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1 Introduction

Grand Unified Theories (GUTs) offer an attractive framework for model building beyond

the Standard Model (SM). Fermion unification in the large GUT representations, on top of

gauge coupling unification, makes them a natural environment for addressing the flavour

puzzle, i.e. the question about the origin of the observed fermion masses, mixings and CP vi-

olating phases. Popular GUT models are, e.g., based on the unifying gauge groups SU(5) [1]

or SO(10) [2, 3]. In this work we will focus on the framework of SU(5) based GUTs.

Depending on the GUT gauge group and on the choice of the GUT-Higgs representa-

tions involved in the GUT operators for the Yukawa matrices, the unification of fermions in

GUT-matter representations leads to a variety of close connections between the elements

of the Yukawa matrices, and thus between the masses and mixings in the quark and lepton

sectors (cf. [4, 5]). Furthermore, in particular towards understanding the observed charged

fermion mass hierarchies and the large mixing in the lepton sector, family symmetries are

often considered in addition to the unifying gauge symmetry. In the literature many options

have been considered for family symmetries, including continuous or discrete symmetries,

Abelian and/or non-Abelian groups etc., for reviews see e.g. [6–8]. In such a “flavour GUT”

scenario, the vacuum expectation values (VEVs) of the family symmetry breaking fields

(known as “flavons”) play a crucial role in generating the Yukawa couplings.

Although the origin of the observed fermion masses, mixings and CP violating phases

has been among the most important puzzles of particle physics already for a long time, the

discovery of a non-zero leptonic mixing angle θPMNS
13 a few years back by T2K [9], Double

Chooz [10], RENO [11], and in particular Daya Bay [12] has triggered new proposals for

models towards its solution. In particular, the nowadays very precise result from combining

the latest measurements in a global fit yielding θPMNS
13 ≈ 8.54◦ ± 0.15◦ [13] requires a

substantial deviation of leptonic mixing (described by the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix) from the tri-bimaximal (TB) mixing pattern [14, 15], which for

some time was considered a valid mixing scheme for the lepton sector.

Classifying flavour models as “direct” or “indirect” as in [16], depending on whether

residual symmetries are used (“direct” models) or whether a family symmetry gets com-

pletely broken to generate the flavour structure (“indirect” models), different routes were

followed. In the context of “direct” models it was found that more and more complicated

groups had to be chosen in order to be in approximate agreement with the θPMNS
13 mea-

surement (cf. e.g. refs. in [6, 7]). In “indirect” models, on the other hand, those became

appreciated which had the “corrections” to a leading order mixing pattern with zero 1–3

mixing (such as the TB mixing pattern) present a priori.

The latter situation is typical for flavour GUTs, since due to the GUT relation between

quarks and leptons the charged lepton Yukawa matrix typically features some non-zero

mixing related to the mixing in the down-type Yukawa matrix, which can correct a leading

order mixing pattern from the neutrino mass matrix. Ideas in this direction have been

studied some time back under the name “quark-lepton complementarity (QLC)” [17–32]

with a leading order pattern of “bimaximal mixing” [33] in the neutrino sector, which

gets a correction from the charged lepton sector (with “CKM-like” mixing angles). Such a
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scenario was able to explain the large lepton mixing (with a large but non-maximal θPMNS
12 )

at that time.

Furthermore, it was proposed (cf. e.g. [34, 35]) and also realised (cf. [36–39]) in the

context of flavour GUTs that a leading order TB mixing pattern in the neutrino sector,

which then gets modified by a charged lepton mixing correction (via a predicted 1–2 mixing

angle from the charged lepton Yukawa matrix related to the Cabibbo angle θC, cf. [40, 41]),

could be an interesting scheme for model building.1 Such a leading order TB mixing

pattern in the neutrino sector can, e.g., be realised in “indirect” models via a type I seesaw

mechanism with so-called Constrained Sequential Dominance (CSD, also referred to as

CSD1) [45]. In CSD1, the VEVs of the “flavons”, which break the family symmetry, point

in the specific directions (0, 1,−1) and (1, 1, 1) in flavour space, corresponding to two of

the columns of the TB mixing matrix.

Interestingly, it was found that the general scenario that θPMNS
13 emerges entirely from

a charged lepton 1–2 mixing contribution leads not only to the relation θPMNS
13 = sPMNS

23 θe
12

(in leading order), with θe
12 potentially related to the Cabibbo angle θC in the context of

GUTs, but also to a so-called lepton mixing sum rule which allows to predict δPMNS once

the mixing pattern in the neutrino mass matrix is fixed [35, 45–50]. Taking the 2–3 mixing

in the neutrino sector maximal and θe
12 ≈ θC, we arrive at the prediction θPMNS

13 ≈ θC/
√

2 ≈
9.2◦ [34, 35]. This value was originally close to the observed one, but is now disfavoured

with the more precise measurement of θPMNS
13 = 8.54◦ ± 0.15◦ [13]. Furthermore, the

experimentally preferred region for sPMNS
23 is now larger than 1/

√
2, making the prediction

for θPMNS
13 under the assumption of θe

12 ≈ θC even worse.

Already before the very precise measurements of θPMNS
13 , the pattern of CSD2 [51] was

proposed for the neutrino sector, as an alternative to CSD1. Here, the “flavons” which

break the family symmetry point in the directions (0, 1,−1) and (1, 2, 0) (or (1, 0, 2)) in

flavour space. CSD2 features the same attractive prediction for the neutrino sector 1–2

mixing θν12, close to the measured PMNS value of about 35◦, but it predicts a non-zero

mixing angle θν13 already in the neutrino sector, a deviation of θPMNS
23 from 45◦, as well as a

leptonic Dirac CP phase δPMNS which has been shown in [51] to be directly linked to the CP

violation relevant for generating the baryon asymmetry via the leptogenesis mechanism [52].

When CSD2 is realised in the context of GUTs, then the combined mixing from the charged

lepton sector (predicted by GUT relations) and the neutrino sector leads to an attractive

class of models for explaining the observed PMNS parameters. Specific SU(5) GUT models

realising this idea have been constructed in [53, 54].

The purpose of this paper is to perform a systematic analysis of the above-described

novel class of models. After defining the model class and identifying the possible choices

of GUT operators and the free parameters, we will systematically investigate and classify

the resulting predictions by fitting the known experimental results for fermion masses and

mixings, in order to select the most promising routes for future model building. It will turn

out that the promising models predict the lepton and quark Dirac CP phases δPMNS, δCKM,

with δPMNS between 230◦ and 290◦ and δCKM in accordance with a right-angle unitarity

1For other proposed modifications to tri-bimaximal mixing see e.g. [42–44].
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triangle (αUT = 90◦). They also θPMNS
23 and md/ms with much less uncertainty than the

experimentally allowed ranges. Such predictions of the considered class of models will be

probed by future experiments. The DUNE experiment, for instance, can measure θPMNS
23

with a precision of less than 1◦, and δPMNS with a precision of O(10◦) [55–57].

The paper is organized as follows. In section 2 we describe the class of models we

consider in our study, including the specification of all fermion sectors and an extensive

discussion on the texture and various predictive mechanisms used. In section 3 we analyse

the predictive power of the models and determine the best approach to a numerical analysis.

In section 4 we present the results. In section 5 we conclude with a summary of our work,

as well as discuss the future outlook and application of our results.

2 A new class of models: CSD2 in a simple and predictive GUT setup

2.1 General SU(5) GUT setup

In this section we define the setup for the class of models we consider in this paper. The

general idea is to take supersymmetric (SUSY) SU(5) GUT models and assume a texture

in the Yukawa sector which is as predictive as possible. We shall not be concerned with

how these textures are dynamically achieved, i.e. we shall not specify a flavour theory, as

we want to do an analysis which is as model independent as possible.

We assume that the fermion sector consists of the usual three families of 5̄⊕10, which

decompose under the SM group SU(3)C × SU(2)L ×U(1)Y as

5̄i =

(
3̄,1,+

1

3

)
i

⊕
(

1,2,−1

2

)
i

≡ dci ⊕ Li, (2.1)

10i =

(
3,2,+

1

6

)
i

⊕
(

3̄,1,−2

3

)
i

⊕ (1,1,+1)i ≡ Qi ⊕ uci ⊕ eci , (2.2)

where the family index i goes from 1 to 3. In addition, the implementation of CSD2 via

seesaw type I in the neutrino sector would require additional right-handed neutrinos in the

representation 1 of SU(5).

We make, however, no explicit assumptions on the Higgs sector or any top-down flavour

theory, although these do have implicit requirements by the choice of our Yukawa texture.

Since no Higgs sector is given, we remain agnostic about the exact superpotential terms

of the Yukawa sector in the SU(5) theory. The most appropriate level at which such a

superpotential is to be written is that of the MSSM with right-handed neutrinos:

WYuk =
∑
i,j

(Yu)ij Qi ·Hu u
c
j − (Yd)ij Qi ·Hd d

c
j − (Ye)ij Li ·Hd e

c
j

+
∑
ik

(Yν)ik Li ·Hu ν
c
k +

∑
kl

(MR)kl ν
c
k ν

c
l ,

(2.3)

where the Hu ∼
(
1,2,+1

2

)
and Hd ∼

(
1,2,−1

2

)
are the two Higgs fields of the MSSM. The

dot · represents a contraction of SU(2) fundamental indices of the form

X · Y ≡ εab Xa Y b, (2.4)
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where εab is the completely anti-symmetric tensor with two indices and ε12 = 1. The

indices i and j run from 1 to 3, while we do not assume necessarily the same for k and l.

We have suppressed in this notation the SU(3) indices. The Yukawa matrices are written

in the left-right convention, and the signs in front of the terms are chosen, so that we get

positive terms for the fermion mass terms when the electrically neutral components of Hu

and Hd acquire a VEV; this convention is equivalent to that of [58].

The free parameters in eq. (2.3) are the 3 × 3 Yukawa matrices Yu, Yd and Ye, the

3 × n neutrino Yukawa matrix Yν and the n × n Majorana mass matrix MR, where n is

the number of right-handed neutrinos. At the SU(5) level, the various Yukawa terms are

coming from the following type of operators, where each of X,Y, Z stand for a GUT-Higgs

field (or a product of GUT-Higgs fields) in SU(5) representations, such that the terms form

an SU(5) invariant:

(Yu)ij : 10i 10j X, (2.5)

(Yd)ij : 10i 5̄j Y, (2.6)

(YT
e )ij : 10i 5̄j Y, (2.7)

(Yν)ik : 5̄i 1k Z. (2.8)

This is a list of 3 different types of operators, and therefore gauge unification imprints itself

only in the form of relations between Yd and Ye, while all other Yukawa parameters are

completely independent. We therefore use the GUT concept to relate the parameters in the

down-type quark and charged lepton sector in a particular manner, which we discuss later.

Note though that the unknown parts X,Y, Z are in general different for different choices

of indices i and j. In order to be as predictive as possible, we assume that the matrices

Yu, Yd, Ye, Yν and MR have special textures at the GUT scale, which we discuss and

motivate below.

The GUT setup will be studied in the framework of supersymmetry, however we will

mainly be concerned with the predictions for the “SM part”, i.e. for the prediction for the

fermion masses, mixings and CP phases. SUSY enters mainly via the RGEs when we run

the parameters from the GUT scale to the SUSY scale, and via the one-loop SUSY threshold

corrections [59–63] for which we will use a general parameterisation as discussed later in

section 2.3 following [64]. We will include the SUSY threshold correction parameters as free

parameters in our analysis. Since they will be determined by the fit to the experimental

data for the fermion flavour structure, they can give interesting constraints on the SUSY

sparticle spectrum, and, together with the measured mass of the SM Higgs particle and the

GUT constraints on the soft SUSY breaking terms, can even fully determine the sparticle

spectrum (cf. [54, 65, 66]). We will leave the investigation of the consequences of the

considered models for the sparticle spectrum for a future study.

The last general consideration of the models we discuss, before moving on to Yukawa

textures, is proton decay. It is known that proton decay in the minimal renormalizable

SUSY SU(5) GUT (defined to be the one with the Higgs sector 24 ⊕ 5 ⊕ 5̄) makes the

model unviable [67] when assuming a relatively light superpartner spectrum. This is due

to the dangerous dimension 5 operators, arising from an exchange of triplets (3, 1,−1/3)

– 5 –
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or (3̄, 1,+1/3). Proton decay puts a lower bound on their mass, while gauge coupling uni-

fication in the minimal model would require them to be sufficiently light; the two demands

are incompatible, killing that model.

The models we consider here, however, have a Higgs sector that is far from minimal,

since we follow instead the philosophy of the Higgs sector having predictive couplings to

the Yukawa sector. In such models, a large number of available multiplets other than the

color triplets for gauge coupling unification is generically expected to pose no requirements

for a low triplet mass. A sufficient relaxation is already seen in minimalistic extensions

of the minimal SU(5), for example with an additional 24 [68], an additional Higgs pair

45⊕ 45 [69], or an additional vector-like fermion pair 5F + 5̄F [70]; all these have proton

decay under control.

In this paper we specify the models by specifying the SU(5) operators generating masses

in the Yukawa sector, but we do not provide their complete Higgs sector. In fact, the goal

of this paper is to provide a roadmap to constructing such complete models, which are

viable from the point of view of the measured fermion masses and mixings. Proton decay

is model dependent, so we shall not consider it further in this paper; we can say though that

once a complete model is constructed, proton decay will be an important phenomenological

constraint for the parameter space of that model, but is generically expected to not pose

a threat to the model itself.

2.2 Choice of Yukawa sector

We now focus on our choice of textures in the Yukawa sector. We shall choose a specific

texture based on previous analyses and model building ideas, as we discuss below, but

remain agnostic regarding the underlying flavour theory.

The choice of our Yukawa textures will be guided by the principles of simplicity and

predictivity, and we shall choose the explanation of the CKM CP violating phase as an

important starting point. A summary of the train of thought determining the textures of

both the quark and lepton sectors is the following:

1. Phase sum rule: as a guide to obtaining a viable CKM CP violating phase, we choose

the phase sum rule [71] that a unitarity triangle angle of αUT = δdL12 −δuL12 ≈ 90◦ gives a

good prediction; a necessary condition for the implementation is that θuL13 = θdL13 = 0.

2. Simplicity in Yd: we choose the down-sector to have no mixing between the first

two families and the third family at all, i.e. θdL23 = θdL13 = 0, and further simplify the

texture by taking (Yd)11 = 0 and use phase redefinitions of the fields 10i to eliminate

unphysical phases in the entries of Yd.

3. CP violation in Yu: in the up-type quark sector the matrix Yu is symmetric; we

achieve θuL13 = 0 by (Yu)13 = 0 and implement the quark sector CP violating phase

via a realisation of the “phase sum rule mechanism” [71] by taking all entries real,

except the (Yu)12 entry to be imaginary.2

2We would like to emphasize that any choice that realizes the phase sum rule leads to the same predic-

tions. We therefore do not lose generality by our particular implementation.

