z < 9

El1Ir=b= -(l-i)PJltZoH~lr=b g<z<2nR(1.15)

H~ Ir=b = H~I Ir=b 0 < z < g.

Introducing the abbreviations

Am = Am Io(Xm b)

Imm = It(Xmb)/[Xm bIo(Xm b)]

13m= xaTo(xb) bmn

- a
Cm=bTt(Xb)bmn (1.16)

Ds = Ds[Ro(rsb)-l1eSo(rsb)/rsb]

1 Rt(rsb)-l1e St(rs b)/rs b
K ss = ----------

r sb Ro(rsb)-l1e So(rsb)/rs b

we obtain the conditions
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(1.28)

and rearranging terms we find the essential equation
determining the field coefficients Am:

[U-aNRN+I-f/t(U-aV)I]A

= [aNRN+ +f/lU-aV)]C-B. (1.24)

1.9. The coupling impedance Z is defined as the
negative ratio of the perturbed voltage-obtained
by integrating the average electric field along the
trajectory of a particle over one period-to the
amplitude of the perturbed current in the beam.

The average of the electric field strength over the
beam cross section is given by

(E/) =~f2" dcPfa E/rdr (1.25)
na 0 0

which becomes from (1.5)

(E/) = I [Am 2I1(Xm a
) <5mnJ

m= - 00 Xm alO(Xm b)

· exp [ikm(z -tg)]. (1.26)

We now put back the normalising factor ifJ/k8o
and the time factor exp ( - imt). For a particle
travelling with the perturbation we have z-tg =
pet and hence OJt = k(z-tg). Then we find for the
voltage seen by the particle in the period

V = ifj I [A 2I1(Xm a) -b Jf.21tRdz
keo m = - 00 m Xm alO(Xm b) mn 0

•exp [i(km - k)(z -tg)]. (1.27)

This becomes simply

9 ifJ [- 211(Xa) J
Ji = 2nR -k An ( b) 1.

eo Xalo X

We notice that only the fields with the same mode
number as the perturbation contribute to the
coupling impedance. The amplitude of the per­
turbed current is 1= fJpcna2 and hence the coupling
impedance becomes

Z= - 2inZo [An 2I1(xa) -1J.
{3(ka)2 xalo(xb) (1.29)

Since xa = ka/y is small compared to unity up to
high mode numbers (n ~ l'Rja) we can usually
replace the Bessel functions by their small argument
approximations and obtain

Z 2iZo -
;;= -{3(ka?(An -l). (1.30)

We calculate Z/n because this parameter is required
in stability calculations. Since the real part of the
impedance must be positive for passive devices,
the imaginary part of An will have to be positive­
this is a useful check for numerical evaluations of

An·

2. THE COUPLING IMPEDANCE OF
CORRUGATED WALLS AT LONG
WAVELENGTHS

2.1. We assume that the wavelength of the
perturbation is much longer than the length 9 of
the enlarged portion of the vacuum chamber. In
this case, we have n ~ l/a = 2nR/g.

First we solve the case of perfectly conducting
walls in which case (1.24) takes the form:

(U-aNRN+I)A = aNRN+C-B. (2.1)

In the limit a -+ 0, corresponding to a smooth
vacuum chamber, we find immediately A = - B,
and hence, from (1.30).

Substituting the definition of B (1.16), and approxi­
mating the Bessel functions by the first two terms
of their power series yields:

iZo
Z/n = 2{3y2(!+21nb/a), (2.3)

in agreement with the well-known formula for the
coupling impedance of a perfectly conducting
cylindrical vacuum chamber.(l)

2.2. We may write (1.24) in the new variable
X = A+B which expresses the additional effect
caused by the presence of enlarged portions of the
vacuum chamber. We obtain

[U-aNRN+1-1JlU-aV)I]X

= [aNRN+ +f/tCU-aV)] ~ (2.4)

where Y= C- lB. The only nonvanishing element
of the vector Yis J: = all(xa)/(xb2Io(Xb)) ~a2/2b2.

2.3. For small values of the circumference factor
a and perfectly conducting walls with 1Jt = °the
first order solution of (2.4) is simply X = awY
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where W = NRN+. Hence the nth component of
X becomes Xn = ~Jn J: where

w = ~ N R + = ~ 1-( - )S cos 2nan
nn L..J ns ss N sn '-' 1+ <5

s=o s=o sO

For shallow bellows with 'r = d-b ~ b, we may
develop the logarithm and get for a = 1:

iZoZjn = 2P [y-2(t+21nbja)-2p2T jb] (2.10)

This result is trivial because it is just the sum of the
contributions (2.3) of the smooth chamber with
radius b and circumference factor (I-ex), and of
the smooth chamber with radius d and circum­
ference factor a.

