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Abstract. We consider the coupling of quantum fields to classical gravity in the formalism of
ensembles on configuration space, a model that allows a consistent formulation of interacting
classical and quantum systems. Explicit calculations show that there are solutions for which two
initially independent quantum fields evolve into an entangled state, even though their interaction
occurs solely via a common classical gravitational field. Thus in contrast to recent suggestions,
an observed generation of entanglement would not provide a definitive test of the nonclassical
nature of gravity.

1. Introduction
The publication of proposals for witnessing nonclassical features of gravity, by Bose et al. [1]
and by Marletto and Vedral [2], has encouraged a discussion about the possibility of generating
entanglement between quantum systems which only interact via a classical gravitational field,
as well as new proposals for looking for evidence of quantum gravity in laboratory experiments
[3, 4, 5, 6, 7, 8, 9]. Whether entanglement is possible under these circumstances depends on which
hybrid model is used to describe the interaction of classical and quantum sectors [7]. While some
hybrid models of classical-quantum interactions seem to exclude entanglement, other models,
in particular the formalism of ensembles on configuration space [10], allow for it. Thus an
observed generation of entanglement cannot provide a definitive test of the nonclassicality of
gravity without additional assumptions concerning the nature of classical-quantum interactions.

The purpose of this paper is to provide fully relativistic calculations showing that (a) there
are solutions for which two quantum fields are in an entangled state even though their interaction
occurs solely via a common classical gravitational field, and (b) such entangled solutions can
evolve from initially unentangled ones. These calculations are carried out using the formalism
of ensembles on configuration space.

The paper is organized as follows. In section 2, we give a brief introduction to the basic
aspects of the configuration ensemble approach. Section 3 is more general in nature, consisting
of a brief overview on consistency requirements for models of quantum-classical interactions and
a summary of previous results on entanglement production for some specific models. In section 4,
we return to the configuration ensemble approach and discuss its application to quantum matter
fields coupled to a classical gravitational field. We focus on the midisuperspace formulation of
spherical gravity, in particular on the case where the quantum sector consists of two quantized
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scalar fields. In section 5 we consider a perturbative approach and show that there are solutions
for which the two quantum fields are in an entangled state, and in section 6 we discuss how
entangled solutions can evolve from initially unentangled ones. Finally, in section 7, we provide
some concluding remarks.

2. Ensembles on configuration space describing classical, quantum and mixed
classical-quantum systems
The formalism of ensembles on configuration is a general framework that can describe classical,
quantum and hybrid systems [10, 11, 12]. It forms a natural starting platform for several
axiomatic approaches to reconstructing quantum theory [10, 13, 14, 15, 16, 17] and it can
describe the coupling of ensembles of quantum fields to classical spacetimes [10, 11, 18, 19].

2.1. Classical, quantum, and mixed classical-quantum systems
Start from the assumption that the configuration of a physical system is an inherently statistical
concept. The system will then be described by an ensemble of configurations, with probability
density P , with P ≥ 0 and

∫
dxP (x, t) = 1. To describe dynamics, introduce an ensemble

Hamiltonian H[P, S], where S is an auxiliary field that is canonically conjugate to P . The
equations of motion take the form

∂P

∂t
=
δH

δS
,

∂S

∂t
= −δH

δP
, (1)

where δ/δP (δ/δS) denotes the functional derivative with respect to P (S).
The following ensemble Hamiltonians lead to equations that describe the evolution of quantum

and classical non-relativistic particles of mass m:

HC [P, S] =

∫
dxP

[
|∇S|2

2m
+ V (x)

]
, HQ[P, S] = HC [P, S] +

h̄2

4

∫
dx P

|∇ logP |2

2m
. (2)

For example, the equations of motion derived from HQ[P, S] are given by

∂P

∂t
+∇.

