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Abstract

Interference between the di�erent mass eigenstate components of a neutral K meson
causes its decay probability to oscillate with time. Related oscillations occur in the
decay chain � ! KK ! f1f2 (where f1;2 are decay channels), in neutral B decay,
in the chain �(4s) ! BB ! f1f2, and in massive neutrino propagation. Since the
mass eigenstates comprising a neutral K, a neutral B, or a neutrino have di�erent
masses, they have di�erent speeds at any given momentum. Thus, classically, they
become separated in space and time. This circumstance can tempt one to evaluate
their contributions to theK or B decay, or to the neutrino interaction with a detector,
at di�erent spacetime points. However, these quantum-mechanically interfering con-
tributions must always be evaluated at precisely the same point. Evaluating them at
di�erent points can lead to predicted oscillation frequencies double their true values.
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The neutral K meson produced in a typical kaon experiment is a superposition of

two mass eigenstates: the long-livedKL, and the shorter-lived and very slightly lighter

KS . When the K meson decays, its KL and KS components contribute coherently.

The interference between their coherent contributions causes the probability of decay

into a given �nal state to oscillate with time. The frequency of this oscillation is

�mK � mL �mS, the di�erence between the KL and KS masses.

For a given momentum, the KL and KS components of a kaon travel at di�erent

speeds, due to their di�ering masses. Hence, classically, in the laboratory frame of

reference they will arrive at the point x where the kaon decays at slightly di�erent

times, tL and tS . One might then be tempted to evaluate theKL andKS contributions

to the kaon decay amplitude at these classical arrival times. But then one would

be evaluating these two coherent contributions at di�erent times. This would be an

incorrect procedure. Following it can lead, as we shall see, to the erroneous conclusion

that the frequency of oscillation in the decay probability is not �mK, but 2�mK [1].

The oscillation in the probability for decay of a single kaon has an analogue in the

decay chain

� ! K + K ;

! f1 ! f2

where the kaons are neutral, and f1;2 are �nal states of interest. There are further

analogues in single neutral B decay, in the decay chain �(4s)! BB ! f1f2 (where

the B mesons are neutral), and in neutrino oscillation. In each of these situations, one

has a propagating particle (or particles) which is a coherent superposition of several

mass eigenstates with di�erent masses. In every case, one must evaluate the coherent

contributions of the di�erent mass eigenstates to the amplitude for decay or detection

of the propagating particle at precisely the same spacetime point. Calculating these

contributions at di�erent points and then adding them coherently is an erroneous

procedure which in every instance can yield an oscillation frequency double the true

value.

In this Letter, we will examine the oscillation in neutral meson decay, focusing
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on the physics related to the oscillation frequency. We will see that a recent claim

that in �! KK ! f1f2 this frequency is 2�mK, while in isolated single K decay it

is �mK, cannot be correct, because the B-meson analogue of this claim is decisively

contradicted by experiment. We will then turn to the analysis on which the claim is

based, and discover that for �! KK ! f1f2, this analysis entails the evaluation at

di�erent spacetime points of the coherentKL andKS contributions to decay of a kaon.

We will see explicitly that when the contributions of the di�erent mass eigenstate

components of a propagating particle to the decay or detection of this particle are

not calculated at the same spacetime point, the predicted oscillation frequency can

be twice its true value, not only in �! KK ! f1f2, but quite generally in both one-

and two-neutral-K and neutral-B processes, and in neutrino oscillation.

Let us recall the standard results for neutral meson decay. The probability

� [K0
! f at � ] for an isolated neutral K to decay to a �nal state f at proper time

� , if at time � = 0 this K was a pure K0, is given by [2]

�[K0
! f at � ] / e��S� + j�f j

2e��L� + 2j�f je
�

1

2
(�S+�L)� cos(�mK� � �f ) : (1)

Here, �S and �L are, respectively, the widths of the KS and KL, and

�f � j�f je
i�f �

hf jT jKLi

hf jT jKSi
: (2)

The oscillatory last term in Eq. (1) comes from the interference between the KS and

KL contributions to the decay. Next, suppose we have a neutral kaon pair produced

in a p wave via the process � ! KK. The joint probability �[One K ! f1 at �1;