– 6 –
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4. Single operator dominance: we assume that each non-vanishing entry in Yd comes

dominantly from only one operator of the type of eq. (2.6), consequently relating Ye

to Yd in the simplest and most predictive way.

5. CSD2 for Yν : we choose the form of “Constrained Sequential Dominance 2” (CSD2)

for the neutrino sector.

Each of these arguments will be thoroughly explored later in this section; we shall discuss

each one separately and also flesh-out the connections on how each one then leads to the

next. For now, we simply specify the form that Yukawa matrices take considering the

points mentioned above: the quark and charged lepton sector Yukawa matrices at the scale

MGUT take the form

Yu =

 u1 iu2 0

iu2 u3 u4

0 u4 u5

 Yd =

 0 z 0

yeiγ x 0

0 0 yb

 , Ye =

 0 cyye
iγ 0

czz cxx 0

0 0 yτ

 , (2.9)

while the left-handed neutrino mass matrix at MGUT takes one of the following two forms:

M(102)
ν = ma

 εeiα 0 2εeiα

0 1 −1

2εeiα −1 1 + 4εeiα

 , M(120)
ν = ma

 εeiα 2εeiα 0

2εeiα 1 + 4εeiα −1

0 −1 1

 . (2.10)

The reason behind two possible forms of Mν will be explained in section 2.2.5.

Above, the Yukawa sector is parametrized by 14 real parameters in total; this includes

the 12 parameters

u1, u2, u3, u4, u5, x, y, z, ma, ε, yb, yτ , (2.11)

and the 2 phases

α, γ. (2.12)

In addition, the factors cx, cy, cz in Ye are Clebsch-Gordan (CG) coefficients, which

are fixed by the choice of particular GUT operators in eqs. (2.6) and (2.7). We postpone

a more in-depth discussion on the possible values of these coefficients to section 2.3.

The above texture considerably reduces the number of free parameters, allowing it to

make a number of predictions. The way this texture works is the following:

• Since Yd is block diagonal, the angles θCKM
23 and θCKM

13 are coming only from Yu.

Since (Yu)13 = 0 and (Yd)13 = 0, the angle θCKM
13 is generated indirectly:

θCKM
13 ≈ θuL12 θ

uL
23 . (2.13)

All in all, this means that the parameters ui in Yu, where i = 1 . . . 5, are fitted to

accommodate the three mass eigenvalues mu, mc, mt, and two mixing angles θCKM
23

and θCKM
13 (the latter generated indirectly). Since θuL23 is fixed by the CKM angle

θCKM
23 , the angle θuL12 is determined by eq. (2.13). Since there is no left mixing phase

δdL12 in Yd, the relative factor i in Yu predicts the αUT angle in the unitarity triangle

αUT ≈ −δuL12 ≈ π/2, and thus δCKM.

– 7 –
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• In Ye and Yd, the parameters x, y, z are used to correctly fit the two well measured

charged lepton masses me and mµ, and produce a suitable θdL12 in order to produce

the correct remaining CKM angle θCKM
12 . Given fixed Clebsch coefficients cx, cy and

cz (they are not free parameters in a chosen model), this automatically predicts

the down-type masses md and ms and the charged lepton mixing angle θeL12 . The

prediction of the masses md and ms can be alternatively thought of as the prediction

of the ratio md/ms, which turns out to be fixed almost solely by the three Clebsch

coefficients, while the SUSY threshold correction parameter ηq (to be discussed later

in section 2.3) is fit so as to give a correct overall scale for the md and ms masses.

Finally, the parameters yb and yτ can be set independently, thus determining the

correct mb and mτ mass, respectively.

• The form of CSD2 in the neutrino sector predicts one neutrino mass to be zero. The

parameters ma and ε in Mν can be used to fit the two non-zero masses mν2 and

mν3 . The two remaining parameters are the phases α and γ in the matrices Mν and

Ye, respectively. These 2 parameters have to be used to fit the three PMNS mixing

angles, and they also determine the PMNS CP violating phase. From a simplified

perspective, successfully fitting 3 angles with 2 parameters implies that 1 angle is

determined by the other 2; we choose the least well measured of the angles, the angle

θPMNS
23 , to be the predicted one. All in all, that means that the CSD2 form of the

neutrino sector and the given texture in Ye make 2 predictions: δPMNS and θPMNS
23 .

Given the considerations above, we see that the chosen textures make 4 predictions, which

we summarize in a table given below:

predicted quantity root cause

δCKM phase sum rule

md/ms GUT connection

θPMNS
23 Ye texture and CSD2

δPMNS Ye texture and CSD2

Additionally, two more interesting quantities are fit: the charged lepton mixing angle θeL12

and the SUSY threshold parameter for the first two down-type families ηq. The quantity

θeL12 may be of interest for more general model building approaches, e.g. when the charged

fermion GUT setup may be combined with a different scheme for the neutrino sector. The

value for ηq would have to be realized by a realistic model of SUSY breaking, which can lead

to interesting constraints on the sparticle spectrum as discussed at the end of section 2.1.

We note that complete analysis has to take into account the RGE running of the

Yukawa matrices to low energies, as well as SUSY threshold corrections. Such a complete

analysis of all input parameters and observables of the model with careful consideration of

the involved energy scales is performed later in section 3. The discussion in this section

was intended only for demonstrative purposes of what the chosen textures can achieve.

It has thus been established that the chosen Yukawa textures are both simple and

predictive. Based on our 5-point step-by-step reasoning, we also claim that the choice of

– 8 –
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the texture is far from arbitrary, and that the various motivational points lead from one to

the other. For an example how such an SU(5) GUT texture for the charged fermions can

be realised in an explicit model, we refer the interested reader to ref. [72]. We now return

to this step-by-step motivation of the textures, discussing each of the 5 considerations in

greater detail.

2.2.1 Phase sum rule

The starting point for the considerations to determine our textures was the “phase sum rule

mechanism” in the quark sector, proposed in [71], which leads to a predictive scheme for

CP violation in the quark sector featuring a right-angled unitarity triangle with αUT = 90◦

(corresponding to a prediction δCKM = 1.188± 0.016, well within the current experimental

range of 1.208± 0.054).3

In [71] it was shown that a number of “quark mixing sum rules” arise under the

condition that the 1–3 mixings from both UL
u and UL

d are zero (see appendix A.2 for

notation). Assuming θuL13 = θdL13 = 0 and the small angle approximation, the mixing sum

rules can be written as

δdL12 − δuL12 ≈ αUT ≈ arg

(
1− θCKM

12 θCKM
23

θCKM
13

e−iδ
CKM

)
, (2.14)

θuL12 ≈
θCKM

13

θCKM
23

, (2.15)

θdL12 ≈
∣∣∣∣θCKM

12 − θCKM
13

θCKM
23

e−iδ
CKM

∣∣∣∣, (2.16)

where αUT is the upper angle in the unitarity triangle (labelled α in PDG [73]). Taking

the central values and 1σ errors at the scale MZ from [64], we thus arrive to the conclusion

that the numerical values for the left-hand side quantities are

δdL12 − δuL12 ≈ 88.5◦ ± 3.2◦ , (2.17)

θuL12 ≈ 4.96◦ ± 0.19◦ , (2.18)

θdL12 ≈ 12.18◦ ± 0.27◦ . (2.19)

Experimental data is thus consistent with the intriguing possibility that αUT = 90◦.

It has been proposed in [71] that simple textures realising δdL12 − δuL12 = π/2 could thus be

used for building predictive models for CP violation in the quark sector. This idea has

been applied, e.g., in the GUT flavour models in refs. [36, 37, 53, 54, 72, 74, 75]. Future

more precise measurements of the CKM phase have the potential to verify or exclude this

90◦ prediction.

As a final comment on the phase sum rule, we would like to point out that the gen-

eration of a CP violating phase from a phase π/2 in one of the entries is attractive from

3This is a prediction for αUT = 90◦, with the CKM angles θCKM
12 , θCKM

23 and θCKM
13 taken in their 1σ

experimental ranges, with data at MZ taken from [64]. The experimental range for δCKM at MZ is also

from [64].
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a model building point of view, since it can arise from an underlying discrete symmetry

or spontaneous breaking thereof. In models of flavour, where the structure of the Yukawa

matrices arises from the vacuum expectation values of so-called “flavons”, which break a

certain family symmetry, phase differences of π/2 between different flavons, or between

the different components of one flavon, can emerge in various ways, e.g. via “discrete vac-

uum alignment’ with Z4 symmetry combined with spontaneous CP violation [74] or from

a flavon potential as discussed in [37].

2.2.2 Yd: simplicity and predictivity

From among the fermion sectors we first turn to the down-type quark sector and discussion

the form that the matrix Yd takes. Here we rely on the principles of simplicity and

predictivity. When we apply these principles to the down-sector, there are added benefits

also in the charged-lepton sector, since the two sector are related due to gauge unification

in the underlying SU(5) setup.

An important prerequisite for the phase mixing sum rule of section 2.2.1 to work

was to have vanishing 1–3 mixing angles; for Yd this means that θdL13 = 0, and we can

approximately achieve this by taking a texture zero by (Yd)13 = 0. We can further simplify

Yd by assuming that the θdL23 angle is also zero, so that all CKM mixing between the first

two and the last family is coming from the up sector. With this assumption only the largest

CKM mixing angle θCKM
12 in the hierarchy

1� θCKM
12 � θCKM

23 � θCKM
13 (2.20)

is generated from the down sector. A simple way with a minimal number of free parameters

is to choose a 2 + 1 block diagonal structure. This structure then needs to generate the

4 relevant quantities (excluding any phases): 3 down-type masses, as well as the 1–2

contribution via the angle θdL12 . A 2 + 1 block structure has 5 non-zero entries, so we can

still explain the 4 relevant quantities if we eliminate one of the entries in the 2 × 2 block.

The dominant entry in this block will be generating the mass ms, so we require (Yd)22 6= 0,

while the non-zero θdL12 angle contribution will benefit from (Yd)12 6= 0. Since the right

mixing will dominantly come from (Yd)21, and this mixing can be of use later in the lepton

sector, we would like to keep that as well. We thus eliminate the parameter in the 1–1

entry: (Yd)11 = 0.4

The non-zero entries in such a texture are in general complex. We have the freedom,

however, to absorb phases into redefinitions of the fields. Since we are using the left-right

convention for the matrix Yd, the basis of the rows comes from the SU(5) representations

10i (where the left-handed down-quarks live), while the basis for columns comes from 5̄i.

We use only the freedom of the phase in 10i, with which we can make 3 entries, one in

each row, to be real. A redefinition of 5̄i, on the other hand, would influence the neutrino

mass matrix; we prefer not to absorb the one remaining phase in Yd into 5̄i due to greater

4We like to note that another possibility here would be to take the 2–1 entry to be zero. This, however,

would decouple the mixing in the quark and lepton sectors since then θdL12 would vanish. While this may be

of interest for different model building ideas, we prefer to stick to (Yd)11 = 0 in the following since CSD2

will make use of a non-zero θdL12 .
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clarity later when considering the neutrino sector. The choice of which phases to absorb

has now fixed the basis of the 10i. As will be discussed below, to eliminate phases in the

neutrino Yukawa matrix we will globally redefine the 5̄i, such that the bases of all the

Yukawa matrices are fixed and only the physical phases remain; since in a flavon setup the

three families of 5̄i form a triplet, there is only the freedom to absorb one phase.

Given the considerations above, we have thus arrived to the following form of Yd:

Yd ∼

0 ∗ 0

∗ ∗ 0

0 0 ∗

 →

0 ? 0

∗ ? 0

0 0 ?

 . (2.21)

The symbols ∗ denote non-zero complex entries, while the ? represents positive real entries.

The arrow “→” represents the absorbing of phases in to redefinitions of 10i, which shows

our choice of entries from which the phase is eliminated, arriving to the final form of Yd

given in eq. (2.9). We note that in this parametrisation the remaining complex entry (Yd)21

does not affect the CKM CP phase, but will have an influence on CP violation in the lepton

sector since in the considered SU(5) framework, Yd is related to YT
e . We will parametrise

the complex 2–1 element of Yd as yeiγ with real parameter y (cf. eq. (2.9)).

We finish the motivation of Yd with a remark comparing our texture to the one, which

gives rise to the Gatto Sartori Tonin (GST) relations [76]: the vanishing 1–1 entry in the

2× 2 block connects the two mixing angles (left and right) and the two singular values of

the block in a relation. Adapting the notation to the concrete case of Yd, the 2–2 entry is

roughly equal to the bigger singular value and thus to the strange quark mass ms. We can

then write the block using the small angle approximation θdL12 , θ
dR
12 � 1 as

(Yd)2×2 ≈

(
0 θdL12 ms

θdR12 ms ms

)
, (2.22)

from which we can derive the relation

θdL12 θ
dR
12 ≈

md

ms
, (2.23)

where md is the down quark mass, which is the smaller of the two singular values; since

md � ms experimentally, the small angle approximation is justified.

The aforementioned GST relation has a texture zero in the same 1–1 location, but it

is valid only when the matrix is symmetric, and the 1–2 mixing angle is taken to be the

Cabibbo angle θC: if θdL12 = θdR12 ≈ θC, then we get the GST relation√
md

ms
≈ θC. (2.24)

We stress, however, that in our case the GST relation is not valid; beside our texture

not being symmetric, it is also important that not all the θCKM
12 mixing is generated from

Yd, such that we do not obtain a prediction for md/ms in terms of the Cabbibo angle θC. In

our texture, the parameters x, y and z are determined by the very accurately measured me

and mµ, and by θdL12 which in turn is fixed by the quark mixing sum rule in eq. (2.19). The
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masses md and ms, or more precisely the ratio md/ms and the SUSY threshold correction

parameter ηq, are then obtained as predictions once x, y and z are fitted. The model

predictions for md/ms thus in general differ from the one of the GST relation.

2.2.3 Yu: generating CP violation in CKM

The up sector Yukawa matrix Yu is taken to be symmetric. The masses in the up-quark

sector are hierarchical and the mixing angles small. We will take a general Yu under the

two conditions that (i) the 1–3 mixing in the up-type quark sector is vanishing, which we

achieve in a very good approximation by (Yu)13 = 0 and which is a condition for the phase

sum rule to hold, and (ii) the phase of the 1–2 mixing is equal to −π/2, which, applying

the “phase sum rule” relation δdL12 − δuL12 = π/2 [71] gives αUT = 90◦.

Due to the texture zero in the entries (Yu)13 and (Yd)13 the relation

θCKM
13 ≈ θuL12 θ

uL
23 ≈

(Yu)12 (Yu)23

(Yu)22 (Yu)33
, (2.25)

holds, with θuL12 given by eq. (2.15) and where θuL23 = θCKM
23 . Since the down sector is block

diagonal, it contributes only θdL12 , and the CKM angles θCKM
13 and θCKM

23 are thus generated

exclusively from the up sector, while θCKM
12 gets contributions from the up-sector and the

down-sector.