(
P
∇S
m

)
= 0,

∂S

∂t
+
|∇S|2

2m
+ V − h̄2

2m

∇2P 1/2

P 1/2
= 0 (3)

while the equations of motion derived from HC [P, S] are the same as Eq. (3) but with h̄ = 0.
The first equation in Eq. (3) is a continuity equation, the second equation is the classical
Hamilton-Jacobi equation when h̄ = 0 and a modified Hamilton-Jacobi equation when h̄ 6= 0.
Defining ψ =

√
P eiS/h̄, Eq. (3) takes the form

ih̄
∂ψ

∂t
=
−h̄2

2m
∇2ψ + V ψ, (4)

which is the usual form of the Schrödinger equation. It is straightforward to extend the formalism
in a natural way to allow for mixed quantum-classical systems. A mixed quantum-classical
ensemble Hamiltonian is given by [10, 11]

HQC [P, S] =

∫
dq dxP

[
|∇xS|2

2M
+
|∇qS|2

2m
+
h̄2

4

|∇q logP |2

2m
+ V (q, x, t)

]
. (5)

Here q denotes the configuration space coordinate of a quantum particle of mass m and x that
of a classical particle of mass M , and V (q, x, t) is a potential energy function describing the
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quantum-classical interaction. The equations of motion for the joint probability density P (q, x)
and its conjugate S(q, x) follow from HQC as

∂P

∂t
= −∇q.

(
P
∇qS
m

)
−∇x.

(
P
∇xS
M

)
,

∂S

∂t
= −|∇qS|

2

2m
− |∇xS|

2

2M
− V +

h̄2

2m

∇2
qP

1/2

P 1/2
. (6)

These can be rewritten as a nonlinear Schrödinger equation for the ‘hybrid’ wave function
ψ =

√
PeiS/h̄, with a similar nonlinear equation for the case of two classical particles. Such

nonlinearity does not automatically lead to difficulties in either case, essentially because the
form of classical observables is fundamentally different to that of quantum ones, see below.

2.2. Observables
The state of a system is determined by specifying P and S. Observables are defined as suitable
functionals of P and S (arbitrary functionals A[P, S] are not necessarily observables because
these have to satisfy certain mild requirements, see [10] for a detailed discussion). Given
observables A[P, S] and B[P, S], define their Poisson bracket

{A,B}PB =

∫
dx

(
δA

δP

δB

δS
− δA

δS

δB

δP

)
. (7)

This gives us an algebra of obervables. A critical physical distinction between classical and
quantum systems (or classical and quantum components of a composite hybrid system) is that
they have quite different sets of observables, and distinct algebras for these observables [10].

For a purely classical configuration space labelled by position x, the classical observable Cf
corresponding to the phase space function f(x, k) (where k is the momentum) is defined by the
functional

Cf [P, S] :=

∫
dxP f(x,∇xS). (8)

For a purely quantum configuration space labelled by the possible outcomes q of some complete
basis set {|q〉} of a Hilbert space H (i.e.,

∫
dq |q〉〈q| = 1̂, with integration replaced by summation

for discrete ranges of q), the quantum observable QM̂ corresponding to the Hermitian operator

M̂ is defined by the functional
QM̂ [P, S] := 〈ψ|M̂ |ψ〉, (9)

where |ψ〉 ∈ h̄ is the wave function defined via 〈q|ψ〉 =
√
P (q)eiS(q)/h̄.

Evaluating the Poisson bracket of any pair of classical observables Cf , Cg or quantum
observables QM̂ , QN̂ via Eq. (7) yields

{Cf , Cg} = C{f,g}, {QM̂ , QN̂} = Q[M̂,N̂ ]/(ih̄) (10)

where {f, g} =
∑
i

(
∂f
∂xi

∂g
∂ki
− ∂f

∂ki
∂g
∂xi

)
denotes the usual phase space bracket and [M̂, N̂ ] the

usual commutator. Thus Eq. (8) is an isomorphism between the algebra of observables Cf on
configuration space and the algebra of observables f on classical phase space, and Eq. (9) is an
isomorphism between the algebra of observables QM̂ on configuration space and the algebra of

quantum observables M̂ . As the Poisson bracket properties (10) remain unchanged for mixed
classical-quantum systems of the type described by the ensemble Hamiltonian of Eq. (5), this
statement remains true even under interactions between the classical and quantum components.
In particular, the classical/quantum distinction is always maintained.
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2.3. Entanglement
Two ensembles with respective configuration spaces X and Y are defined to be independent if
P (x, y) and S(x, y) satisfy P (x, y) = PX(x)PY (y) and S(x, y) = SX(x) +SY (y) (with the latter
only required to hold up to some additive constant) [10, 11]. For quantum ensembles, note that
independence is equivalent to a factorisable wave function ψ =