Other K ! f2 at �2] for one member of this pair to decay to the �nal state f1 at

proper time �1 after its birth in the � decay, while the other decays to �nal state f2

at time �2, is given by [3, 4, 5]

�[One K ! f1 at �1; Other K ! f2 at �2]

/

���e�i�L�1e�i�S�2A(KL ! f1)A(KS ! f2) (3)

� e�i�S�1e�i�L�2A(KS ! f1)A(KL ! f2)
���2 :

Here, �L;S � mL;S �
i

2
�L;S are the complex masses of KL;S , and A(KL ! f1), etc.,

are decay amplitudes. The interference term in the probability (3) has the oscillatory
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time dependence

e�
1

2
(�S+�L)(�2+�1) cos[�mK(�2 � �1) + �0] ; (4)

where �0 is time-independent. Note that the frequency of this oscillation, �mK, is

the same as that of the oscillatory term in the decay rate (1) for a single kaon in

isolation.

The standard result for the probability �[B0
! f at � ] for an isolated neutral

nonstrange B to decay to a �nal state f at proper time � , if at � = 0 this B was a

pure B0, is Eq. (1) with the K-meson quantities replaced by their B-meson coun-

terparts [6]. The frequency of the oscillation is now �mB � m(BH) � m(BL), the

di�erence between the masses of the heavier mass eigenstate (BH) and the lighter

mass eigenstate (BL) of the B
0
�B0 system.

For
( )

B0 mesons, the counterpart to a K pair produced in a p wave via �! KK

is a B pair produced in a p wave via �(4s) ! BB [7]. The standard result for the

joint probability �[One B ! f1 at �1; Other B ! f2 at �2] for the decays of the

members of this pair is Eq. (3) with KL and KS replaced by the B mass eigenstates,

and �L and �S by their complex masses [8, 9, 6, 5, 10]. The interference term (4) in

this joint probability now has frequency �mB. As in the K system, this frequency is

the same as in the decay of a single B in isolation.

Stodolsky and I have presented an approach to the treatment of a decay chain

such as � ! KK ! f1f2 (or �(4s) ! BB ! f1f2) in which the amplitude for

the entire chain is calculated directly [5, 10]. Unlike the more traditional treatment

[3, 4, 8, 9] of such a chain, our method does not entail the introduction of a wave

function, or state vector, for the KK system. Consequently, this method avoids the

somewhat mysterious \collapse of the KK wave function," in which the decay of one

K at a certain instant determines the K0
�K0, or KS �KL, content of the other K

at the same instant [3]. The amplitude approach also has the advantage of manifest

Lorentz covariance. Applying this approach, one readily reproduces the standard

expression (3) for the decay probability, without having to invoke the collapse of the

wave function. Obtaining (3) by the amplitude methods makes it evident that the

times in this decay rate are proper times in the K rest frames, not times in the �
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rest frame. In the \collapse" approach, this point is not so clear, and one must guess

astutely.

In a Comment [11] on Ref. [5], and in other work [12] to which this Comment calls

attention, Srivastava, Widom, and Sassaroli (SWS) argue that in �! KK ! f1f2,

the frequency of the oscillation in the decay rate is not �mK, as in (4), but 2�mK.

Thus, these authors disagree with the early analyses of this process, and with the

analysis in Ref. [5]. However, they agree that in the decay of an isolated single

neutral kaon that is not part of a kaon pair produced via � ! KK, the oscillation

frequency is indeed �mK, as in the standard result, Eq. (1). Hence, they predict

that once the oscillation frequency in � ! KK ! f1f2 is measured, it will prove

to be twice the already-determined oscillation frequency in the decay of an isolated

single kaon.

