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Abstract

In the first part of this thesis we discuss classes of new exact NUT-charged solutions in

four dimensions and higher, while in the remainder of the thesis we make a study of their

properties and their possible applications.

Specifically, in four dimensions we construct new families of axisymmetric vacuum so-

lutions using a solution-generating technique based on the hidden SL(2, R) symmetry of

the effective action. In particular, using the Schwarzschild solution as a seed we obtain

the Zipoy-Voorhees generalisation of the Taub-NUT solution and of the Eguchi-Hanson

soliton. Using the C-metric as a seed, we obtain and study the accelerating versions of all

the above solutions. In higher dimensions we present new classes of NUT-charged spaces,

generalising the previously known even-dimensional solutions to odd and even dimensions,

as well as to spaces with multiple NUT-parameters. We also find the most general form

of the odd-dimensional Eguchi-Hanson solitons. We use such solutions to investigate the

thermodynamic properties of NUT-charged spaces in (A)dS backgrounds. These have been

shown to yield counter-examples to some of the conjectures advanced in the still elusive

dS/CFT paradigm (such as the maximal mass conjecture and Bousso’s entropic N-bound).

One important application of NUT-charged spaces is to construct higher dimensional gen-

eralisations of Kaluza-Klein magnetic monopoles, generalising the known 5-dimensional

Kaluza-Klein soliton. Another interesting application involves a study of time-dependent

higher-dimensional bubbles-of-nothing generated from NUT-charged solutions. We use

them to test the AdS/CFT conjecture as well as to generate, by using stringy Hopf-

dualities, new interesting time-dependent solutions in string theory. Finally, we construct

and study new NUT-charged solutions in higher-dimensional Einstein-Maxwell theories,

generalising the known Reissner-Nordström solutions.
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Chapter 1

Introduction

Among the major scientific achievements of twentieth century research in theoretical physics

have been the remarkable advances in relativity theory and in quantum mechanics.

According to the theory of relativity the laws of physics should be the same for all the

observers in the universe. This means that they must be formulated in a covariant (i.e. ob-

server independent) way. The theory of relativity was created in two steps: the special

theory of relativity, which reformulates and modifies the Newtonian equations of motion

at so-called relativistic speeds (near the speed of light) was created in 1905, while later, in

1915, Einstein proposed the general theory of relativity, which is a consistent relativistic

theory of gravity. To do so Einstein had to introduce the concept of curved spacetime and

interpret gravity as an effect of geometric spacetime distortions, i.e. deviations from the

flat geometry of special relativity. Furthermore, the curvature of spacetime is related to

the stress-energy-momentum tensor of the matter in spacetime via the Einstein equation.

In this way, the spacetime geometry is essentially tied up with the matter content in the

spacetime.

On the other hand, quantum mechanics is the theory that describes the behaviour of

matter (particles and light) at atomic and sub-atomic scales. According to this theory phys-

ical quantities do not have the continuous classical behaviour that we are used to, but turn

out to be quantised, i.e. they can take only discrete values. Quantum mechanics contains

also the famous Heisenberg uncertainty relations, according to which physical quantities

(observables) cannot be determined with the same accuracy as in classical mechanics, an

1
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effect due to quantum fluctuations.

However relativity theory and quantum mechanics are not compatible with each other.

In other words, relativity theory does not incorporate quantum effects in describing elemen-

tary particles at relativistic speeds, while quantum mechanics lacks a covariant (relativisti-

cally invariant) formulation. Ideally, if there exists a unified picture of Nature, there must

exist then some underlying theory that unifies both theories and of which both relativity

theory and quantum theory are special limits. Finding the unified picture has become the

main aim of current research in theoretical physics.

The first successful attempt in achieving this goal was the unification of special relativity

theory with quantum mechanics. The result was quantum field theory, the relativistic

quantum theory of elementary particles, which uses ingredients from both relativity and

quantum mechanics. From relativity we have the equivalence of mass and energy, while

in quantum mechanics we have the possibility of creating energy “out of nothing” - even

if for a very short interval of time. As a result, the vacuum is no more an empty place,

particles being created and destroyed continuously. This fact is one of the most surprising

consequences of quantum field theory. This synthesis entails a shift of the viewpoint

from the non-relativistic quantum mechanic framework, (as described by the Schrödinger

equation, where one quantises a single particle in a classical potential) to a quantum field

theory, (where one identifies the particles with the modes of a field and quantises the field

itself).This procedure goes under the name of ‘second quantisation’.

At present, incorporating the concept of gauge invariance, quantum field theory - in the

form of the so-called Standard Model - is one of the most empirically accurate theories of

Nature that we have. However, it is now believed that the Standard Model is not the end of

the story. Despite the fact that it offers both a successful quantum and relativistic-invariant

description of the strong and electro-weak interactions, it does not take the gravitational

interaction into account. General relativity is incompatible with quantum field theory and

at present we still do not have a good theory of quantum gravity. Even if from experimental

point of view this is not really a concern at the present energy scales that we can probe

in our experiments, one still hopes that one can find a unified conceptual frame in which

quantum field theory and general relativity combine in a consistent manner. The search

for this has become the most important challenge in theoretical physics.
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The main problem in dealing with the quantum theory of the gravitational field is

that gravity is not renormalizable. This means that usually, when we want to calculate

the amplitudes for different processes to take place, we get infinite results (diverging in-

tegrals). Now, in a renormalizable theory, for instance in case of the gauge theories in

particle physics, the number of these diverging amplitudes is finite and there is a consis-

tent procedure to remove these infinities. However, in a nonrenormalizable theory, the

number of divergent amplitudes is infinite and this makes the renormalization procedures

useless. Besides the technical problem of renormalization, quantum gravity suffers also

from conceptual problems. The most important one is related to the fact that gravity is

a consequence of the curved geometry of space-time. If we want to quantise gravity, we

must be prepared then to interpret this in terms of the quantisation of space-time.

In recent years we have witnessed remarkable developments in string theory and nowa-

days there is a growing consensus that string theory provides us with a consistent frame-

work in which both a quantum theory of gravity and also the unification of all fundamental

forces can be achieved. In light of these advances, we shall present in the next section a

short introduction to this theory.