In order to obtain a better estimate of the
coupling impedance of a pair of cross-section
variations, we have evaluated w'm by computer.
The program performs the summation (2.5) until
200 more terms change the result by less than 10- 3 ;

in agreement with the coupling impedance for a
fin-loaded waveguide. (6)

2.5. For pairs of cross-section variations, for
which g ~ nb, we have to include higher order
terms in the sum for Wnw The simplest approach
consists of using small argument approximations
for Ro and R 1 for the whole sum. The summation
can then be performed and yields a first approxima­
tion to the coupling impedance:

I iZo [ ]ZJn = fi2 (1-ex)(-!+21n b/a)+a(-!+21nd/a) ·
2p y

(2.11)

(2.8)

(2.9)

(2.5)

Z/n = -iaf3ZolnA

valid under the assumptions n ~ l/a and f3kd ~ 1.
Combining the effects of the smooth wall and the
bellows, we find the total coupling impedance

iZo[ 1 ]Zjn = 2P y2(t+21nbja)-2aP2 1ndjb ·

2.4. In the case of bellows, with g ~ reb, we find
from (2.5), taking only the s = 0 term:

Wn~O) = robRo(rob)/Rl(rob). (2.6)

If r od < 1 we may use the small argument approxi­
mations for Ro and R 1 and obtain

Wn~O) = - (r0 b)21n A= (f3kb)2ln A, (2.7)

where A = d/b. Substituting (2.7) into the equation
for XIl and inserting the result into (1.30), yields
the contribution of bellows to the coupling im­
pedance:

100
Rl/n(d -b) (n)

0.2

0.1

10

101.00.1
lL....----L---.-----.-------.-----r-----r--....,.----r--~--_____,

0.01
~-1

FIG. 2. Inductive coupling impedance of a pair of cross-section variations for long wavelength as function of the
relative cross-section change (d-b)jb. The ordinate is the impedance divided by mode number Z/n, normalised with
the factor Rj(d - b), i.e., the ratio ofmachine radius to cross-section change, the parameter is the "aspect ratio" gjd.
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the remainder of the sum is calculated by numerical
integration. Changing the switching point to 10-4

altered all results by less than 0.26 per cent. We
write the total coupling impedance in the form:

Zjn = (l-a)(Zjn)b+a(Zjn)d+(Zjn)c (2.12)

where (Zjn)b and (Zjn)d are the coupling impedances
(2.3) of a smooth pipe of radius band d, respec­
tively, and (Zjn)c is the contribution of the pair of
steps in cross section. The values of (Zjn)c are
shown in Fig. 2 for various values of gjd. For
gjd ~ re, (Zjn)c becomes independent of 9 and is
fitted to within a few per cent by the following
expression, which holds for R ~ g:

(Zjn) = _ 0.241 iZo (d-b)2
c pR d+0.412b· (2.13)

This result differs from that for the shunt impedance
of a step in the outer conductor of coaxial wave­
guide(7) by the absence of a logarithmic term in
(djb-1). This seems to be due to the different
treatment of the higher space harmonics. In
Ref. (7) they are treated as plane waves whereas
we treat all of them exactly.

2.6. Including the finite resistivity of the outer
cavity wall and the tube wall is quite straight­
forward. We have to solve (2.4) with 11t =f. O. In
the case of bellows (g ~ reb) we find for the total
coupling impedance including resistivity:

iZo 2
ZJn = 2P [y- Cr+2InbJa)-2rxp2IndJb

- (1 + Op2(abcjd +(1- a)btjb)]. (2.14)

The finite conductivity of the side walls of the
bellows is not included here. However, a reason­
ably good approximation can be obtained by
augmenting the resistivity of the outer wall of the
bellows in the ratio of the side wall area to the outer
wall area.(8) For a = 0, (2.14) agrees with the well­
known expression for the coupling impedance of a
resistive tube wall. (2)

3. RESONANT EFFECTS

3.1. We start again from (2.4) which we repeat
below:

[U -aNRN+1-11tCU-aV)I]X

= [aNRN+ +l1tCU-aV)] Y: (3.1)

P.A. A3

At frequencies where the enlarged portions of the
vacuum chamber resonate, some elements of R
and I may become very large and the approximate
inversion of (3.1) used in Sec. 2 is no longer
justified.