Now, the B-meson analogue of the SWS argument for kaons would predict that in

�(4s)! BB ! f1f2, the oscillation frequency in the decay rate is twice as large as

in the decay of an isolated single neutral B. However, this prediction is contradicted

by experiment. To see this, consider �rst the decay of an isolated B, or, equivalently,

a B which is part of a complicated many-body state produced in a Z0 decay or a

high-energy pp collision. Suppose that through tagging this B is known to be a pure

B0 at proper time � = 0. Owing to B0
� B0 mixing, at subsequent times the B

will be a B0, B0 superposition. Suppose that at time � > 0, the B decays into a

�nal state fB which can come only from its B0 component, or into the CP-conjugate

state fB, which, of course, can come only from its B0 component. The probabilities

�[B0
!

( )

fB at � ] for these two decays are given by [6]

�[B0
!

( )

fB at � ] / e��� [1
+

(�) cos(!1� )] : (5)

Here, !1 is the oscillation frequency, and all authors, including SWS, agree that

!1 = �mB. The quantity � is the decay width that BH and BL (unlike KL and

KS) have in common. The results (5), with !1 = �mB, may be obtained from the

K-meson formula (1) by substituting � for �S and �L, and �mB for �mK, and then

using the easily demonstrated fact that the B-meson analogue of the parameter �f of

Eq. (2) is +1 for the �nal state fB, and �1 for fB. Analysis of the decay of neutral B
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mesons produced in Z0 decays at LEP, and in pp collisions at the Tevatron, in terms

of Eqs. (5) has yielded the value [13]

!1 = (0:458 � 0:020)ps�1 : (6)

This analysis has included direct observation of the oscillation with time. The proper

time � of a B decay is determined by measuring the distance x which the B has

traveled and the B momentum p. Then

� = x
mB

p
; (7)

where mB is the average neutral B mass, and does not distinguish between BH and

BL.

Consider, next, the chains �(4s)! BB ! fB
( )

gB , where the �nal states fB and

gB can come only from a B0, and gB only from a B0. For these chains, all agree that

�[One B ! fB at �1; Other B !
( )

gB at �2]

/ e��(�2+�1)
�
1 (+) cos(!2(�2 � �1))

�
; (8)

except for a disagreement concerning the value of the oscillation frequency !2. All

early treatments [9, 6] and the more recent amplitude approach [5, 10] predict that

!2 = �mB. Indeed, Eqs. (8) with !2 = �mB follow trivially from the B-meson

analogue of the standard K-meson formula (3) and the usual expressions for BH and

BL in terms of B0 and B0. However, by following the SWS approach, as described

in Ref. [12], we �nd that they would predict that !2 = 2�mB. This is a B-meson

analogue of the oscillation frequency doubling they claim to be present in �! KK.

Apart from the value of !2, their approach yields precisely the same decay probabil-

ities, Eqs. (8), as found by others. (In the SWS treatment, these probabilities are

initially expressed in terms of the B pathlengths x and momenta p, but they coincide

with Eqs. (8), with !2 = 2�mB, once we use Eq. (7) to express them in terms of the

experimentally measured proper times.)

The ARGUS and CLEO collaborations have studied the time integrals over the

decay rates (8). These groups report the ratio

r =
N(fB gB) +N(fB gB)

N(fB gB) +N(fB gB)
; (9)

6



where

N(fB gB) =
Z
1

0

d�1

Z
1

0

d�2 �[One B ! fB at �1; Other B ! gB at �2] (10)

is the total number of events in which one B decays to fB and the other to gB, and

similarly for the other quantities. The state fB is chosen to be D��`+�, and gB to

be the inclusive state X`+�. In employing the measured r to learn about !2, one

makes use of the fact that the omitted proportionality constants in the two relations

(8) are equal. This equality holds so long as CP violation in the decay amplitudes

A
� ( )

B0
!

( )

gB
�
may be neglected. Since in the Standard Model semileptonic B0

decay is heavily dominated by a single tree-level diagram, which is unlikely to have

signi�cant competition from beyond the Standard Model, this should be an excellent

approximation. Similarly, so should the CP relations N(fB gB) = N(fB gB) and

N(fB gB) = N(fB gB). Thus, integrating Eqs. (8), we conclude that

r =
�2

2 + �2
; (11)

where � � !2=�. From the combined ARGUS-CLEO result [14],

r = 0:179 � 0:039 ; (12)

we then learn that [14]

� = 0:66� 0:09 : (13)