1.1 An introduction to String theory

The basic idea of string theory is that all matter is made up of very tiny strings. In

other words, the elementary particles, instead of being point-like, are different vibrational

modes of a string. As the string propagates through space-time, it will sweep out a two-

dimensional surface, called the world-sheet of the string. In analogy with a point-like

particle, we can write down an action to describe the string dynamics, that is proportional

to the area of the world-sheet of the string. The constant of proportionality is called the

string tension and it has units of (mass)2. Usually one uses another parameter related

to the string tension by the formula T = 1
2πα′ , where α′ is a quantity with the dimension

(length)2. This parameter introduces a fundamental length scale
√
α′, which is the string

scale, where the stringy effects become important. This parameter will also fix the typical

size of a string to be extremely small (being of the order of the so-called Planck length,

10−33cm) so that at “low” energies all particles look like points and ordinary point particle
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theories (quantum field theories) provide an adequate description. Only when we magnify

to scales resolving 10−33cm do the particles look like strings; this fact explains why in all

present day experiments the particles appear to be point-like objects.

String theory is a candidate for the unification of all fundamental forces and elementary

particles. Unification is achieved in that all particles are actually vibrational modes of a

single kind of string. Now, one mode of oscillation of the string is a massless, spin two

state that has all the properties that can be identified as the graviton - the mediator of the

gravitational interaction. Another important point to note is that a consistent quantum

theory of strings is divergence-free. This means that string theory automatically gives us

a finite quantum theory of gravity. However, unlike the usual point particle theories, we

cannot construct a consistent string theory in any arbitrary space-time dimension [70, 71].

There exists a maximum allowable space-time dimension above which it is impossible to

make the theory consistent. The reason is that a consistent string theory is conformally

invariant on the string world-sheet and there is no known procedure to cancel or eliminate

the conformal anomaly above a critical dimension. This critical dimension is essentially

determined by the number of supersymmetries on the string world-sheet. The requirement

of conformal invariance limits the number of allowed supersymmetries on the string world-

sheet: one can have only theories with N = 0, 1, 2, 4 local supersymmetries. For the bosonic

string (N = 0) the critical dimension is found to be D = 26. However the bosonic string

theory suffers from the presence of a tachyon state in its spectrum. Another problem

with the bosonic string is the fact that it does not contain fermions. Hence, the natural

generalisation is to consider theories with supersymmetry, by introducing fermions on the

world-sheet of the string. For a supersymmetric string theory with N = 1 the requirement

of conformal invariance will fix the critical dimension to be D = 10. In case of a theory

with N = 2 local supersymmetries on the string world-sheet, conformal invariance of the

theory will fix the critical dimension to be D = 4, however the signature of the space-time

metric is wrong: two of the four dimensions should be timelike! Furthermore, the theory

with N = 4 local supersymmetries is completely unphysical, since the critical dimension

in this case should be negative!

In conclusion, one should consider only theories with N = 1. The critical dimension

of the space-time is then D = 10 and we are dealing with a supersymmetric string theory
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in ten dimensions. However, it turns out that instead of only one consistent superstring

theory in ten dimensions, we actually have five different consistent superstring theories.

They are named Type IIA, Type IIB, Type I, SO(32) Heterotic and E8 × E8 Heterotic.

In the limit α′ → 0 (the so-called “zero slope limit”) the string tension T becomes infinite,

so the size of the string shrinks to zero and we approximate the string by a point particle.

After we impose the condition that the theory is to be free of any anomalies, the constraints

on the theory can be interpreted as field equations derived from an effective action that

will be the low-energy effective action of the respective superstring theory. The low-energy

effective Lagrangians of these theories correspond to ten-dimensional supergravity theories.

For instance, Type IIA corresponds to N = 2 nonchiral supergravity, type IIB reduces to

N = 2 chiral supergravity, E8 × E8 heterotic string theory reduces to N = 1 supergravity

coupled to an E8 × E8 Yang-Mills multiplet, SO(32) heterotic string theory reduces to

N = 1 supergravity coupled to an SO(32) Yang-Mills multiplet, while type I superstring

theory, which contains both open and closed strings, reduces in ten dimensions to N = 1

supergravity theory coupled to an SO(32) Yang-Mills multiplet. We will describe in more

detail the effective actions of these five superstring theories in Appendix A.

1.1.1 M-theory

As we have seen above, the requirement of quantum consistency fixes the dimension of the

space-time to be ten. On the other hand, supersymmetry places an upper limit on the

dimensionality of space-time [118]. If one requires gravity to be unique in four dimensions,

imposing the condition that the helicities of the particles to be at most two, then the

number N of supersymmetries allowed in the theory cannot exceed N = 8. This implies

that the dimension of space-time is at most eleven. Indeed, there exists in 11 dimensions

a unique N = 1 supergravity theory. Its action was known for a long time, but it was

dismissed because the theory is nonrenormalizable and cannot accommodate chirality. This

eleven dimensional supergravity is apparently not related to the superstring theories in ten

dimensions. However, it has been known for a long time that the Kaluza-Klein reduction

of the eleven-dimensional supergravity on a circle is Type IIA supergravity theory, which

is the low-energy effective action of Type IIA superstring theory. In the limit where the

string coupling constant becomes large (i.e. in the strong coupling regime of the Type
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IIA supergravity theory), the radius of the eleventh dimension enlarges such that the

description of the Type IIA supergravity theory, in this regime, effectively becomes eleven

dimensional. On the other hand, when the string coupling constant of the theory is small

enough, the radius of the eleventh dimension becomes very small. It is this regime defined

by the perturbation theory (with the string coupling constant small) in which the Type

IIA supergravity theory senses only ten dimensions.

The significance of this result was singled out in a series of observations made by

Witten [139]. He argued that the differences among the five superstring theories in ten

dimensions are just artifacts of the perturbative regime in which they are defined and that

actually there exists one unique theory, M-theory, which unifies all the superstring theories

in ten dimensions. This unified theory is essentially an eleven dimensional theory, which

should correspond to the strong coupling regime of the Type IIA superstring theory. The

low-energy effective action of M-theory would correspond then precisely with the eleven

dimensional supergravity theory. One should note that for the present conjecture one has

only a low-energy description of the theory, since until now one does not know yet the

quantum theory that reduces to eleven dimensional supergravity at low energies. The uni-

fication cannot occur at the perturbative level (and it is exactly at this level where the

five superstring theories appear to be different). If we go beyond the perturbative level,

by considering non-perturbative effects, we find connections among the various superstring

theories and these connections are expressed as dualities among the various superstring

theories. In general, a duality between two different theories indicates that the physics

described by those theories is actually the same. However, explicitly proving the existence

of a duality is usually an impossible task to carry out in practice since the duality map

often connects the strong respectively the weak coupling regimes of the theories in cause.