√
PeiS/h̄, and hence any two

quantum ensembles are either independent or entangled.
The concept of entanglement remains meaningful in the general case [10]. However, it is

important to note that the notion of ‘entanglement’ referred to here is not in the strong sense
of Bell inequality violation, but in Schrödinger’s original weaker sense that the properties of a
joint ensemble cannot be decomposed into properties of the individual ensembles [20].

This can be understood by looking at a simple classical example. Consider a classical joint
ensemble, corresponding to two classical particles described by respective configuration spaces
X and Y , with probability density P (x, y) and conjugate quantity S(x, y). The product of two
classical phase space functions f(x, px) and g(y, py) is itself a classical phase space function and
the expectation value of this product corresponds to the classical observable [10]

Cfg = 〈fg〉 =

∫
dxdy P (x, y) f(x, ∂xS) g(y, ∂yS). (11)

Now, there is clearly a trivial hidden variable for any such observable. In particular, defining
λ := [x, y, S(x, y)], P (λ) := P (x, y), F (λ) := f(x, ∂xS), and G(λ) := g(y, ∂yS), one has

〈fg〉 =

∫
dλP (λ)F (λ)G(λ). (12)

Hence, no Bell inequality can be violated via such observables [21].
Nevertheless, if the independence condition S(x, y) = SX(x)+SY (y) is not satisfied, then the

‘hidden value’ of the observable f(x, px) for the first particle, i.e., F (λ), will in general depend on
the position of the second particle, via px = ∂xS(x, y). That is, while knowledge of the position
and momentum of the first particle at a given time is sufficient to determine all observables
for the particle at that time, it will not be sufficient to determine them at any later time: one
needs to know the evolution of the joint quantity ∂xS(x, y). Moreover, if one locally perturbs
the position of the second particle, from y to y′, the corresponding perturbation of S(x, y) to
S(x, y′) will typically perturb the value of px in this model. Hence, a kind of nonlocality, or
inseparability, can be associated even with classical configuration space ensembles. We will, by
analogy with Schrödinger’s original discussion [20], refer to this property as ‘entanglement’. This
leads to the following general definition which applies to all configuration space ensembles [10]:

A joint ensemble is entangled with respect to the joint configuration space X×Y if and
only if S(x, y) 6≡ SX(x) + SY (y) (up to some additive constant).

For further details on entanglement for quantum, classical and hybrid systems, see Ref. [10].

3. On models of quantum-classical interactions, consistency requirements, and the
generation of entanglement in some particular models
The task of finding a physically consistent approach for modelling interactions between classical
and quantum systems is highly non-trivial. Thus there are many possible models of classical-
quantum interactions in the literature, and these typically have mathematical or physical
difficulties associated with them [7, 10, 11].
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3.1. Consistency requirements
A number of consistency requirements have been proposed to evaluate whether a particular
approach to classical-quantum interactions provides a viable model or not (see Ref. [10] for a
discussion on various attempts at solving this problem). Almost all of the approaches which have
been proposed run into difficulties with these requirements, but two types of models have been
shown to satisfy them. Consistency of the model based on ensembles on configuration space
is shown in Refs. [10, 12]; for models based on a mean-field approach [22, 23], it follows from
the consistency of the model due to Elze, who showed that his model satisfies the requirements
[24] and therefore that all equivalent mean-field models are consistent. We will not go over
the consistency conditions here but instead refer the reader to these publications and to the
references therein.