Now, the common BH �BL lifetime, 1=�, has been found to be [15]

1

�
= 1:57 � 0:05 ps : (14)

Combining this lifetime with the value of �, Eq. (13), we �nd that

!2 = (0:42 � 0:06) ps�1 : (15)

This frequency is in excellent agreement with the frequency !1, Eq. (6), found in

single B decay. Had !2 been twice !1, as expected by SWS, the measured !1, Eq. (6),

would have predicted that !2 = (0:92�0:04)ps�1, in very strong disagreement with the

measured !2 value, (0:42�0:06)ps
�1. Thus, strictly on the basis of experimental data,
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we can conclude that the oscillation frequency in �(4s)! BB ! f1f2 is the same as

in single B decay, rather than twice as great. Since the physics of � ! KK ! f1f2

is virtually identical to that of �(4s) ! BB ! f1f2, we can also conclude that the

oscillation frequency in �! KK ! f1f2 is the same as in single K decay.

From the standpoint of the \collapse" approach, it would have been very surprising

if !2 had di�ered from !1. In this approach, the decay of one B in a B pair produced

via �(4s)! BB �xes the state of the remainingB at the same instant. Subsequently,

this remaining B oscillates between B0 and B0 states. Since this B is now alone, it

would be surprising if the frequency of this oscillation were di�erent than in the case

of a single B which is alone from the very beginning [16].

Let us now compare the SWS treatment with the amplitude approach of Refs.

[5] and [10], and identify the features which lead SWS to expect that the oscillation

frequency in �! KK ! f1f2 is 2�mK, twice that in single K decay, while from the

amplitude approach we expect both frequencies to be �mK. In treating � ! KK,

SWS introduce a state vector for the KK system, and use �eld-theoretic propagators

to describe the propagation of the kaons. In the amplitude approach, the introduction

of a KK wave function or state vector is carefully avoided, and �eld theory is not

used. Complete decay chains such as � ! KK ! f1f2, including the kaon decay

amplitudes, which are omitted by SWS, are treated. Nevertheless, it appears from

Ref. [12] that SWS would agree with the authors of the amplitude approach that the

oscillation frequency in �! KK ! f1f2 is �mK, and not 2�mK, if the former only

treated proper times as do the latter.

The treatment of proper times in the amplitude approach is most easily explained

by discussing the decay of a single kaon, born as a pureK0, into a �nal state f . For the

amplitude for this process, A, the amplitude approach yields the readily understood

result

A =
X

N=L;S

A(K0 is KN ) e
�i�N �

N

A(KN ! f) : (16)

Here, the pure K0 is a superposition of the mass eigenstates KL and KS , and A(K
0

is KN ) is the amplitude for it to be, in particular, the mass eigenstate KN . The

factor exp(�i�N�
N) is the amplitude for this KN to propagate for the proper time
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interval �N that elapses between its birth and decay [17]. Finally, A(KN ! f) is the

amplitude for the KN to decay into the state f . In principle, the proper time that

elapses between the kaon birth and decay may depend on whether the kaon is a KL or

a KS , so we denote it by �
N , with N = L or S. As explained in Ref. [5], the meaning

of this proper time is somewhat subtle. We picture the kaon as being described by a

wave packet, with some central momentum p [18]. Suppose that the kaon is born at

the spacetime point (0,0), and decays at the point (t; x). Now, the KL and KS have

di�erent masses, so, for a given momentum p, it is not possible classically for both the

KL and KS components of the kaon, born at the point (0,0), to arrive at the location

x at the same time t. However, it is possible for the KL and KS components of the

kaon wave packet to overlap at the point (t; x), with the center of the KL component

displaced relative to that of the KS component. These overlapping components of

the wave packet are two amplitudes, corresponding to the two terms in Eq. (16),

for the kaon to be at the spacetime point (t; x). It is the interference between these

amplitudes which leads to the oscillation in the decay probability. In calculating this

interference, we must, of course, evaluate all phase factors at the common point (t; x)

where the interference occurs. Thus, in the factor exp(�i�N�
N), the proper time �N

is the kaon-rest-frame time which corresponds to the decay point (t; x). Hence, from

the Lorentz transformation, we have for the mass eigenstate KN with momentum p

and corresponding energy EN (p) = (p2 +m2

N
)1=2,

�N =
1

mN

(EN (p)t� px) : (17)

