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Abstract. Diffraction gratings have been proposed as replacements for transmissive optical
elements in the next generation of gravitational wave detectors. However, they couple additional
alignment noise to phase noise, and current models are based on unrealistic plane-wave expansion
theories. There is a need for a description of grating-related phase noise which is compatible
with standard interferometer tools. In this paper we investigate the grating-related phase shift
by presenting a fully analytical Gaussian model for the phase accumulation of a displaced
beam when diffracted from a grating. We consider a first-order modal decomposition as the
method employed by simulation tools for off-axis beams. We show that the phase distribution
of a typical displaced beam and a decomposed beam is accurate to within 3.9 × 10−8 radians.
However, we find that the grating-related phase noise is not present, and this is further validated
experimentally by the absence of a phase shift in beams with different modes. The phase noise
must therefore be implemented manually into existing interferometer simulation tools.

1. Introduction
Currently a worldwide network of ground-based gravitational-wave detectors such as Advanced
LIGO [1], Advanced VIRGO [2] and GEO HF [3] are being upgraded to form extremely sensitive
second-generation laser interferometric observatories. Based on the experience gained through
the first-generation operation, researchers are confident in obtaining the first direct detection of
gravitational waves once the second-generation detectors are up and running. Simultaneously,
efforts are being made to yield new concepts to further increase detector sensitivities, allowing for
an evolution from gravitational-wave detection to gravitational-wave astronomy. One promising
approach for the next-generation of interferometers is to replace conventional partly-transmissive
optics such as beam splitters and cavity couplers by dielectric diffraction gratings. By employing
an all-reflective interferometer setup, the severe limitation of thermal effects caused by absorption
of laser light can be significantly reduced. Moreover, their use enables for a broader choice of
opaque substrate materials with a potential for superior mechanical properties. Given these two
benefits towards a thermal noise reduction, diffraction gratings are promising to become key
elements for future generations of gravitational-wave detectors.

Based on the initial concept of all-reflective interferometry [4], various groups around the
world have presented experimental proof of their feasibility and compatibility with standard
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Figure 1. Diffraction of light into the m-th diffraction order when the grating is displaced
by amount ∆x′ relative to the beam. The angle conventions imply the incidence angle α
to be positive while the diffraction angles βm can be both negative and positive. A grating
displacement ∆x′ (corresponding to a parallel beam shift h) leads to an output optical path
length change of ∆P according to Eq. (2). For clarity only one diffraction order m is considered.

interferometric techniques. This work includes the demonstration and characterisation of 2-port
[5] and 3-port cavity couplers [6, 7], replacing conventional cavity input mirrors, as well as a full
operation of a 4-port reflectively coupled Michelson interferometer [8]. Very recently, a concept
for reflective coupling without the need of adding a multilayer coating was proposed which
would further reduce thermal effects associated with the coating stack itself [9]. However, due
to the broken symmetry of light deflection when using diffraction gratings, their use implies an
additional coupling from alignment noise to output phase noise [10, 11]. This effect is illustrated
in Fig. 1 where an incident beam with vacuum wavelength λ is diffracted from a grating with
period d into the m-th diffraction order. Following the grating equation

sinα+ sinβm =
mλ

d
, (1)

the diffraction angle βm of a certain functional output coupling port will be different from the
incident angle α, with an exception for the zero-order specular order. From a simple geometrical
consideration it is obvious that a slight displacement ∆x′ of either the grating or the beam
relative to each other causes an optical path length shift of ∆P = δ1 + δ2 (where δ2 is negative).
This shift can be related to the displacement ∆x′ via the grating equation (1) [11] to give:

∆P = δ1 + δ2 = −∆x′
mλ

d
. (2)

Given this phase noise effect, the use of gratings results in more challenging requirements
for the suspension and isolation systems for optical components compared to conventional
interferometric settings with a natural symmetry of light reflection. Recently, we proposed
an advanced readout of the ports of a grating coupler which gives a suppression of phase
noise originating from lateral grating displacement, resulting in a factor of 20 relaxation in
the lateral displacement suspension requirement at 10 Hz [12]. In order to be able to evaluate
these requirements in great detail we want to use realistic interferometry simulation tools such
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as FINESSE [13] which are based on a Gaussian modal decomposition description of the laser
beams. However, until now grating-related phase noise effects were solely investigated using
simple and non-realistic plane-wave models, which are simplified models of Gaussian beam optics
and therefore incompatible with such simulation tools.