3.2. Equation (3.1) can be solved numerically
when the matrices are truncated to finite size. A
simple estimate shows that the size of the matrices
should be nluch larger than the mode number n
which in machines with several hundred metres
circumference typically takes values of a few
thousand at resonance. Even with high speed
computers the inversion of matrices of this size is
unpractical.

One way around this obstacle is an artificial
reduction of the period length, corresponding to a
smaller radius or to a large number of identical
elements spaced equidistantly around the actual
circumference of the machine. This method can
reduce the mode number drastically and has been
used successfully to find numerical solutions.(8)
However, it may alter the results due to the inter­
action between adjacent cavities.

3.3. Because of the form of the 'kernel' in (3.1) it
is possible to apply a transformation which is known
from the theory of integral equations. It has been
shown(8) that V can be expressed by the following
product:

(3.2)

where UO is a matrix with elements U~ = bso bto ­
Introducing the abbreviation S = R-11t(2U- U O)

we can write (3.1) in the form:

(U-11tI)X = 11t Y+aNSN+ Y+aNSN+ IX. (3.3)

We now define the new variable X' = SN+IX and
find:

[U -aSN+I(U -l1tl)-lN]X'

= SN+ I(U -11tl)-l(l1t+aNSN+) Y: (3.4)

This equation looks very similar to (3.1). However,
it has entirely different convergence properties
because the order of Nand N+ in the kernel is
reversed. For the numerical solution we no longer
need matrices with dimensions 2reRjA, but only of
the order gjA, where A is some small length inside
which the field pattern around the cavity edges
changes significantly. It is smaller than g, b, or
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d - b, whichever is the smallest. In the frequency
region of interest we can therefore limit ourselves
to quite small matrices. The difficulty is shifted
to the calculation of the elements of the kernel
where we have to evaluate sums of 2nRjA terms to
obtain convergence. Because of the slow variation
of the elements of the sum, it can fortunately often
be replaced by an integral which reduces the
numerical effort required.

Substitution of the solution of (3.4) into (3.3)
yields after some arithmetic:

X = (X(U -tit I) -1N[U - (XSN+ l(U - tit 1)-1N]-1

. SN+(U -tlt1)-1 Y+tltCu -1'lt1)-1 Y: (3.5)

3.4. We have evaluated the resonant frequency
and coupling impedance of the lowest resonance
which corresponds to the Eo 10 mode of a cylindrical
cavity, for cavities of various shapes by solving (3.5)
on a computer. The only approximation in the
computation is the truncation of all matrices to
finite size. The number of space harmonics used
is lOin the cavity region and (20n + 1) in the tube
region where n is the mode number. We have
evaluated the truncation error by halving the size
of all matrices involved. This resulted in a change
of the frequency by at most 0.3 per cent, and of the
coupling impedance by at most 3.5 per cent for
n = 10. The largest errors occur for extremely
small and extremely large values of gjd.

For a given shape of the resonant cavity, the
frequency scales as d- 1

, and the coupling im­
pedance and the Qvalue scale as (d(J)! if we assume
that (Jc = (J t = (J • Therefore, three parameters are
sufficient for all possible cavity geometries: bjd,
gjd and the ll10de number n which is closely related
to the ratio 2nRjd. The scaling laws were also
verified by computer. In the computations we
have used d = 1m, l' = 30, and (J = 106 n- 1m- 1

which corresponds to the conductivity of· stainless
steel. Figures 3 to 5 show the productsfd = wdj2n,
Z(d(J)-t and Q(d(J)-t for n = 10. We have noticed
that all these quantities· depend very little on nonce
the length of the tube, 2nR - g, is much longer than
its attenuation length. An example of this is shown
in Table I. The variation of the coupling im­
pedance with gjd is mainly due to the transit time
factor. The values of the coupling impedance for
bjd = owere obtained from the known formula for
a closed cylindrical cavity.