To �rst order in �mK, this relation is

�L(S) = � 0
+

(�)
�mK

2mK

"
mK

EK(p)
t� � 0

#
; (18)

where mK � (mL +mS)=2 is the average neutral kaon mass, EK(p) � (p2 +m2

K
)1=2

is the corresponding energy at momentum p, and � 0 � [EK(p)t � px]=mK is the

value of �L or �S for vanishing �mK. Now, �
0 and t are, of course, related by time

dilation: � 0 = (mK=EK(p))t. Thus, from Eq. (18) we see that to �rst order in �mK,

�L = �S = � 0, and we shall refer to this proper time simply as � . To �rst order in

�mK, the relative phase of the factors exp(�i�N�
N) in the two interfering terms in
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Eq. (16) is just

(mL �mS)� = (�mK)� : (19)

Hence, the oscillation with � induced by the interference has frequency �mK. Using

the well-known fact that A(K0 is KL) = A(K0 is KS), the amplitude of Eq. (16)

immediately yields the decay rate of Eq. (1).

In practice, the observer-frame time of the decay, t, is not measured. The location

of the decay, x, and the momentumof the kaon, p, are measured, and t is then inferred

from x and p using the relation t = (EK(p)=p)x. The proper time � (� � 0) of the

decay is then found from t using the time-dilation relation � = (mK=EK(p))t. That

is,

� = x
mK

p
: (20)

Equation (7) already gave the B-experiment analogue of this relation.

We have just seen that in K decay (and similarly in B decay), the variation of

the proper time of a given decay point (t; x) from one contributing mass eigenstate

to another is completely negligible. However, in the propagation of a neutrino, the

proper time of a given neutrino interaction point (t; x) varies very importantly from

one mass eigenstate to another [5]. Thus, whether the proper times associated with

di�erent mass eigenstates are equal or di�erent depends on which problem one is

treating.

For the decay chain � ! KK ! f1f2, the amplitude approach yields the time-

dependent probability of Eq. (3), in which the �rst term on the right-hand side is

the amplitude for a KL to decay into the �nal state f1 at proper time �1 while a KS

decays into the state f2 at proper time �2, and the second term is the amplitude for

the process in which the roles of KL and KS are interchanged. The time dependence

in Eq. (3) arises from the factors exp(�i�N�j), with N = L or S and j = 1 or 2. Just

as in the case of single kaon decay, to �rst order in �mK the proper time �j in each of

these factors does not depend on whether the factor is for propagation of a KL or KS.

Accordingly, we have written this proper time simply as �j, not �
N

j
. Suppose that,

in the � rest frame, the kaons created in � ! KK are observed to travel distances

x1 and x2 before decaying. Then, if p is the �-frame momentum of either kaon, the
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proper times �j of the two decays are given by

�j = xj
mK

p
; j = 1; 2 ; (21)

just as in Eq. (20) for a single K decay. To �rst order in �mK, the phase of the

factor exp(�i�N�j) is just �mN�j . Thus, to this order, the time-dependent part of

the relative phase of the two interfering terms in Eq. (3) is

(mL �mS)(�1 � �2) = (�mK)(�1 � �2) : (22)

Hence, the oscillation with proper time induced by the interference has frequency

�mK|identical to the frequency in single kaon decay.

In the SWS approach, the kaon pair created in � ! KK is described by a state

vector j i of the form [12]

j i � e�i�L�
L
1 e�i�S�

S
2 jKLKSi � e�i�S�

S
1 e�i�L�

L
2 jKSKLi : (23)

To explain the notation, let us suppose, as before, that in the � rest frame the two

kaons are observed to travel distances x1 and x2 before decaying. In the �rst term in

j i, jKLKSi is a state in which it is a KL which has traveled to x1 and a KS to x2,

and in the second term the roles of KL and KS are interchanged. The proper times

�N
j
(N = L or S and j = 1 or 2) of the decays are not the proper times �j of Eq. (21).