In this paper we present a fully analytical Gaussian model of the phase accumulation of
a beam when diffracted from a grating. The beam displacement by a small amount ∆x
relative to the grating (which is of course equivalent to a grating displacement by the same
amount) is considered by means of a first-order modal decomposition of the beam being the
standard approach for off-axis beams in simulation tools. We track and analyse the phase
behaviour of both the displaced and non-displaced beams using Gaussian beam optics. For
beam displacements in the order of the grating period, Eq. (2) predicts a phase change of up to
2π between a non-displaced and displaced beam, yet we find that this phase shift is absent from
Gaussian modal decomposition. This means that the implementation of grating phase noise
effects into existing simulation tools requires ad-hoc simulation code. In order to test whether
the treatment of this subject by a decomposed beam is justified we experimentally investigated
the difference of the phase change between a fundamental and first-order beam imprinted by a
diffraction from a grating. The experiment was carried out using a 600 grooves/mm grating in
the first order within a Mach-Zehnder setup.

2. Theoretical phase effects in Gaussian beams
The aim of this section is to examine the phase accumulation of a non-displaced and displaced
Gaussian beam as they both travel from one reference plane, undergo grating diffraction, and
reach a second reference plane. The displaced beam is then decomposed into zero-order and
first-order modes, after which the phase accumulation for all three cases can be analysed.

We refer to Fig. 1 to illustrate the setup. The grating is orientated such that it lies in the x′-y′

plane, where the grooves lie parallel to the y′-axis. The beam propagates along the z-axis, and
only changes to the beam parameters in the x-z direction of the beam are considered. Note that
the coordinate system of the beam (x, y, z) is rotated by the angle α relative to the coordinate
system of the grating (x′, y′, z′).

The grating displacement ∆x′ is related to the beam displacement h and the angle of incidence
α using the following relation:

h = ∆x′ cosα. (3)

2.1. Gaussian optics
We begin by studying the description of Gaussian beams in more detail. Hermite-Gauss modes
have the general form:

E(x, y, z) =
∑
nm

anm(x, y, z)unm(x, y, z)e−ikz. (4)

The normalised Hermite-Gauss function unm(x, y, z) describes the transverse spatial
distribution of the beam as it varies slowly with z and is defined as:

unm(x, y, z) =
(
2n+m−1n!m!π

) 1
2

1

ω(z)
exp
(
i(n+m+ 1)Ψ(z)

)
Hn

(√
2x

ω(z)

)

× Hm

(√
2y

ω(z)

)
exp

(
−ik(x2 + y2)

2RC(z)
− x2 + y2

ω2(z)

)
, (5)

where Hn and Hm are Hermite polynomials, ω(z) is the beam size, RC(z) is the radius of
curvature of the beam wavefronts, and Ψ(z) is the Gouy phase. Unless otherwise specified, the
beam waist, ω0, will always be located at the grating, i.e. where z = z0.
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In general, an offset beam is displaced in both the x and y directions. Due to the symmetry
of the system, we consider the displacement of the beam for only one degree of freedom, along
the x-axis. The normalised Hermite-Gauss function, un(x, z) in x becomes:

un(x, z) =

(
2

π

) 1
4

(
exp
(
i(2n+ 1)Ψ(z)

)
2nn!ω(z)

) 1
2

Hn

(√
2x

ω(z)

)
exp

(
−i kx2

2RC(z)
− x2

ω2(z)

)
. (6)

At the waist, the Gouy phase is zero. In addition, RC → ∞ and therefore the RC term in
Eq. (6) can be ignored. Since H0 = 1, a zero-order mode where n = 0 can be described at the
waist position in the following form:

u0(x, z0) =

(
2

π

) 1
4 1
√
ω0

exp

(
−x

2

ω2
0

)
. (7)

A first-order mode with n = 1 at the waist position is given as:

u1(x, z0) =

(
2

π

) 1
4 1√

2ω0

(
2
√

2x

ω0

)
exp

(
−x

2

ω2
0

)
. (8)