The particular approach considered by Bose et al. [1] and Marletto and Vedral [2] is a third
type of model, based on formally embedding a classical system into a diagonal basis of some
quantum system; i.e., equivalent to describing classical-quantum interactions via Koopman-
type dynamics [25, 26, 27]. While this approach has some interesting properties, it has been
shown that it already fails for simple examples, thus some of the basic consistency requirements
proposed in the literature are not satisfied. For example, classical observables remain classical
for a limited class of interactions only, which do not include some of the textbook examples
of experimental setups like the standard Stern-Gerlach measurement interaction [28]. Peres
and Terno have further shown that this approach does not reproduce the correct classical limit
for classical-quantum oscillators, and indeed may result in a runaway increase of the classical
oscillator amplitude [27, 29]. We see then that the approach already runs into serious difficulties
with the simple problem of classical-quantum oscillators, and one would expect even greater
difficulties if one were to fully work out the details of the interaction of quantum matter with a
classical gravitational field using this model (which, to the best of our knowledge, has not been
done yet). Further, predictions made by such models in the limit of perturbative Newtonian
gravity appear to conflict with observational data [30].

3.2. Previous analyses of entanglement in mixed classical-quantum systems
We restrict our discussion of previous analyses of entanglement to the first two models discussed
above as these are known to satisfy consistency requirements. The creation of entanglement for
two quantum subsystems via a classical interaction has already been discussed in both cases.

For the case of mixed classical-quantum systems described by ensembles on configuration
space, it has been shown that one can construct explicit examples in which entanglement between
quantum subsystems is created via an interaction with a classical subsystem [7]. The results
presented in sections 5 and 6 of this paper complement these earlier results with further examples
involving two quantum fields which are entangled via a common classical gravitational field.

For the approach of Elze, detailed calculations are available for the entanglement dynamics
of a system of two qubits and one classical oscillator [31]. In particular, it is shown that the
concurrence remains constant if the two qubits have some initial entanglement and therefore
that no additional entanglement is generated in this model. This result is consistent with the
observation in Ref. [7] concerning the absence of entanglement creation in mean-field approaches,
of which the Elze model is a particular formulation.

These results regarding entanglement creation reflect fundamental differences between the two
models [10]. In particular, in a mean-field approach the classical particle follows a deterministic
trajectory in phase space, rather than being described by an ensemble on configuration space.
Thus, unlike the configuration ensemble approach, the mean-field approach cannot couple
quantum fluctuations into correlated classical observables.

This reinforces a point made earlier, that the possibility of entanglement generation via a
classical mediator depends on the particular approach used to model the interaction between
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classical and quantum systems. While some hybrid models of classical-quantum interactions
seem to exclude entanglement, other models, in particular the formalism of ensembles on
configuration space, allow for it.

4. The coupling of scalar quantum fields to classical gravity in the spherically
symmetric case
The analysis of section 2 for interacting particles can be extended to interacting fields, in
particular to the coupling of scalar quantum fields to classical gravity. A detailed description
of the formalism is given in [10]. Here we consider only the case of spherically symmetric
spacetimes and the corresponding midisuperspace formulation of general relativity known as
spherical gravity. For the case of spherical symmetry, the line element may be written in the
form

gµνdx
µdxν = −N2dt2 + Λ2 (dr +Nrdt)

2 +R2dΩ2, (13)

where the lapse function N and the shift function Nr are functions of the radial coordinate r
and the time coordinate t. Thus the configuration space for the gravitational field consists of
two fields, R and Λ. Spherically symmetric gravity is discussed in detail in a number of papers,
mostly in reference to the canonical quantization of black hole spacetimes [32, 33, 34, 35, 36].