For the following analysis it is only relevant that δuL12 = −π/2, however in order to

be specific we will choose a special representative of the possible Yu with this property,

namely the case where most entries are real, except for the (Yu)12 (and (Yu)21) entry

which has a complex phase of π/2 (cf. [71]). The placement of the i in Yu is the sole

generator of the quark CP phase δCKM. Note that the freedom for phase redefinitions of

10i was already used for Yd, so basis for Yu is thus already fixed and there is no phase

freedom remaining. In summary, the texture we consider for Yu and Yd is

Yu ∼

 ? i? 0

i? ? ?

0 ? ?

 , Yd ∼

0 ? 0

∗ ? 0

0 0 ?

 , (2.26)

where ? denote any positive real values, and the zero entries (Yu)13 = (Yd)13 = 0 ensure

approximately zero 1–3 mixing, ensuring the validity of the phase sum rule to a good

approximation. The asterisk ∗ denotes arbitrary complex entries, and a complex phase

in the 2-1 entry of Yd only contributes to right-mixing and not to the left mixing matrix

relevant for the construction of the CKM mixing matrix. Since Yd is related to YT
e in

our SU(5) setup, however, this phase appears in the left-side mixing matrix of the charged

lepton sector, helping to generate δPMNS. We shall make use of this form of the matrices

Yu and Yd in the next steps.

2.2.4 Ye: single operator dominance

In the following we will furthermore assume that the entries in Yukawa matrices are each

dominantly generated by a single GUT operator of the type given in eqs. (2.5)–(2.8), which
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could be a tree-level operator (e.g. for the case of the 3–3 element of Yu to generate the

comparatively large top quark mass) or an effective operator (which helps to explain the

hierarchy of the quark and charged lepton masses). We refer to this principle as single

operator dominance. The assumption is that possible effects of subdominant operators can

be neglected.5

This assumption enables to establish a direct relation between Yd and Ye due to the

same operator contributing to one entry of each of these matrices, cf. eq. (2.6) and (2.7);

the entries are related by a group-theoretic SU(5) Clebsch-Gordan coefficient depending

on which product of representations Y represents in the stated equations. Each entry in

Yd can be coming from a different type of operator, so each matrix entry (YT
e )ij can have

a different CG coefficient relative to the entry (Yd)ij . The possibilities of which values the

Clebsch coefficients cx, cy, cz can take will be discussed later.

As we have already mentioned briefly in section 2.1, and as we will discuss in more

detail in section 2.3, the relation between Yd and Ye is affected by RG running between

the GUT scale and low energies, and also by the SUSY threshold correction when matching

the MSSM to the SM at loop level. The latter effects can be particularly large since there

are contributions that are loop suppressed but tan β enhanced [4, 59–63]. For the 1–2

blocks of Yd and Ye, we will show that to a very good approximation both effects can be

subsumed into a single factor that merely rescales one block compared to the other.

Regarding (Yd)33, in an explicit model, there may also be a Clebsch coefficient relating

yb and yτ at the GUT scale, and an additional SUSY threshold correction parameter ηb
(analogously to ηq for the 1–2 block) which is fit to match the measured bottom and tau

quark masses. This gives an additional constraint on the SUSY particle spectrum (cf.

discussion in section 2.1), but it will not be discussed any further in this paper. Possible

Clebsch factors between yb and yτ in SU(5) are e.g. yτ/yb = 1 (i.e. b–τ unification [1]) or

yτ/yb = 3/2 (see for example [4]). However, as already mentioned earlier, we will simply fit

yb and yτ to the experimental data, since we want our analysis to be as model independent

as possible.

2.2.5 Neutrino sector: using CSD2

In the neutrino sector, we choose the CSD2 texture for the light neutrinos, which is known

to be very predictive [51, 53]. This section provides a brief summary and motivation

for this texture; for understanding the remainder of the paper, however, it is sufficient

to simply note the forms of the light neutrino mass matrices of eq. (2.10) (description

with 3 real parameters ma, ε and α) and the approximate mixing angle predictions in

eqs. (2.51)–(2.53).

The discovery of neutrino oscillations made clear that at least two out of the three

observed left-handed neutrinos possess mass, and that there is a mismatch between the

5It has been checked in explicit GUT flavour models, e.g. in [37], that this principle works very well,

unless two operators are engineered to both contribute with similar strength. With the single operator

dominance principle, one arrives at more predictive models, while engineering two operators to contribute

with similar strength would introduce a new parameter to soften correlations which are otherwise induced

by the GUT operators. To be as predictive as possible, we choose not to rely on such assumptions.
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flavour eigenbasis {νe, νµ, ντ} and the mass eigenbasis {ν1, ν2, ν3}. The two bases are

related by the unitary PMNS matrix; see appendix A.2 for details on notation.

Large lepton mixing in type I seesaw models via Sequential Dominance. To

understand the origin of the two large lepton mixing angles in the context of the type I

seesaw mechanism, the concept of Sequential Dominance (SD) [77, 78] of the right-handed

neutrino contributions to the neutrino mass matrix was proposed. Writing

Yν =

A1 B1 C1

A2 B2 C2

A3 B3 C3

 , MR =

MA 0 0

0 MB 0

0 0 MC

 , (2.27)

then according to the type I seesaw mechanism, the neutrino masses are given by

Mν = v2YνM
−1
R YT

ν = v2

[
AAT

MA
+
BBT

MB
+
CCT

MC

]
, (2.28)

where A, B, C are the column vectors of neutrino Yukawa matrix, e.g. A = (A1, A2, A3)T.

SD is the assumption that

AAT

MA
� BBT

MB
� CCT

MC
, (2.29)

i.e. that the contribution of one of the right-handed neutrinos, the one with mass MA,

dominates Mν , the one with mass MB is subdominant, and the one with mass MC can

be neglected. Sequential Dominance thus corresponds to strong normal hierarchy, i.e.

mν
3 � mν

2 � mν
1 . With this hierarchy and the simplifying assumption A1 = 0, the

neutrino mixing angles in leading order satisfy [77]

tan θν12 ≈
|B1|

cν23|B2| cos(φ′B2
)− sν23|B3| cos(φ′B3

)
, (2.30)

θν13 ≈
|B1||A∗2B2 +A∗3B3|
(|A2|2 + |A3|2)3/2

MA

MB
, (2.31)

tan θν23 ≈
|A2|
|A3|

. (2.32)

We used the definitions

φ′B2
= φB2 − φB1 − φν2 − χν , (2.33)

φ′B3
= φB3 − φB1 + φA2 − φA3 − φν2 − χν , (2.34)

and the (complex) parameters in Yν are written in the form X = |X|eiφX (X ∈ {Ai, Bi}).
With no loss of generality MA, MB, MC are chosen real and positive. The values of the

two auxiliary phases φν2 and χν (see the convention in eq. (A.6)) are fixed by the equations

φν2 − φA2 + φB1 ≈ arg (A∗2B2 +A∗3B3) , (2.35)

cν23|B2| sin(φ′B2
) ≈ sν23|B3| sin(φ′B3

) , (2.36)

such that the angles θν12 and θν13 are real (which is already assumed in eq. (2.30) and (2.31)).
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Before the measurement of the θPMNS
13 : TB mixing via CSD1. Before the mea-

surement of the “reactor angle” θPMNS
13 , the values of the mixing angles were consistent

with the simple scenario

sin2 θPMNS
12 ≈ 1

3
, (2.37)

sin2 θPMNS
13 ≈ 0, (2.38)

sin2 θPMNS
23 ≈ 1

2
, (2.39)

which can be summarized with a PMNS matrix of the form

UPMNS =


√

2
3

√
1
3 0

−
√

1
6

√
1
3

√
1
2√

1
6 −

√
1
3

√
1
2

 , (2.40)

with bases for the rows and columns defined by the standard PDG convention stated in

eq. (A.3): the matrix is Ufi, where the indices f = e, µ, τ and i = 1, 2, 3. This pattern

is called tri-bimaximal mixing [14, 15]. If the PMNS matrix takes the TB form, the

atmospheric angle θPMNS
23 is maximal, while the reactor angle θPMNS

13 is predicted to be

zero, and there is no complex CP-violating phase.

The TB mixing matrix in the neutrino sector can be realized with SD by imposing the

conditions |A1| = 0 , |A2| = |A3| , |B1| = |B2| = |B3| , φ′B2
= 0 , φ′B3

= π, which corresponds

to Yν and MR of the form

Yν =

 0 b

a b

−a b

 , MR =

(
MA 0

0 MB

)
, (2.41)

where the parameters a, b are in general complex. We assume that the heaviest right-

handed neutrino is completely decoupled, either because it is very heavy or because the

corresponding neutrino Yukawa couplings are very small, thus the contribution from the

subsubleading term CCT/MC in the light neutrino mass matrix is neglected.6 When Ye is

diagonal, the PMNS matrix will be completely determined by the mixing in the neutrino

sector. In this case the PMNS mixing matrix has the TB form discussed above.

The condition |A2| = |A3| gives rise to tan θν23 = 1, whereas |B1| = |B2| = |B3| with the

phase relations imply tan θν12 = 1/2. Furthermore, substituting φ′B2
= 0 and φ′B3

= π into

the definitions in eq. (2.33) and (2.34), we get the relation (φB3 − φA3)− (φB2 − φA2) = π

and it follows immediately that θν13 = 0. The combination of SD and the above set of

relations for the neutrino Yukawa couplings Ai and Bi is known as constrained sequential

dominance [45], which we may also refer to as CSD1.

The exact TB mixing pattern in the PMNS matrix, however, has been ruled out ever

since the measurement of a non-zero θPMNS
13 mixing angle at T2K [9], Double Chooz [10],

RENO [11] and Daya Bay [12]. This implies that the TB structure of the PMNS matrix

needs to be perturbed in some way.

6Alternatively, in SU(5) models, we may assume that only two right-handed neutrinos exist.
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TB neutrino mixing plus charged lepton mixing contribution. After the θPMNS
13

measurement, it was realised that in a GUT context, where a 1–2 mixing contribution

from the charged lepton sector is typically present due to GUT relations between Ye and

Yd (with Yd often being the dominant source for the CKM mixing and thus featuring a

sizeable 1–2 mixing), TB mixing could still be an attractive mixing pattern in the neutrino

sector. The angle θPMNS
13 is in this scenario generated via the 1–2 charged lepton mixing

contribution.

In typical flavour GUT models θeL12 will be dominant, because it is related to the largest

(Cabibbo) mixing angle in the quark sector. This motivates the assumption that only θeL12

is non-zero (θeL13 = 0, θeL23 = 0). Under the assumption that θeL12 ,� 1 and remembering

that TB mixing implies θν13 = 0, the general formulas for the lepton mixing angles from

eqs. (B.7)–(B.9), including charged lepton contributions, give (cf. [47])

sPMNS
12 e−iδ

PMNS
12 ≈ sν12e

−i(δν12+θeL12 t
ν
12c

ν
23 sin(δν12−δeL12 )) + θeL12 c

ν
12c

ν
23e
−iδeL12 , (2.42)

sPMNS
13 e−iδ

PMNS
13 ≈ θeL12 s

ν
23e
−i(δν23+δeL12 ) , (2.43)

sPMNS
23 e−iδ

PMNS
23 ≈ sν23e

−iδν23 , (2.44)

where sνij ≡ sin θνij , c
ν
ij ≡ cos θνij and tνij ≡ tan θνij . In particular, from eq. (2.43) we obtain

for the PMNS angle θPMNS
13 :

sPMNS
13 ≈ θPMNS

13 ≈ θeL12 s
ν
23 , (2.45)

in leading order in θeL12 . With approximate TB mixing realised in the neutrino sector, e.g.

via CSD1, sν23 = sPMNS
23 = 1/

√
2 and we obtain θPMNS

13 ≈ θeL12 /
√

2. It has been pointed out

that with θeL12 ≈ θC one would obtain θPMNS
13 ≈ 9.2◦, close to the experimental value at that

time, and models along this line have been constructed e.g. in [36, 37]. However, with the

present rather accurate measurement of θPMNS
13 it has turned out that the predicted value

for θPMNS
13 from this consideration is not in agreement with the experimental data.

A novel scheme for PMNS mixing: CSD2 plus charged lepton corrections.

In [51, 53] it was proposed to use a novel vacuum alignment of the flavons, such that the

form of Yν is different from the one in eq. (2.41). In particular, the alternative flavon

vacuum alignment retains the dominant flavon VEV in the first column, but a different

subdominant flavon choice in the second column. This new form is called CSD2 [51], and

it comes along in two varieties based on two different VEV alignments of the subdominant

column.7 They are denoted by φ102 and φ120, and they respectively correspond to the

following neutrino Yukawa matrices:

Y(102)
ν =

 0 b

a 0

−a 2b

 , Y(120)
ν =

 0 b

a 2b

−a 0

 . (2.46)

7We remark that alongside CSD1 and CSD2, there exist still more possible interesting types of vacuum

alignment of flavons, such as CSD3 [79] and CSD4 [80, 81]. These alignments though generate a good

θPMNS
13 from the neutrino sector alone, making them less attractive in a GUT setup (where the charged

lepton contribution is linked to the down sector). We shall thus not consider CSD3 or CSD4 further in this

paper.
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With these alternative vacuum alignments, the seesaw mechanism from eq. (2.28) (and

CCT/MC → 0) delivers the following mass matrices for the left handed neutrinos:

M(102)
ν = ma

0 0 0

0 1 −1

0 −1 1

+mb

1 0 2

0 0 0

2 0 4

 = ma

 εeiα 0 2εeiα

0 1 −1

2εeiα −1 1 + 4εeiα

 , (2.47)

M(120)
ν = ma

0 0 0

0 1 −1

0 −1 1

+mb

1 2 0

2 4 0

0 0 0

 = ma

 εeiα 2εeiα 0

2εeiα 1 + 4εeiα −1

0 −1 1

 , (2.48)

where the complex mass parameters ma and mb are defined by

ma :=
v2a2

MA
, mb :=

v2b2

MB
, (2.49)

while their ratio is parametrized by the modulus ε and phase angle α via

mb

ma
≡ εeiα. (2.50)

By using the overall phase freedom for 5̄i (which form a flavour triplet in a complete

flavour theory, as already mentioned earlier), we can absorb the phase from the parameter

ma, making ma real.8 the light neutrino mass matrix in eq. (2.47) or (2.48) will thus be

parametrized by 3 real parameters: ma, ε and α.