Using Eqs. (7) and (8), we obtain a simple relationship between the zero-order and first-order
modes at the beam waist:

u1(x, z0) =
2x

ω0
u0(x, z0). (9)

2.2. Beam translation and modal decomposition
We now consider the description of a translated and modally decomposed beam in Gaussian
terms. Due to the symmetry of the setup, we can assume that the beam is translated along
the x-axis, rather than a translation of the grating along the x′-axis [10]. If we introduce
a displacement to a fundamental beam by an amount h, we can describe the Hermite-Gauss
function of the translated beam as:

ut0(x, z0) =

(
2

π

) 1
4 1
√
ω0

exp

(
−(x− h)2

ω2
0

)
, (10)

where the superscript t indicates a translation. By expanding Eq. (10), we can substitute in
Eq. (7). Since typical grating displacements are small compared to the beam waist, we can use
the approximation h/ω0 � 1 and apply a first-order Taylor expansion to obtain the expression

ud0(x, z0) = u0(x, z0) +
h

ω0
u1(x, z0), (11)

with the superscript d to denote decomposition. From this it is clear that the translated beam
is composed of zero-order and first-order mode terms; we can therefore deduce that a translated
zero-order mode beam can be described by a decomposition into higher order modes.

2.3. Phase terms
Although we have established an expression to describe a displaced beam by means of modal
decomposition, we need to verify if the same applies to the phase of the beam. In order to
observe how accurately a decomposed beam describes a laterally displaced beam, we need a
further understanding of the phase terms when propagated away from the waist, i.e. z 6= z0.
From Eqs. (4) and (6), we find three contributions to the overall phase: exp(−ikz), exp

(
i12Ψ

)
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and exp
(
−i kx2

2RC

)
. Using the general form, exp(−iθ), the phase of a beam, θ, at any given point

in the x-z plane is described as

θf,t,d = kz − 1
2Ψ + φf,t,d, (12)

where the subscripts f , t and d correspond to the fundamental non-translated, translated
and decomposed beams respectively, and Ψ is the Gouy phase. The common factor of kz − 1

2Ψ
can be omitted to leave φf,t,d, defined for each beam as follows:

φf =
kx2

2RC
, (13)

φt =
k(x− h)2

2RC
, (14)

φd =
kx2

2RC
− ϕ. (15)

The ϕ term in Eq. (15) arises from the fact that the beam in Eq. (11) is a superposition
of modes. By expanding and simplifying Eq. (11), we find that the remaining factor consists
of a sum of terms, which is subsequently treated as a complex number. We use the relation
eiϕ = (cosϕ+ i sinϕ) to reach the expression:

ϕ = arctan

(
sin Ψ

cos Ψ +
(
ω ω0
2xh

)) . (16)

Using Eqs. (13)-(16), the phase distribution for each beam at a given position z can be plotted
against the radial distance from the central optical axis, x, as depicted in Fig. 2. The phase
distribution of a displaced beam (green) is the same shape as that of a non-translated beam
(blue) but is simply shifted by an amount h along the x-axis, as expected. More importantly,
the decomposed beam (red) also shows the same distribution and the same shift of h. However,
this decomposed beam deviates away from the displaced beam along the z-axis, giving rise to
negative phase. We can clarify this by examining the expression given in Eq. (16): the nature of
the equation constricts the phase distribution such that the phase equals zero when x = 0 and
x = 2h, hence the reason why the red and blue traces cross at x = 0 where the phase is zero.

We can also examine the behaviour of these phase distributions for differing values of h.
Figure 3 shows the phase difference between a translated beam and a decomposed beam for
increasing h, where h is given as a ratio of the waist size, ω0 = 10 mm. We immediately see
that as h increases, the phase of the decomposed beam deviates further away from that of a
translated beam since we are violating the approximation (h/ω0 � 1) made to obtain Eq. (11)
and in turn Eq. (16).

