
FERMILAB-PUB-20-028-T
MCNET-20-06

Numerical resummation at full color in the strongly ordered soft gluon limit
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We present a Monte-Carlo approach to soft-gluon resummation at full color which can be used to
improve existing parton shower algorithms. At the single emission level, soft-collinear enhancements
of the splitting functions are explicitly linked to quadratic Casimir operators, while wide angle single-
soft enhancements are connected to non-trivial color correlators. For simplicity, we neglect the
contribution from Coulomb interactions. We provide a proof-of-concept implementation to compute
non-global event shapes at lepton colliders.

I. INTRODUCTION

Soft-gluon resummation is one of the most important tools in perturbative QCD, as it allows to systematically
and fairly straightforwardly compute radiative corrections to all orders for a large class of observables [1]. The effect
of gluon radiation is typically computed for single or multiple emissions, and recoil effects are approximated at the
same level.1 If the observable is simple, all-order corrections can be obtained by exponentiating these results, and
the remaining obstacle is posed by color coherence, which may lead to a soft anomalous dimension in matrix form.
A general framework for resumming event shapes based on this concept was developed at next-to-leading logarithmic
(NLL) accuracy [3–6] and at next-to-next-to-leading logarithmic accuracy [7, 8].

Non-global observables require a more sophisticated treatment, which was first discussed in the context of e+e− and
DIS event shape resummation [9, 10] using a Monte Carlo approach at leading color accuracy [9]. A corresponding
evolution equation was derived [11], which enabled the inclusion of subleading color effects [12, 13]. Numerical results
have subsequently been computed for example for inter-jet energy flows [14] and for the hemisphere mass distribution in
e+e− →hadrons [15]. Non-global observables have also been investigated using methods of effective field theories [16].

Non-global logarithms are particularly important in the context of inter-jet radiation and in the presence of a
jet veto [17, 18]. In the context of Large Hadron Collider phenomenology they have therefore received considerable
attention [19–23]. Several approaches have been suggested for numerical resummation, ranging from color-corrected
parton showers [24, 25] over full-color parton showers [26–28] to evolution at the amplitude level [29, 30]. While color-
corrected parton showers can exhibit good numerical convergence, the evaluation of the color matrix elements becomes
prohibitively expensive at high parton multiplicity, and therefore the approach cannot be used beyond a very limited
number of emissions. Full-color parton showers and amplitude-level evolution on the other hand will typically suffer
from a slow rate of convergence in the Monte-Carlo simulation. In order to address these problems, we propose a novel
approach. Using color conservation, the squared soft-gluon current is re-arranged into a soft-collinear contribution
proportional to the quadratic Casimir operator, and a collinearly suppressed correction term proportional to the color
correlators. Based on the independence of color and kinematics operators, the color matrix elements are integrated
with Monte-Carlo methods at each step of the evolution. This allows to reach good precision on the color coefficients,
while limiting the runtime of computer simulations at high multiplicity. Appendix A shows the equivalence of our new
algorithm and the technique in [3–6] for global observables. We focus our attention on the real components of the soft
anomalous dimension matrix, and on improving their numerical convergence. This is sufficient for the resummation
of observables at lepton colliders. Upon including contributions from Coulomb interactions, our new technique could
be used to extend the approach of [9] to full color accuracy at hadron colliders. A possible algorithm has already been
proposed in [24, 25].

This manuscript is organized as follows: Section II discusses the resummation formalism, and Sec. III introduces
the phase-space mapping needed to implement it away from the exact soft limit. Section IV presents our Monte-
Carlo technique to compute the color matrix elements. The difference between full color and improved leading color
evolution used in standard parton showers is analyzed in Sec. V by studying the light jet mass and narrow jet
broadening distributions in e+e− →hadrons. Section VI contains an outlook.

1 This is known to cause potentially sizable differences between the results from parton showers and analytic resummation [2].
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II. RESUMMATION FORMALISM

Soft-gluon resummation is typically performed for a given, fixed number of hard partons, generated at scales that
are widely separated from the scale of additional soft radiation. These partons are assumed to be unchanged after the
emission of a soft gluon, leading to the notion of Wilson lines and eventually the exponentiation of the soft anomalous
dimension matrix. We will adopt a different approach, based on the physical picture in the strongly ordered soft limit.
By the very definition of strong ordering, each radiated soft gluon must be treated as a new Wilson line for subsequent
gluon emissions. This leads to a different structure of soft-gluon insertion operators than in analytic approaches, where
the soft anomalous dimension matrices exponentiate in a simple fashion. We will discuss the difference to the limiting
case in Appendix A.