4.1. The case of vacuum gravity
The most direct way of introducing a classical configuration space ensemble for gravity is to start
from the Einstein-Hamilton-Jacobi (EHJ) equation [37, 38]. For the case of spherical gravity
without matter fields, it takes the form HΛR = 0 with

HΛR = − 1

R

δS

δR

δS

δΛ
+

Λ

2R2

(
δS

δΛ

)2

+ V, V =
RR′′

Λ
− RR′Λ′

Λ2
+
R′2

2Λ
− Λ

2
(14)

where we have set c = G = h̄ = 1. In spherical gravity, the momentum constraints of the full
theory are replaced by a single (radial) diffeomorphism constraint, (δS/δR)R′−Λ (δS/δΛ)′ = 0,
where primes indicate derivatives with respect to r [38]. We will require that S be invariant
under diffeomorphisms so that it automatically solves the momentum constraint.

An appropriate ensemble Hamiltonian for spherically symmetric gravity is given by

H =

∫
dr N

∫
DRDΛPHΛR. (15)

where P is a probability density function (which, like S, is assumed to satisfy the diffeomorphism
constraint) and DRDΛ is an appropriate measure [10]. Assuming the constraints ∂S

∂t = ∂P
∂t = 0,

the ensemble Hamiltonian of Eq. (15) leads to two equations for S and P , the EHJ equation of
spherical gravity, ∫

dr N

[
− 1

R

δS

δR

δS

δΛ
+

Λ

2R2

(
δS

δΛ

)2

+ V

]
= 0, (16)

and the continuity equation∫
dr N

[
δ

δR

(
P

1

R

δS

δΛ

)
+

δ

δΛ

(
P

1

R

δS

δR
− P Λ

R2

δS

δΛ

)]
= 0. (17)

4.2. The addition of quantum scalar fields
The ensemble Hamiltonian of a hybrid system where matter is in the form of n minimally coupled
quantized radially symmetric scalar fields φa of mass m is given by

HφΛR =

∫
dr

∫
DφDΛDR P N

[
HC
φΛR +

1

8ΛR2

n∑
a=1

(
δ logP

δφa

)2
]
, (18)
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where

HC
φΛR = HC

ΛR +
n∑
a=1

[
1

2ΛR2

(
δS

δφa

)2

+
R2

2Λ
φ′2a +

ΛR2m2
a

2
φ2
a

]
, (19)

is a purely classical term which now includes the coupling to scalar fields φa and the last term in
Eq. (18) is an additional, non-classical term that must be included in the ensemble Hamiltonian
when the scalar field is quantized (recall we have set h̄ = 1). Assuming again constraints ∂S

∂t =
∂P
∂t = 0, the corresponding equations are

∫
dr N

[
HC
φΛR −

1

2ΛR2

n∑
a=1

(
1√
P

δ2
√
P

δφ2
a

)]
= 0, (20)

and the continuity equation

∫
dr N

[
δ

δR

(
P

1

R

δS

δΛ

)
+

δ

δΛ

(
P

1

R

δS

δR
− P Λ

R2

δS

δΛ

)
−

n∑
a=1

δ

δφa

(
P

1

ΛR2

δS

δφa

)]
= 0. (21)

5. Black hole with two scalar quantum fields in spherical gravity: entangled
solutions
We now apply the formalism presented in the previous section to the case of two quantized scalar
fields, φ1 and φ2, in the space-time of a classical black hole. We assume that the quantum fields
act as a perturbation to the space-time; i.e., that the contribution to the gravitational field from
the mass of the black hole is much larger than that of the quantum matter fields. Under these
circumstances, it is appropriate to search for an approximate perturbative solution of Eqs. (20)
and (21) based on an expansion in powers of φa [39]. The advantage of using such an approach is
that it is possible to solve the equations iteratively, term by term, as is clear from the equations
below. We will use the notation of [39] where S(n) stands for a functional of order (φa)

n. While
the term S(0) can be chosen freely, the higher order terms depend on the previous ones.