One could then prove the existence of the duality only if one knew the non-perturbative be-

haviour of the respective theories. There are not so many theories whose non-perturbative

behaviour can be discerned, and certainly this is not the case for the five superstring string

theories in ten dimensions. This is why the dualities among string theories still remain

at the stage of duality conjectures. However, if one has enough evidence supporting the

duality conjectures, one can assume the duality between theories as a working hypothesis

and, by studying the perturbative regime of one theory, one can get some hints about
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non-perturbative effects in the dual theory. It is only by the exclusive use of this duality

concept that it has been possible to shed some light on the non-perturbative aspects of

string theory. That is why the discovery of the various duality relations among the string

theories has received the name of the ‘Second Superstring Revolution’.

1.1.2 String dualities

String dualities can be classified as T-dualities, S-dualities and U-dualities. The first

string duality to be discovered was T-duality in the context of heterotic string theory. It

has been noticed by Narain [119] and Ginsparg [69] that the two heterotic superstring

theories, heterotic SO(32) and heterotic E8 × E8, are equivalent when compactified on a

circle. T-duality of string theory is a perturbative duality, in the sense that it relates string

theories with the same string coupling. It holds order by order in the perturbative string

theory and it has been extended to hold in the non-perturbative formulation of the string

theory as well. Generally speaking, T-duality will map a theory with a large target space

volume to a theory with a small target space volume. Another interesting example is the

T-duality of the Type II superstring theories: Type IIA superstring theory compactified

on a circle of radius R is dual to the Type IIB superstring theory compactified on a circle

with radius proportional to 1/R.

S-duality is a non-perturbative duality of string theory that transforms the string cou-

pling to its inverse, while the moduli fields of the theory remain fixed. Generally speaking

S-duality will relate the weak coupling regime of one theory with the strong coupling regime

of the same (or different) string theory. An example of S-duality is the duality between the

Type I superstring theory and the SO(32) heterotic superstring theory in ten dimensions.

Another example of weak-strong coupling duality is the SL(2, Z) self-duality of the Type

II superstring theory.

Finally, U-duality is a combination of T-duality and S-duality into a larger group of

transformations. For Type II theories there is a T-duality symmetry group SO(10 −
D, 10 − D,Z) when we compactify the theory on a T 10−D torus and an SL(2, Z) non-

perturbative symmetry group that corresponds to the SL(2, Z) symmetry of the Type

IIB theory, which survives in the dimensional reduction process. Then the conjectured

U-duality group will be generated by these two non-commuting groups. The exact form of
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the U-duality groups for the Type II string theory was conjectured in [94] to correspond

to a discrete subgroup of the exceptional Cremmer-Julia symmetry groups E11−D(11−D) of

maximal supergravities. The Cremmer-Julia symmetry groups appear in the dimensional

reduction of eleven-dimensional supergravity to D dimensions, after we Poincaré dualise

all fields with degree greater than D/2.

1.1.3 The AdS/CFT conjecture

It is now widely believed that a quantum theory of gravity should incorporate in some

way the concept of holography. Roughly speaking, the idea of holography is to relate the

quantum physics on a spacetime boundary to the classical geometrical properties of the

spacetime. Originally the aim of this approach was to understand the quantum properties

of black holes: since Bekenstein and Hawking found that the entropy of a black hole is

proportional to its area this seemed to suggest that the effective QFT that would describe

the microscopic degrees of freedom of a quantum black hole should live on its horizon,

i.e. the local degrees of freedom are described by a theory in one lower dimension. In

an extended version, the holographic principle states that for any Lorentzian manifold it

should be possible to find a submanifold (a holographic screen) where all the quantum

degrees of freedom are present.

In particular, as a candidate for a theory of quantum gravity string theory should

involve holography. The AdS/CFT correspondence, proposed by Maldacena in 1997 [107],

is a remarkable realization of this idea: here the screen is identified as the AdS boundary

and duality asserts that conformal quantum field theories (CFT) living on this boundary

provide a holographic description of the string theory in the AdS bulk. In fact AdS/CFT

provides us with an explicit dictionary relating a theory of gravity in AdS background

with a quantum gauge theory in lower dimensions. The entropy of a black hole in this

background would be related then to the thermodynamic entropy of the boundary gauge

theory at a finite temperature - the same with the Hawking temperature of the black hole.

A quite general phenomenon of the gravity/gauge theory correspondence is the UV/IR

connection, i.e. the UV divergences in the field theory are related to IR divergences on

the gravitational side. Regularizing these divergences in the field theory side explicitly

provides us with a set of boundary counterterms in the gravity side. In recent years
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such counterterms proved to be an invaluable tool in analyzing the asymptotically AdS

geometries and defining their conserved charges. We will consider these counterterms more

closely in Chapter 4.

Recently, much attention has been devoted to a study of the de Sitter space (dS) and

asymptotically dS spaces. This was partly motivated by recent results that seem to indicate

that the Universe is currently undergoing a period of accelerated expansion and therefore it

might approach a dS space in the far-future. Motivated by the analogy with the AdS/CFT

correspondence there has also been advanced a proposal of a similar correspondence in the

dS case [131]. This would entail a duality between quantum gravity on a dS background and

a Euclidean conformal field theory on the boundary of the dS space. However, the status

of the dS/CFT conjecture is still uncertain. The principal difficulty resides in the fact that

no non-singular compactification of M/String-theory give rise to de Sitter spacetime. It is

however possible to embed dS into a rather peculiar string theory, IIB∗ that is obtained

by a timelike T-duality from the conventional Type IIA theory [93]. We will actually

encounter the six-dimensional versions of Type II∗ theories in Chapters 6 and 7; for this

purpose we gathered some of the details of these theories in Appendix C.