Rather, SWS state [11, 12] that if the kaon which travels the distance xj is the mass

eigenstate KN , the proper time �N
j

of its decay, to be used in Eq. (23), is given by

�N
j
= xj

mN

p
: (24)

Here, p is, as before, the �-frame momentum of either member of the kaon pair.

Comparing Eqs. (23) and (3), we conclude that if the SWS expression for j i had

involved the same proper times �j as does the amplitude on the right-hand side of

Eq. (3), SWS would have found the same oscillation frequency in � ! KK ! f1f2

as we did using the amplitude method; namely, �mK. However, if one uses the SWS

proper times of Eq. (24), then the time-dependent part of the relative phase of the

two terms in the SWS j i is

�
m2

L
�m2

S

� x1 � x2

p
= 2(�mK)mK

x1 � x2

p
: (25)
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In terms of the proper times �j of Eq. (21) which will be inferred from measurements,

this relative phase is just

2(�mK) (�1 � �2) : (26)

Thus, SWS predict that in the oscillation as a function of experimentally determined

proper times, the frequency is 2�mK. We see that it is their treatment of proper

time that has led to the spurious factor of two in this prediction.

What is wrong with the SWS proper time of Eq. (24)? To answer this puzzle, let

us consider the reaction �! KK in the � rest frame, which will be the detector frame

at the � factory DA�NE. SWS assume that the pathlength xj of a kaon produced in

�! KK is determined by measurement, and is independent of whether the kaon is

a KL or a KS . Similarly, they assume that the momentum p carried by the kaon is

�xed by the kinematics of �! KK, and is also independent of whether the kaon is

a KL or a KS . They then take the proper time of the kaon decay to be the quantity

�N
j

of Eq. (24), which does depend on whether the kaon is a KL or a KS . Now, the

Lorentz transformation implies that the proper time of the decay, �N
j
, the �-frame

time of this decay, tN
j
, and the measured �-frame location of the decay, xj, are related

by

mN �
N

j
= EN(p) t

N

j
� pxj ; (27)

where EN (p) � (p2 +m2

N
)1=2. For the �N

j
of Eq. (24), this relation implies that

tN
j
=
EN (p)

p
xj : (28)

We recognize that this tN
j

is just the classical arrival time of the mass eigenstate

KN at the decay point xj. In particular, for SWS, the detector-frame time tN
j

of

the decay depends on whether the decaying kaon is a KL or a KS . As a result,

when the amplitude for � ! KK ! f1f2 is calculated from the SWS state vector

j i of Eq. (23), the contributions to this amplitude from the two terms in j i are

evaluated for di�erent detector-frame times. The contribution from the �rst term

(which corresponds to a KL decaying at x1 and a KS at x2) is evaluated for the pair

of spacetime decay points (tL
1
; x1), (t

S

2
; x2). But the contribution from the second term

(in which the roles of KL and KS are reversed) is evaluated for the points (tS
1
; x1),

(tL
2
; x2). The two contributions are then added coherently.
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As noted at the beginning of this Letter, such coherent adding of an amplitude

for decays at one pair of spacetime points to that for decays at a di�erent pair of

points is an incorrect procedure. This is true even if, as here, the di�erence between

the pairs is too small to be resolved experimentally. Note, for example, that one

cannot reliably calculate the intensity of a two-component electromagnetic wave by

evaluating the amplitudes for the two components at slightly di�erent times and then

adding the results coherently. If, as in kaon decay, the two components have very

rapid time dependence, such a procedure would yield completely incorrect results.

Similarly, quantum mechanical amplitudes to be added coherently must correspond

to the same �nal states and precisely the same spacetime points.

SWS describe an isolated single kaon by a state vector [12] with a KL and a KS

term, each of which has the same time dependence as the corresponding term in the

decay amplitude of Eq. (16). Thus, we see from Eq. (24) that, were SWS to interpret

proper times in single kaon decay as they do in �! KK ! f1f2, the relative phase

of the KL and KS contributions to their single kaon decay amplitude would be

�
m2

L
�m2

S

� x

p
= 2(�mK) � : (29)

Here, x and p are, respectively, the measured pathlength and momentum of the kaon,

and � is the measured proper time of its decay, inferred from x and p using Eq. (20).

