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ABSTRACT 

Based on the geometry of local (super-) gauge invariance, a general 

theoretical framework for constructing superunified theories is given. 

The main ingredients of this approach are (a) a general method of con- 

structing invariants for superunified theories, and (b) the concept of 

'lconstrained" geometries for the description of gravity and supergravity 

as well as the choice of their gauge groups. It is argued that any unified 

theory must contain gravity, and then, to retain the invariances of pure 

gravity theory, such a theory must be a superunified one. The general 

formalism is then applied, respectively, to pure gravity, gravity coupled 

to Yang-Mills, simple supergravity, and S0(2)-extended supergravity. 

Imporbant properties of these theories are discussed in detail. 
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1. INTRODUCTION 

Supersymmetries as invariance groups of particle physics may be 

considered both from the global and local points of view. Since their 

introduction in 4-dimensional space-time,lm5 a number of attempts, sug- 

gestions, or conjectures about the relevance of these symmetries as 

global or local invariance groups have been made.l-16 More recently, 

locally supersymmetric (supergravity) actions have been constructed by 

several authors.17-I9 

In this paper we propose to make a detailed study of superunified 

theories from the point of view of the geometry of local (super-) gauge 

invariance.20 The merits of this approach have been argued and stressed 

several times before:6,10,14,16,20 Supersymmetry groups are direct gen- 

eralizations of Lie groups and contain fermi-bose symmetry. Given that 

ordinary local symmetries are gauge symmetries associated with Lie 

groups, it is natural to expect that local supersymmetries are (super-) 

gauge symmetries associated with supergroups. Superunified theories are 

thus the next step in the generalization of non-abelian gauge theories. 

To motivate their relevance, it will be recalled10y21 that exact 

local (Lie) gauge invariance is defined over Minkowski space and endows 

space-time with a richer structure than that implied by special relativ- 

ity alone. The combined geometrical structure known as a fiber bundle 

provides a unified picture of theories based on local internal gauge 

symmetries. To proceed further, it is desirable to include gravity in 

such a scheme (see below for the underlying reasons). Despite the fact 

that a gauge theory of gravitation presents a number of novel features 

not found in gauge theories of internal symmetry, the local gauge prin- 

ciple is especially suited for the couplings of matter (gauge fields at 
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least) to gravity which is already a local theory. Such a unification 

has been carried out elsewhere.14 Here we want to refine the idea of 

(super-) unification still further by pointing out the intimate relation 

between the space-time of general relativity and exact super (-Lie) 

gauge invariance. As mentioned above, exact local (Lie) gauge invari- 

ance is ideally suited to the space-time of special relativity. This is 

because the only gauge invariance involved here is that associated with 

internal symmetries, and there can be no conflict between this and the 

global Lorentz transformations of special relativity. However, once one 

proceeds to the space-time of general relativity and views gravitation 

as a gauge theory, a conflict between the gauge invariance of the gravity 

gauge group and that of internal symmetries can in fact arise. It will 

be explained in section IV that a geometric description of gravitation 

involves not an ordinary fiber bundle but a "constrained" one. As a 

result some gauge fields transform according to a non-linear realization 

of the (super-) gauge group. In arbitrary couplings of matter fields to 

gravity, aside from the fact that such couplings are not purely geometri- 

cal, the invariance under non-linear transformations of the gravity gauge 

group is almost always destroyed. It is only when the matter and gravity 

fields together form a representation of a supersymmetry group that the 

invariance under the non-linear transformations can be regained. One is 

therefore led to conclude that just as local (Lie) gauge invariance is 

naturally suited to the space-time of special relativity, local super 

(-Lie) gauge invariance is naturally linked with the space-time of gen- 

eral relativity. Conversely, gauge theories based on supergroups which 

have homogeneous Lorentz group as a subgroup necessarily involve gravi- 

tation. 
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Our geometrical point of view provides other reasons in support of 

a superunified scheme. An important criterion for a unified theory is 

that all fundamental fields in the theory appear on the same footing. 

Such is not the case in arbitrary couplings of matter fields to gravity. 

On the other hand in superunified theories it is possible to interpret 

all fields as gauge fields transforming according to the adjoint repre- 

sentation of the supergauge group. This removes the ambiguity of assigq- 

ing fundamental fields to various representations of the unbroken symmetry 

group. As a by-product of this, one finds that, e.g., in supergravity 

theory the mysterious transformation properties assigned17-ly to various 

fields under local supersymmetry transformations are just local (super-) 

gauge transformations for the independent fields of the supergroup. The 

origin of the non-linear transformations are also understood to be due 

to the geometrical constraints of the theory. 

From a more practical point of view, one can offer at least two 

reasons in favor of a geometrically superunified theory. Firstly, it is 

found that arbitrary couplings of matter fields to gravity destroy the 

renormalizability of the theory. Since in such theories some of the 

gauge symmetry of the pure gravity theory is also destroyed, one may 

argue that the non-renormalizability may be related to the loss of the 

symmetry of the original theory. The symmetry which could (hopefully!) 

render the theory renormalizable can be regained only within the con- 

text of a superunified theory. Moreover, in many unified theories of 

weak, electromagnetic, and strong interactions, to maintain Baryon num- . 

ber conservation, one encounters mass scales of the order of Plank mass 

"h - 1Olq Gev. Since at such scales, gravitational effects can no longer 

be ignored, a unified theory of this kind must of necessity include 
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gravitation. Then for reasons enumerated above, it must be a geometri- 

cally superunified theory. 

This paper is organized as follows: In section II a number of useful 

mathematical concepts are reviewed for reader's convenience. A more de- 

tailed modern presentation has been given elsewhere.16 Section III is 

devoted to methods of constructing invariants. Starting from the action 

integrals of reference 20, in which the dependence on gauge fields comes 

only through the components of curvature tensor, we proceed to a general 

method of constructing invariants in a fiber bundle. For pure gravity 

and simple supergravity they reduce, as they must, to those given in 

reference 20. Such general invariants appear to be indispensible when 

extended supergravity theories are considered.22 

In section IV we introduce the concept of a "constrained" geometry 

for the purpose of matching the number of degrees of freedom allowed in 

a geometrical theory to those required by physics. The specific theories 

dealt with in this paper are those which involve gravity. But the con- 

cept is potentially useful in other contexts as we11.22 The constrained 

geometry point of view provides a more direct justification for the geo- 

metric description of gravity and supergravity presented in reference 20. 