We denote the Born matrix element for n partons by |Mn〉 and the color insertion operator for parton i as Ti [1].
The approximate n+ 1-parton squared matrix element in the soft limit then reads

〈mn+1|mn+1〉 = 〈Mn|Γn(1)|Mn〉 , (1)

where we have defined the squared n-parton soft current

Γn(Γ) = −
n∑
i=1

n∑
j=1
j 6=i

Ti Γ Tj wij , with wij =
sij

siqsjq
. (2)

The invariants sij are defined in terms of the parton momenta, pi, as sij = 2pipj . Since |mn+1〉 is an n + 1-parton
matrix element, Γ is defined in a higher dimensional color space than Γn. Equation (1) generalizes to k+ 1 emissions
as

〈mn+k+1|mn+k+1〉 = 〈mn+k|Γn+k(1)|mn+k〉 = 〈Mn|Γn(Γn+1(...Γn+k+1(Γn+k(1))...))|Mn〉 . (3)

Note that the complexity of Γn increases rapidly with the number of partons, such that the evaluation of color factors
encoded in Eq. (3) becomes increasingly cumbersome. The evolution of the parton ensemble is governed by the
differential branching probability

dσn+k+1

σn+k
= dΦ+1 8παs

〈mn+k|Γn+k(1)|mn+k〉
〈mn+k|mn+k〉

, (4)

where dΦ+1 = d4q δ(q2)/(2π)3 is the four-dimensional differential phase-space element for the emission of the gluon
with momentum q. We parametrize this phase space as

dΦ+1 =
1

16π2
dκ2ij dz̃i

dφij
2π

J(κ2ij , z̃i, φij,m) . (5)

The individual variables are given by (see also Fig. 1)

κ2ij =
siqsjq
sij

, z̃i =
sij

sij + sjq
,

2 cosφij =

√
snisnq
siq

√
snjsnm
sjm

(
sim
snjsnq

+
sjq

snisnm
− sij
snmsnq

− smq
snisnj

)
,

(6)

where n = K̃ + p̃j − (K̃ + p̃j)
2/(2 p̃i(K̃ + p̃j)) p̃i is a light-like reference vector, defined by the sum, K̃ + p̃j , of all

momenta except the emitter. The momentum pm is given by pm = K − K2/(2Kn)n. Here and in the following,
a tilde denotes momenta before the emission of the soft gluon. The precise phase-space mapping and the Jacobian
J(κ2, z̃, φ) associated to the variable transformation are given in Sec. III. Note that the inverse mapping leads to the
same n + k-parton momentum configuration for any choice of j and m, as long as i and q are identical. This is an
important feature needed for the rearrangement of color insertion operators in Sec. II.

Equation (4) describes resolved real-emission corrections. A standard choice for parton-shower algorithms is to
define a no-branching probability, Π(κ2), such that virtual and unresolved real-emission corrections are defined in
terms of the resolved real-emission corrections by means of unitarity. This approach should in principle be improved
by including Coulomb phases. We will postpone this problem to a future publication. Instead we focus our attention
on a suitable rearrangement of color and kinematics factors in the real components, in order to improve the numerical
convergence of the simulation. While this is not sufficient for arbitrarily complicated observables, it constitutes an
important step towards a complete full-color resummation algorithm.
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We define the no-branching probability such as to restore unitarity∫ Q2

t

dκ2ij
1

σn+k

∫
dσn+k+1

dκ2ij
Π(κ2ij , Q

2,1) = 1−Π(t, Q2,1) . (7)

This equation has the solution

Π(t, Q2,Γ) =
n∏
i=1

n∏
j=1
j 6=i

Πij(t, Q
2,Γ) . (8)

where

Πij(t, Q
2,Γ) = exp

{
−
∫ Q2

t

dκ2ij
κ2ij

∫
dz̃i

∫
dφij
2π

J(κ2ij , z̃i, φij)
αs
2π

〈mn+k|Ti Γ Tj |mn+k〉
〈mn+k|mn+k〉

}
. (9)

The squared n-parton soft current, Eq. (2) has a form which is not particularly suitable for implementation in
numerical simulations. We use the partial fractioning approach of [31] to rearrange it as

Γn(Γ) = −1

2

n∑
i=1

n∑
j=1
j 6=i

Ti Γ Tj(P
i
j + P ji ) = −1

2

n∑
i=1

n∑
j=1
j 6=i

(
Ti Γ Tj + Tj Γ Ti

)
P ij , (10)

where we have defined the splitting operator

P ij =
1

siq

2 sij
siq + sjq

. (11)

