Evidence of identical super deformed bands in N=112 isotones

Neha Sharma* and H.M. Mittal

Dr. B.R. Ambedkar National Institute of Technology, Jalandhar-144011, INDIA

Introduction

The first discrete line super deformed states in mass A=150 were found in 152 Dy [1]. With the discovery of several other examples of super deformation in neighboring nuclei [2-6], it became apparent that some properties of these bands differed considerably. In particular, the dynamic moment of inertia $\vartheta^{(2)}$ and excitation frequencies were seen to vary from one example to the next. It is expected that excited super deformed bands would be built in particle hole excitation and it is not clear how these particle excitations should affect the properties of super deformed bands. Firstly, excited super deformed bands were observed in A=150 mass region mainly in 150 Gd and 151 Tb [7]. In this paper, we studied the super deformed bands in ¹⁹¹Au, ¹⁹²Hg and ¹⁹³Tl (N=112 isotones). These super deformed bands are seen to have similar properties to the observed super deformed bands in their Z+1, N=112 isotones. In particular, the transition energies are almost identical.

Calculation

All super deformed bands are $\Delta I=2$ bands, and the spin differ by 2 (units of \hbar). From classical mechanics, it can be shown that

$$\vartheta^{(2)} = \vartheta^{(1)} + \omega \frac{d\vartheta^{(1)}}{d\omega}$$

If $\vartheta^{(1)}$ does not vary with ω , then
 $\vartheta^{(1)} = \vartheta^{(2)}$

and

by using above equations and data taken from Table of super deformed nuclear bands and fission isomers [8], we calculated the moment of inertia and rotational frequency for superdeformed bands in N=112 isotones ¹⁹¹Au (1st band) and ¹⁹²Hg (1st band) and other super

 $\vartheta^{(2)} = \frac{\Delta I}{\Delta \omega} = \frac{2}{\omega_2 - \omega_1}$

deformed bands in their Z+1, N = 112 isotones 192 Hg (3rd band) and 193 Tl (1st band).

Results and Discussion

A plot of $\vartheta^{(2)}$ for the 1st super deformed band in ¹⁹¹Au [Fig. 1] gives a curve which closely follows the $\vartheta^{(2)}$ curve traced out by the 1st super deformed band in ¹⁹²Hg. Also the 2nd super deformed band in ¹⁹¹Au follows the $\vartheta^{(2)}$ curves traced out by the 1st super deformed band in ¹⁹¹Au and 1st super deformed band in ¹⁹²Hg. Similarly, in ¹⁹²Hg (3rd super deformed band) has $\vartheta^{(2)}$ values which resemble those of observed in ¹⁹³Tl (1st SD band) and ¹⁹²Hg (1st SD band) [see. Fig. 2].

Fig.1 The dynamic moment of inertia $\vartheta^{(2)}$ (\hbar^2 /MeV) as a function of rotational frequency for 1st super deformed band in ¹⁹¹Au (line with box symbols) together with $\vartheta^{(2)}$ for 2nd super deformed band in ¹⁹¹Au (triangle symbol) and 1st super deformed band in ¹⁹²Hg(starsymbol).

Avilable online at www.sympnp.org/proceedings

Fig.2 The dynamic moment of inertia $\vartheta^{(2)}$ (\hbar^2 /MeV) as a function of rotational frequency for 1st band in ¹⁹²Hg (box symbol) and 1st band in ¹⁹³Tl (triangle symbol) and 3rd band in ¹⁹²Hg (star symbol).

These remarkable similarities are further illustrated when direct comparison between the γ -ray energies are made [see Fig. 3] and Fig. 4 shows the differences between the γ ray energies observed in the identical bands in the pairs of nuclei ¹⁹¹Au - ¹⁹²Hg and ¹⁹²Hg -¹⁹³Tl. It is approximately zero for ¹⁹¹Au - ¹⁹²Hg pair and close to zero for ¹⁹²Hg-¹⁹³Tl pair.

Fig.3 The differences in γ -ray energies between the bands in 191 Au (1st SD) and 192 Hg (1st super deformed)

*Electronic address: nsharma.nitj@gmail.com

Fig.4 The differences in γ -ray energies between the bands in ¹⁹²Hg (3rd super deformed) and ¹⁹³Tl (1st super deformed).

This is clearly seen by considering two super deformed bands in ¹⁹¹Au and ¹⁹²Hg that there are no excited super deformed bands in N = 112 isotones. In summary, no excited super deformed bands have been observed in ¹⁹¹Au and ¹⁹²Hg. The dynamic moment of inertia and the transition energies for the bands were found to be remarkably close to those observed in super deformed bands in their Z+1, N = 112 isotones.

References

- P. J. Twin et al., Phys. Rev. Lett. 57, 811 (1986).
- [2] V. M. Strutinsky, Nucl. Phys. A95, 420 (1967).
- [3] W. Nazarewicz et al., Nucl. Phys. A503, 285 (1989).
- [4] J. Dudek and W. Nazarewicz, Phys. Rev. C 31, 298 (1985).
- [5] M. A. Delaplanque et al., Phys. Rev. Lett. 60, 1626 (1988).
- [6] M. A. Delaplanque et al., Phys. Rev. C 39, 1651 (1989).
- [7] P. Fallon et al., Phys. Rev. Lett. 64, 1650 (1990).
- [8] Nuclear Data Sheets 97, 241 (2002).

Avilable online at www.sympnp.org/proceedings