It shows, in particular, how the invariants constructed in section III 

can be constrained to describe these theories. 

In section V, the general developments of sections II-IV are applied 

successively to pure gravity, gravity coupled to Yang-Mills, simple super- 

gravity, and S0(2)-extended supergravity. For gravity and simple super- 

gravity it is shown that in this approach both the actions and the 

equations of motion depend fundamentally on the concept of connection 

(gauge potential). As a result, one gets a more general theory of 
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gravity than that of Einstein's. It reduces to Einstein's theory when 

one assumes the existence of an inverse vierbein or, equivalently, of a 

metric. Section VI is devoted to a discussion of results and conclusions. 

II. MATHEMATICAL PRELIMINARIES 

In this section we discuss a number of mathematical topics which 

are necessary to describe our general formalism. Since the modern exten- 

sion of various notions of differential geometry to superspaces with bose 

and fermi coordinates has been treated elsewhere,16 we will not distin- 

guish between Lie groups and supergroups or Lie algebras and superalgebras 

and describe them all in the unified notation of reference 16. 

Consider a continuous group or supergroup G. Let L be the Lie 

(super)-algebra of G and {XA) a basis in L satisfying the generalized 

commutation relations 

[XA,Sl = XAS - c-1 oAoB 
'BXA 

(2.1) 
= fiB xc 

where IS A is the "grade" of the generator XA. In this paper we will be 

mainly concerned with cases in which oA = 1 if A refers to a fermion and 

oA = 0 if A refers to a boson. 

Let H be a Lie subgroup of G. Then one can write 

L=Lo@L 1 

where L o is the Lie algebra of H and Ll is the generator of elements 

homeomorphic to the quotient space G/H. This decomposition has the well 

known property that 
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[LoJo -0 

[Lo,L1l CL1 (2.2) 

[Ll,Lll CL0 

For semi-simple algebras, the most natural metric of L is the Killing 

metric23 

= c-1 oAoB 
gAB 

It satisfies the identity 

fB DA 

gBA = c - dc fit f iD 
C,D 

g CD+ fC DB = o 
DA g 

(2.3) 

(2.4) 

For algebras such as the Poincare algebra, which contain abelian invari- 

ant subalgebras, the metric (2.3) becomes degenerate, and one will have 

to make recourse to special methods such as In&xii-Wigner contraction24 

to implement the physical applications we have in mind. 

Our geometrical approach is most conveniently realized in terms of a 

fiber bundle. Consider a fiber bundle P(G,M) with structure group G and 

a base manifold M. Let the set {yl) = {xU,e"],~ = Q,...,m;a = l,...,n 

be a coordinate system in M, where xu's are bose-type and Ba are fermi- 

type- To describe the geometry of P it is in most cases sufficient to - 

consider the tangent space to a point of P. - Such a tangent space natu- 

rally breaks up into horizontal and vertical sectors. A connection in 

the bundle is introduced by specifying a gauge covariant basis 

DI = eI + h;XA (2.5) 

in the horizontal sector of the tangent space. The m + n + 1 quantities 

DI I (D~,D,~ are generalizations of the conventional covariant deriva- 

tives D 
v' 

eI are directional derivatives, and 
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hI = h; XA (2.6) 

is the connection in g with values in the (super-) Lie algebra of the 

group G. The quantities hi are the connection coefficients or (when re- 

stricted to a cross-section of bundle) gauge fields which belong to the 

adjoint representation of G: 

XA h"I = -fit h; (2.7) 

To complete a basis in the tangent space, we add to DI the set {XA} which 

span the vertical sector and are isomorphic to the generators {X,} of G. 

By construction 

ID,, iiA] = 0 (2.8) 

When the base manifold is a real (m+l)-dimensional space spanned by (~'1, 

the expression (2.5) takes the more familiar form 

DU = aP + h; XA 

where 8 
1-I 

's are ordinary partial derivatives. 

A gauge (or supergauge) transformation is a local (super)-group 

transformation which relates gauge fields defined on one cross-section 

to those on any other. Thus, acting on the basis DI, it gives 

(2.9) 

> -A DI -+ DI = eI + hIXA = e 
-EA(Y)X, 

DI e 

+eB(y)$ 

For infinitesimal transformations 

gE DI = (DI sA)XA (2.11) 

so that 

A A AE h;l = DI cA = a, E +fBC ec h; 

(2.10) 

(2.12) 
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The curvature 2-form bi of the fiber bundle is a horizontal 2-form 

with values in the Lie (super-) algebra of G. It can therefore be ex- 

panded in terms of the basis {X,1: 

_I 63 = &IA XA (2.13) 

Given a complete set of basis l-forms 1~') 3 {wFI,wcl~, then in the notation 

of reference 16 the wedge products {WI 0 wJ} form a complete set of basis 

two forms. Expanding 6iA in such a basis, we get 

biA = R$ w= 0 wJ 

A where R IJ are the components of Riemann curvature tensor. Choosing the 

U' to be the coordinate differentials dx' and specializing to a real base 

manifold, the expression (2.14) takes the more familiar form 

d@ = R* dx“' A dxV 
PV 

(2.15) 

Explicit expressions for the components RtJ in terms of the connection 

coefficients can be calculated from the generalized bracket16 

Thus, 

[DI,nJ1 = -R?~ xA 

RA A 
IJ = "I,J - c-1 

"I'J hA 
J,I + ':C h: h: 

(2.16) 

(2.17) 

A the quantities RIJ transform covariantly under the gauge transformations 

(2.12): 

(2.18) 

In the following we will also make use of the "dual" of the 2-form 

6x. In general, given an n-dimensional manifold and its associated p- 

forms, the "duality" or "+;" operation is one which maps a p-form onto an 

(n-p)-form. For example, in 4-dimensional space-time the dual of a 
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l-form is a 3-form, that of a 2-form is another 2-form, etc. In general, 

under duality mapping one gets from a p-form 

w duality (-)p-1 *w (2.19) 