To carry out the calculation, it will be convenient to write the expression for P [R,Λ, φ1, φ2]
in the form

P = e−(F (0)[R,Λ]) e−(
∑

n>0
F (n)[R,Λ,φ1,φ2]) =: PA[R,Λ]PB[R,Λ, φ1, φ2]. (22)

PA depends on the gravitational degrees of freedom only while PB depends on both gravitational
and scalar field degrees of freedom. Furthermore, we will require that, up to order (φa)

2,

δPB
δφa

= −δF
(2)

δφa
PB,

δPB
δhij

= −δF
(2)

δhij
PB,

1√
PB

δ2
√
PB

δφ2
a

= −1

2

δ2F (2)

δφ2
a

+
1

4

(
δF (2)

δφa

)2

, (23)

(note the terms on the right of the last equation are of order (φa)
0 and (φa)

2) respectively).
Our ansatz then is that the odd terms vanish, i.e., F (1) = F (3) = 0, so that PB is to a first

approximation a Gaussian functional with respect to the φa. While not an essential assumption,
this choice seems physically reasonable as it implies a solution of the quantum sector that is
in some respect close to the simplest solution for quantum field theory in curved space time
(i.e., the ground state functional). The expression δ2F (2)/δφ2

a needs to be regularized (such a
term appears also in solutions of the Schrödinger functional equation). We will not consider
the regularization problem here, we will simply assume that this term has been regularized
and that it is finite. We will assume δ2F (2)/δφ2

1 = δ2F (2)/δφ2
2 and introduce the notation

CF [R,Λ] := 1
2δ

2F (2)/δφ2
a for this term.
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We now give explicit solutions for S(n) for the first two terms in the expansion. This is already
sufficient to demonstrate the existence of entanglement. The first equation in the expansion is− 1

R

δS(0)

δR

δS(0)

δΛ
+

Λ

2R2

(
δS(0)

δΛ

)2

+ V

+
2∑

a=1

 1

2ΛR2

(
δS(1)

δφa

)2

− CF
8ΛR2

 = 0. (24)

We choose the S(0) that solves the classical EHJ equation for a black hole; i.e, that makes the
terms in square brackets equal to zero. The solution is well known [32, 36]. Thus, to zeroth
order, we are dealing with a black hole space-time. With this choice of S(0), it is straightforward
to find a solution for S(1),

S(1) =

∫
dr
φ1 + φ2

2

√
CF
2

+ C(1)[R,Λ], (25)

where C(1) is an arbitrary functional of the gravitational degrees of freedom. The next equation
in the expansion is

− 1

R

(
δS(0)

δR

δS(1)

δΛ
+
δS(0)

δΛ

δS(1)

δR

)
+

Λ

R2

δS(0)

δΛ

δS(1)

δΛ
+

2∑
a=1

{
1

2ΛR2

δS(1)

δφa

δS(2)

δφa

}
= 0. (26)

The equation is linear in S(2). Except for δS(2)/δφa, all terms are known and they depend on
φ1 + φ2 only, so it is straightforward to solve for S(2). It is given by

S(2) =
1

2

∫
dr (φ1 + φ2)

[
− 1

R

(
δS(0)

δR

δS(1)

δΛ
+
δS(0)

δΛ

δS(1)

δR

)
+

Λ

R2

δS(0)

δΛ

δS(1)

δΛ

]
2ΛR2√
CF /2

+C(2)[R,Λ, φ1 − φ2] (27)

where C(2) = [R,Λ, φ1−φ2] is a quadratic but otherwise arbitrary functional of φ1−φ2. Notice

that in general S(2) 6= S
(2)
1 [R,Λ, φ1] + S

(2)
2 [R,Λ, φ2], which implies the entanglement of φ1 and

φ2, as per the discussion in section 2.3. This is the main result of this section.
The next term in the expansion is discussed in Ref. [40]. A perturbative solution requires

also solving the continuity equation, Eq. (20), to the same order (the relevant equations are
given in Ref. [40]). We do not carry out this step here, as the main purpose of the exercise,
which is to show the existence of entangled states, is already accomplished with the solution of
the EHJ equation.