TABLE I
Resonant frequency f, coupling impedance Z and
quality factor Q for various mode numbers n.
a=O.Olm, b=0.8m, d= 1.0m, g=2.0m,
1'=30, (Jc =(Jt = 106 Q-lm -t, 10 space har­
monics in slot region, 20 n + 1 space harmonics in
tube region.

n f[MHz] Z[kQ] Q

1 118.393 25.9786 22745.
2 121.240 18.7040 21128
3 121.308 18.6755 21066
4 121.310 18.6768 21063
5 121.310 18.6765 21062
6 121.310 18.6762 21062
8 121.310 18.6757 21061

10 121.310 18.6752 21060

The dependence of the coupling impedance Z on
)' is shown in Fig. 6 for a single shape of the resonant
cavity. It may be seen that the coupling impedance
is roughly proportional to /32 = 1-}' - 2. The
resonant frequency and the Q factor depend on y
only very weakly.

Higher resonances can also be found by the
computer program. They correspond to higher
radial and axial modes of a cylindrical cavity of
radius d and length g as long as the tube between
the cavities is not propagating. Above the cut-off
frequency of the tube a new family of modes
appears.

The coupling impedance of the higher modes
decreases like f -t if one neglects the reduction
due to the transit time factor. However, it is also
multiplied by a factor two for all axial modes
except the lowest one. This increase is particularly
noticeable for long cavities with gjd ~ 1 in which
the axial modes are very closely spaced in frequency.

4. CONCLUSIONS

We have calculated the coupling impedance of
cross-section variations for the geometrical model
shown in Fig. 1. For wavelengths much longer
than the dimensions of the enlarged part of the
vacuum chamber the coupling impedance is
essentially inductive. In a large machine like the
CERN Intersecting Storage Rings (ISR) the ratio
of the total inductive coupling impedance, due to a
pair of cross-section variations every few metres,
to the resistive coupling impedance of the stainless­
steel vacuum chamber is about unity. For smaller
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FIG. 3. Resonant frequency of the lowest mode in
a cavity formed by two cross-section variations
versus the relative hole-size, resp. tube diameter,
bid. The ordinate is multiplied by cavity radius d,
the parameter is the aspect ratio gld.

FIG. 4. Resonant coupling impedance of the lowest
mode versus the aspect ratio. The ordinate is
divided by the square root of the cavity radius
and the wall conductivity, the parameter is the
relative hole size bId.
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FIG. 5. Quality factor of the lowest mode versus
relative hole size, divided by the square root of
the cavity radius and the wall conductivity. The
parameter is the aspect ratio gjd.

FIG. 6. Energy dependence of the resonant coup­
ling impedance of the lowest mode in a cavity with
dimensions d = 1m, g = 1m, b = O.2m, beam radius
a = O.1m and ac = at = 106 0- 1 m- 1

•



20 E. KEIL AND B. ZOTTER

relativistic machines the inductive component may
exceed the resistive one as their ratio scales as R-t.

For smaller wavelengths where the enlarged parts
of the vacuum chamber form resonant cavities, the
coupling impedance becomes much larger, essen­
tially in proportion to the quality factor of the
resonance. However, the presence of the tube
connecting the cavities reduces the coupling
impedance.

In the ISR, the shape of the vacuum chamber
alternates between elliptical in the magnets and
circular in the straight sections. The latter cham­
bers form resonant cavities with Z/n = 3.5 n each
for the lowest mode, neglecting the transit time
factor. Since there are about 150 of them in the
machine, their total contribution will be approxi­
mately Z/n = 500n. This figure is certainly an
overestimate for the lowest mode because it assumes
that all straight section chambers resonate at
exactly the same frequency which will not be the
case in practice. On the other hand, the next
higher modes in a long cavity have coupling
impedances which are nearly twice the value of the
lowest resonance.

Stability criteria for the longitudinal stability of
an unbunched beam in a circular accelerator or
storage ring have been given in the form of upper
limits on the coupling impedance.(3,4) We use the
one given in(4) which is based upon realistic
distribution functions(ll)

IZjn I~ Eo W( A.p )2, (4.1)
e loy mo c

where Eo = moc2 is the rest energy of the particles,
e is their charge, /0 is the circulating current, y is the
energy factor, 11 = Y- 2 - Y; 2 and A.p is the full width

at half height of the particle distribution function
in momentum. EoYt is the transition energy.

For the ISR a limit Z/n = loon was calculated
for a 2A stack with L\p/p = 10- 3, and Z/n = 1000n
for a 20A stack with L\p/p = 1 per cent. The limits
are lower than those in proton synchrotrons
because of the beam manipulations associated with
rf stacking. Since the resonant impedance of the
straight section chambers by far exceeds the
stability limit damping resistors have now been
installed in one ring of the ISR.
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