In practice, one makes use of the Levi-Civita operator e, which is an nth 

rank tensor, to relate the components of a form 

and its dual. Given a basis gI with a fixed orientation, define the 

numerical tensor E as 

p, . . ..n 
= q,...,q = 1 (2.20) 

where E is antisymmetric under exchange of two indices except when they 

are both fermi-type in which case E is symmetric. Then the components 

el,...,n of e are related to those of E by an appropriate density. In 

4-space-time 

e I-lvpx = h-l ,uvph 

so that the components of 2-forms 61 and % are related by 

*RA = e "RA 
PV lJv PA 

(2.21) 

(2.22) 

Finally, we recall the Jacobi identity for a super algebra:25 

[‘A, [‘B , x,1} + c-1 aA”B [‘C , [‘A, ‘,I} 
(2.23) 

+ c-1 aA"C [XB , [Xc , XAl) = 0 

The insertion of the bracket (2.16) into this super Jacobi identity re- 

sults in the super Bianchi identities for the superspace. When restricted 

to a real base manifold, they become ordinary Bianchi identities 

D(A R;v) = O (2.24) 

where (Auv) stands for the cyclic permutation of indices. 
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III. CONSTRUCTION OF INVARIANT ACTION INTEGRALS 

In this section we start with a review of the actions proposed in 

reference 20 and then consider a succession of generalizations which seem 

to be-indispensible when matter couplings to gravity and supergravity are 

considered. Except in subsection C, we shall confine ourselves to a real 

base-manifold. 

A. The Actions Depending Only on Curvature 

Consider the most general integral over a cross-section of the bun- 

dle, whose dependence on the gauge fields ht comes only through the com- 

ponents of the curvature tensor, and which is invariant under general 

coordinate transformations: 

I(Q) = A RB.QAB d4x 

uvph d4, 

(3.1) 

(3.2) 

where euvpx is the numerical Levi-Civita tensor (2.20), and Q,, are con- 

stants, antisymmetric if G is a supergroup and the pair (A,B) belongs to 

Ll, but symmetric otherwise. This action does not transform irreducibly 

under G but can be decomposed into irreducible pieces; the corresponding 

Q AB would then be the relevant Clebsh-Gordon coefficients. The variation 

of (3.2) under an arbitrary variation of the gauge fields ht is given by 

&I(Q) = 4 
/ 

d4x 6ht\ ht RF, fit Q, - I& Q,, !JVXCS 
(3.3) 

The Bianchi identities (2.24) have been used in the derivation. Whenever 

the expression in the parentheses in the integrand vanishes, so does 61, 

and I becomes a topological invariant. This happens in particular when 

QAB = gAB given by (2.3). 
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When the variation of the gauge fields ht is restricted to the 

infinitesimal gauge transformations (2.12), then the variation of the 

action (3.2) is given by 

6 I = -2 J sc RD E i.lV 
Rtu ftD Q, E'~" d4x 

B. The Action Depending on Curvature and Its Dual 

The action (3.1) has the correct form for describing pure gravity 

and simple supergravity. When couplings to matter are considered, the 

structure of (3.1) does not lead to correct equations of motion for ex- 

tended gravity or supergravity. In particular, starting from (3.1) or 

(3.2) it appears impossible to obtain the correct Yang-Mills Lagrangian. 

One possibility is to consider actions of the form 

J(Q) = J d4x "RA A RB Q, 

J d4V PA RA RB pWJ6 = 
eW ph a6 QAB e 

(3.5) 

(3.6) 

where ePvpx is the covariant Levi-Civita tensor (2.21). As far as pure 

gravity or gravity coupled to Yang-Mills is concerned, the action J(Q) 

has all the required properties of the Einstein-Yang-Mills Theory. In 

fact, it reproduces all the results of reference 14.25 Its extension to 

supergravity, however, presents a number of problems. For example, the 

spin-312 equation obtained in this way does not have all the required 

constraints. It appears that at least one of the constraints would have 

to be imposed from outside. What one needs then is an action which in 

the absence of matter takes the form (3.2) but for matter couplings it 

gives the correct Yang-Mills action which is of the form (3.6). We will 

therefore consider generalizations of I(Q) and J(Q). 
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C. A More General Class of Invariants 

The arguments in this subsection are equally applicable to cases in 

which the base manifold is real space-time or the superspace. Given the 

curvature 2-form & (2.13) of a bundle, we want to construct the most gen- 

eral scalar or scalar density of that bundle. Let eJ be a set of vector 

fields dual to the one forms ol: 

I I <w , eJ> = 6 J 

then one can construct a set of basis tensor-valued O-forms 

eI c3 eJ - (-1 
oIoJ 

eJ ' eI I 

These are dual to the basis 2-forms wK 0 wL: 

<UK 0 oL, eI 
K L 

0 eJ> = &I cSJ 

(3.7) 

(3.8) 

(3.9) 

Since bi is a 2-form, we can construct a (super) Lie algebraic valued 

object 81J by the mapping (contraction) 

6? IJ 
= <R,e 

I ' eJ' 

= gL XA wK 0 uL , eI 0 eJ> (3.10) 

A = RIJ XA 

bi IJ is a tensor valued object with values in the (super) Lie algebra of 

the group G. To obtain a scalar, we contract it with the most general 

tensor valued l-form R IJ associated with the algebra {X,1. Let {wB) be 

a set of basis l-forms dual to {XA}: 

<W B , XA> = 6; (3.11) 
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Then we can expand Q IJ in this basis: 

$3 = ,IJ $ 
A (3.12) 

Thus the scalar R that we seek is given by 
_. 

R = <dJ , biI J> 

IJ RA (3.13) 

='A IJ 

. . A The quantities RIJ are the covariant field strength tensors and are given 

by geometry in terms of the gauge fields as in (2.17). The object of the 

game is to obtain suitable RA IJ’S. These quantities are in general quite 

complex, and it is usually necessary to impose additional requirements to 

obtain an explicit form relevant to a particular application. We con- 

sider here a few of the special cases which are of interest in simple or 

extended supergravity. Before specializing, we note that the invariant 

action constructed from (3.13) has the form 

I(sl) = J (3.14) 

where den+' V is the invariant volume element in a space with m+l bose 

and n fermi dimensions. The general method of handling such integrals, 

in particular in regard to the integration over the fermi coordinates 

will be discussed elsewhere.22 Here we shall confine ourselves to a real 

4-dimensional manifold in which case (3.14) reduces to 

I(Q) = 
/ 

d4V fir (x) Rtv (x) 

Consider now special cases of (3.15). Let 

(3.15) 

gv = ew~X RB 
A OX QAB 

(3.16) 
= h--l EI-IVPh RB 

PA QAB 
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. 
where h at this point is the determinant of a suitable 4x4 matrix h;. 