2.4. Effects from astigmatism
Returning to the original setup, we pose the question: does diffraction of the beam affect the
phase distribution upon reflection? When a beam is reflected off a grating parallel to the x-z
plane, the angles of incidence and reflection are different, i.e. α 6= β. Consequently, only the
beam parameters along the x-axis change whilst those along the y-axis remain the same, and an
elliptical beam spot is produced. This astigmatism gives rise to a different waist size along the
x-axis for the diffracted beam, ωx

0r , and in terms of the incident beam waist, ω0i , is given by

ωx
0r = ω0i

cosβ

cosα
, (17)
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Figure 2. Phase distribution plots of a fundamental non-translated beam (blue), translated
beam (green) and a decomposed beam (red). Only the x-direction is considered, and the
following values are assumed: λ = 10−6 m, ω0 = 10 mm, z = 0.5 m and h = 0.05 mm.
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Figure 3. Difference in phase between a translated and decomposed beam as a function of h/ω0.
Increasing displacement gives rise to a further deviation in phase of the decomposed beam from
the translated beam due to the approximation h/ω0 � 1.

where ω0i is the waist of the incident beam in both x and y-directions. Note that ωy
0r

= ω0i .
From Eq. (1), we let d = 1666 nm and α = 10◦ to give β1 = 27.7◦. If ω0i = 10 mm,

then according to Eq. (17), ωx
0r = 8.99 mm. Using these parameters as an example, we can

plot and analyse the phase distributions after diffraction, as seen in Fig. 4. In addition to the
fundamental non-translated (blue), translated (green) and decomposed (red) beams in the x-
direction, we include the phase of a fundamental non-translated beam in the y-direction (blue
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dashed) for comparison. Notice that although the phase distribution of the diffracted beam is
more narrow along x than y, the phase of the translated and decomposed beams still exhibit
the same ‘shifting’ behaviour as seen in Fig. 2.
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Figure 4. Phase distribution plots upon grating reflection along the x-axis for a fundamental
non-translated beam (blue), translated beam (green) and a decomposed beam (red), and for a
fundamental non-translated beam along the y-axis (blue dashed). The following parameters are
assumed: λ = 10−6 m, ω0i = 10 mm, ωx

0r = 8.99 mm, z = 0.5 m and h = 0.05 mm.

2.5. Analytical results
In reality, the amount of displacement a beam experiences is extremely tiny, typically less than
0.5% of the beam waist size. In the example used, a displacement of 0.05 mm for a beam with a
waist size of 10 mm gives a difference in phase of only 3.9×10−8 radians. This suggests that the
resulting phase from modal decomposition is very close to the phase of a translated beam, and
that modal decomposition is a good approximation for a small beam displacement. The beam
is affected by the grating through the effects of astigmatism, yet we found that astigmatism
does not change the behaviour of the phase of the beam. In other words, the phase shift for
a translated or modally decomposed beam relative to the non-displaced beam is unaffected by
grating diffraction. However, taking Eq. (2) into account, we expected to see a substantial phase
change of up to 2π between a non-displaced and a displaced beam for displacements in the order
of the grating period (i.e. ∆x′ = d) [11], yet we find no evidence of this. We reach the conclusion
that the modal decomposition model does not contain the observed grating related noise, and
this noise must therefore be implemented manually into existing simulation tools.

3. An experimental demonstration of mode-switching
We continue to investigate the validity of the modal decomposition model in an attempt to
determine experimentally whether or not phase changes exist between different orders of mode
when subjected to grating diffraction. Any ‘shift’ in phase between modes would contradict
with modal decomposition calculations (which suggest that the phase of a diffracted beam is
independent of its mode), but it may possibly explain the absence of periodic phase shifts.
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3.1. Experimental setup
We test the possibility of phase changes between zero-order and first-order modes using the
Mach-Zehnder setup shown in Fig. 5. The laser beam passes through a series of modematching
lenses and steering mirrors before entering the three-mirror mode-cleaner (MC). The MC can
be tuned by means of a piezoelectric transducer (PZT) to allow any chosen mode to resonate
and pass through. The input beamsplitter (BS) splits the beam into two arms of equal lengths.
A ruled grating, with d = 1666.7 nm, was placed in one of the arms, with reflection in the first
order. It is worth noting that for the purpose of this work, the grating is fixed in position
and not translated in any direction. A second PZT is located in the other arm, and both
beams recombine at the output BS, creating two superimposed beams. Photodetectors (PDs)
are situated at each output beam, denoted as the ‘east port’ and ‘south port’.

modecleaner input BS

grating

steering
mirrors

PZT mirror

end BS

south PD

cylindrical
  lenses

steering
mirrorssteering

mirrors

2

modematching
      lenses

collimating
   lenses

laser

east PD

MC PD

Figure 5. Layout of a grating Mach-Zehnder experiment. The mode-cleaner was supplied
with a square-ramp signal, locking to zero-order and first-order mode resonances alternately.
The diffraction grating is situated in one arm of the Mach-Zehnder, whilst the other arm is
modulated to create fringe signals at the output.