1.2 Overview of the thesis

Ever since the formulation of General Relativity, exact solutions have played an inte-

gral part in our understanding of the nature of spacetime. For example, much of our

understanding of black hole thermodynamics and inflation were possible only with the

discovery of the Kerr-Newman and FRW solutions respectively. Given the importance of

such exact solutions, there is a corresponding impetus to derive new solutions which upon

analysis would yield further insight into our universe. Since Einstein’s equations in their

unadulterated form consist of a series of coupled non-linear differential equations, obtain-

ing solutions by hand is intractable unless some kind of simplifying symmetry is imposed

in the ansatz. This motivated the development of many ingenious and powerful strategies

to derive solutions to Einstein’s equations. Four-dimensional solutions of the Einstein’s

equations have been studied extensively for many decades in the last century and there

actually exists an encyclopedia of all the known four-dimensional solutions as well as an
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overview of the various solution-generating techniques [77]. In recent times, in view of the

discovery of the supergravity theories and the remarkable advances of superstring theory,

it has become of utmost importance to find and study solutions of Einstein’s equations

or the coupled Einstein-matter systems in higher dimensions. Various classes of solutions

have been found, including black holes that generalise the four-dimensional Schwarzschild,

Reissner-Nordström or Kerr solutions [117, 67].

The primary purpose of this thesis is to present and study the properties of a class

of higher-dimensional generalisations of the so-called NUT-charged solutions in various

backgrounds. Intuitively the NUT charge corresponds to a magnetic type of mass. The

first solution in four dimensions describing such an object was presented in ref. [132, 120].

Although the Taub-NUT solution is not asymptotically flat (AF ), it can be regarded as

asymptotically locally flat (ALF ). The difference appears in the topology of the boundary

at infinity. If we consider as an example of an AF space the Euclidean version of the

Schwarzschild solution then the boundary at infinity is simply the product S2 × S1. By

contrast, in the presence of a NUT charge, the spacetime has as boundary at infinity a

twisted S1 bundle over S2. Only locally we can untwist the bundle structure to obtain

the form of an AF spacetime. The bundles at infinity are labelled by the first Chern

number, which is in fact proportional to the NUT charge [84]. The presence of a NUT

charge induces a so-called Misner singularity in the metric, analogous to a ‘Dirac string’

in electromagnetism [115]. This singularity is only a coordinate singularity and can be

removed by choosing appropriate coordinate patches. However, expunging this singularity

comes at a price: in general we must make coordinate identifications in the spacetime that

yield closed timelike curves in certain regions. We will later see that the higher-dimensional

NUT-charged solutions share many of the remarkable properties of their four-dimensional

versions.

Another motivation for our work comes from a more general study of gravitational

entropy in four and higher dimensions [83]. Ever since the seminal papers of Bekenstein

and Hawking, it has been known that the entropy of a black-hole is proportional to the

area of the horizon. This relationship can be generalised to a wider class of spacetimes,

namely those whose Euclidean sections cannot be everywhere foliated by surfaces of con-

stant (Euclidean) time. These situations can occur if the Euclidean spacetime has non-
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trivial topology: the inability to foliate the spacetime leads to a breakdown of the concept

of unitary Hamiltonian evolution, and mixed states with entropy will arise [84, 83]. Space-

times that carry a NUT charge are in this broader class and in this regard obtaining new

exact NUT-charged solutions and studying their thermodynamic properties is worthwhile.

The structure of this thesis is as follows: in the next two chapters (and also in the

last one) we present new classes of NUT-charged spaces in four dimensions and higher,

while in the remainder of the thesis we make a study of their properties and their possible

applications.

More specifically, we construct in Chapter 2 new families of axisymmetric vacuum

solutions in four dimensions using a solution-generating technique based on the hidden

SL(2, R) symmetry of the effective Lagrangian. Our method is based on the simple ob-

servation that a static axisymmetric metric as written in Weyl-Papapetrou form exhibits

a simple ‘scaling’ symmetry that allows one to generate a family of new static vacuum

axisymmetric solutions, indexed by a real parameter. We also make use of a charging

method for static vacuum metrics, which dates back to Weyl [137]. We demonstrate a

simpler alternative derivation of this transformation by using a SL(2, R) symmetry of the

reduced Lagrangian in three dimensions. However, unlike previous applications of this

transformation, we show that with our simplified mapping and by combining this charging

method with the scaling property, one is able to generate new solutions starting with the

Schwarzschild solution as our seed metric. In particular, using the Scharzschild solution

as a seed we are able to obtain the Zipoy-Voorhees generalisation of both the Taub-NUT

solution and the Eguchi-Hanson soliton. Such families of solutions are parameterized by

the value of a real parameter γ. The γ = 1 member of these families reduces to the

Taub-NUT/Eguchi-Hanson solution. Finally, in the second part of Chapter 2, using the

C-metric as a seed, we will be able to obtain an accelerating version of all the above solu-

tions. Again, such families of solutions are parameterized by the value of a real parameter

γ. The γ = 1 member of this family yields a new solution, which we interpreted as the

accelerating version of the Taub-NUT solution.

We also discuss in more detail the interesting features of the Taub-NUT geometry. We

will see that this geometry can be understood as a radial extension of a circle fibration over

the sphere S2. This observation will prove to be essential in the later chapters, where we will
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see that the higher dimensional NUT-charged spaces can be thought of in a very similar

way as radial extensions of circle fibrations over products of Einsten-Kähler manifolds.

In particular, we will provide the direct generalisation of such metrics to even and odd

dimensions. The novelty of our solutions is that by associating a NUT charge N with every

such Einsten-Kähler factor of the base space we obtain higher dimensional generalisations

of Taub-NUT spaces that can have quite generally multiple NUT parameters. In our

work we give the Lorentzian form of the solutions however, in order to understand the

singularity structure of these spaces we have to concentrate mainly on a study of their

Euclidean sections. In most of the cases the Euclidean section is simply obtained using the

analytic continuations t→ it and Nj → inj . To render such Euclidean metrics regular one

follows a procedure as in Ref.[122] in which the basic idea is to turn all the singularities

appearing in the metric into removable coordinate singularities. For generic values of the

parameters the metrics are singular – it is only for careful choices of the parameters that

they become regular. Having presented in Chapter 3 the most general forms of the non-

rotating Taub-NUT spaces in higher dimensions in odd and also even dimensions, in the

rest of this thesis we address some of their physical properties and possible applications.