Then it is trivial to see that with this Ansatz for fly (3.15) becomes 

identical with (3.2). It is also easy to see that with 

QlJV = euvPx 06 
A ePX ':6 QAB (3.17) 

(3.15) reduces to (3.6). Encouraged by recovering some known results, we 

consider next a case applicable to Einstein-Yang-Mills and S0(2)-extended 

supergravity. 

iluv A 
= h-1 $VPX 

AB (x)R;h 

For this choice we get from (3.15) 

I(Q) = J d4x RAB 'vpx(x) Rfh Rtv 

(3.18) 

(3.19) 

Clearly, this contains (3.2) and (3.6) as special cases. 

IV. PHYSICAL DEGREES OF FREEDOM, CHOICE OF GAUGE GROUPS, 

AND "CONSTRAINED" GEOMETRIES 

The prominent feature of a geometrical approach is that the physi- 

cally interesting quantities are almost automatically supplied by geome- 

try. However, of the infinite class of possible geometries, the choice 

of the physically relevant ones requires additional input. In this sec- 

tion we show how the necessity to maintain the correct number of degrees 

of freedom to describe gravitation imposes restrictions on the geometry 

of an unconstrained fiber bundle thus distinguishing some components of 

of the curvature tensor from the rest.27 The reader not familiar with 

the content of reference 20 may wish to proceed to the next section and 

then return to this section for an understanding of the underlying logic. 
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Consider first pure gravity. From the point of view of a gauge 

theory, one would like to describe it by an appropriate number of gauge 

fields. As pointed out elsewhere,14 for gravity the gauge group is, at 

least in part, tied down to the structure of space-time, so that it must 

contain the homogeneous Lorentz group as a subgroup. For this group the 
. . 

gauge fields hLJ have 24 independent components. On the other hand it 

is well known that in Einstein's theory a symmetric metric tensor with 

ten independent components is sufficient to describe gravity, so that a 
. . 

theory based on independent fields hiJ could not be Einstein's theory. 

A way out of this dilemma is to introduce additional gauge fields h: with 

the required number of degrees of freedom by enlarging the gauge group 
. . 

and then impose a constraint by means of which hiJ could be solved for 
. 

in terms of hi. For pure gravity the relevant group is the Poincare or 

the de Sitter group. Since the Lorentz subgroup of these groups is the 

only part which is directly tied down to the structure of space-time, the 

remaining part of the enlarged gauge group must be realized nonlinearly. 

This is, of course, consistent with the existence of a constraint among 

the gauge fields. 

Next consider the form of the constraint equations from the point of 

view of geometry. For obvious reasons it must (a) be a covariant tensor 

equation with respect to the homogeneous Lorentz group and (b) involve 

the geometrical quantities of the enlarged fiber bundle. For Poincare as 

well as the de Sitter group the components of the curvature tensor are 

Rtv = {Ri:, Riv},i,j=0,..,3. Of these Rii include Riij, which is the cur- 

vature tensor of a bundle with SL(2,c) as gauge group and which enters 

Einstein's equations. Therefore, other than the Bianchi identities 

(2.241, one would not want to impose any conditions on them. This means 
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that the constraint equation must involve R1 
W' 

The general form of the 

constraint equations must then be 

Ri = Ti 
I.lV UV 

; i= 0,...,3 

In a torsion-free theory of gravity T1 = 0 and one has 
l.lV 

Ri 
W 

= 0 (torsion-free) (4.2) 

We refer to the enlarged geometries satisfying constraints of the form 

(4.1) as "constrained" geometries. The constraint equations (4.1) are 
. . 

equal in number to the dependent fields hiuJ which we want to eliminate. 

It is to be emphasized that the arguments presented above are quite 

general and do not depend on a particular Lagrangian or action. They 

describe how one may geometrically realize the independent degrees of 

freedom of a physical theory. Of course, the action that one writes 

down must be compatible with (4.1) or (4.2) and must reproduce them under 

variation. We note, however, that constraints following from a varia- 

tional principle hold only on extremal paths and surfaces whereas (4.1) 

holds everywhere. Even from a practical point of view the distinction 

may become important in a quantum theory where one sums over not just 

the extremal paths but all paths. 

The conditions (4.1) define a 6-dimensional hypersurface in the lo- 

dimensional fiber space of the bundle based on 0(3,2) or Poincar; groups 

and naturally divide the components {Riv} = {Rii, Riv} of the curvature 

tensor into two parts: "canonical" or "torsion" components R1 whose 
PV 

vanishing supply the necessary constraint equations and the components 

R ij 
I-lV 

which we refer to as "pure" curvature components. This distinction 

can be made sharper, especially for Poincare or other affine groups, by 
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. 
going to a horizontal basis D. = h:Du in which Rtv appears as coeffi- 1 

cients of Di. For affine groups the vanishing of Ri is a mathematical 
uv 

theorem. The components of the "pure" curvature are the same in number 

as those of a bundle based on the group O(3,l) and can be related to 

them. In fact from (2.17) 

. . 
Ra 

I.lV 
= R;: + f ". h; hJ 

=J 1-I (4.3) 

where R oa 
1J.V 

is the curvature tensor of the O(3,l) bundle and transforms 

according to its adjoint representation. Therefore, equations of motion 

and dynamics are determined by the components of "pure" curvature and not 

all of 
i 1 

RA 
!Jv * 

This means that the sums in the expressions of the form 

R* A RB Q,, 
. . 

are restricted to RiJ A R kR Q ijkR' where Q ijk!? 's are the 

Clebsh-Gordon coefficients for an invariant product of two adjoint rep- 

resentations of SL(2,c). 

The above arguments can be repeated for the case of supergravity. 