6. The emergence of time and entanglement
Time did not play a role in the formalism used in the previous section. However, one would
like to see whether entanglement can arise when such a hybrid system evolves. This is possible:
since the gravitational field is treated classically, one may introduce a well defined gravitational
time and derive a time-dependent equation for the quantum fields. Although a solution S[Λ, R]
of Eq. (16) is a functional of Λ and R, the two-dimensional space-time of spherical gravity can
always be reconstructed by means of the rate equations [10, 33]

Ṙ = −N
R

δS

δΛ
+NrR

′, Λ̇ = −N
R

δS

δR
+

Λ

R2

δS

δΛ
+ (ΛNr)

′ , (28)

where N is the lapse function and Nr is the shift function in Eq. (13). The introduction
of a gravitational time in this way has been discussed in the context of the semi-classical
approximation to quantum geometrodynamics [38, 41, 42]).
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We once more set S = SA[R,Λ] + SB[R,Λ, φa], P = PA[R,Λ]PB[R,Λ, φa], but instead of
a perturbative expansion, we introduce a suitable physical approximation. We choose SA and
PA to be black hole solutions of the EHJ [32, 36] and continuity equations. Then, defining
Ψ[R,Λ, φa; t) :=

√
PB exp (iSB) and assuming a weak fields limit (i.e., δSA/δR >> δSB/δR and

δSA/δΛ >> δSB/δΛ, see [40]), we derive the non-linear Schrödinger functional equation

ih̄Ψ̇ = ĤfΨ =

∫
dr

[
2∑

a=1

{
1

2ΛR2

δ2

δφ2
a

+
R2

2Λ
(φ′a)

2 +
ΛR2m2

2
φ2
a

}
+ ∆

]
Ψ, (29)

where the non-linear correction term ∆ is given by

∆ = − 1

R

δSB
δR

δSB
δΛ

+
Λ

2R2

(
δSB
δΛ

)2

, (30)

which may also be written in terms of Ψ and Ψ̄. The term ∆ is a new “correction” term
that distinguishes the time evolution as evaluated by quantum field theory in curved space-time
(where this term is absent) from the time evolution in the theory of ensembles on configuration
space. We can now consider the following question: suppose that initially the two quantum
fields φ1 and φ2 are not entangled. Can this non-linear time-dependent functional Schrödinger
equation lead to their entanglement? The crucial point here is that there is no reason to believe
that the term ∆ will preserve non-entanglement of states, as it is quadratic in the functional
derivatives of SB[R,Λ, φ1, φ2] with respect to R and Λ. One can argue as follows. Consider
calculating the time evolution of the wavefunctional Ψ after an infinitesimally small time interval
δt. If the initial state is not entangled so that

SB[R,Λ, φ1, φ2; t = 0) = S1
B[R,Λ, φ1; t = 0) + S2

B[R,Λ, φ2; t = 0), (31)

the initial ∆ will have in general mixed terms in φ1 and φ2 which will generically lead to
entanglement, so that one would expect at time δt that

SB[R,Λ, φ1, φ2; t = δt) 6= S1
B[R,Λ, φ1; t = δt) + S2

B[R,Λ, φ2; t = δt). (32)

This suggests then that the interaction of φ1 and φ2 via a common gravitational field will in
general create entanglement between them.

7. Discussion
Our main result is that entanglement between quantum fields may be generated via a classical
gravitational interaction (section 6). This result is based on the configuration ensemble
formalism (which is able to describe the coupling of quantum and classical systems more
generally), with explicit calculations made for the case of black-hole spacetimes in spherical
gravity under a weak-field approximation. The effective evolution equation for the quantum
fields, Eq.(29), is defined with respect to a gravitational time.

The above result strongly supports the arguments made in [7], that observation of
entanglement per se, in the experiments proposed by Bose et al. and by Marletto and Vedral
[1, 2], does not necessarily imply that gravity is nonclassical in nature. Such an observation can
only rule out some classical models of gravity, such as Koopmanian and mean-field models [7],
but not all. In particular, entanglement appears to be ubiquitous in the configuration-ensemble
model, as exemplified by the spherical gravity solutions in section 5 and the approximate
evolution equation in section 6.
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