It is clear from the above equation that the neutrino sector mixing matrix will depend

only on the ratio mb/ma = εeiα, while the size of the parameter ma determines the overall

scale of the masses. With the assumption MA � MB we get |mb| � |ma| and ε can be

used as an expansion parameter for the angles in the neutrino rotation matrix. Beside

the contribution from the neutrino sector to the lepton mixing parameters in the PMNS

matrix, there is also one coming from the charged leptons. Using eqs. (B.13)–(B.15) we

obtain the PMNS angles as an expansion in the parameters ε and θeL12 when both lepton

sectors contribute (cf. [45, 53])

θPMNS
12 ≈ 35.3◦ − θeL12√

2
cos γ , (2.51)

θPMNS
13 ≈ 1√

2

(
ε2 + θeL12

2 ± 2εθeL12 cos (α+ γ)
)1/2

, (2.52)

θPMNS
23 ≈ 45◦ ∓ ε cosα , (2.53)

for the two CSD2 scenarios M
(102)
ν and M

(120)
ν . As we can see, CSD1 and CSD2 share the

good prediction that in leading order θPMNS
12 ≈ 35.3◦ and θPMNS

23 ≈ 45◦, as in the TB mixing

pattern, however a non-zero θPMNS
13 is already predicted from the neutrino sector (even if

θeL12 was zero). Interestingly, in contrast to CSD1 models where the decay asymmetry for

8In the effective theory with no right-handed neutrinos, the phase redefinitions of 1k (in contrast to the

phase from 5i) do not appear anywhere; the phases do not change ma and mb, since they cancel in the

fractions of eq. (2.49).
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leptogenesis is suppressed [82], it has been shown in [51] that in CSD2 it is unsuppressed

and directly linked to the leptonic Dirac CP phase δPMNS.

A CSD2 set-up in combination with charged lepton corrections was considered the first

time in a renormalizable model based on an A4 family symmetry and a specific SU(5) GUT

set-up in ref. [53], and more recently also in [54]. In the models considered in the present

paper, we assume that the neutrino mass matrix Mν has the CSD2 form of either the φ102

or φ120 flavon vacuum alignment, as written down in eq. (2.47) and (2.48), and we explore

the possible sets of GUT operators, which essentially predict θeL12 , to find out which of them

are most promising for model building.

2.3 Candidates for GUT operators in the Yukawa sector

We have just set the texture of Yu, Yd, Ye and Mν at the GUT scale in the previous

part of this section, but there are still undetermined quantities which are an integral part

of a model: the Clebsch-Gordan coefficients cx, cy and cz. Their values depend on the

yet unspecified choices for the unknown parts Y of the SU(5) GUT operator in eq. (2.6)

and (2.7).

The possible Clebsch factors between the down and charged lepton sector in these

operators have been classified in [4, 5]. It would seem that we have potentially a very large

number of viable possibilities which Clebsch coefficients to take. The exact relations with

Clebsch coefficients are valid only at the GUT scale, while the measured masses and mixing

angles of the fermion sector are considered at MZ . The RGE running of these parameters

from the GUT scale to low scales, as well as unknown SUSY threshold corrections at the

SUSY scale, can to some extent “repair” the high-scale relations so that they are compatible

with experiment at low energy. Therefore it might appear that there are few constraints on

the combination of Clebsch factors yielding realistic low energy masses and mixing angles.

It turns out, however, that we can greatly limit the number of Clebsch combinations

by considering the following double ratio of the first two generations of Yukawa couplings

(which, as we shall show below, is approximately invariant under RGE and SUSY threshold

corrections):

d :=
yµyd
yeys

. (2.54)

In the model under consideration at the GUT scale, this ratio can be approximately written

as a ratio of Clebsch factors

d
∣∣∣
MGUT

=
yµyd
yeys

∣∣∣
MGUT

≈
∣∣∣ c2

x

cycz

∣∣∣. (2.55)

The last approximation comes the following approximate formulas for the Yukawa cou-

plings:

yd ≈
∣∣∣yz
x

∣∣∣ , ys ≈ |x| , ye ≈
∣∣∣cycz
cx

∣∣∣∣∣∣yz
x

∣∣∣ , yµ ≈ |cx||x| , (2.56)

in the case where x� y, z, using the texture of eq. (2.9). On the other hand, this ratio is

experimentally determined at low energies (at the Z scale) to be

d
∣∣∣
MZ

=
mµmd

mems
= 10.7 +1.6

−0.9 , (2.57)
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with the errors coming mostly from the quark masses ms and md, while the lepton masses

me and mµ are very well measured. The values at MZ were taken from [64]; the asymmetry

of the error mostly comes from the measurement of md.

The ratio d has the remarkable property that it is stable both under RGE running and

under SUSY threshold corrections [59–63]. This is easy to see by noticing that single ratios

yd/ys and ye/yµ within the same sector are already stable; the reason for using the double

ratio is that its GUT scale expression depends only on group-theoretical Clebsch factors,

and not on any of the unknown parameter values.

We now argue that the ratios yd/ys and ye/yµ are stable under RGE and SUSY thresh-

old corrections:

1. RGE running

We consider the 1-loop RGE equations in the MSSM [83] for the down and charged

lepton Yukawa (written in the LR convention):9

d

dt
Yd =

1

16π2

(
Tr(3Y†dYd + Y†eYe) + 3YdY

†
d + YuY

†
u −

16

3
g2

3 − 3g2
2 −

7

15
g2

1

)
Yd,

(2.58)

d

dt
Ye =

1

16π2

(
Tr(3Y†dYd + Y†eYe) + 3YeY

†
e − 3g2

2 −
9

5
g2

1

)
Ye, (2.59)

where t = log µ is the log of the renormalization scale µ, and the explicit writing of

unit matrices next to the scalar terms has been suppressed in the above notation.

We use the left and right basis of the matrices Yd and Ye, where they are diagonal,

which is simplest for our considerations. Due to the strong hierarchy in the down

and charged lepton sector masses, in particular yd, ys � yb and ye, yµ � yτ , the

3rd generation Yukawa terms from the trace and the gauge coupling terms dominate

the RGE beta functions of the first two families, and the contributions of first two

generation Yukawas can be neglected; thus

d

dt
yd ≈

1

16π2
yd

(
3|yb|2 + |yτ |2 −

16

3
g2

3 − 3g2
2 −

7

15
g2

1

)
, (2.60)

d

dt
ys ≈

1

16π2
ys

(
3|yb|2 + |yτ |2 −

16

3
g2

3 − 3g2
2 −

7

15
g2

1

)
, (2.61)

d

dt
ye ≈

1

16π2
ye

(
3|yb|2 + |yτ |2 − 3g2

2 −
9

5
g2

1

)
, (2.62)

d

dt
yµ ≈

1

16π2
yµ

(
3|yb|2 + |yτ |2 − 3g2

2 −
9

5
g2

1

)
. (2.63)

Now it is clear that dyd/yd ≈ dys/ys and dye/ye ≈ dyµ/yµ, consequently keeping

the ratios yd/ys and ye/yµ approximately constant under RG running in the MSSM.

Similar arguments hold also for the SM RG running below the SUSY scale.

9We neglect the effects of the neutrino Yukawa couplings here (cf. e.g. [84]). We can assume they are

small, since they would stem from an effective operator in a model realisation.
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2. SUSY threshold corrections

At the SUSY scale, where the MSSM is matched to the SM, the SUSY threshold

corrections [59–63] of the Yukawa couplings are implemented as the following [64]:

YMSSM
u ≈ YSM

u

sinβ
, (2.64)

YMSSM
d ≈ diag

(
1

1 + ηq
,

1

1 + ηq
,

1

1 + ηb

)
YSM
d

cosβ
, (2.65)

YMSSM
e ≈ YSM

e

cosβ
. (2.66)

The above equations are written in the basis where Yu is diagonal and in the left-

right convention for the Yukawa matrices. The SUSY threshold corrections are

parametrized by ηq and ηb, and they also depend on the tan β parameter defined

as the ratio of the VEVs of the Higgs fields Hu and Hu in the MSSM: tan β := vu/vd.

Note that in eqs. (2.64)–(2.66), we only considered tan β enhanced contributions from

down type quarks.10 From eq. (2.65), it is clear that the 1/ cosβ and 1/(1 + ηq) fac-

tors drop out of the ratio yd/ys. Similarly, according to eq. (2.66) the 1/ cosβ factor

drops out of the ratio ye/yµ.

We have thus seen that the double ratio d is a very useful quantity and that it has

approximately the same value at all scales. Equating eq. (2.55) and (2.57), the ratio of

Clebsch factors |c2
x/(cycz)| must thus be around 10.7. This guideline enables to greatly

reduce the number of relevant Clebsch factor combinations that one needs to consider,

since we automatically know that large deviations from the ratio will not provide a good

fit to the low energy observables.

We first consider now which values the individual coefficients cx, cy and cz can take.

Their values are independent, since they come from different operators according to the

single operator dominance principle discussed in section 2.2.4. Their possible values are

taken from the list of SU(5) Clebsch factors as computed in [4, 5]. The list there is generated

by the following considerations:

• There are only two operators at the renormalizable level; they have the form 10Fi 5Fj
·H, where the SM Higgs doublet is contained in the SU(5) representation H, which

can either be 5 or 45. The two options give the well known Clebsch factors 1 and −3,

known from [1] as “b–τ unification” and “the Georgi-Jarlskog relation”, respectively.

• The above result is extended in [4] to non-renormalizable superpotential operators

of the form 10Fi 5Fj 〈X〉H, where X ∈ {24,75} and H ∈ {5,45}. The brackets in

10The analysis already covers also the general case. The 3rd family SUSY threshold corrections can be

absorbed into tan β and relabelling it into tan β̄, cf. [64]. The ηl correction to the first two families also

has no qualitative effect on predictions of observables: it would change the overall scale of the 1–2 charged

lepton block, which can be compensated by a change in x,y and z by a common factor, while the consequent

change in the overall change of scale in the down sector can then be absorbed by a shift in ηq. This leads

to the same low energy prediction at a shifted parameter point.
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〈X〉 denote that the SM singlet in the representation X acquires a GUT scale VEV;

in SU(5) the only non-singlet representations below dimension 100 containing a SM

singlet are the representations 24 and 75. Such non-renormalizable operators can be

generated as effective operators when integrating out a heavy mediator particle.

• The results of [4] were further extended in [5]. There, diagrams with 4 external legs

were considered, in which the mediator line has a mass insertion, with the mediator

mass generated non-trivially from a VEV in the 24 or 75.

All in all, the list of available Clebsch factors taken from table 1 and 2 in [5] is the following:

1, −3, −1/2, ±3/2, 9/2, 6, −18, 1/6, −2/3, 2. (2.67)

Considering now the above list of individual values of cx, cy and cz, we compute all

combinations (cx, cy, cz) giving a good value for the double ratio d ≈ |c2
x/(cycz)|. Although

the double ratio is only sensitive to the product cycz, permutations of cy and cz are con-

sidered as different cases since the model predictions will be dependent on the individual

values. As will be argued in section 3.1.3, a change of sign in any of the Clebsch-Gordan

coefficients returns an equivalent solution. Therefore only the absolute values |cx|, |cy| and

|cz| are distinguished. In addition, for cx we restrict the values to 3, 9/2 and 6 (when we

run up the ratio yµ/ys to the GUT scale, its value becomes roughly 4.5 if there were no

threshold corrections, while threshold effects can readily change this to 3 and 6, but not

much further) and the values for cy and cz are then chosen in a way that the double ratio

lies between 9 and 14, corresponding to a roughly 2σ region in eq. (2.57).

We identify in this way the potentially good Clebsch combinations, and list them in

table 1. This is the list of combinations we shall consider further in the numerical analysis

of the models in the next sections.

3 Model implementation and analysis

The model is implemented at the GUT scale, using the texture described in the previous

section for specific combinations of CG coefficients in the charged lepton Yukawa couplings.

In order to compare the observables with experimental data and fit the parameters of

the model, we use the MSSM and SM RGEs for the running, including SUSY threshold

corrections, with boundary conditions at the GUT scale. The fitting is done by calculating

the χ2 of the observables.

3.1 Model setup

3.1.1 Texture

The texture for the down-type quark and charged lepton Yukawa couplings is stated in

eq. (2.9). The matrices are given by

Yd =

 0 z 0

yeiγ x 0

0 0 yb

 , Ye =

 0 cyye
iγ 0

czz cxx 0

0 0 yτ

 . (3.1)
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cx, cy, cz cx, cy, cz cx, cy, cz

3, 1
6 ,

9
2

9
2 ,

1
6 , 9 6, 1

2 , 6

3, 1
6 , 6

9
2 ,

1
2 , 3 6, 2

3 ,
9
2

3, 1
2 ,

3
2

9
2 ,

1
2 ,

9
2 6, 2

3 , 6

3, 1
2 , 2

9
2 ,

2
3 , 3 6, 1, 3

3, 2
3 , 1

9
2 , 1,

3
2 6, 3

2 , 2

3, 2
3 ,

3
2

9
2 , 1, 2 6, 2, 3

2

3, 1, 2
3

9
2 ,

3
2 , 1 6, 2, 2

3, 1, 1 9
2 ,

3
2 ,

3
2 6, 3, 1

3, 3
2 ,

1
2

9
2 , 2, 1 6, 9

2 ,
2
3

3, 3
2 ,

2
3

9
2 , 3,

1
2 6, 6, 1

2

3, 2, 1
2

9
2 , 3,

2
3 6, 6, 2

3

3, 9
2 ,

1
6

9
2 ,

9
2 ,

1
2

3, 6, 1
6

9
2 , 9,

1
6

Table 1. The list of all combinations of SU(5) Clebsch-Gordan coefficients (only absolute values),

which provide the Yukawa double ratio
yµyd
ysye

≈
∣∣∣ c2xcycz ∣∣∣ in the range between 9 and 14. The possible

values of these coefficients were taken from the classification in [4, 5].

According to the texture in eq. (2.9), the (symmetric) up-type Yukawa matrix is imple-

mented in the following way

Yu = U23(θCKM
23 ) U12(θuL12 ) diag(yu, yc, yt) UT

12(θuL12 ) UT
23(θCKM

23 ) , (3.2)

with the unitary matrices

U23(θCKM
23 ) =

1 0 0

0 cos θCKM
23 sin θCKM

23

0 − sin θCKM
23 cos θCKM

23

 , U12(θuL12 ) =

 cos θuL12 i sin θuL12 0

i sin θuL12 cos θuL12 0

0 0 1

 . (3.3)

The factor i in U12, which corresponds to a phase δuL12 = −π/2, is introduced to get an

imaginary 1–2 element in Yu, and a potential rotation angle θuL13 in eq. (3.2) (cf. eq. (A.4))

is chosen equal to zero, such that the 1–3 element is negligible, which realizes the texture

in eq. (2.26) to a very good approximation.11 The values for yb, yτ , yu, yc, yt and θCKM
23 in

eq. (3.1) and (3.2) are set to the experimental values at the GUT scale provided in [64].