To be able to define supersymmetry transformations, one must have a gauge 
. . 

group with an adjoint representation which can accommodate not only hiJ 

but also spin-312 fields ha. 
?J 

The smallest such supergroup is OSp(1,2~).~~ 

But again such a gauge theory must describe gravity with a correct number 

of degrees of freedom, and as in the case of pure gravity, this cannot be 

done with hij. So again we enlarge the supergroup to 0S~(1,4)~~ or its 

contracted Salam-Strathdee1g4 form, with gauge fields 
i 

h ij 
1-I 

, hi, ht 
'1 

. 
I . 

Then a suitable constraint would effectively express hiJ in terms of h; 

and ht. Again only the Lorentz subgroup of these groups which is di- 

rectly tied down to the structure of space-time will be realized line- 

arly. 
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The form of the constraint equations are as before dictated by con- 

of the curvature tensor of 

the OSp(1,4) bundle. Writing (4.1) in the form 

Ai R E R= - T= = 0 
lJV lJV UV (4.4) 

and following the same arguments as in the case of pure gravity, it is 
. 

clear that R' 
1J.v 

= 0 are the correct constraint equations with T1 deter- 
1J.v 

mined by spin-312 fields. Again the constraint equations define a lo- 

dimensional hypersurface in the 14-dimensional fiber space of the OSp 

(1,4) bundle and divide the components of Rtv 
{ > 

into canonical components 

-i R 
PV 

= 0 and pure curvature components (6;;) REV}. It is the latter com- 

ponents which appear in expressions such as 

A B . . 
R A R Q,, + R =J A RkR Qijkn. + Ru v RB Qu8 (4.5) 

The generalization of these concepts to include other matter fields 

is straightforward. Given supergroups such as OSP(N,~)~~ or SU(N[4) as 

gauge groups, the requirement that the gauge fields spanning their ad- 

joint representations give a correct description of gravity naturally 

splits the components of their respective curvature tensors into two 

parts: "canonical" components Ri 
YV 

= 0 which provide the necessary con- 

straint equations, and the "pure" curvature components 
i 

itA TV, A f i 
1 

which 

enter in the construction of invariants. We will make frequent use of 

this splitting in the next section. Note that these concepts can be ex- 

tended to superspace in a straightforward manner.22 

From the arguments presented above and elsewhere14 it is quite clear 

that although gravitation can be formulated in terms of gauge fields as 

a local gauge theory, its geometry is different from that associated with 

the conventional treatment of nonabelian gauge theories. The former is 



- 20 - 

constrained, the latter is not. It would be interesting to see the con- 

sequences of constraining the geometry of nonabelian gauge theories in a 

manner similar to gravity. For one thing, the constraints among the gauge 

fields would result in a smaller number of dynamically independent fields 

in the theory.28 We hope to return to this topic in a separate publica- 

tion.22 
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v. APPLICATIONS 

The general developments of Section II-IV are now illustrated by 

applying them to special cases. 

A. -Pure Gravity20 

As discussed in Section IV, to have the correct number of degrees 

of freedom to describe Einstein's theory, the gauge group cannot be 

SL(2,C). Nevertheless, let us consider a fiber bundle which has SL(2,C) 

as its structural group. Take the action to be of the form (3.1) in 
. . 

which the dependence on gauge fields ht comes through the components 

of the curvature 

The requirements 

tions completely 

tensor R oij : 
F.lV 

I'(Q) = ld4x eI-Ivpx Q, R;f: R;; 

of invariance under Lorentz transformations and reflec- 

determine Q,, so that one gets 

I0 = 
I 

d4x euvpx ~~~~~ R;;j R;;' (5.1) 

From (3.3) it follows that the total variation 61° of I0 vanishes 

identically, so that I0 is a topological invariant or a total divergence. 

Therefore, it does not contribute to any equations of motion. With this 

in mind, let us now consider a fiber bundle with structural group Sp(4) 

which is the covering group of the de Sitter group 0(3,2). The adjoint 

representation of this group is lo-dimensional with gauge potentials 

h;j = -hii, h; From (3.1) the action must have the general 

form 

I(Q) = 
I 

d4x epvph Q, Rtv RiA 
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From the discussion of previous sections only the "pure" components 
. . 

R ii of the curvature tensor appear in this integral, so that one has 

!JVPX Q ijka R;; R;; (5.2) 

Then invariance under Lorentz transformations as well as reflections 

uniquely determines Q.. ijkk: 

I= d4x $JVPh ij RkR 
'ijkRRvv pX 

where from (2.19) or (4.3) 

. . 
R ij 

!JV 
= R;;J + fij hk hR 

kR v P 

(5.3) 

(5.4) 

Substituting this into (5.3), one gets 

I = I0 + d4x ePvph 2R;;hjph;$j ~s,b + h;h;h;h;fTj fLa sab} (5.5) 

where I0 is the total divergence given by (5.1). The first term 

in the integral is a gauge theory version of Einstein's Lagrangian, 

and the last part is the cosmological term. Dropping I0 and making 

an InZnii-Wigner contraction, one obtains the pure gravity action. We 

note that because in the process of contraction Sp(4eI SL(2,c), the 

metric (2.3) becomes degenerate, one must retain the constrained Sp(4) 

until (5.5) is obtained and then let the contraction parameter (radius 

of de Sitter space) go to 03 . 

Variation of the action (5.5) with respect to the gauge potentials 
. . 

ht and hygives, respectively, 

pJPX E fb h: RFh = 0 ab ij 

ab fb hi Rj = o 
ij v PA 

(5.6) 

(5.7) 
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Notice that these equations as well as the actions (5.3) and (5.5) 

are based fundamentally on the concept of connection (gauge potentials) 

and are independent of whether the space-time manifold is metrizable 

or not. In this respect they are more general than Einstein's equa- 

tions, and a quantum theory based on (5.6) and (5.7) may turn out to 

be different than the quantized version of Einstein's theory. 