Note that in general TiΓTj will not equal TjΓTi, hence we cannot combine the two terms on the right-hand side of
Eq. (10). We use color conservation to rewrite them as

Γn(Γ) =
1

n− 1

n∑
i=1

n∑
j=1
j 6=i

(
Ti Γ TiP

i
j +

1

2

n∑
k=1
k 6=i,j

(
Ti Γ Tk + Tk Γ Ti

)
P ij −

n− 2

2

(
Ti Γ Tj + Tj Γ Ti

)
P ij

)
. (12)

Combining the second and the last term in parentheses, we obtain 2

Γn(Γ) =
1

n− 1

n∑
i=1

n∑
j=1
j 6=i

(
Ti Γ TiP

i
j +

1

2

n∑
k=1
k 6=i,j

(
Ti Γ Tk + Tk Γ Ti

)
P̃ ijk

)
, (13)

where we have defined the splitting operator [32]

P̃ ijk = P ij − P ik . (14)

Note that P̃ tends to zero in the iq-collinear limit. Equation (13) should therefore be viewed as a rearrangement of
Eq. (10), where the collinearly enhanced terms are made explicit, and the remainder is singly soft enhanced only.
While additional rearrangements would allow to achieve a further kinematical suppression by combining multiple
operators as P̃ ijk + P̃ jil + P̃ kli + P̃ lkj , such rearrangements will produce additional terms proportional to Ti Γ Ti. We

find Eq. (13) to be the most suitable form for a Monte-Carlo implementation. Examples for its relation to analytically
known sown soft insertion operators are given in App. B.

2 In the special case of Γ = 1, i.e. at fixed order, we can simplify Eq. (13) using the identity T2
i = Ci. This relation was used to reformulate

the two-loop soft function in [32].
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φij

~KT

~kTpi

q

pj

K

− ~KT

−~kT

n l

FIG. 1: Sketch of the kinematics mapping described in Sec. III. The emitting parton is i, the reference momentum for definition
of the azimuthal angle is j. The emitted gluon carries momentum q. The forward and backward light-cone momenta are given
by l and n.

III. KINEMATICS MAPPING

In order to implement Eq. (13) in a numerical simulation, the operator P̃ ijk must be well defined. When evaluating

the difference between P ik and P ij , we assume that the underlying Born configurations are either identical in both
terms, or that their difference gives rise to sub-leading power corrections. Since the latter may be difficult to prove in
the general case, we use a kinematics mapping, which ensures that the underlying Born state is the same for identical
i and q. Such a mapping is defined, for example in [33–38], and is schematically depicted in Fig. 1. The longitudinal
recoil generated in the emission of the soft gluon q is absorbed by all partons except the emitter. Due to our choice
of evolution and splitting variables, the mapping depends non-trivially on the azimuthal angle. In order to construct
the momenta, we first define the light-like vectors

l =
1 + sjK/γ̃

1 + sjK/γ
p̃iq , n =

1

1 + siq/γ

(
K̃ − K̃2

γ
p̃iq

)
, where γ̃ = 2K̃p̃iq = Q2 − K̃2. (15)

The rescaled invariant γ is given by

γ =
1

2

((
Q2 − K̃2 − siq

)
+

√
(Q2 − K̃2 − siq)2 − 4K̃2siq

)
. (16)

We can now parametrize the momenta as

pµi = z lµ +
~k2T
zγ

nµ + kµT , qµ = (1− z) lµ +
~k2T

(1− z)γ
nµ − kµT , (17)

and

pµj = xnµ +
~K2
T

xγ
lµ −Kµ

T , Kµ = (1− x)nµ +
K̃2 + ~K2

T

(1− x)γ
lµ +Kµ

T . (18)

Note that x and KT are invariant under the mapping, as the momenta pj and K are completely determined by a boost

of p̃j and K̃ along the direction of n. The variables x and ~K2
T can therefore be computed using the Born kinematics.

Solving Eqs. (6) for z and ~k2T then yields

z =
z̃iC + (1− z̃i)/C + 2 cos2 φij − 1

(C − 1)2/C + 4 cos2 φij
+ sgn(cosφij)

√
(C + 1)2/C z̃i(1− z̃i)− sin2 φij

(C − 1)2/C + 4 cos2 φij
,

~k2T = κ2ij
z̃i

1− z̃i
z(1− z) , where C =

(1− z̃i)x2
z̃i ~K2

Tκ
2
ij

.