11Although according to eq. (3.2) the 1–3 and 3–1 elements of Yu do not vanish exactly, the relative

correction of θCKM
13 compared to the texture in eq. (2.26), where the two entries are zero, is of order yc/yt,

which is much smaller than the experimental uncertainty.
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The CSD2 mechanism provides two choices of flavon VEVs which determine the neu-

trino Yukawa matrices, i.e. Y
(102)
ν and Y

(120)
ν , as stated in eq. (2.46). After integrating out

the right-handed neutrinos, the corresponding mass matrices of the left-handed neutrinos

are given by (as stated in eq. (2.47) and (2.48))

M(102)
ν = ma

 εeiα 0 2εeiα

0 1 −1

2εeiα −1 1 + 4εeiα

 , M(120)
ν = ma

 εeiα 2εeiα 0

2εeiα 1 + 4εeiα −1

0 −1 1

 . (3.4)

At the SUSY scale, where the MSSM is matched to the SM, the threshold corrections of

the Yukawa couplings are implemented according to eqs. (2.64)–(2.66).

3.1.2 Observables

With the implementation shown above the model provides 12 experimentally measured

observables, namely the Yukawa couplings ye, yµ, yd, ys, the CKM angles and CKM Dirac

phase θCKM
12 , θCKM

13 , δCKM, the PMNS angles θPMNS
12 , θPMNS

13 , θPMNS
23 and the neutrino

mass squared differences ∆m2
21, ∆m2

31. There also exist other observables, which are in

one-to-one correspondence with a parameter (such as the up-type Yukawa couplings, 3rd

generation Yukawa couplings in Ye and Yd, and θCKM
23 ) and can be fitted independently;

these observable-parameter pairs are not counted. As mentioned earlier, the CSD2 scenario

implies normal hierarchy for neutrino masses. Furthermore, the model predicts three ob-

servables which are not (or not well) measured: the PMNS Dirac phase δPMNS, the ratio of

the Yukawa couplings yd
ys

and the effective mass 〈mββ〉 in neutrinoless double-beta (0νββ)

decay. Although θPMNS
23 is measured by experiment, the range of θPMNS

23 predicted by the

model for the different combinations of CG coefficients is usually much smaller than the

uncertainty in the experimental data. The same holds true for the ratio yd
ys

, which is stable

under the RGE running and the SUSY threshold corrections. The general formula for the

effective mass 〈mββ〉 is given by

〈mββ〉 =
∣∣∣∑

i

(UPMNS
1i )2mνi

∣∣∣
= c2

12c
2
13e
−iϕPMNS

1 mν1 + s2
12c

2
13e
−iϕPMNS

2 mν2 + s2
13e
−2iδPMNS

mν3 ,

(3.5)

with the PMNS matrix UPMNS and the abbreviations cij = cos θPMNS
ij , sij = sin θPMNS

ij .

The left-handed neutrino masses are labelled by mνi (where mν1 < mν2 < mν3) and ϕPMNS
1 ,

ϕPMNS
2 are the two PMNS Majorana phases. Since the neutrino sector contains only two

right handed neutrinos, we have mν1 = 0 and consequently ϕPMNS
1 is unphysical; 〈mββ〉

thus acts as a proxy for the Majorana phase ϕPMNS
2 .

The total χ2 of the model is given by the sum of the individual χ2 of each measured

observable, which are calculated by using the experimental data. The χ2 therefore consists

of 12 terms. If the 1σ experimental range for any of them is asymmetric relative to the

central value, we took this into account. An exception is the observable θPMNS
23 for which we

used the exact ∆χ2 function provided by NuFIT 3.2 (2018) [13]. The experimental values

for the Yukawa couplings and the CKM parameters are taken at the GUT scale. They are
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Figure 1. Schematic illustration of the model quantities concerning the different mass scales. On

the y-axis the three mass scales MGUT, MSUSY and MZ are indicated, as well as the type of the

RGEs needed for the running. At MGUT the model is implemented by fixing the CG coefficients,

the CSD2 scenario and 8 of the model parameters. Then 7 observables corresponding to the Yukawa

couplings and the CKM matrix are fitted directly to the experimental values at the GUT scale using

the data from [64]. The other 5 observables, corresponding to the neutrino masses and the PMNS

matrix are run down to the Z scale, where they are fitted to the data from NuFIT 3.2 (2018) [13].

At the SUSY scale, the threshold corrections are specified by 3 parameters and we also switch from

the DR to the MS scheme when matching. While the Yukawa ratio of the down and the strange

quark is predicted at MGUT, the other predictions are run down to MZ .

provided in [64], including the corresponding 1σ errors, as functions of the parameters tan β,

ηb and ηq. The PMNS angles and the neutrino mass squared differences are determined at

the Z boson mass scale MZ , where they are fitted to the experimental values from NuFIT

3.2 (2018) [13]. Furthermore, the predictions for the PMNS Dirac phase and the effective

mass in 0νββ decay are calculated at MZ too. A schematic illustration of the model

quantities at the different scales is shown in figure 1. For all the observables determined at

low scale the change of their values when running them from MGUT to MZ is calculated by

using an interpolated data table, whose implementation is discussed in detail in appendix C.

The data table is available under the link stated in.12

12The neutrino data table for running effects can be found at: https://particlesandcosmology.unibas.ch.

Direct download link: https://particlesandcosmology.unibas.ch/fileadmin/user upload/particlesandcosmology-

unibas-ch/files/RGrunning.zip.
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3.1.3 Parameters

Once the CG coefficients cx, cy, cz in the charged lepton Yukawa matrix are fixed, the

model contains 11 parameters according to eqs. (2.64)–(2.66) and eqs. (3.1)–(3.4). These

parameters are x, y, z, γ, θuL12 , ma, ε, α, tanβ, ηb and ηq (see also figure 1). In fact, the

two parameters tan β and ηb have only a minor impact via RGE effects on the observables.

Thus the 12 measured observables are basically fitted by 9 parameters. The parameter

and observable counting excludes direct pairs of parameter-observable, where a fit of the

pair can be performed independently; thus for the fit of the model less parameters are

effectively used than present in eq. (2.11) and (2.12).

In particular, the parameters x, y, z, θuL12 and ηq are used to fit the four Yukawa

couplings in the down-type quark and charged lepton sector, the two CKM angles and the

CKM Dirac phase, while γ, ma, ε and α determine the three PMNS angles and the two

neutrino mass squared differences. Furthermore, all parameters are real, as discussed in

section 2.

Considering the parametrization in section 3.1.1, it turns out that there is some re-

dundancy in the values of the parameters and CG coefficients, i.e. for certain different

parameters and CG coefficients the model retains the same values for the observables. For

example, a change of sign cy → −cy can be compensated by the shift γ → γ + π. In the

same manner cx → −cx is compensated, and cz → −cz has no impact on the observables at

all. Thus, with no loss of generality all CG coefficients can be chosen positive as assumed

in table 1. Furthermore, a simultaneous change of sign in z and θuL12 or in x, y and z do not

change the observables and a change of sign in y can again be compensated by the shift

of γ by π. In order to keep the factor i in the 1–2 element in Yu, which predicts a viable

CKM Dirac phase, the quantities z
x and suL12 must have the same sign. Therefore x, y, z

and θuL12 are chosen non-negative in the analysis below.

For the numerical analysis we choose the following parameter ranges:

x, θuL12 ∈ [0, 0.1] , y, z ∈ [0, 0.01] , γ, α ∈ [0, 2π] , ε ∈ [0, 1] , ma ∈ [0, 0.1] eV ,

tanβ ∈ [20, 50] , ηb, ηq ∈ [−0.6, 0.6] ,

(3.6)

and the different mass scales are fixed as

MZ = 91.2 GeV , MSUSY = 3 · 103 GeV , MGUT = 2 · 1016 GeV . (3.7)

3.2 Analytical considerations in the lepton sector

When fitting the model for fixed CG coefficients to the experimental data the values for

x, y, z, θuL12 and ηq are completely fixed in the quark and charged lepton sector by the

observables ye, yµ, yd, ys, θ
CKM
12 , θCKM

13 and δCKM. In the neutrino sector the parameters

γ, ma, ε and α are then used to fit θPMNS
12 , θPMNS

13 , θPMNS
23 , ∆m2

21 and ∆m2
31. Once a local

minimum of the χ2 function in the space of these four parameters is found, we expect

further local minima with the same or a similar χ2 value. From an analytical point of

view the different minima can be explained in three steps as follows, where for the sake of

simplicity running effects are neglected:
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1. Consider the neutrino mass matrix in eq. (3.4), which is dependent on ma, ε and

α. The masses of the light neutrinos are given by the singular values of this ma-

trix. When fitting the two neutrino mass squared differences, ma and ε thus can be

expressed as a function of α, where they are not sensitive to the sign of α.

2. Since the left angle θeL12 ≈
∣∣ cy
cx
y
x

∣∣ is fixed by the Yukawa couplings and the CKM

parameters, the parameter γ is fixed too (up to a minus sign) when θPMNS
12 is fitted,

using eq. (B.13):

θPMNS
12 ≈ 35.3◦ − θeL12√

2
cos γ . (3.8)

This means the solutions for γ always come in pairs.

3. The final step in the analysis of minima depends on the CSD2 variant. We shall

explicitly state here the argument for the Y
(102)
ν variant, for which we make use of

the identity in eq. (B.23) given in leading order of θeL12 and ε:13

θPMNS
13 eiδ

PMNS ≈ ε√
2
ei(π+α) +

θeL12√
2
ei(π−γ) . (3.9)

While the left-hand side of the equation is determined by experiment, the right-

hand side involves parameters of our model; in particular, the first term on the right

can be viewed as a function of α only due to step 1 and the second term represents

merely a constant shift due to step 2. A successful fit of the model thus involves

finding a good value for α, which is the only remaining degree of freedom in eq. (3.9).

We illustrate the stated features of eq. (3.9) in figure 2, which is drawn based on

data for the model with (cx, cy, cz) =
(
3, 3

2 ,
1
2

)
and the CSD2 variant Y

(102)
ν . The left-

and right-hand side of the equation are represented by solid red and blue curves in

the complex plane, respectively. The red curve is a circle with a radius equal to the

central measured value for θPMNS
13 ; the dark red part represents the 3σ experimental

range for δPMNS. The dashed blue line represents the first term on the right, which

is to a good approximation shaped as an off-center circle; its exact shape depends

on the function ε(α). The solid blue curves in the figure represent the dashed curve

shifted by the second term; there are two such curves due to solutions for γ coming

in ± pairs. The dark blue curves represent values of α that predict θPMNS
23 in the

experimental 1σ range via eq. (B.15).

A low χ2 for θPMNS
13 is obtained only when eq. (3.9) is satisfied, i.e. when the

red and blue solid curves intersect. Geometrically each blue (approximate) circle can

intersect the red circle in either 0, 1 (special case when they touch) or 2 points. We

therefore generically expect that if intersection points between the solid blue curves

and the red circle exist, there are 4 of them. Indeed, a geometrical consideration of

figure 2 indicates that once we have found a point with low χ2 for some values of

(γ, α), there are further good points for (−γ,−α), (γ, 2γ − α) and (−γ,−2γ + α),

13The analysis for the Y
(120)
ν variant is completely analogous, except that we use eq. (B.24).
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Figure 2. The different terms in eq. (3.9) are illustrated for (cx, cy, cz) = (3, 32 ,
1
2 ) and the CSD2

scenario Y
(102)
ν , where ε is taken as a function of α induced by neutrino mass fitting. There are

two solid blue curves according to the two solutions for γ when fitting θPMNS
12 . The dark blue lines

represent the experimental 1σ range of θPMNS
23 for given ε and α using eq. (B.15). The radius of

the red circle is given by the experimental value of θPMNS
13 , where the darker part indicates the

experimental 3σ range of δPMNS [13]. The angles δPMNS and α run from 0 to 2π, and θeL12 =
∣∣ cy
cx

y
x

∣∣
is fixed by the fitting of the Yukawa couplings.

where all other parameters are fixed. Since the first two points differ only by a minus

sign in γ and α, they have the same χ2 value. The same holds true for the last two

points. Note that since the dashed blue circle is not centred at the origin, the form

stated for the second pair of points is only approximate.

Including the experimental 1σ range also for θPMNS
23 [13] (dark blue lines), which

is also part of our χ2 function, 2 of the 4 points do not fit anymore. For certain CG

coefficients θPMNS
23 cannot be fitted well at all; in these cases there is no point with

a low χ2. Otherwise we expect two best fit points with the same χ2 when fitting

the model (with good values for both θPMNS
13 and θPMNS

23 ). Usually only one of them

provides δPMNS within the experimental 3σ range [13] (dark red line). In figure 2,

the two best fit points predict δPMNS at around 90◦ and 270◦, the latter one being

consistent with the 3σ range.

This analytic consideration for minima holds in general: if in a specific model points with

low χ2 exist, we expect 2 of them, with possibly only 1 of the 2 in the correct δPMNS range.

Our numeric results indeed confirm this, as we shall see in the next section.

4 Results

Having specified the implementation of the model at the GUT scale and how observables

are compared to experimental data in section 3, we investigate in this section the following
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two questions: first, which tuples of CG coefficients listed in table 1, in combination with

one of the two CSD2 neutrino Yukawa couplings, are compatible with the experimental

data. Second, what are the predictions for θPMNS
23 , δPMNS, yd

ys
and 〈mββ〉 in these models.

4.1 Suitable model candidates

In table 2 a complete list of combinations of CG coefficients (cx, cy, cz) that provide a χ2

less than 15 is shown. They are ordered with respect to their best fit value and labelled

by an integer number. For each tuple (cx, cy, cz) both types of CSD2 neutrino Yukawa

couplings (Y
(102)
ν and Y

(120)
ν ) are considered. According to the analytical discussion in

section 3.2, the (local) best fit points always come in pairs with opposite sign in γ and α.

In the table only the minima with χ2 < 15 are shown, and they are distinguished by the

labels a1, a2, . . . in the case of Y
(102)
ν and b1, b2, . . . in the case of Y

(120)
ν . For each local

minimum listed in table 2, the values of certain selected quantities are shown:

• Beside the total χ2 (χ2
Tot), two partial sums are also listed: χ2

q sums over the contri-

butions from the Yukawa couplings and the CKM angles and phase, while χ2
ν sums

over the terms for the neutrino mass squared differences and the PMNS angles. As

expected, χ2
Yuk usually gives only a minor contribution to χ2

Tot, because of the selec-

tion of the CG coefficients which was guided by the Yukawa double ratio in eq. (2.55).

Hence, in the models which do not fit well, the main contribution comes from χ2
ν ,

and in particular in most of the cases from θPMNS
23 .

• We list the values of the observables θPMNS
23 , δPMNS, which are the predictions of each

model; we discuss the results in section 4.2. The values of all observables in table 2

are given at the Z-boson mass scale.