In Chapter 4 we briefly review the path-integral approach to quantum gravity and

its relationship to gravitational thermodynamics for asymptotically flat or asymptotically

(A)dS spacetimes. In this approach, the partition function for the gravitational field is

defined by a sum over all smooth Euclidean geometries which are periodic with a period

β in imaginary time. The path-integral is computed by using the saddle point approxi-

mation in which one considers that the dominant contributions to the path-integral will

come from metrics near the classical solutions of Euclidean Einstein’s equations with the

given boundary conditions. In the semiclassical limit this yields a relationship between

gravitational entropy and other relevant thermodynamic quantities, such as mass, angular

momentum, and other conserved charges. In particular, the gravitational entropy can then

be regarded as arising from the the quantum statistical relation (or the generalised Gibbs-

Duhem relation) applied to the path-integral formulation of quantum gravity. In general,

for spaces that are asymptotically AdS or flat, we can compute the partition function using

an analytic continuation of the action by rotating the time axis so that t → −iT in order

to obtain a Euclidean signature metric. The positivity of the Euclidean action ensures a
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convergent path integral with which one can carry out any calculations (of action, entropy,

etc.). The presumed physical interpretation of the results is then obtained by rotation

back to a Lorentzian signature at the end of the calculation. However, for spaces that are

asymptotically (A)dS, we describe two approaches toward doing thermodynamics. In one

approach (referred to as the R-approach), the analysis is carried out using the unmodified

metric with Lorentzian signature; no analytic continuation is performed on the coordinates

and/or the parameters that appear in the metric. In the alternative C-approach one deals

with an analytically continued version of the metric and at the end of the computation all

the final results are analytically continued back to the Lorentzian sector. The C-approach

is closest to the more traditional method of obtaining Euclidean sections for asymptoti-

cally flat and AdS spacetime. The R-approach refers to the Lorentzian section, and makes

use of the path integral formalism only insofar as the generalised Gibbs-Duhem relation is

employed.

The main result in Chapter 5 is the demonstration that the R and C-approaches are

equivalent, in the sense that we can start from the C-approach results and derive by

consistent analytic continuations (i.e. using a well-defined prescription for performing the

analytic continuations) all the results from the R-approach. There are no a-priori obstacles

in taking the opposite view, in which the C-approach results are derived from the respective

R-approach results. However, one could still argue that the C-approach is the more basic

one, as in it the periodicity conditions appear more naturally than in the R-approach. As

specific examples, we consider some of the NUT-charged spaces presented Chapter 3 and

study their thermodynamic properties with some very interesting results.

In Chapter 6 we describe another application of the Taub-NUT-Eguchi-Hanson solitons

in the construction of Kaluza-Klein (KK) magnetic monopoles. We begin by reviewing how

the flat KK monopole can be obtained from the four dimensional Taub-Nut solution. We

also briefly discuss the features of the monopole solution obtained by using the Euclidean

Taub-Bolt solution. At this point we consider the solution obtained by dimensionally

reducing an Eguchi-Hanson-like monopole and we prove that even if the four-dimensional

metric is non-asymptotically flat, its geometry is nonetheless U-dual to that of a Taub-Bolt

monopole. We next present a new metric ansatz which is a solution of vacuum Einstein’s

equations with cosmological constant in five dimensions and we perform a Kaluza-Klein
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reduction to obtain a new four-dimensional monopole solution. In the remaining sections

in this chapter we consider similar monopole solutions in higher dimensions and we also

perform Kaluza-Klein sphere reductions to four dimensions. In six dimensions we apply

spatial and timelike Hopf-dualities to generate new solutions.

In Chapter 7 we describe new time-dependent bubble solutions that can be obtained

from the higher-dimensional NUT-charged spaces by analytical continuation. This gen-

eralises previous studies of four-dimensional nutty bubbles. One five-dimensional locally

asymptotically AdS solution in particular has a special conformal boundary structure of

AdS3 × S1. We compute its boundary stress tensor and related it to the properties of

the dual field theory. Interestingly enough, we also find consistent six-dimensional bubble

solutions that have only one timelike direction. The existence of such spacetimes with non-

trivial topology is closely related to the existence of the Taub-NUT(-AdS) solutions with

more than one NUT charge. Finally, we begin an investigation of generating new solutions

from Taub-NUT spacetimes and ‘nuttier’ bubbles. Using the so-called Hopf duality, we

provided new explicit time-dependent backgrounds in six dimensions.

Finally, in Chapter 8 we briefly present another generalisation of the NUT-charged

spaces as solutions in Einstein-Maxwell theory. However, for space reasons, we confined

ourselves to perform a simple singularity analysis of such metrics, leaving a full thermody-

namical description for further work.

The thesis ends with a concluding chapter, highlighting the significance of the work

carried out and highlighting possible directions for further research.

Notation

Our conventions generally are the ones from Wald’s textbook [136]. We use (−,+, ...,+) for

the (Lorentzian) signature of the metric; in even D dimensions our metrics will be solutions

of the vacuum Einstein field equations with cosmological constant Λ = ± (D−1)(D−2)
2l2

, which

can be expressed in the form Gij + Λgij = 0 or in the equivalent form Rij = λgij, where

λ = 2Λ
D−2

= ±D−1
l2

. By an abuse of terminology we will still call λ cosmological constant.



Chapter 2

Accelerating Taub-NUT and

Eguchi-Hanson solitons in four

dimensions

In this chapter we construct new solutions of the vacuum Einstein field equations in four

dimensions via a solution generating method utilizing the SL(2, R) symmetry of the dimen-

sionally reduced Lagrangian. In particular, using the Schwarzschild solution as the initial

seed, we obtain on the way a new family of solutions, describing the generalisation à la

Zipoy-Voorhees of the four dimensional Taub-NUT solution and also non-trivial generalisa-

tion of the four-dimensional Eguchi-Hanson solitons. Much like the original Zipoy-Voorhees

solution, such metrics are parameterized by a real number γ. For γ = 1 we recover the

usual Taub-NUT/Eguchi-Hanson solitons and, for higher positive integer values of γ, they

can be interpreted as the ‘superposition’ of γ NUT-charged objects/solitons. This will be

our first encounter with a NUT charged space and we will pause for a moment to discuss

its properties in more detail.

In the second part of this chapter, we apply the same solution-generating method this

time to the so-called C-metric. This metric is known to describe two black holes uniformly

accelerated in opposite directions where the source of acceleration is a strut in between

pushing apart the black holes or alternatively two strings pulling on the black holes from

infinity (for a recent discussion of its properties see for instance [90, 91, 73, 75, 74, 72] and

15
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the references therein). For our purpose, it will prove more convenient to use the form

of the C-metric given in [90] which has been cast into a nice factorized form. Using a

similar procedure we finally obtain new vacuum solutions that we interpret as describing

the accelerating Zipoy-Vorhees-like family of Taub-NUT solutions, respectively Eguchi-

Hanson instantons. Finally, we focus on a particular member of this family and show that

it represents an accelerating version of the Taub-NUT solution.