(19)

The phase-space boundaries are given by

siq ≤ Q2 − K̃2 and z <
[

1 + sgn(cosφij)
√
~K2
Tκ

2
ij/(xγ)

]−1
. (20)

The Jacobian introduced in Eq. (5) is given by

J(κ2ij , z̃i, φij) =

√
(Q2 − K̃2 − siq)2 − 4K̃2siq

Q2 − K̃2

2z(1− z)
(
z(1− z)x2γ2 + ~K2

T
~k2T
)

z(1− z)xγ
(
zsjq + (1− z)sij

)
− ~K2

T
~k2T

κ2ij
~k2T

. (21)
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Coefficient Analytic value / Nc MC result / Nc

= F c
abTr

[
T aT bT c

]
CF

CA

2
1.9998(2)

= F d
aeF

c
ebTr

[
T aT bT cT d

]
CF

(
CA

2

)2

2.9995(4)

= F e
afF

d
fgF

c
gbTr

[
T aT bT cT dT e

]
CF

(
CA

2

)3

4.4996(8)

= F e
agF

f
gbF

f
chF

e
hdTr

[
T aT bT cT d

]
CF

(
CA

2

)3 (
1 +

2

N2
c

)
5.499(1)

= F d
bcTr

[
T aT bT aT cT d

]
−CF

CA

2

(
CA

2
− CF

)
-0.3332(3)

= F e
bfF

d
fcTr

[
T aT bT aT cT dT e

]
−CF

(
CA

2

)2 (
CA

2
− CF

)
-0.5001(5)

= F e
bfF

d
fcTr

[
T aT bT cT aT dT e

]
−CF

(
CA

2

)2 (
CA

2
− CF −

CA

N2
c

)
0.5007(4)

= F e
cdTr

[
T aT bT cT aT bT dT e

]
CF

CA

2

(
CA

2
− CF

)
(CA − CF ) 0.5556(2)

= F e
cdTr

[
T aT cT bT dT aT bT e

]
CF

CA

2

((
CA

2
− CF

)
(CA − CF )− C2

A

2N2
c

)
-0.4446(2)

= F e
bdTr

[
T aT bT cT aT cT dT e

]
CF

CA

2

(
CA

2
− CF

)2

0.0558(3)

= Tr
[
T aT bT aT b

]
−CF

(
CA

2
− CF

)
-0.2221(1)

= Tr
[
T aT bT cT aT bT c

]
CF

(
CA

2
− CF

)
(CA − CF ) 0.3701(1)

= Tr
[
T aT bT cT dT aT bT cT d

]
−CF

((
CA

2
− CF

)
(CA − CF )

(
3

2
CA − CF

)
− C3

A

4N2
c

)
-0.1729(1)

TABLE I: Selected color coefficients of squared amplitudes in processes with two quarks at the leading order, normalized to the
common overall factor of Nc. The colored lines in the diagrams represent gluons, while the black circle represents the quark
loop. Numerical results have been obtained using the algorithm in Sec. IV and are given for Nc = 3.

The fact that the inverse of this mapping yields the same underlying Born kinematics for all configurations where the
emitting particle is parton i allows to rearrange the soft anomalous dimension matrix Γ into Eq. (13) without the
need for an additional reweighting away from the exact soft limit.

IV. COLOR ALGEBRA

The color insertion operators Ti . . .Tj in Eq. (13) are computed using Monte-Carlo summation in the color-flow
basis. In the following, we denote the emission of a gluon off parton i by the color branching (ci, c̄i)→ (c′i, c̄

′
i)(c
′
g, c̄
′
g),

and the absorption on parton j by the color recombination (cj , c̄j)(cg, c̄g) → (c′j , c̄
′
j). We choose to sample the color

configuration in the emission according to the quadratic Casimir operator, T2
i . This can be achieved as follows
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1. If the emitter is a quark or antiquark, assign a weight CF to the emission

(a) With probability (Nc − 1)/(2CF ) generate an octet configuration:
if i is a quark / antiquark, choose a new color c 6= ci c 6= c̄i
assign the flow as (ci, 0)→ (c, 0), (ci, c) / (0, ci)→ (0, c), (c, ci)

(b) With probability (1/Nc)
2/(2CF ) generate a singlet configuration with different colors:

if i is a quark / antiquark, choose a new color c 6= ci / c 6= c̄i,
set the color indices of the gluon to (c, c)

(c) With probability (1 − 1/Nc)
2/(2CF ) generate a singlet configuration with identical colors:

if i is a quark / antiquark, set the color indices of the gluon to (ci, ci) / (c̄i, c̄i)

2. If the emitter is a gluon

(a) If i is in an octet state, ci 6= c̄i, choose a new color c and assign the emission a weight Nc