• The best-fit values of the parameters γ, α and of the 1–2 left angle θeL12 of the charged

leptons are shown. These parameters allow insight into explicitly constructing new

models, as for example discussed in the two points below:

– A full flavour model could predict the value for the phase γ by a suitable flavon

VEV alignment. A striking feature is that the most promising models (cf. also

table 3) feature γ close to 270◦. As discussed in section 2.2.1, such phases (or

phase differences) can emerge in flavour models in various ways, e.g. from “dis-

crete vacuum alignment” [74] combined with spontaneous CP violation, or from

other methods for vacuum alignment with non-Abelian discrete symmetries, e.g.

from a flavon potential as discussed in [37]. We would also like to point out the

very interesting possibility that the phase difference of 90◦ for the “phase sum

rule mechanism” and a phase γ = 270◦ could arise from a single imaginary en-

try in the 2-2 element of Ye/Yd. Furthermore, in explicit flavour models also

the phase α could emerge from the vacuum alignment, and for a specific model

candidate one could try to find a model realisation where its value is close to

the one given in table 2 or 3.14

14Alternatively, of course, one could try to construct models where γ and/or α are kept as free parameters.
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Label (cx, cy, cz) χ2
Tot χ2

q χ2
ν θ23[◦] δ[◦] γ[◦] α[◦] θeL12 [◦]

1
(
3, 3

2
, 1
2

)
a1 (102) 0.17 0.06 0.11 47.9 92.7 68.7 233.1 7.23

a2 0.17 0.06 0.11 47.9 267.3 291.3 126.9 7.23

b1 (120) 4.05 0.06 3.99 41.6 120.1 71.6 148.2 7.22

b2 4.05 0.06 3.99 41.6 239.9 288.4 211.8 7.22

2 (6, 3, 1)

a1 (102) 0.19 0.06 0.14 47.9 93.7 67.7 233.9 7.23

a2 0.19 0.06 0.14 47.9 266.3 292.3 126.1 7.23

b1 (120) 4.19 0.06 4.13 41.5 118.9 72.6 147.0 7.22

b2 4.19 0.06 4.13 41.5 241.1 287.4 213.0 7.22

3
(
9
2
, 2, 1

)
a1 (102) 1.62 1.06 0.56 43.9 103.0 72.9 263.2 5.49

a2 1.62 1.06 0.56 43.9 257.0 287.1 96.8 5.49

b1 (120) 1.06 1.06 0.00 47.2 90.2 71.0 90.5 5.49

b2 1.06 1.06 0.00 47.2 269.8 289.0 269.5 5.49

4
(
9
2
, 3
2
, 1
)

a1 (102) 1.81 1.12 0.69 43.7 110.9 66.2 272.3 5.33

a2 1.81 1.12 0.69 43.7 249.1 293.8 87.7 5.33

b1 (120) 1.24 1.12 0.12 47.4 93.0 68.8 94.0 5.33

b2 1.24 1.12 0.12 47.4 267.0 291.2 266.0 5.33

5
(
3, 1, 2

3

)
a1 (102) 1.82 1.12 0.70 43.7 110.7 66.5 272.1 5.32

a2 1.82 1.12 0.70 43.7 249.3 293.5 87.9 5.32

b1 (120) 1.24 1.12 0.12 47.4 93.1 68.7 94.1 5.32

b2 1.24 1.12 0.12 47.4 266.9 291.3 265.9 5.32

6
(
9
2
, 3, 2

3

)
a1 (102) 1.64 0.92 0.72 48.8 83.9 72.5 215.3 8.29

a2 1.64 0.92 0.72 48.8 276.1 287.5 144.7 8.29

b1 (120) 9.68 0.93 8.75 40.4 117.1 78.4 155.0 8.28

b2 9.68 0.93 8.75 40.4 242.9 281.6 205.0 8.28

7
(
6, 2, 3

2

)
a1 (102) 2.97 0.06 2.91 42.3 117.7 64.3 283.7 4.80

a2 2.97 0.06 2.91 42.3 242.3 295.7 76.3 4.80

b1 (120) 1.77 0.05 1.72 48.3 84.7 77.8 87.7 4.80

b2 1.77 0.05 1.72 48.3 275.3 282.2 272.3 4.80
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Label (cx, cy, cz) χ2
Tot χ2

q χ2
ν θ23[◦] δ[◦] γ[◦] α[◦] θeL12 [◦]

8
(
6, 6, 1

2

)
a1 (102) 2.37 0.38 1.99 49.6 84.4 71.5 147.4 14.90

a2 2.37 0.38 1.99 49.6 275.6 288.5 212.6 14.90

a3 8.62 0.43 8.19 40.9 133.9 64.5 63.6 14.93

a4 8.62 0.43 8.19 40.9 226.1 295.5 296.4 14.93

b1 (120) 3.11 0.38 2.74 42.1 121.6 68.9 218.5 14.90

b2 3.11 0.38 2.74 42.1 238.4 291.1 141.5 14.90

9
(
3, 2, 1

2

)
a1 (102) 3.24 3.12 0.12 47.9 87.4 72.7 226.9 7.42

a2 3.24 3.12 0.12 47.9 272.6 287.3 133.1 7.42

b1 (120) 8.59 3.15 5.45 41.2 114.2 77.5 144.0 7.41

b2 8.59 3.15 5.45 41.2 245.8 282.5 216.0 7.41

b3 11.64 3.19 8.45 49.2 97.0 49.2 75.2 7.40

b4 11.64 3.19 8.45 49.2 263.0 310.8 284.8 7.40

10
(
3, 3

2
, 2
3

)
a1 (102) 3.76 3.27 0.49 44.0 102.7 72.6 262.3 5.54

a2 3.76 3.27 0.49 44.0 257.3 287.4 97.7 5.54

b1 (120) 3.28 3.27 0.01 47.1 91.4 69.8 91.5 5.54

b2 3.28 3.27 0.01 47.1 268.6 290.2 268.5 5.54

11
(
6, 9

2
, 2
3

)
a1 (102) 4.87 0.14 4.73 50.6 82.0 70.5 187.2 10.97

a2 4.87 0.14 4.73 50.6 278.0 289.5 172.8 10.97

b1 (120) 8.16 0.14 8.01 40.5 128.9 69.9 188.8 10.98

b2 8.16 0.14 8.01 40.5 231.1 290.1 171.2 10.98

12
(
6, 6, 2

3

)
a1 (102) 5.98 2.65 3.32 50.2 78.0 73.6 182.1 11.28

a2 5.98 2.65 3.32 50.2 282.0 286.4 177.9 11.28

b1 (120) 14.58 2.66 11.92 39.8 125.1 72.7 187.3 11.28

b2 14.58 2.66 11.92 39.8 234.9 287.3 172.7 11.28

13
(
9
2
, 9
2
, 1
2

)
a1 (102) 6.13 2.65 3.48 50.2 78.4 73.2 182.3 11.28

a2 6.13 2.65 3.48 50.2 281.6 286.8 177.7 11.28

b1 (120) 14.66 2.66 12.00 39.8 125.0 72.8 187.2 11.28

b2 14.66 2.66 12.00 39.8 235.0 287.2 172.8 11.28

14
(
9
2
, 3, 1

2

)
a1 (102) 6.40 1.56 4.84 50.6 82.9 69.9 189.3 10.81

a2 6.40 1.56 4.84 50.6 277.1 290.1 170.7 10.81
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b1 (120) 9.66 1.56 8.09 40.5 128.9 70.0 187.4 10.81

b2 9.66 1.56 8.09 40.5 231.1 290.0 172.6 10.81

Label (cx, cy, cz) χ2
Tot χ2

q χ2
ν θ23[◦] δ[◦] γ[◦] α[◦] θeL12 [◦]

15
(
6, 3

2
, 2
)

b1 (120) 11.62 0.07 11.55 50.3 67.1 99.7 74.5 3.60

b2 11.62 0.07 11.55 50.3 292.9 260.3 285.5 3.60

16
(
9
2
, 1, 3

2

)
b1 (120) 13.25 1.10 12.16 50.3 66.4 101.3 74.3 3.54

b2 13.25 1.10 12.16 50.3 293.6 258.7 285.7 3.54

17
(
3, 2

3
, 1
)

b1 (120) 13.28 1.09 12.19 50.3 66.5 101.2 74.5 3.54

b2 13.28 1.09 12.19 50.3 293.5 258.8 285.5 3.54

18
(
9
2
, 3
2
, 3
2

)
b1 (120) 13.30 3.35 9.95 50.2 62.0 103.7 68.4 3.69

b2 13.30 3.35 9.95 50.2 298.0 256.3 291.6 3.69

19 (6, 2, 2)

b1 (120) 13.36 3.36 10.00 50.2 62.6 103.1 69.0 3.69

b2 13.36 3.36 10.00 50.2 297.4 256.9 291.0 3.69

20 (3, 1, 1)

b1 (120) 13.41 3.35 10.06 50.2 63.1 102.7 69.6 3.69

b2 13.41 3.35 10.06 50.2 296.9 257.3 290.4 3.69

Table 2. Results of the fit for model candidates specified by the CG coefficients and the CSD2

scenario. The table shows a complete list of CG coefficients (cx, cy, cz) with χ2 < 15, ordered

according to their best χ2 value. For each combination of (cx, cy, cz) and CSD2 scenario (Y
(102)
ν or

Y
(120)
ν ) all local minima with χ2 < 15 are listed. The 1st column assigns a unique label to each local

minimum. The 2nd column specifies the CG coefficients and the type of neutrino Yukawa coupling.

The quantity χ2
Tot indicates the χ2 of the model, which includes all observables. χ2

q contains the

contributions of the χ2 coming from the quark and charged lepton Yukawa couplings and the CKM

parameters, whereas in χ2
ν the remaining contributions to the χ2 from the neutrino mass squared

differences and the PMNS angles are incorporated. In the last five columns the values of the two

observables θ23 ≡ θPMNS
23 , δ ≡ δPMNS, the two parameters γ, α and the 1–2 left angle θeL12 of the

charged leptons are shown.

– The values of θeL12 also allow to explore model building possibilities within the

considered SU(5) GUT setup beyond the CSD2 setup in the neutrino sector.

For example, as already mentioned in section 2.2.5, one can check whether a

tri-bimaximal mixing pattern in the neutrino sector instead of CSD2 could be a

valid option, with θPMNS
13 generated solely from the charged lepton mixing con-
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Label tan β ηb ηq x y z γ[◦] θuL12 ma[eV] ε α[◦]

1a2 46.9 0.449 −0.344 0.00722 0.001833 0.001642 291.3 0.0871 0.0283 0.103 126.9

3b2 33.4 −0.170 0.017 0.00347 0.000752 0.000777 289.0 0.0871 0.0261 0.119 269.5

4b2 48.5 0.599 −0.048 0.00498 0.001396 0.001147 291.2 0.0871 0.0266 0.117 266.0

3a2 31.1 −0.147 0.016 0.00317 0.000688 0.000710 287.1 0.0872 0.0263 0.116 96.8

6a2 31.0 −0.141 0.021 0.00314 0.000687 0.000704 287.5 0.0870 0.0285 0.099 144.7

7b2 48.0 0.395 0.310 0.00374 0.000945 0.000850 282.2 0.0872 0.0263 0.121 272.3

4a2 49.3 0.600 −0.048 0.00507 0.001422 0.001169 293.8 0.0871 0.0264 0.119 87.7

8a2 48.7 0.568 0.328 0.00365 0.000970 0.000834 288.5 0.0872 0.0290 0.098 212.6

7a2 49.1 0.494 0.309 0.00381 0.000964 0.000866 295.7 0.0873 0.0258 0.125 76.3

8b2 49.6 0.590 0.328 0.00372 0.000991 0.000852 291.1 0.0872 0.0292 0.097 141.5

9a2 32.5 −0.167 −0.308 0.00502 0.000982 0.001116 287.3 0.0871 0.0282 0.102 133.1

10b2 35.0 −0.078 −0.310 0.00542 0.001053 0.001203 290.2 0.0871 0.0262 0.119 268.5

Table 3. List of best-fit models. The table shows the model parameters of the 12 best fit points

with lowest χ2 from table 2. Note that the models 2 and 5 are not considered. The corresponding

local minima are essentially the same as the ones in model 1 and 4 respectively, since the tuple of

CG coefficients in model 1 and 2, and in model 4 and 5, differ only by an overall factor.

tribution. The angle θPMNS
13 is then predicted as θPMNS

13 = θeL12 /
√

2, and one finds

from table 2 that no model candidate would give an acceptable value for θPMNS
13 .

Analogously, one can also explore whether other leading order mixing patterns

in the neutrino sector could be promising for SU(5) GUT model building in the

considered framework.

We see from table 2 that out of the 37 tuples of CG factors giving potentially viable

models listed in table 1, only 20 have minima with χ2 < 15. There are 10 combinations of

CG coefficients which have an excellent fit of χ2 < 4, which means that all observables of

the model do not deviate more than 2σ in total from the experimentally measured values.

Before the present study, only two representatives from the considered class of models

had been studied; model 18 with the tuple of Clebsch factors
(

9
2 ,

3
2 ,

3
2

)
in ref. [53], and

model 20 with CG factors (3, 1, 1) in [54]. We can see that the fits of these two models

are not as promising given the latest results from NuFIT 3.2 (2018) [13] with a preference

for θPMNS
23 > 45◦.

In table 3 the model parameters of the 12 best fit points with lowest χ2, namely 1a1,

3b2, 4b2, 3a2, 6a2, 7b2, 4a2, 8a2, 7a2, 8b2, 9a2, 10b2, are listed. Note that the models 2

and 5 are not considered in table 3, since the tuple of CG coefficients differs only by an

overall factor 2 and 3/2 compared to the ones in model 1 and 4, respectively. Thus, the

predictions for the observables in each of the two pairs of models are essentially the same.

Another general observation in comparing models is that neither of the CSD2 variants

Y
(102)
ν and Y

(120)
ν is strongly preferred overall. There exist models where one of the variants

is strongly preferred over the other, such as model 6 with CG factors
(

9
2 , 3,

2
3

)
preferring

– 32 –



J
H
E
P
1
2
(
2
0
1
8
)
0
2
5

the (102) flavon VEV alignment; there are also models where there is minimal difference

between the variants, such as model 10 with CG factors
(
3, 3

2 ,
2
3

)
. Models 15 to 20 have a

preference for the (120) variant, with the other having χ2 > 15, and thus not listed. In the

list of 12 best minima in table 3, 7 of them are of the (102) variant and 5 are of the (120)

variant, again showing no strong preference overall.

4.2 Predictions

4.2.1 θPMNS
23 and δPMNS

For the 12 best fit points listed in table 3 predictions of θPMNS
23 and δPMNS are shown in

figure 3. In this figure the minimal χ2 contours in the θPMNS
23 –δPMNS plane are shown

around each local minimum. For fixed θPMNS
23 and δPMNS the minimal χ2 is determined by

varying the model parameters, with the condition that θPMNS
23 and δPMNS have the correct

fixed values. Up to a certain threshold, these χ2 values are then shown as contours around

the chosen best fit point. In order to be in agreement with the experimental data, only

best fit points with δPMNS within the experimental 3σ range are taken into account. In

this way, we demonstrate how well a specific model can be fitted to the known values of

the SM parameters assuming a certain θPMNS
23 and δPMNS prediction, showing in which

θPMNS
23 –δPMNS regions the models work well.