The structure of this chapter is as follows. In section 2.1 we describe our solution

generating technique, which maps a static axisymmetric solution in vacuum to a new

stationary vacuum solution of Einstein’s gravity in four dimensions. We then apply this

transformation on the Schwarzschild solution in section 2.2 and analyse the properties of

the generated solutions. Next, we apply the same transformation technique on another

seed, namely on the C-metric in section 2.4 and we consider more closely the properties of

the generated accelerating Taub-NUT solution in section 2.5.

2.1 The solution-generating method

Of particular importance for the present work is a special type of simplifying ansatz, the

static axisymmetric Weyl-Papapetrou metric, which was first proposed by Weyl in [137]

ds2
4 = −e−ψdt2 + eψ

[

e2µ(dρ2 + dz2) + ρ2dϕ2
]

. (2.1)

The metric is specified by the values of two functions ψ and µ, which are functions of the

canonical Weyl variables ρ and z. Starting with a static vacuum axisymmetric solution

as in (2.1), let us consider its dimensional reduction along the timelike direction down to

three dimensions. The reduced Lagrangian can be written as:

L3 = eR− 1

2
e(∂ψ)2, (2.2)

where we denote e =
√
g1. Then the equation of motion for ψ is readily seen to be ∆ψ = 0,

where ∆ is the Laplacian constructed using the three-dimensional metric:

ds2 = e2µ(dρ2 + dz2) + ρ2dϕ2. (2.3)

1More generally, in the remaining of this thesis we shall use e =
√

|g|, R for the Ricci scalar when

writing down a Lagrangian, being understood that these quantities are defined using the metric in the

dimension in which the respective Lagrangian is defined.
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Now the key observation is that ∆ψ = e−2µ∆µ=0ψ, where ∆µ=0 is the Laplacian computed

for a flat three-dimensional Euclidean metric, which corresponds to setting µ = 0 in (2.3).

Therefore any arbitrary solution of Laplace’s equation in flat three dimensional space is

automatically a valid solution of Laplace’s equation in the curved background (2.3). Once

we know ψ, the remaining function µ(ρ, z) is found by performing a simple line-integral

using the relations:

∂zµ =
ρ

2
∂ρψ∂zψ, ∂ρµ =

ρ

4

[

(∂ρψ)2 − (∂zψ)2] . (2.4)

and the static axisymmetric Einstein’s equations are now reduced to Laplace’s equation

on flat space.

Due to the linearity of the equation for ψ, construction of multi-black hole versions is

easily carried out. The Weyl formalism has been recently extended to higher dimensions

by Emparan and Reall [55] and the same line of thought can be used for the corresponding

higher dimensional axisymmetric metrics.

Given the simplifications introduced by the above axisymmetric ansatz, one now has

two choices. One may either try to solve the differential equations directly, or, in more

general cases, try to further exploit the hidden symmetries of the dimensionally reduced

Lagrangians and generate solutions using pre-existing solutions as seeds.

2.1.1 The ‘scaling’ symmetry

Consider for instance the following ‘scaling’ symmetry of the field equations: given a

vacuum static solution described by the pair of functions (ψ, µ) then it is easily seen from

(2.4) that the pair (γψ, γ2µ) will describe new vacuum static axisymmetric solution of the

field equations, where γ is any real parameter.

As an example of this scaling symmetry, let us apply it to a particular simple solution.

Our seed metric will be the Schwarzschild solution:

ds2 = −
(

1 − 2m

r

)

dt2 +
dr2

1 − 2m
r

+ r2(dθ2 + sin2 θdϕ2). (2.5)
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For our purposes, we have to convert it first to the Weyl form as:

ds2 = −e−ψdt2 + eψ
[

e2µ(dρ2 + dz2) + ρ2dϕ2
]

,

e−ψ = 1 − 2m

r
, e2µ =

r(r − 2m)

(r −m)2 −m2 cos2 θ
,

dρ2 + dz2 =
(r −m)2 −m2 cos2 θ

r(r − 2m)

(

dr2 + r(r − 2m)dθ2
)

, (2.6)

where ρ =
√

r(r − 2m) sin θ and z = (r −m) cos θ are the canonical Weyl coordinates.

Using now the scaling symmetry described above, we can write down a new vacuum

solution of Einstein’s field equations by taking ψ → γψ and µ→ γ2µ. We obtain:

ds2 = e−ψdt2 + eψ
[

e2µ(dρ2 + dz2) + ρ2dϕ2
]

,

e−ψ =

(

1 − 2m

r

)γ

, e2µ =

(

r(r − 2m)

(r −m)2 −m2 cos2 θ

)γ2

, (2.7)

which is easily seen to be the Zipoy-Voorhees solution [142, 135]. For integer values of γ

this metric describes the superposition of γ black holes.

2.1.2 Weyl’s charging method: the SL(2, R) approach

There also exist transformations similar to the Ehlers-Harrison transformation for the Ernst

formalism [78, 57, 77] which map static vacuum solutions into stationary Einstein-Maxwell

solutions. For the Weyl-Papapetrou ansatz, it has been long known that a transformation

already exists that brings a static, axisymmetric vacuum solution to a non-trivial class of

static solutions in Einstein Maxwell theory [59]. In particular, the Schwarzschild solution

can be transformed into the Reissner-Nordström solution. In this section, we will demon-

strate a simpler alternative derivation of this transformation using a SL(2, R) symmetry

of the reduced Lagrangian in three dimensions. However, unlike previous applications of

this transformation, we show that with our simplified mapping, we are able to generate

new solutions starting with the Schwarzschild solution as our seed metric.