(b) If i is in a singlet state, ci = c̄i, choose a new color c 6= ci and assign the emission a weight Nc − 1

(c) Choose a random permutation, either (ci,1, ci,2)→ (ci,1, c), (c, ci,2) or (ci,1, ci,2)→ (c, ci,1), (ci,2, c)

The complete operator Ti . . .Tj is restored by sampling over all possible recombinations of the intermediate gluon
upon insertion of Tj . The recombination algorithm proceeds as follows

1. If the absorber is a quark or antiquark

(a) If j is a quark and cj = c̄g or c̄g = cg, set the merged color to (cg, 0)

(b) If j is an antiquark and c̄j = cg or cg = c̄g, set the merged color to (0, c̄g)

2. If the absorber is a gluon

(a) If cg = c̄j and c̄g = cj , assign weight 2 and set the merged color randomly to either (cj , c̄g) or (cg, c̄j)

(b) Else if cg = c̄j / c̄g = cj , set the merged color to (cj , c̄g) / (cg, c̄j)

Note that arbitrarily many insertions may happen before the gluon emitted by Ti is annihilated via Tj , as required
by Eq. (13). The correctness of the above algorithm follows directly from the decomposition of the generators and the
structure constants of SU(Nc) in the color-flow basis [39]. In the context of numerical resummation it is important to
note that the color matrix elements in Eq. (9) can be evaluated as a Monte-Carlo integral with more than one point
per event. This can be used in practice to improve the convergence of the overall simulation.

We validate the above algorithm numerically by computing the color coefficients for gluon webs within a quark loop.
They can be systematically reduced to maximally non-abelian coefficients, which are related to the quadratic, quartic
and higher-point Casimir operators. This leaves a small number of non-trivial intermediate gluon web configurations,
which need to be evaluated. Table I lists some of these configurations up to four gluon insertions and compares the
analytic results to Monte-Carlo predictions from our algorithm at high statistical accuracy. Note in particular, that
the fourth coefficient in the table is related to the quartic gluon Casimir operator, leading to an additional contribution
of 2/N2

c which arises from double singlet gluon exchange between two gluons.

V. NUMERICAL RESULTS

In this section we apply our new algorithm to e+e− → jets at the Z pole,
√
s = 91.2 GeV. We use a two-loop

running coupling defined by αs(Q
2) = 0.118, and the quark mass thresholds mc = 1.3 GeV and mb = 4.75 GeV. We

cross-check our predictions using two entirely independent Monte-Carlo implementations based on [41], which was
validated independently against [42] at high precision. Our simulations do not include collinear contributions to the
splitting functions, and they are carried out at the parton level. They can therefore not be compared directly to
experimental data. However, they serve as a first proof-of-concept that parton shower resummation at full color can
be performed in a numerically stable fashion that enables its application to relevant physics problems in current or
past collider experiments.

We follow the approach in [26] and terminate the full color evolution at a scale tc,FC that is insignificantly larger
than the typical parton-shower infrared cutoff of

√
tc ∼ 1 GeV. All distributions presented here are generated with√

tc,FC = 3 GeV. We claim that this is not a problem for practical applications, since hadronization effects typically
influence numerical predictions up to a scale of the order of the b-quark mass, and the details of the fragmentation
model have a much larger impact on measurable distributions in this range than the details of the parton shower. In
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FIG. 2: Durham kT -jet resolution scales [40] in e+e− →hadrons at
√
s = 91.2 GeV. We compare predictions from two

independent implementations of our algorithm, labeled “Code 1” and “Code 2”. The infrared cutoff is set to
√
tc =

√
tc,FC =

3 GeV.

order to provide a smooth transition to improved leading-color evolution below tc,FC , we choose a leading color state
according the probability for a leading-color matrix element to have produced the partonic final state at scale tc,FC .
This is similar to how leading-color configurations are chosen in matching and merging techniques [43, 44].

Figure 2 shows a comparison of predictions for the Durham kT -jet rates [40] in e+e− →hadrons at
√
s = 91.2 GeV.

Our two independent numerical implementations of the resummation are statistically compatible and show good
convergence, even in regions of large kT and for higher jet multiplicity. To our knowledge, this is the first time that a
result for the 4→ 5 and 5→ 6 jet rate has been computed at full color and based on a parton-shower like algorithm.
Figure 3 displays numerical predictions at

√
tc = 1 GeV for the Durham 2 → 3 and 3 → 4 jet scales, and for two

non-global shape observables, the narrow jet broadening, BN , and the light jet mass, ML. We find that the impact of
full color evolution on all these observables is less than 10%, which agrees with the intuitive notion that corrections to
improved leading color evolution should be of order 1/N 2

c . This can be taken as a strong indication that the typically
excellent agreement of modern parton-shower predictions with measured non-global shape observables is not entirely
accidental. A variant of the Durham n → (n + 1) jet scales has been resummed recently at NLO + NLL′ accuracy
in [45], including a quantification of prospective subleading color contributions. Our results are compatible with the
smallness of the effects observed there, in particular when noting that the results in [45] are matched to a fixed order
NLO calculation relative to the Born process while we present pure parton shower results here.