For a given model the range of θPMNS
23 with low χ2, defined by the corresponding

plot in figure 3, is in most of the cases much smaller than the experimental 3σ range,

given by the interval [40.3◦, 51.1◦] [13]. This implies, although θPMNS
23 is used to fit the

parameters, that the models make distinct predictions for this observable. More accurate

measurements of θPMNS
23 in future experiments can distinguish between the different models.

Furthermore, all models predict the ranges for δPMNS within around 230◦ and 290◦, which

is quite restricted compared the current experimental 3σ range, given by [144◦, 374◦] [13].

Thus, independent of the choice of the CG coefficients and the CSD2 variant, the class of

model under consideration delivers a prediction for the PMNS Dirac phase, which can be

tested by future experiments.

To illustrate the above consideration further, all the plots listed in figure 3 have been

combined into one plot in figure 4, where the predictions of all the models can be compared

in the θPMNS
23 –δPMNS plane, together with the experimental 3σ ranges of the two quantities.

We see that all minimal χ2 regions of models fall onto an almost horizontal trend line; this

implies that a future more precise θPMNS
23 measurement can indeed further reduce the set of

viable models if not outright discriminate between them,15 while the rough range of δPMNS

is a prediction of the entire class. There is a slight positive trend noticeable that models

with a higher predicted θPMNS
23 also predict a slightly higher δPMNS.

4.2.2 Ratio of yd and ys

In order to compute the 1σ highest posterior density (HPD) interval of the ratio yd
ys

the

Markov chain Monte Carlo (MCMC) method is used. For the different combinations of CG

coefficients listed in table 2 we perform a Markov chain, where among others the posterior

15Future measurements by the DUNE experiment, for example, shall determine θPMNS
23 with a precision

of less than 1◦, and δPMNS with a precision of O(10◦) [55–57], which allows for precision model testing.

– 33 –



J
H
E
P
1
2
(
2
0
1
8
)
0
2
5

46 47 48 49
240

250

260

270

280

290

θ23
PMNS [°]

δ
P
M
N
S
[°
]

1a2 (3,3/2,1/2) (102)

44 46 48 50

250

260

270

280

290

θ23
PMNS [°]

δ
P
M
N
S
[°
]

3b2 (9/2,2,1) (120)

44 45 46 47 48 49 50 51

250

255

260

265

270

275

280

285

θ23
PMNS [°]

δ
P
M
N
S
[°
]

4b2 (9/2,3/2,1) (120)

41 42 43 44 45 46

240

250

260

270

280

θ23
PMNS [°]

δ
P
M
N
S
[°
]

3a2 (9/2,2,1) (102)

47.0 47.5 48.0 48.5 49.0 49.5

260

270

280

290

θ23
PMNS [°]

δ
P
M
N
S
[°
]

6a2 (9/2,3,2/3) (102)

46 47 48 49 50 51
260

265

270

275

280

285

290

θ23
PMNS [°]

δ
P
M
N
S
[°
]

7b2 (6,2,3/2) (120)

41 42 43 44 45 46

230

240

250

260

270

θ23
PMNS [°]

δ
P
M
N
S
[°
]

4a2 (9/2,3/2,1) (102)

49.0 49.2 49.4 49.6 49.8 50.0 50.2

260

265

270

275

280

285

290

θ23
PMNS [°]

δ
P
M
N
S
[°
]

8a2 (6,6,1/2) (102)

40 41 42 43 44

230

240

250

260

θ23
PMNS [°]

δ
P
M
N
S
[°
]

7a2 (6,2,3/2) (102)

41.5 42.0 42.5 43.0
225

230

235

240

245

250

θ23
PMNS [°]

δ
P
M
N
S
[°
]

8b2 (6,6,1/2) (120)

46.0 46.5 47.0 47.5 48.0 48.5 49.0

250

260

270

280

290

θ23
PMNS [°]

δ
P
M
N
S
[°
]

9a2 (3,2,1/2) (102)

44 46 48 50

250

260

270

280

290

θ23
PMNS [°]

δ
P
M
N
S
[°
]

10b2 (3,3/2,2/3) (120)

χ2

1 2 3 4 5 6 7 8 9

Figure 3. Minimal χ2 contours of the best fit models in the θPMNS
23 –δPMNS plane. From top left

to bottom right the 12 best fit points with lowest χ2 from table 3 are presented. In each plot the

minimal χ2 for fixed θPMNS
23 and δPMNS is plotted as contours around the local minimum, indicated

by a black cross. Beside the chosen CG coefficients (cx, cy, cz) and the CSD2 variant (Y
(102)
ν or

Y
(120)
ν ), the title of each plot contains a label specifying the best fit point according to table 3.

Only local minima with δPMNS within the experimental 3σ range are chosen.
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Figure 4. Summary of the minimal χ2 contours of the best fit models in the θPMNS
23 –δPMNS plane.

The figure shows the combined χ2 contours of all the plots in figure 3. The grey areas represent the

regions outside the experimental 3σ ranges of θPMNS
23 and δPMNS which are given by the intervals

[40.3◦, 51.5◦] and [144◦, 374◦], respectively [13].

density of yd
ys

is calculated. The posterior density of this ratio only depends on the choice

of the CG coefficients but not on the neutrino Yukawa coupling. In figure 5 the 1σ HPD

intervals for each of the models are indicated as red lines. In addition, the experimental

central value of yd
ys

is indicated by a dotted line and the regions outside the experimental

1σ range are represented by grey areas. Note that the values for the ratio yd
ys

in the Markov

chain are computed at the GUT scale. Since this ratio is stable under the RGE running

and the SUSY threshold corrections, the calculated values can be compared directly with

the experimental value at the MZ scale.

Figure 5 shows that the predicted range of ydys for a given model is much smaller than the

1σ experimental range given by 5.06+0.78
−0.42 ·10−2 [64]. Since different models predict different

ranges, more accurate future measurements of the masses md and ms, and consequently

also of the Yukawa couplings yd and ys, have the potential to distinguish between different

models. The small ranges of 1σ HPD intervals of yd
ys

for each model in figure 5 can be

explained as follows: once the CG coefficients in the charged lepton Yukawa matrix are

fixed, the double ratio d =
yµyd
yeys

≈
∣∣∣ c2xcycz ∣∣∣ given in eq. (2.55) is fixed too in leading order.

Since in addition ye and yµ have very small experimental uncertainties, much smaller than

yd and ys, the ratio yd
ys

is much more constrained in our models than in the experiment.
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Figure 5. Predictions for the Yukawa ratio yd/ys. For each combination of CG coefficients listed

in table 2 the 1σ HPD intervals for yd/ys are shown as red lines. The HPD intervals do not depend

on the choice of the CSD2 scenario. The dotted line indicates the experimental central value of the

Yukawa ratio and the grey areas represent the regions outside the experimental 1σ range, given by

yd/ys = 5.06+0.78
−0.42 · 10−2 [64].
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Figure 6. Predictions for the effective mass 〈mββ〉 in neutrinoless double-beta decay in the best fit

models. For the 12 best fit points with lowest χ2 listed in table 3 the 1σ HPD intervals for 〈mββ〉
are shown as red lines.

4.2.3 Effective mass in 0νββ decay

Once the CG coefficients and the CSD2 variant is chosen, all parameters in the PMNS

matrix and in the left-handed neutrino masses are predicted, including the one Majorana

phase (there is only one, since the lightest left-handed neutrinos in our setup was taken

massless). Therefore eq. (3.5) implies that the effective mass in neutrinoless double-beta de-

cay is predicted too; we shall show results for the experimentally more interesting quantity

of effective mass rather than for the Majorana phase.

The 1σ HPD interval of 〈mββ〉 is determined by calculating the posterior density using

the MCMC method. For the twelve best fit points with lowest χ2 listed in table 3, the 1σ

HPD intervals of the effective mass are shown in figure 6 as red lines.

Different combinations of CG coefficients (cx, cy, cz) and CSD2 scenarios (Y
(102)
ν or

Y
(120)
ν ) predict different ranges for 〈mββ〉 as shown in figure 6. Furthermore, all predic-
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tions lie roughly in the interval [2.5, 4.0] · 10−3 eV. This means the class of model under

consideration predicts a well defined range for the effective mass, independent of the choice

of the CG coefficients and of the CSD2 scenario. A precise measurement of 〈mββ〉 would

have the potential to distinguish different models, but unfortunately this is far beyond the

reach of currently planned experiments, which have an upper detectable limit of around

0.1 eV (e.g. see table II in [85]).

4.2.4 SUSY threshold parameter ηq

The SUSY threshold parameter ηq is actually one of the input parameters we fit. A

complete model involving SUSY breaking and a prediction of the SUSY spectrum would

need to reproduce, however, the correct threshold effect in the first 2 fermion families. For

this reason, we can consider the ηq value also as one of the predictions, despite it not being

directly observable experimentally.

We already stated in section 2.3 that the ηq value is linked to the Clebsch coefficient cx,

which determines the ratio yµ/ys at the GUT scale. Using SM and MSSM RGEs with no

SUSY threshold corrections, the GUT scale value of yµ/ys is approximately 4.5, suggesting

that any deviation of the Clebsch factor cx from 4.5 will need to be compensated by ηq.

This requirement picked only 3, 9
2 and 6 as suitable cx candidates (involving the possibilities

of raising/lowering the yµ/ys ratio by ±33%), implying the predicted values of ηq to be

approximately −0.33, 0 and +0.33, respectively. We confirm this expectation with the

results in table 3.

5 Summary and conclusions

In this paper, we have systematically investigated the predictions of a novel class of super-

symmetric SU(5) GUT flavour models with Constrained Sequential Dominance 2 (CSD2)

in the neutrino sector. CSD2 is an attractive building block for flavour model building be-

cause it predicts a non-zero leptonic mixing angle θPMNS
13 , a deviation of θPMNS

23 from π/4,

as well as a leptonic Dirac CP phase δPMNS, which is directly linked to the CP violation

relevant for generating the baryon asymmetry via the leptogenesis mechanism.

When embedded into a predictive SU(5) GUT setup, the CSD2 predictions in the

neutrino sector are modified in a calculable way by a charged lepton mixing contribution,

which is determined by the SU(5) relations between the charged lepton and down quark

Yukawa matrices Ye and Yd, respectively. The SU(5) quark-lepton relations in turn de-

pend on GUT operators responsible for generating the entries of fermion Yukawa matrices.

Under the assumption of single operator dominance, the choice of GUT operators and

consequently the associated Clebsch-Gordan coefficients directly govern the ratios between

the entries of Ye and Yd [4, 5].

Furthermore, another model building ingredient is the “phase sum rule mecha-

nism” [71], used to obtain a valid scheme for CP violation in the quark sector which

leads to the prediction of a right-angled unitarity triangle with αUT = 90◦ and thus to a

prediction δCKM = 1.188± 0.016 in good agreement with the allowed experimental range.
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This chosen setup defines the class of models under consideration, with a specific

member defined by a 3-tuple of Clebsch-Gordan factors between Yd and Ye in the 1–2

block and the choice of the CSD2 variant. Once these choices are made, and once concrete

values are given to model parameters, all the SM fermion sector parameters are determined:

this includes the masses, as well as the mixing angles and CP violating phases of both the

CKM and PMNS matrix.

Making use of the approximately invariant double ratio yd
ys

/
ye
yµ

, we can narrow down

the list of potentially viable Clebsch factors of the model class to 37; this list is given in

table 1. For each of the viable 37 candidates, and for each of the 2 CSD2 variants, we

performed a fit of parameters by minimizing the χ2 for the observables, thus identifying

which models can be viable in at least some part of their parameter space; the minimization

results for this are gathered in table 2, where all (local) minima with χ2 < 15 are listed,

with the complete information on the input parameters for the 12 best minima given in

table 3. The goal of this study was to systematically explore the predictions of the whole

model class to identify the most promising candidates for future model building; up to now

only two representatives from this class of models had been studied in refs. [53, 54].

A general observation from the results in tables 2 and 3 is that while there may be

a preference for the CSD2 variant Y
(102)
ν or Y

(120)
ν for an individual model, there is no

strongly preferred overall variant across all models.

In the fitting procedure there are 11 input parameters, which includes tan β and ηb
with only indirect and minor effects on observables; the χ2 function we minimize has 12

terms associated to observables.16 Our model class is thus predictive with the following

results:

1. The predicted PMNS quantities are θPMNS
23 and δPMNS, with results shown in figures 3

and 4. It shows that the predictions of θPMNS
23 vary from model to model, while the

entire model class predicts δPMNS roughly between 230◦ and 290◦. Future measure-

ments planned for example by DUNE [55–57] will determine θPMNS
23 and δPMNS with a

precision of less than 1◦ and O(10◦), respectively, allowing for precision model testing

and discrimination between them.

2. Each set of GUT operators predicts the ratio md/ms from the induced quark-lepton

mass relations using the precise existing measurements for mµ and me, with very

small errors. The predictions for md/ms are summarised in figure 5.

3. With CSD2 predicting one neutrino mass to be negligible, there is only 1 Majorana

phase in the neutrino sector. We use instead the effective mass 〈mββ〉 for neutrinoless

double-beta decay as a proxy; the 1σ HPD interval predictions are given in figure 6.

4. While the SUSY threshold parameter ηq is one of the fit parameters, its value would

need to be reproduced by the SUSY particle spectrum in any complete model. The

ηq value is determined already by the cx Clebsch factor choice (cf. section 4.2.4).

16The parameter and observable counting excludes direct pairs of parameter-observable, where a fit of

the pair can be performed independently from other quantities.
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Beyond the present study, the results of the fits provide useful insight for explicitly

constructing new models, especially when better experimental precision for the PMNS

parameters will guide the direction. In building a complete flavour GUT model, our results

provide the following guidance:

• A complete theory of flavour would be guided by the Yukawa textures used in the

fermion sector, and potentially also by the results for viable values of the phases α

and γ, which would be predicted by a suitable flavon VEV alignment. Interestingly,

all of the most promising models in table 3 feature γ close to 270◦. We point out the

intriguing possibility that such a phase γ, together with a αUT = 90◦ for the “phase

sum rule mechanism”, could arise from a single imaginary entry in the 2–2 element of

Ye and Yd. Furthermore, the provided values of θeL12 could allow one to explore model

building possibilities within the considered SU(5) GUT setup even with a neutrino

sector texture other than CSD2 (cf. section 4.1).

• CG coefficients are crucial building blocks of GUT flavour models, since they link

predictions for θPMNS
23 and δPMNS to the quark-lepton mass relation from SU(5) uni-

fication. The choice of CG factors actually reveals the choice of the underlying GUT

operators in the Yukawa sector, thus suggesting the GUT matter content of the Higgs

sector and perhaps guiding even towards a complete Higgs potential, from which the

spontaneous breaking of GUT symmetry SU(5)→ SM arises.