To obtain Einstein's equations from (5.6) and (5.7), one must 

further assume that the gauge potentials h; are invertible, i.e., 

that there exist objects hr such that 

h; h; = 6; (5.8) 

Once this assumption is made, then it is possible14 to identify the 

gauge potentials ht with the conventional "vierbeins." In this case 

the theory becomes, effectively a metric theory because then one can 

define a non-singular metric 

g =rl ij 
hi hj 

PV p v (5.9) 

Thus it is strictly speaking not correct to call the gauge potentials 

h; "vierbeins" except in the context of a metric theory.14 With the 

assumption (5.8) equations (5.6) and (5.7) reduce to the usual equa- 

tions of general relativity:1492g 

R= =0 
UV 

Rx _ hV hi Rij = o 
1-I- i j ilv 

(5.10) 

(5.11) 

Equations (5.10) are consistent, as they must be, with the constrained 

geometry discussed in the previous section and provides the constraints 

which cuts down the number of independent gauge fields to those 
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. . 
necessary for describing gravity. In fact, it can be solved for hiJ 

in terms of hk:2g 

h vij -h 
jv,u 

(5.12) 

+ h' hx hk jiv h 
ku,A - hkA,n )I 

where 

h =n hj;h 
iu ij u vij 

=n hkR ik nja n (5.13) 

. . 
Insertion of bin from (5.12) into (5.5) leads to the second order form -- 

of general relativity in which the dynamically independent variables 

are the gauge fields h:. The variations of these fields under local 

gauge transformations of the de Sitter group are given by (3.4). 
. . 

Next consider the infinitesimal transformations of the fields hcJ 

in first order formalism. The existence of the constraint Ri = 0 
I-lV . . 

indicates that hiJ must transform according to a non-linear representa- 

tion of Sp(4) or ISL(2,c). To obtain the form of this transformation 

we note that the variation of (5.3) under the local infinitesimal trans- 

formation 6 Eihi is given by 

p i I = 2 
I 

d4x E WPh E: 
ab E 

14) ,Tj Rtv RiA cj (5. 

The variation 6::) I of (5.3) with respect to 6 hjk 
Ei u 

must be such that 

6 *I = $)I + &)I = 0 
&I E1 

(5.15) 
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Looking at the variation of (5.3) with respect to a general variation 

of h :J, one finds a term similar in structure to (5.14): 

6W 
E1 = 4 d4x sFtvpX sac JT-. 6h; h: R-jA 

1J 
(5.16) 

solving for 6hE from (5.14)-(5.16) we get 

6ha = L Eaij (5.17) 
u 4 cbRk h; h; hk Rb - h; Rb - h; RtA 

h I-iv ?Jx 1 2 w 
It would be interesting to explore the consequences of this invariance 

in regard to the renormalizability of pure gravity. Since all the 

present day statements in regard to renormalizability of this theory 

are made in second order 30 formalism, itisnot clear whether the quan- 

tized first and second order formalisms are equivalent. 

B. Gravity Coupled to Yang-Mills 

Without supersymmetry, the internal and space-time symmetries are 

quite distinct. Therefore, the gauge group for gravity coupled to 

Yang-Mills theory is of direct product form. From our point of view 

it is Sp(4) X SU(2) or its contracted form. Direct extension of the 

gravity action in terms of the curvature components to this case leads 

to a total divergence Pseudoscalar piece for the Yang-Mills part as 

can easily be verified. So we proceed with the general action (3.15) 

or its more restricted form (3.19): 

I(n) = d4x QE"" (x) Riv RiA (5.18) 

We require that (i) in the absence of Yang-Mills I(Q) reduce to the 

gravity action (5.3) and (ii) it satisfy the same Lorentz, reflection, 
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and general coordinate invariance properties as the gravity action 

(5.3). Thus 

Requirement (i) implies that 

nlwh = ,!Jvph 
ijkR 'ijkR 

(5.19) 

(5.20) 

Requirement (ii), in particular reflection invariance, implies that 

fyPX c pv6a ph 
ab =Fab E e6cr 

(5.21) 

Cna,, h g 
UP vh = g ; c = const, 

We therefore have for Einstein-Yang-Mills theories 

I= 
s E 

d4x EwPh ij kR 
eijkR Rug Rph 

f’ Chn ab g 
IJP VA Fa Fb 

g ?JJ PA 1 (5.22) 

Note that in this case the introduction of the metric tensor g or 
W 

the inverse vierbeins hi is indispensible, so that the formulation of 

the theory in terms of connections alone appears to be not possible. 

As a special case of (5.22) one obtains the Einstein-Maxwell theory 

when internal symmetry group is U(1). Also note that the action (5.22) 

is not invariant under the non-linear transformation (5.17), and any 

attempt to make it so involves the introduction of additional fields 

such that the fields in the action form a supermultiplet [see, e.g., 

subsection D) below]. This may be cited as a reason for the nonrenormal- 

izability of arbitrary couplings of matter fields to gravity. Only 

(supersymmetric) matter couplings which retain or enlarge invariances 

of pure gravity seem to be equally renormalizable. 
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C. Simple Supergravity 20 

This theory can be developed in complete analogy with that of pure 

gravity. A different formulation will be given elsewhere.22 The small- 

est supergroup which admits supersymmetry transformations and contains 

SL(2,C) as its Lie subgroup is OSp(l,2C). As discussed in section IV, 

this group does not give a correct description of gravity so that it 

will have to be enlarged. But since its topological invariants turn 

out to be relevant, consider a fiber bundle over real space-time with 

OSp(l,2C) as its structural group. The action (3.1) depending on the 

components of the curvature alone will then give 

To(Q) = 
I 

d4x ePvph Q,, f'$ 6;; 

where now 

and 

(QAB) = (Pijke ' QuS) 

(5.23) 

(5 -24) 

(5.25) 

The requirements of Lorentz and reflection invariance determine 

( 1 QAB up to multiplicative constants. They will be completely fixed 

by the additional requirement that i" be an OSp(l,2C) scalar. Thus 

one gets 

i” = I d4x eyvpx eijkR 6;;j i;:" + x(Cr5& i;; $1 (5.26) 

where C = charge conjugation matrix, and x is a normalizing parameter 

defined by 

(5.27) 
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From (3.3) it is easy to verify that the general variation S?' of To 

vanishes identically, so that it is a total divergence (topological 

invariant!). 