VI. CONCLUSIONS

We have presented a novel Monte-Carlo method for soft-gluon resummation that allows to generate parton-level
events and can be incorporated into existing parton showers in order to improve their formal precision. Along with this
manuscript, we provide a proof-of-concept implementation that can be used for numerical studies in e+e− →hadrons.
We find that the impact of full-color evolution on the Durham kT -jet scales, on narrow jet broadening, and on the light
jet mass agrees with the naive expectation that corrections to existing parton-shower approaches should be suppressed
by O(1/N2

c ). It will be interesting to investigate the impact on dedicated observables, which probe non-trivial color
correlations, as for example in [46]. In this work we have neglected Coulomb interactions. A future study will address
the feasibility of including these contributions as well.
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FIG. 3: Predictions for Durham kT -jet resolution scales (top), narrow jet broadening (bottom left) and light jet mass (bottom
right) in e+e− → hadrons at

√
s = 91.2 GeV. The infrared cutoffs are set to

√
tc = 1 GeV and

√
tc,FC = 3 GeV. Results using

an improved leading color approximation are shown in red, results from the full color resummation are in blue.
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Appendix A: Relation to analytic resummation

A general framework for resumming a large class of observables has been developed in the context of the program
Caesar [3–6]. This formalism, in particular including the computation of color structures for in principle arbitrary
multiplicities, was automated in [47] and recently applied to resummed calculations in e+e− → jets [45, 48]. In this
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formalism, color-correlation effects are captured by a soft anomalous dimension matrix3, defined as Γn+k(Γ) = Γn(Γ).
We are thus left with the following difference in Γn+1

∆Γn+1(Γ) = Γn(Γn+1(Γ))− Γn(Γn(Γ)) = −
n∑

i,k=1

n∑
j=1
j 6=i

Ti

(
Tn+1Γ Tk + TkΓ Tn+1

)
Tj wn+1k wij . (A1)

We rewrite this as

∆Γn+1(Γ) = −
n∑
i=1

n∑
j=1
j 6=i

n∑
k=1

n∑
l=1
l 6=k

TiTk∆(kl)
n (Γ) TlTj wkl wij , (A2)

where

∆(kl)
n (Γ) =

Tn+1Γ Tl

TkΓ Tl
Xkl
n+1q +

TkΓ Tn+1

TkΓ Tl
Xkl
n+1q , (A3)

and where we have defined the cross ratio

Xkl
ij =

wik
wkl

=
sikslj
sijskl

. (A4)

Note that Xkl
ij does not scale if any of the particles becomes soft. We can parametrize it in terms of the rapidity

difference ∆η
(ij)
kl and azimuthal angle difference ∆φ

(ij)
kl with respect to the light-cone directions defined by pi and pj ,

cosh ∆η
(ij)
kl =

siksjl + silsjk√
siksjk silsjl

, cos ∆φ
(ij)
kl =

siksjl + silsjk − sijskl√
siksjk silsjl

, (A5)

such that

Xkl
ij =

cosh ∆η
(ij)
kl − sinh ∆η

(ij)
kl

cosh ∆η
(ij)
kl − cos ∆φ

(ij)
kl

. (A6)

Averaging over the azimuthal angle gives

X̄kl
ij =

1

2π

∫ 2π

0

d∆φ
(ij)
kl Xkl

ij = coth ∆η
(ij)
kl − 1 . (A7)

For the global, recursively infrared and collinear safe observables considered in [3–6], the region ∆ηiq � 1 is completely
described by implementing the collinear evolution of gluon webs to the desired accuracy, which only depends on (the
quadratic color Casimir operator of) the original hard leg. The remaining groups of gluons have 1/∆η ≈ αs ln(1/ε)�
1. In this case, X̄kl

ij vanishes, and we obtain
∫

dφ∆n+1(Γ)→ 0. We hence correctly reproduce the picture of [6]: The
radiation of an additional soft gluon can either be computed in the collinear limit, or it can be described using the
original soft anomalous dimension, ignoring the change in color flow arising from previous soft-gluon insertions. A
similar description of this effect is obtained in the coherent branching formalism [49].