Finally, an offshoot of the presented work are the extensive RGE data tables for the

changes in neutrino observables when run from the GUT scale to the Z scale (cf. ap-

pendix C). Raw data is provided under the link stated in footnote 12. Interpolating that

data, together with the existing data tables from [64] for the quark and charged lepton

sectors allows to greatly speed up numerical fits of supersymmetric GUT flavour models

to the experimental data.

In summary, we provide a systematic study for a novel class of CSD2 neutrino mixing

models within a predictive SU(5) GUT setup. The candidate models have the potential to

be highly predictive, and can therefore be tested in future experiments. Our study thus

provides a roadmap for future work in constructing new flavour SUSY GUT models of this

novel type.
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A Conventions

A.1 Parametrizations for unitary matrices

Complex rotation matrices in 3 dimensions with rotation angles θij and phases δij are

written in the form

U12 =

 c12 s12e
−iδ12 0

−s12e
iδ12 c12 0

0 0 1

 , U13 =

 c13 0 s13e
−iδ13

0 1 0

−s13e
iδ13 0 c13

 ,

U23 =

1 0 0

0 c23 s23e
−iδ23

0 −s23e
iδ23 c23

 ,

(A.1)

where the abbreviations cij ≡ cos(θij) and sij ≡ sin(θij) are used. Real rotations Rij are

defined in the same way, but with vanishing phases, i.e. δij = 0. A general 3 × 3 unitary

matrix contains 9 degrees of freedom. A standard way to parametrize such a matrix U is

the following:

U = Q1R23U13R12Q2 , (A.2)

with the diagonal phase matrices Q1 =diag(eiδ1 , eiδ2 , eiδ3) and Q2 =diag(e−iϕ1/2, e−iϕ2/2, 1).

The 3 rotation angles are restricted to the interval
[
0, π2

]
, while the 6 phases take values

in the full range [0, 2π]. The middle term on the right-hand side in eq. (A.2) has the

explicit form

R23U13R12 =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (A.3)

with the notation δ ≡ δ13. This parametrization is usually used in specifying the CKM

and PMNS matrix (see appendix A.2). Further parametrizations of 3-dimensional unitary

matrices are the following:

U = PU23U13U12 , (A.4)

U = U23U13U12P , (A.5)

with the diagonal phase matrix P = diag(eiη1 , eiη2 , eiη3) and

U = P2R23R13P1R12P3 , (A.6)

with the diagonal phase matrices P1 = diag(1, eiχ, 1), P2 = diag(1, eiφ2 , eiφ3) and P3 =

diag(eiω1 , eiω2 , eiω3). The relations between the parameters of the four conventions stated

in eqs. (A.2) and (A.4)–(A.6) are listed in table 4.
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(i) (ii) (ii’) (iii)

θ12 θ12 θ12 θ12

θ13 θ13 θ13 θ13

θ23 θ23 θ23 θ23

δ δ13 − δ12 − δ23 δ13 − δ12 − δ23 −χ
ϕ1 −2(δ12 + δ23) −2(δ12 + δ23 + η1 − η3) 2(ω3 − ω1 − χ)

ϕ2 −2δ23 −2(δ23 + η2 − η3) 2(ω3 − ω2 − χ)

δ1 η1 − δ12 − δ23 η3 − δ12 − δ23 ω3 − χ
δ2 η2 − δ23 η3 − δ23 ω3 + φ2

δ3 η3 η3 ω3 + φ3

Table 4. The parametrization stated in eq. (A.2) (i) written in terms of the parametrizations given

in eq. (A.4) (ii), (A.5) (ii’) and (A.6) (iii).

A.2 CKM and PMNS matrix

A mass matrix Mf (f ∈ {u, d, e}), written in left-right convention, is diagonalized via a

singular-value decomposition

Mdiag
f = UL

fMfU
R†
f , (A.7)

where UL
f ,U

R
f are (unitary) rotation matrices of the left- and right-handed fields respec-

tively, and Mdiag
f is diagonal with non-negative entries. The CKM matrix UCKM is defined

to be equal to UL†
d in the mass eigenbasis of the up-type quarks. In general the CKM

matrix has the following form [73]:

UCKM = UL
uUL†

d . (A.8)

Using the definitions from eq. (A.2), the CKM matrix in the standard form reads

UCKM = RCKM
23 UCKM

13 RCKM
12 , (A.9)

which contains three rotation angles θCKM
12 , θCKM

13 , θCKM
23 and the Dirac CP violating phase

δCKM. All other phases are absorbed by redefinitions of the fields. Assuming Majorana

neutrinos, the diagonalization of the (symmetric) mass matrix Mν of the light neutrinos is

performed by the use of a Takagi decomposition

Mdiag
ν = UT

νMνUν , (A.10)

where Uν is the conjugate transpose of the rotation matrix of the left-handed neutrinos.

The PMNS matrix UPMNS is given by Uν in the mass eigenbasis of the charged leptons [73].

In general the PMNS matrix reads

UPMNS = UL
e Uν , (A.11)
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and, using eq. (A.2), the standard parametrization is the following:

UPMNS = RPMNS
23 UPMNS

13 RPMNS
12 QPMNS

2 , (A.12)

where θPMNS
12 , θPMNS

13 , θPMNS
23 are rotation angles, δPMNS is the Dirac CP phase and ϕPMNS

1 ,

ϕPMNS
2 are Majorana phases. The remaining three phases are absorbed into the fields.

B Approximate identities for the PMNS parameters

In the following we provide identities for the lepton mixing angles and phases including

charged lepton corrections. We use the definition from eq. (A.11) for the PMNS matrix,

with the rotation matrices defined in eq. (A.7) and (A.10). The unitary rotation matrices

UL
e and Uν are parametrized according to eq. (A.4) and (A.5) respectively:

UL
e = PeLUeL

23 UeL
13 UeL

12 , (B.1)

Uν = Uν
23U

ν
13U

ν
12P

ν . (B.2)

The Yukawa matrix Ye is taken from eq. (2.9). Since it is block diagonal, we have θeL13 = 0,

θeL23 = 0, and the phases in PeL are not fixed. In the following these phases are chosen zero,

i.e. ηeLi = 0. Up to 1st order in y/x (and z/x) the parameters in UeL
12 are given by

θeL12 ≈
cy
cx

y

x
, δeL12 ≈ π − γ . (B.3)

The light neutrino mass matrix Mν is taken from eq. (2.10). Up to 1st order in ε the

parameters in Uν read (cf. [51])

θν12 ≈ arcsin

(
1√
3

)
, δν12 ≈ ε sinα , ην1 ≈ −

1

2
ε sinα ,

θν13 ≈
ε√
2
, δν13 ≈ α−

7

2
ε sinα , ην2 ≈ −

α

2
+

3

2
ε sinα ,

θν23 ≈
π

4
− ε cosα , δν23 ≈ π − 2ε sinα , ην3 ≈ π −

3

2
ε sinα ,

(B.4)

in the CSD2 scenario Y
(102)
ν , and

θν12 ≈ arcsin
( 1√

3

)
, δν12 ≈ −ε sinα , ην1 ≈ −

1

2
ε sinα ,

θν13 ≈
ε√
2
, δν13 ≈ π + α− 3

2
ε sinα , ην2 ≈ −

α

2
− 1

2
ε sinα ,

θν23 ≈
π

4
+ ε cosα , δν23 ≈ π + 2ε sinα , ην3 ≈ π +

1

2
ε sinα ,

(B.5)

in the CSD2 scenario Y
(120)
ν . In order to write down general formulas for the PMNS

parameters we make the assumptions θeL13 = θeL23 = 0 and θeL12 , θ
ν
13 � 1, which are motivated
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by the above calculations. Furthermore we use the parametrization from eq. (A.5) for the

PMNS matrix, i.e.

UPMNS = UPMNS
23 UPMNS

13 UPMNS
12 PPMNS . (B.6)

Up to 1st order in θeL12 and θν13 the identities are the following (cf. [47]):

sPMNS
12 e−iδ

PMNS
12 ≈ sν12e

−i(δν12+θeL12 t
ν
12c

ν
23 sin(δν12−δeL12 )) + θeL12 c

ν
12c

ν
23e
−iδeL12 , (B.7)

sPMNS
13 e−iδ

PMNS
13 ≈ θν13e

−iδν13 + θeL12 s
ν
23e
−i(δν23+δeL12 ) , (B.8)

sPMNS
23 e−iδ

PMNS
23 ≈ sν23e

−iδν23 , (B.9)

with the notation cνij ≡ cos θνij , s
ν
ij ≡ sin θνij and tνij ≡ tan θνij . For completeness we also list

the identities for the phases in PPMNS:

ηPMNS
1 ≈ ην1 − θeL12 t

ν
12c

ν
23 sin(δν12 − δeL12 ) , (B.10)

ηPMNS
2 ≈ ην2 + θeL12 t

ν
12c

ν
23 sin(δν12 − δeL12 ) , (B.11)

ηPMNS
3 ≈ ην3 . (B.12)

Combining eqs. (B.3)–(B.5) with eqs. (B.7)–(B.9) we get for the lepton mixing angles and

phases (cf. [45, 53])17

θPMNS
12 ≈ 35.3◦ − θeL12√

2
cos γ , (B.13)

θPMNS
13 ≈ 1√

2

(
ε2 + θeL12

2
+ 2εθeL12 cos (α+ γ)

)1/2
, (B.14)

θPMNS
23 ≈ 45◦ − ε cosα , (B.15)

δPMNS ≈ arg
(
εei(π+α) + θeL12 e

i(π−γ)
)
, (B.16)

ϕPMNS
2 ≈ α− 2ε sinα+ θeL12 sin γ , (B.17)

in the CSD2 scenario Y
(102)
ν , and

θPMNS
12 ≈ 35.3◦ − θeL12√

2
cos γ , (B.18)

θPMNS
13 ≈ 1√

2

(
ε2 + θeL12

2 − 2εθeL12 cos (α+ γ)
)1/2

, (B.19)

θPMNS
23 ≈ 45◦ + ε cosα , (B.20)

δPMNS ≈ arg
(
εeiα + θeL12 e

i(π−γ)
)
, (B.21)

ϕPMNS
2 ≈ α− 2ε sinα+ θeL12 sin γ , (B.22)

17To calculate the Dirac and the Majorana phase we use the identities from table 4: δPMNS = δPMNS
13 −

δPMNS
12 − δPMNS

23 and ϕPMNS
2 = −2(δPMNS

23 + ηPMNS
2 − ηPMNS

3 ). The Dirac phase δPMNS is calculated only in

leading order, since it always appears in combination with θPMNS
13 in the PMNS matrix.
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in the CSD2 scenario Y
(120)
ν , as an expansion of θeL12 and ε. Since the lightest left-handed

neutrino is massless, the Majorana phase ϕPMNS
1 is unphysical, and therefore not listed. In

particular, we get the following leading order identities for the respective CSD2 scenarios

Y
(102)
ν and Y

(120)
ν :

sPMNS
13 eiδ

PMNS ≈ ε√
2
ei(π+α) +

θeL12√
2
ei(π−γ) , (B.23)

sPMNS
13 eiδ

PMNS ≈ ε√
2
eiα +

θeL12√
2
ei(π−γ) . (B.24)

C RGE running of neutrino data

The values of the observables of our models are predicted at the GUT scale. The predictions

of the Yukawa couplings and the CKM parameters can be compared with the experimental

data in a very efficient way by using the data tables of [64]. These tables provide the

experimental best fit values and the errors at the GUT scale, including SUSY threshold

corrections. In order that the PMNS parameters and the neutrino mass squared differences

can be fitted to the experimental values in an efficient way too, without performing the

running explicitly, we have prepared a data table which contains the running effects of these

quantities between the GUT scale MGUT and the Z-boson mass scale MZ . In contrast

to [64] the experimental data is not run to MGUT, but the data table is used to determine

the values of the observables at MZ , where they can be compared with the experimental

data. In particular the table contains the 7 quantities

∆θPMNS
12 , ∆θPMNS

13 , ∆θPMNS
23 , ∆δPMNS, ∆ϕPMNS

2 , ∆mν2 , ∆mν3 , (C.1)

as functions of the 5 parameters

tanβ, ηb, θ
PMNS
23 , δPMNS, ϕPMNS

2 , (C.2)

where ηb is the threshold parameter defined in eqs. (2.64)–(2.66), and the remaining three

PMNS parameters are specified at the GUT scale. From left to right, the values of the

parameters in eq. (C.2) are contained in the ranges [5, 75], [−0.6, 0.6],
[
0, π2

]
, [0, 2π] and

[0, 2π]. The ∆-quantities in eq. (C.1) describe the difference of the corresponding observ-

ables at MZ compared to MGUT, e.g.

θPMNS
12 |MZ

= θPMNS
12 |MGUT

+ ∆θPMNS
12 . (C.3)

In the calculation of the data table we used the 2-loop RGEs of the MSSM and SM18 in

the DR and MS scheme respectively [83, 86, 87]. These two models are matched a the

SUSY scale MSUSY, considering tan β-enhanced SUSY threshold corrections as described

in section 2.3. The mass scales are chosen as follows:

MZ = 91.2 GeV , MSUSY = 3 · 103 GeV , MGUT = 2 · 1016 GeV . (C.4)

18In the SM the running of the coefficient of the neutrino mass operator, κ ≡ − 4
v2EW

Mν , is only known

at 1-loop.
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At the SUSY scale, when we are passing from the DR to the MS scheme (or vice versa)

the matching of the gauge couplings gi is given by

(α−1
1 )MS = (α−1

1 )DR , (C.5)

(α−1
2 )MS = (α−1

2 )DR +
1

6π
, (C.6)

(α−1
3 )MS = (α−1

3 )DR +
1

4π
, (C.7)

where αi ≡
g2i
4π . Although the threshold corrections of the Yukawa couplings in eqs. (2.64)–

(2.66) contain the parameter ηq, the ∆-quantities in eq. (C.1) do not depend on it, and

thus we fix ηq = 0. We neglect the contribution of the neutrino Yukawa coupling Yν to the

running. This is justified because Yν would come from effective operators. Furthermore,

only two out of three left-handed neutrinos are massive, having normal hierarchy, i.e.

0 = mν1 < mν2 < mν3 . For all parameters which are not listed in eq. (C.2) but are used in

the RGEs, like Yukawa couplings, CKM and PMNS parameters and gauge couplings, the

boundary conditions are fixed at MZ , where they coincide with the experimental values

listed in NuFIT 3.2 (2018) [13] and in [64]. In particular we used mν2 =
√

∆m2
21 and

mν3 =
√

∆m2
31 at MZ .

The data table, together with an example Mathematica notebook, is provided under

the link stated in footnote 12.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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