3.2. Dual-mode locking system
The Pound-Drever Hall scheme [14] is used to provide feedback control for the MC. A
combination of steering mirrors are used to isolate and increase the resonance peaks for zero-
and first-order modes. A square wave signal is injected into the MC, allowing the PZT to ramp
back and forth between two very specific positions at a frequency of 3 Hz. These positions were
determined by the amplitude of the square-wave signal, which in turn was dependent on the
distance between the resonant peaks of the two modes. Once the amplitude was determined (in
this case 2.1 V), we were able to successfully lock to zero-order and first-order modes alternately.

Ramping the PZT in the Mach-Zehnder arm causes tiny changes in arm length and results
in alternating phases of constructive and destructive interference, detected by the output PDs
as fringes. Note that when the east port PD senses constructive interference, the south port PD
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Figure 6. Fringe pattern during alternate locking on zero-order and first-order modes. From
top to bottom are: main PZT ramp for the Mach-Zehnder (purple); fringe signal from the east
port PD (red); output PD signal from the MC (blue); square-wave ramp signal to alternate the
PZT in the MC (green). The maximum and minimum of the square ramp locks to the zero-order
and first-order modes respectively. As the system switches between the two modes, no shifts are
visible in the fringe signal. The slight fluctuations in the fringe signal coincide with those seen
in the PD signal, caused by the electronics stabilising between each lock.

sees destructive interference, and vice versa. If the two beam modes contained different phases,
we would expect to see a shift in the fringe signal at the instant when the ramp stepped and
down. Instead, we found in our preliminary results that as the modes alternated, the fringe
waveform remained continuous and no shifting was present, as shown in Fig. 6.

It should be noted that the breaks visible in the fringes coincide with the step-up/step-down
of the ramp. They are caused by the electronics attempting to lock to a new mode each time.
After a brief moment, the system stabilises into a locked system, and the fringes signal continues
the waveform. For this reason, the square-wave ramp is set to a frequency of 3Hz - a higher
frequency forces the electronics to destabilise more frequently and results in very noisy fringe
signals, yet if the frequency is too low, it is difficult to lock the modecleaner at both resonances.
The breaks in fringe symmetry are due to the main PZT changing direction during ramping
(peaks and troughs of the triangular wave).

3.3. Experimental results
At first glance it appears that the fringes continue their waveform between mode-switching,
implying that phase changes do not occur between zero-order and first-order modes upon grating
diffraction. There is no doubt, however, that there are certain constraints with the setup
described, such as the reaction of the electronics for locking, compromising the square-wave
ramp frequency and sensitivity of the photodetectors. These could affect the level of detail with
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which the fringe signals can be examined, and we continue to investigate this area of research.

4. Conclusion and future scope
With the purpose of providing a description of grating-related phase noise compatible with
standard interferometer simulation tools, we analytically investigated such effects using a
Gaussian beam model. Similar to the respective approach in simulation, we took into account
grating displacement, or equivalently beam displacement, by means of a modal decomposition
of a displaced beam into zero and first-order modes. We showed that for the assumption of
small displacements, the phase distributions of a displaced beam and decomposed beam match
remarkably well with a deviation of only 3.9 × 10−8 radians for typical beam and propagation
parameters. However, the diffraction from a grating does not affect the phase distribution of
non-displaced and displaced beams as predicted, apart from introducing astigmatism. The
Gaussian beam model does not automatically contain the previously observed phase shift,
leading to the conclusion that simulation tools will require a separate input to account for
phase from grating translation. We also investigated the possibility of phase differences within
the modal decomposition model using a Mach-Zehnder setup. Our obtained data suggests there
is no difference in phase change between both modes which corresponds to a mode-independent
diffraction phase change. This experimental activity is currently in progress as we intend to
improve the level of detail of the preliminary but promising measurements reported here.
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