Appendix B: Explicit examples of insertion operators

In this appendix we demonstrate the application of the soft-gluon insertion formula, Eq. (13) using two simple
examples. The two-parton case being trivial, we investigate soft insertions into three- and four-parton matrix elements,
as they occur, for example, in e+e− → hadrons or h → gg decays. Due to crossing invariance of the hard matrix
elements, these examples also cover the highly relevant cases of charged and neutral current Drell-Yan and Higgs-boson
production at hadron colliders, as well as charged and neutral current Deep Inelastic Scattering.

3 Unlike our definition of Γn, the soft anomalous dimension in [3–6] does not contain any collinear logarithms, and the evolution variable
used there is single-logarithmic. This does, however, not affect the difference in the color structure, which is the focus of our analysis
here.
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1. Three radiators

All elements of the color algebra can be expressed in terms of the quadratic Casimir operators T2
1, T2

2 and T2
3 by

means of color charge conservation, T1 + T2 + T3 = 0. The remaining insertion operators can be written as

T1T2 =
1

2
(−C1 − C2 + C3) ,

T1T3 =
1

2
(−C1 + C2 − C3) ,

T2T3 =
1

2
(C1 − C2 − C3) .

(B1)

Based on Eq. (13), the complete soft insertion operator with 1,2 being the same type of parton (either quark or gluon),
is then given by

Γ3(1) =
1

2

3∑
i=1

3∑
j=1
j 6=i

(
T2
iP

i
j +

3∑
k=j+1
k 6=i,j

TiTjP̃
i
kj

)

=
1

2

(
C1

(
P 1
2 + P 1

3 + P 2
1 + P 2

3

)
+ C3

(
P 3
1 + P 3

2

)
+

(
C3

2
− C1

)(
P̃ 1
32 + P̃ 2

31

)
− C3

2

(
P̃ 1
23 + P̃ 2

13

))
= C1w12 +

C3

2

(
w13 + w23 − w12

)
.

(B2)

2. Four radiators

We choose T2
1, . . . , T2

4, T1T4 and T1T3 to be the independent elements of the color algebra. The remaining
insertion operators can be expressed in terms of these operators as

T1T2 = − C1 −T1T3 −T1T4 ,

T2T3 =
1

2

(
C1 − C2 − C3 + C4

)
+ T1T4 ,

T2T4 =
1

2

(
C1 − C2 + C3 − C4

)
+ T1T3 ,

T3T4 =
1

2

(
− C1 + C2 − C3 − C4

)
−T1T3 −T1T4 .

(B3)

Based on Eq. (13), the complete soft insertion operator for the four parton case with 1,2 and 3,4 being the same type
of parton (either quark or gluon), then reads

Γ4(1) =
1

3

4∑
i=1

4∑
j=1
j 6=i

(
T2
iP

i
j +

4∑
k=j+1
k 6=i,j

TiTjP̃
i
kj

)

=
1

3

(
C1

(
P 1
2 + P 1

3 + P 1
4 + P 2

1 + P 2
3 + P 2

4

)
+ C3

(
P 3
1 + P 3

2 + P 3
4 + P 4

1 + P 4
2 + P 4

3

)
+ T1T2

(
P̃ 1
32 + P̃ 1

42 + P̃ 2
31 + P̃ 2

41

)
+ T1T3

(
P̃ 1
23 + P̃ 1

43 + P̃ 3
21 + P̃ 3

41

)
+ T1T4

(
P̃ 1
24 + P̃ 1

34 + P̃ 4
21 + P̃ 4

31

)
+ T2T3

(
P̃ 2
13 + P̃ 2

43 + P̃ 3
12 + P̃ 3

42

)
+ T2T4

(
P̃ 2
14 + P̃ 2

34 + P̃ 4
12 + P̃ 4

32

)
+ T3T4

(
P̃ 3
14 + P̃ 3

24 + P̃ 4
13 + P̃ 4

23

))
=

1

3

(
C1

(
P 1
2 + P 1

3 + P 1
4 + P 2

1 + P 2
3 + P 2

4

)
+ C3

(
P 3
1 + P 3

2 + P 3
4 + P 4

1 + P 4
2 + P 4

3

)
+ 3T1T3

(
P̃ 1
23 + P̃ 2

14 + P̃ 3
41 + P̃ 4

32

)
+ 3T1T4

(
P̃ 1
24 + P̃ 2

13 + P̃ 3
42 + P̃ 4

31

)
− C1

(
P̃ 1
32 + P̃ 1

42 + P̃ 2
31 + P̃ 2

41

)
− C3

(
P̃ 3
14 + P̃ 4

23 + P̃ 4
13 + P̃ 4

23

))
= C1w12 + C3w34 + T1T3

(
w12 + w34 − w13 − w24

)
+ T1T4

(
w12 + w34 − w14 − w23

)
.