We see that SWS would then predict that the oscillation frequency in single kaon

decay is 2�mK, just as they do for �! KK ! f1f2. The reason that they actually

predict a frequency of �mK for single kaon decay is that, for this case, they assume

the KL and KS components of the kaon to have, not a common momentum, but a

common speed [12]. Thus, these components cover the measured kaon pathlength x

in the same time, and, since their time dilation factors are equal, in the same proper

time as well. The relative phase of the KL and KS pieces of the state vector is then

just (�mK)� , so that the oscillation frequency is �mK. While this agrees with the

standard result, we cannot understand the basis for taking the KL and KS to have

equal speeds. In the kaon wave packet, these components have equal momenta, and

the true explanation for the frequency �mK is as given earlier.

A spurious factor of two has appeared, not only in the SWS analysis of �! KK !
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f1f2, but also in other discussions of neutral meson or neutrino oscillation. In every

case, this spurious factor can be traced to the mistake of taking the spacetime point

of meson decay or neutrino detection to be di�erent for di�erent mass eigenstates,

rather than being de�ned by the experiment and common to all the mass eigenstates.

To see this, let us �rst look brie
y at neutrino oscillation. A neutrino of de�nite


avor (that is, a �e, a ��, or a �� ) is a superposition of mass eigenstates �m. For a

given momentum p, the eigenstate �m has an energy Em(p) = (p2+M2

m
)1=2. Assuming

that the neutrino masses are small,Mm � p, Em(p) �= p+M2

m
=2p. In the time t that

elapses between the birth of the neutrino and its detection, the �m component of the

neutrino state vector acquires a phase factor exp[�iEm(p)t] �= exp[�ipt(1+M2

m
=2p2)].

In practice, t is not measured. Rather, it is the pathlength x traversed by the neutrino

before its detection which is measured. Since the neutrino is highly relativistic, one

may then infer that t �= x. Thus, the relative phase of the �m and �m0 components

of the neutrino state vector is (M2

m
�M2

m0)x=2p. From this relative phase, the usual

expressions for neutrino oscillation follow.

Suppose, now, that we do not consider the spacetime point of detection, (t; x), to

be a �xed point common to all the mass eigenstate components of the neutrino state

vector. Suppose that, instead, we make the mistake of evaluating the di�erent mass

eigenstate components at their di�ering classical times of arrival at the measured

detection location x. That is, we now evaluate the �m component of the state vector

at time tm = x(Em(p)=p). This component then has the phase factor

exp[�iEm(p)t
m] = exp[�iE2

m
(p)x=p] = exp[�ipx(1 +M2

m
=p2)] :

The relative phase of the �m and �m0 components is now (M2

m
�M2

m0)x=p, twice as

big as before. Correspondingly, the oscillation frequency is twice its true value. Note

that the source of the spurious factor of two is the incorrect assumption that the

times of a given detection can be taken to be di�erent for di�erent components of a

single neutrino state.

We have already seen that a spurious factor of two will arise in single kaon decay

if one takes the proper time of the decay to be given by Eq. (24), so that in the

experimental observer's frame, the KL and KS components of the kaon decay at

14



di�erent times. We also observe from the discussion by Lipkin [1] that the spurious

factor of two in the frequency arises precisely when the di�erent mass eigenstate

components of the meson are taken to decay at di�erent times, and is absent if these

components are taken to decay at the same spacetime point.

In summary, the oscillation frequency in � ! KK ! f1f2, and that in single K

decay, are both �mK. Similarly, the frequencies in �(4s) ! BB ! f1f2 and single

B decay are both �mB. That the latter two frequencies are equal is an experimental

fact. That they are equal to �mB, and their K-meson analogues to �mK, follows

from quantum mechanics.

In treating neutral meson or neutrino oscillation, it is important to take the dif-

ferent mass eigenstate components of the oscillating particle to decay or be detected

at precisely the same spacetime point. Otherwise, a spurious factor of two in the

oscillation frequency can result.
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