For pure gravity the gauge group had to be enlarged from SL(2,C) 

to Sp(4), and the corresponding geometry constrained. Here by 

enlarging the SL(2C) subgroup of OSp(l,2C) to Sp(4) one arrives at 

OSp(1,4) for the supergravity gauge group. Consider then a fiber 

bundle with space-time manifold as base space and OSp(l,4) as struc- 

tural group. The adjoint representation is 14-dimensional with gauge 

hlfj = -hii , h; , h; . The general form of the 

action is again given by (3.1): 

i(Q) = 
/ 

d4x eFLvpx QAB Rtv R;A 

Proceeding to the constrained bundle of section IV, we note that of 

the components {Rtv) = (R:i , RFv , kiv\ of the OSp(1,4) curvature tensor 

the "pure" 

gets 

, Ru 
I 

contribute to this action. 
PV 

Thus one 

where 
. . , . 

klJ = g;‘J + j (ij> hk hQ 
UV kQ v u 

= Rij + f ij ha h6 
WV a6 v 1-I 

(5.28) 

(5.29) 

(5.30) 
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Since these curvature components involve those of OSp(l,2C) or of 

SL(2,C), and since the only quadratic terms in curvature components 

R oij 
UV 

which we allow are those which are total divergences, then Q ijkQ 

and Q,, in (5.28) must have the same values as those in (5.26): 

Q ijkQ = sijkQ ' Q crB = x(CY5),6 

Thus 

(5.31) 

(5.32) 

Substituting (5.29) and (5.30) into (5.31) and using (5.27), one gets 

?=iO+Is+I C (5.33) 

where 

1s =)j4x EuvpA[Z ~~~ ft. h; h; R",; + 4x ;i",; h;l h:fky(Cy5)uB] 
iJ 

(5.34) 

Ic =/d4x sUvph ~~~ '"ij I$ h; h: h; hjx +fLQ hi hi hi hi 1 (5.35) 

In (5.33), i" , is a total divergence and can be dropped; Is is 

an alternate form of supergravity action; and Ic contains cosmological 

terms which can be eliminated by an In&%-Wigner contraction. 