(B4)
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[2] S. Höche, D. Reichelt, and F. Siegert, JHEP 01, 118 (2018), arXiv:1711.03497 [hep-ph] .
[3] A. Banfi, G. Salam, and G. Zanderighi, JHEP 01, 018 (2002), hep-ph/0112156 .
[4] A. Banfi, G. P. Salam, and G. Zanderighi, Phys.Lett. B584, 298 (2004), arXiv:hep-ph/0304148 [hep-ph] .
[5] A. Banfi, G. P. Salam, and G. Zanderighi, JHEP 08, 062 (2004), erratum added online, nov/29/2004, hep-ph/0407287

[hep-ph] .
[6] A. Banfi, G. P. Salam, and G. Zanderighi, JHEP 03, 073 (2005), hep-ph/0407286 .
[7] A. Banfi, H. McAslan, P. F. Monni, and G. Zanderighi, JHEP 05, 102 (2015), arXiv:1412.2126 [hep-ph] .
[8] A. Banfi, H. McAslan, P. F. Monni, and G. Zanderighi, Phys. Rev. Lett. 117, 172001 (2016), arXiv:1607.03111 [hep-ph] .
[9] M. Dasgupta and G. Salam, Phys.Lett. B512, 323 (2001), hep-ph/0104277 .

[10] M. Dasgupta and G. P. Salam, JHEP 08, 032 (2002), hep-ph/0208073 [hep-ph] .
[11] A. Banfi, G. Marchesini, and G. Smye, JHEP 0208, 006 (2002), arXiv:hep-ph/0206076 [hep-ph] .
[12] H. Weigert, Nucl. Phys. B685, 321 (2004), arXiv:hep-ph/0312050 [hep-ph] .
[13] S. Caron-Huot, JHEP 03, 036 (2018), arXiv:1501.03754 [hep-ph] .
[14] Y. Hatta and T. Ueda, Nucl.Phys. B874, 808 (2013), arXiv:1304.6930 [hep-ph] .
[15] Y. Hagiwara, Y. Hatta, and T. Ueda, Phys. Lett. B756, 254 (2016), arXiv:1507.07641 [hep-ph] .
[16] A. J. Larkoski, I. Moult, and D. Neill, JHEP 09, 143 (2015), arXiv:1501.04596 [hep-ph] .
[17] J. R. Forshaw, A. Kyrieleis, and M. Seymour, JHEP 0608, 059 (2006), arXiv:hep-ph/0604094 [hep-ph] .
[18] J. Forshaw, A. Kyrieleis, and M. Seymour, JHEP 0809, 128 (2008), arXiv:0808.1269 [hep-ph] .
[19] J. Forshaw, J. Keates, and S. Marzani, JHEP 0907, 023 (2009), arXiv:0905.1350 [hep-ph] .
[20] R. M. D. Delgado, J. R. Forshaw, S. Marzani, and M. H. Seymour, JHEP 08, 157 (2011), arXiv:1107.2084 [hep-ph] .
[21] A. Banfi, G. P. Salam, and G. Zanderighi, JHEP 06, 159 (2012), arXiv:1203.5773 [hep-ph] .
[22] A. Banfi, P. F. Monni, G. P. Salam, and G. Zanderighi, Phys.Rev.Lett. 109, 202001 (2012), arXiv:1206.4998 [hep-ph] .
[23] A. Banfi, F. Caola, F. A. Dreyer, P. F. Monni, G. P. Salam, G. Zanderighi, and F. Dulat, JHEP 04, 049 (2016),

arXiv:1511.02886 [hep-ph] .
[24] S. Plätzer and M. Sjödahl, JHEP 07, 042 (2012), arXiv:1201.0260 .
[25] S. Plätzer, M. Sjodahl, and J. Thorén, JHEP 11, 009 (2018), arXiv:1808.00332 [hep-ph] .
[26] J. Isaacson and S. Prestel, Phys. Rev. D99, 014021 (2019), arXiv:1806.10102 [hep-ph] .
[27] Z. Nagy and D. E. Soper, JHEP 1206, 044 (2012), arXiv:1202.4496 [hep-ph] .
[28] Z. Nagy and D. E. Soper, Phys. Rev. D99, 054009 (2019), arXiv:1902.02105 [hep-ph] .
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