We start with Einstein-Maxwell theory in four dimensions described by the Lagrangian:

L4 = eR− 1

4
eF 2

(2), (2.8)
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where R is the Ricci scalar, F(2) = dA(1) is the electromagnetic field strength which only

has an electric component A(1) = χdt and we denote e =
√−g. Let us first consider the

dimensional reduction of the four-dimensional Lagrangian (2.8) to three dimensions on a

timelike coordinate using the static Kaluza-Klein ansatz:

ds2
4 = −e−φdt2 + eφds2

3. (2.9)

The reduced Lagrangian in three dimensions is then

L3 = eR− 1

2
e(∂φ)2 +

1

2
eeφ(∂χ)2. (2.10)

Let us notice now that if we define the matrix:

M =

(

e
φ
2

χ
2
e
φ
2

χ
2
e
φ
2 −e−φ

2 + χ2

4
e
φ
2

)

(2.11)

then the three-dimensional Lagrangian can be cast into the following form:

L3 = eR+ etr
[

∂M−1∂M
]

, (2.12)

The reduced Lagrangian is then manifestly invariant under general SL(2, R) transforma-

tions if we consider the following transformation laws for the three-dimensional fields:

gµν → gµν , M → ΩTMΩ, Ω =

(

a b

c d

)

, ad− bc = 1. (2.13)

Starting now with a static axisymmetric vacuum solution described by the metric:

ds2 = −e−ψdt2 + eψds2
3 (2.14)

then performing the dimensional reduction on the timelike direction down to three dimen-

sions and applying a general SL(2, R) transformation parameterized as above, we obtain

a static axisymmetric electrically charged solution of Einstein-Maxwell field equations,

described by the fields:

ds2 = −e−φdt2 + eφds2
3, A(1) = χdt,

eφ = eψ
(

1 − δe−ψ
)2

4C2δ
, χ =

4Cδ

eψ − δ
, (2.15)
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where, in terms of the parameters appearing in Ω, the new constants δ and C can be

expressed as δ = c2/a2 and C = 1/(2ac). Note that in the limit in which Ω = I2, i.e.

c → 0 and a = 1, we have δ → 0 simultaneously with C → ±∞ such that the product

C2δ → 1/4 remains constant.

As an example of this charging technique, let us generate the Reissner-Nordström so-

lution starting from the Schwarzschild metric (2.5). The final solution can be written in

the form:

ds2 = − 4C2δr(r − 2m)

((1 − δ)r + 2δm)2dt
2 +

((1 − δ)r + 2δm)2

4C2δr(r − 2m)
dr2 +

((1 − δ)r + 2δm)2

4C2δ
(dθ2 + sin2 θdϕ2),

A(1) =
2C ((1 + δ)r − 2δm)

(1 − δ)r + 2δm
dt. (2.16)

For generic values δ 6= 1 we can easily perform a redefinition of the radial coordinate,

together with an appropriate constant scaling of the timelike coordinate and cast the

solution into the usual Reissner-Nordström form. The electric charge is Q = m/C, while

the mass of the solution is M = (1 + δ)Q/(2
√
δ). Note that δ = 1 is a special case as it

leads to the Bertotti-Robinson metric [19, 127] and it describes therefore the extremally

charged Reissner-Nordström solution for which M = Q.

At this point let us mention two important points regarding the above charging tech-

nique. First, this method is not restricted only to metrics with axisymmetric symmetry;

it can be extended to any general static vacuum solution of Einstein’s field equations.

Second, we can easily consider a similar method to generate magnetically charged static

solutions out of axial vacuum metrics. Consider for instance a magnetically charged solu-

tion described by the metric:

ds2
4 = e−φdϕ2 + eφds2

3. (2.17)

with a magnetic 1-form potential A(1) = ζdϕ. Performing a dimensional reduction down

to three dimensions we obtain the Lagrangian:

L3 = eR − 1

2
e(∂φ)2 − 1

2
eeφ(∂ζ)2. (2.18)

Upon defining the matrix:

M =

(

e
φ
2

ζ
2
e
φ
2

ζ
2
e
φ
2 e−

φ
2 + ζ2

4
e
φ
2

)

(2.19)
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one can express the three-dimensional Lagrangian into the following manifestly SL(2, R)-

invariant form:

L3 = eR+ 4etr
[

∂M−1∂M
]

. (2.20)

In analogy with the electrically charged case we can then generate new magnetically charged

solutions out of uncharged axial symmetric spaces. For instance starting with a vacuum

solution of the form:

ds2 = e−ψdϕ2 + eψds2
3 (2.21)

after performing the general SL(2, R) transformation we obtain a magnetically charged

solution:

ds2 = e−φdϕ2 + eφds2
3, A(1) = ζdϕ,

eφ = eψ
(

1 + δe−ψ
)2

4C2δ
, ζ =

4C

1 + δe−ψ
, (2.22)

where δ = c2/a2 and C = 1/(2ac). As an example of this second method of adding magnetic

charge to an axial metric, let us apply it to the usual Schwarzschild solution (2.5). This

yields the Melvin generalisation of the Schwarzschild solution [77]:

ds2 =
(1 + δr2 sin2 θ)2

4C2δ

[

−
(

1 − 2m

r

)

dt2 +
dr2

1 − 2m
r

+ r2dθ2

]

+
4C2δ

(1 + δr2 sin2 θ)2
r2 sin2 θdϕ2,

A(1) =
4Cdϕ

1 + δr2 sin2 θ
. (2.23)

Physically this metric describes a black hole immersed into a magnetic universe. This

solution is not asymptotically flat. It has a curvature singularity at r = 0, which is hidden

behind an event horizon at r = 2m. In the limit δ → 0 and C → ∞, while keeping the

product C2δ constant, we recover the uncharged Schwarzschild solution. In the remainder

of this chapter we shall not further pursue this second method and focus only on the

electrically charged cases.

Once we obtained a static electrically charged solution in Einstein-Maxwell theory,

the next step in our solution-generating technique will be to perform a dualisation of the

electromagnetic potential and find the corresponding magnetically charged solutions. In
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our case it turns out that it is easier to compute the dual electromagnetic potential in

the reduced three-dimensional theory. In this case we start with the three-dimensional

Lagrangian (2.10) and dualise the scalar field to obtain a magnetic 2-form field strength

F(2). Following the usual procedure, we add a term dχ ∧ F(2) to the action and solve the

equations of motion for the scalar field. Replacing the result in the action we finally express

the Lagrangian in terms of the dual field as:2

L3 = eR − 1

2
e(∂φ)2 − 1

4
ee−φF 2

(2), (2.24)

where the components of the two-form field strength are computed using the formula:

Fαβ = eeφǫαβµ∂
µχ, (2.25)

where ǫαβµ is the Levi-Civita symbol. After lifting the solution back to four-dimensions we

obtain a magnetically charged static solution of the Einstein-Maxwell field equations.