The variation of action (5.32) with respect to arbitrary vari- 

ations of gauge fields gives the Euler-Lagrange equations 

Evvpx E fb hi $ = o 
ab ij v PA 

Ei-wXfC1 hi ii6 = o 
iB v pX 

~~~~~ 2 E 
E 

fb hj fi” + x(Cy5) 
ab ij v PA yi3 

fY hai ~0 
ia v ph 1 

(5.36) 

(5.37) 

(5.38) 
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As in the case of pure gravity the action (5.32) and equations (5.36)- 

(5.38) are based entirely on the concept of connection (gauge fields) 

and are independent of the notion of,a metric. To obtain the more 

familiar supergravity equations, one must make use of (5.8) or (5.9). 

Then writing 

hFt f" 
i j6 

We can write 

izj =. 
I.lV 

(5.40) 

,?JVP x 
-6 

( 1 Y uR =0 
Vfj PA 

(5.41) 

ix = 1 x ,AvaG fY. 
1-I 2 

hv (Cy5rda6 gi6 (5.42) 

(5.39) 

Equation (5.40) plays the same role in simple supergravity as 

(5.10) does in pure gravity. It is consistent with the constrained 

geometry of section IV and gives a constraint among the gauge fields 
. . 

of osp(1,4). It can be solved for h:' in terms of hi and h; : 

c; =h h; h! - h' f hu hB 
vij vij iclB i ja$ p v 

+ h' hh hk f a 6 
jiv kclB hu hX 1 

where h vij is given by (5.12) and 

(5.43) 

(5.44) 
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Insertion of G vij from (5.43) into the action (5.33) will result in 

the second order form of the supergravity theory in which the independent 
. 

fields are hk's and h:'s . Under local gauge transformations these 

field transform according to (3.4). 

Next consider the infinitesimal supersymmetry transformations 

in first order formalism. The algebra of these transformations has 

been studied in detail by MacDowell. 431 Here we confine ourselves to 

local supersymmetry transformation. Following the analogy with the 

case of pure gravity, it is clear from the constraints i? = 0 that 
W . . 

the gauge potentials hiJ 
W 

must transform according to a nonlinear 

realization of OSp(1,4) or its contracted version. Then the arguments 

which led to the transformation (5.17) for pure gravity give in this 

case 

(5.45) 

l ( 
m AY 2hm ii' + hV RXv) 

A w 

After group contraction this expression becomes equivalent to the 
. . 

usual local supersymmetry transformation of hiJ '*. Thus the com- 
1-I 

bined transformations 
1 
6hi , 6hF , 6$tj 

1 
leave the action (5.32) 

invariant, and we have an example of a supersymmetric coupling of 

matter to gravity which has retained its invariance under nonlinear 

transformations of the type (5.17). 

D. S0(2)-Extended Supergravity 

The relation of this theory to simple supergravity is the same 

as Einstein-Maxwell or Einstein Yang-Mills theory is to pure gravity. 
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The main difference is that here the gauge group is not of direct 

product type. On replacing SO(l) in the OSp(1,4) of supergravity 

gauge group by SO(2) one arrives at OSp(2,4) for the gauge group of 

S0(2)-extended supergravity theory. As in subsection B an action 

based on components of curvature alone will not result in the usual 

action of spin-l field, so that we must proceed with the general action 

(3.15). It is sufficient to start with the more restricted form (3.19): 

I(0) = 
I 

d4x fiL"^ (x) Rtv Rfh 

Recalling the conditions of constrained geometry and imposing the same 

requirements (i) and (ii) as in subsection B, we have 

where z = 1,2 to account for the fact that in the adjoint representa- 

tion of OSp(2,4) there are two spin-3/2 gauge fields. From require- 

ments (i) and (ii) 

Qwpx = Ewpx 
ijkQ 'ijkQ 

$-pVP h = XE I.lVP 1 
a6 

(CY5& 
(5.47) 

pJPh = &?JvaG e PA 
8 a6 
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Further developments in extended supergravity will be given else- 

where. 22 Here again we have an extended theory of gravity in which 

the invariances of the type (5.17)are maintained. 

. 

VI. CONCLUDING REMARKS 

We have presented a general theoretical framework for constructing 

superunified theories based on the geometry of (super-) gauge invariance: 

Just as local nonabelian gauge theories find a natural setting in 

Minkowski space-time, we have argued that any unification involving grav- 

ity must of necessity be a superunified theory. Otherwise, some of the 

invariances of pure gravity action are likely to be destroyed. We have 

also pointed out that this may be the reason for the nonrenormalizability 

of theories involving the arbitrary couplings of matter fields to gravity. 

A general method of constructing invariants for superunified 

theories is given. Since they are based on the geometrical character- 

istics of a fiber bundle, it would be surprising if the actions for 

superunified theories turn out to be something other than special cases 

of those discussed in section III. The concept of "constrained" 

geomteries is introduced to match the degrees of freedom required in 

superunified theories to those of constrained fiber bundles. In this 

way one is led in an unambiguous way to the construction of the actions 

discussed in section V. It is hoped that the theoretical basis provided 

in this work will also solve the physically more interesting theories 

based on supergroups OSp(N,4) and SU(N14). 



- 34 - 

Acknowledgments 

I would like to thank F. Giirsey and M. Gell-Mann for encouragement 

and continued interest in this work. I am indebted to S. W. MacDowell 

for much of this work. I am also indebted to L. N. Chang for concretely 

contributing to section IV, for providing continued constructive criti- 

cism, and for a critical reading of the manuscript. 

When this work was in progress, I had the pleasure of visiting 

several centers for physics. I would like to express my appreciation to 

professor S. Meshkov for the hospitality extended to me at Aspen Center 

for Physics; to Professor Kenneth Johnson at Center for Theoretical 

Physics, M.I.T.; to Professor Peter Carruthers at Los Alamos Scientific 

Laboratory; and to Professor Sidney Drell at SLAC where the final draft 

of this work was written up. 



- 35 - 

1. 

2. 

3. 

4. 

5. 

6. 

12. 

13. 

14. 

15. 

16. 

17. 

18. S. Deser and B. Zumino, Phys. Lett. 62B, 335 (1976). 

REFERENCES AND FOOTNOTES 

Y. A. Golfand and E. P. Liktman, JETP Lett. 13, 323 (1971). 

D. V. Volkov and V. P. Akulov Phys. Lett. B46, 109 (1973). 

D. V. Volkov and V. A. Soroka, Zh Eksp. Teor. Fiz. Pis. Red. 18, 

529 (1973) [JETP Lett. 18, 312 (1973).] 

J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974). 

A. Salam and J. Strathdee, Nucl. Phys. =, 477 (1974); Phys. Rev. 

G, 1521 (1975). 

For a recent review see S. Ferrara, Nuovo Cimento Suppl. 

L. N. Chang, K. Macrae, and F. Mansouri, Phys. Lett. z, 59 (1975). 

The idea of gauging a supergroup as well as the explicit construc- 

tion of a superspace' was first given in this paper. It was subse- 

quently developed and further discussed in references 10, 14, 16, 

and 20 below. 

P. Nath and R. Arnowitt, Phys. Lett, B56, 177 (1975). 

R. Arnowitt, P. Nath, and B. Zumino, Phys. Lett. B56, 81 (1975). 

M. Gell-Mann and Y. N&man, unpublished. 

L. N. Chang, K. Macrae, and F. Mansouri, Phys. Rev. g, 235 (1976). 

B. Zumino, in The Proceedings of the Conference on Gauge Theories 

and Modern Field Theory, Northeastern University, Sept., 1975, 

edited by R. Arnowitt and P. Nath (MIT Press, Cambridge, Mass. 1976). 

P. Nath in the Proceedings of reference 11. 

R. Casalbuoni, G. Domokos, and S. Kovesi-Domokos, Nuovo Cimento, 

E, 423 (1976). 

F. Mansouri and L. N. Chang, Phys. Rev. z, 3192 (1976). 

Y. N&man, Cal-Tech preprint CALT-68-570. 09762, 

F. Mansouri, Jour. Math. Phys., 18, 52 (1977). 

D. Z. Freedman, P. Van Nieuwenhuzien, and S. Ferrara, Phys. Rev. 

z, 3214 (1976). 



19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

- 36 - 

S. Ferrara, J. Scherk, and P. Van Nieuwenhuzien, Phys. Rev. Lett. 

37, 1035 (1976); D. Z. Freedman, Phys. Rev. Lett. 38, 105 (1976). 

S. Ferrara, F. Gliozzi, J. Scherk, and P. Van Nieuwenhuzien, Nucl. 

Phys. B117, 333 (1976): D. Z. Freedman and J. H. Schwarz, Phys. 

kev. G, 1007 (1977). 

For pure gravity and simple supergravity, the results were given 

in S. W. MacDowell and F. Mansouri, Phys. Rev. Lett. 38, 739 (1977). 

C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954). T. T. Wu 

and C. N. Yang, Phys. Rev. D12, 3845 (1975). 

L. N. Chang and F. Mansouri, in preparation. 

A. Pais and V. Rittenberg, J. Math. Phys. (N.Y.) 16, 2062 (1975). 

P. G. 0, Freund and I. Kaplansky, J. Math. Phys. 17, 228 (1976). 

These authors mention the contraction possibility for superalgebras. 

L. Corwin, Y. NGeman, and S. Sternberg, Rev. Mod. Phys. 47, 573 

(1975). 

There is no conflict between conclusions of references 14 and 20 

as far as the gravity action is concerned. In reference 14 only 

compatibility with Yang-Mills theory was demanded. As a result, 

one has, in general, in addition to Einsteinparta quadratic term 

in curvature with a coefficient b2 not determined by the theory. 

In reference 20 compatibility with supergravity was demanded, and 

by construction quadratic terms in curvature of SL(2,c) bundle 

which are not of total divergence type were not allowed. This 

amounts to taking b2 = 0 in reference 14. 

The point of view expressed in this section rests to a large extent 

on joint work with L. N. Chang, unpublished. Further consequences 

will be discussed in reference 22. 



- 37 - 

28. For an alternate approach see G. Domokos and S. Kovesi-Domokos, 

Desy preprint DESY 77/08. 

29. T. W. B. Kibble, Jour. Math. Phys. _2, 212 (1961). 

30. _ For a review and references to original works see S. Deser in the 

Proceedings of reference 11. 

31. S. W. MacDowell, private communication. 

32. After the completion of this work we received a preprint (P. K. 

Townsend and P. Van Nieuwenhuzien) in which the action of SO(2)- 

extended supergravity is also given in the form (5.48). 