2.1.3 Final mapping to a vacuum stationary solution

We are now ready to perform the last step in our solution-generating method, namely

to map the magnetic solution to a vacuum axisymmetric stationary solution of Einstein’s

field equations in four dimensions. This actually involves two steps: we first map the mag-

netic solution of the Einstein-Maxwell theory to a solution of the Einstein-Maxwell-Dilaton

(EMD) theory with a specific value of the dilaton coupling, namely the one corresponding

to the Kaluza-Klein theory, i.e. a = −
√

3. To do this we shall employ the general re-

sults derived in [56] (see also [36] for a geometrical derivation of the respective mapping).

Starting with a magnetostatic solution:

ds2
4 = −e−φdt2 + eφ

[

e2µ(dρ2 + dz2) + ρ2dϕ2
]

, A(1) = Aϕdϕ (2.26)

the corresponding solution of the EMD system is:

ds2
4 = −e−φ

4 dt2 + e
φ
4

[

(

e2µ
)

1
4 (dρ2 + dz2) + ρ2dϕ2

]

,

A(1) =
Aϕ
2
dϕ, e

φ̃√
3 = e

φ
4 . (2.27)

2Note that we perform the dualisation using a three dimensional Euclidean metric.
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This is none other than the dimensional reduction of a vacuum five-dimensional metric

using the ansatz:

ds2
5 = e

− 2φ̃√
3 (dτ +

Aϕ
2
dϕ)2 + e

φ̃√
3ds2

4 (2.28)

In our case it turns out that the five-dimensional metric is simply the trivial product of a

four-dimensional Euclidean metric with a time direction. Since the five dimensional metric

solves the vacuum Einstein equations it is manifest that the four-dimensional Euclidean

metric will be Ricci flat, i.e. it solves the vacuum Einstein equations in four dimensions.

Therefore, our final result is expressible in the form:

ds2
4 = e−

φ
2 (dτ + Aϕ/2dϕ)2 + e

φ
2

[

(

e2µ
)

1
4 (dρ2 + dz2) + ρ2dϕ2

]

. (2.29)

Let us also mention at this point that we will also interpret the generated five dimen-

sional metric in terms of Kaluza-Klein magnetic monopoles. In particular, as we shall prove

that the Taub-NUT solution is a particular case of the stationary four-dimensional Ricci

flat metric (2.29), it turns out that our solution-generating method touches upon another

very interesting subject, namely that of Kaluza-Klein magnetic monopoles, of which we

will have more to say in Chapter 5.

We note that even if the charging method does not require any other symmetry beyond

the static condition, this second step in our solution-generating technique can be applied

only for stationary axisymmetric metrics that can be cast into the Weyl-Papapetrou form.

However, this is not really a very stringent constraint as most of the physically interesting

solutions can be cast in the Weyl-Papapetrou form. To understand the effects of this

last step in our solution-generating method one could take for instance the magnetically

charged four-dimensional Reissner-Nordström and map it to an Euclidean vacuum metric

as in (2.29). However, given the presence of the square roots appearing in the factors e
φ
2

it is easily seen that we obtain an axisymmetric NUT-charged like solution with naked

singularities, whose physical interpretation is obscure at this point. On the other hand,

since we restrict ourselves to axisymmetric metrics that can be cast in Weyl form, it turns

out that before we apply the charging procedure we can use the scaling symmetry discussed

in the previous section to scale the dilaton in the initial seed in such a way to cancel the

awkward effect of the square-roots in the final expression of the metric.
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In the following sections we will generate new solutions using this method, starting first

with the Schwarzschild metric as our initial seed, then again with the C-metric. We will

generate in this way the Zipoy-Voorhees extensions of the Taub-NUT solution and of the

Eguchi-Hanson instanton, respectively, using the C-metric as seed, we will generate the

accelerating version of these solutions.

2.2 Zipoy-Voorhees families of Taub-Nut and Eguchi-

Hanson solitons

We are now ready to apply the solution-generating technique described in the previous

section. We have already showed as an example how to generate the Zipoy-Voorhees

family of solutions out of the Schwarzschild metric in section (2.1.1). The next step in our

method is to charge it using the SL(2, R)-symmetry. We obtain:

ds2 = −e−φdt2 + eφds2
3, A(1) = χdt,

eφ =

(

1 − δ
(

1 − 2m
r

)γ)2

4C2δ
(

1 − 2m
r

)γ , χ =
4Cδ

(

1 − 2m
r

)−γ − δ
. (2.30)

We can now easily find out its magnetic dual solution as being given by:

Aϕdϕ =
2mγ

C
cos θdϕ. (2.31)

while the expression for the metric remains unchanged. The electrically charged version of

the Zipoy-Voorhees metric has been obtained previously in [124, 126, 125]. Finally, before

we map this solution to a vacuum Euclidean solution in four-dimensions we will make a

final rescaling of the parameter γ → 2γ and we also perform a global rescaling of the

metric3 by 2C
√
δ to obtain:

ds2 =
1 − δ

(

1 − 2m
r

)2γ

(

1 − 2m
r

)γ

[

(

r(r − 2m)

(r −m)2 −m2 cos2 θ

)γ2−1

(dr2 + r(r − 2m)dθ2)

+r(r − 2m) sin2 θdϕ2

]

+
4C2δ

(

1 − 2m
r

)γ

1 − δ
(

1 − 2m
r

)2γ (dτ +
2mγ

C
cos θdϕ)2. (2.32)

3We are allowed to do so since the metric is a vacuum solution.
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This general family of vacuum Euclidean solutions, indexed by a real parameter γ, is

the main result of this section.

Let us consider some limiting cases of this metric. Taking δ → 0 and C → ∞ while

keeping the product C2δ constant, the metric reduces to the Euclidean version of the

Zipoy-Voorhees static metric. If we take γ = 1 and properly rescale the z coordinate to

absorb some constant factor we obtain a spherically-symmetric metric:

ds2 = δ
r(r − 2m)

r2 − δ(r − 2m)2
(dτ + 4m cos θdϕ)2 +

(

r2 − δ(r − 2m)2
)

[

dr2

r(r − 2m)
+ dΩ2

]

.

We distinguish now two possibilities. If we set directly δ = 1 we can cast the metric in the

following form:

ds2 =
R2

4

(

1 − α4

R4

)

(dτ + cos θdϕ)2 +
dR2

(

1 − α4

R4

) +
R2

4
dΩ2, (2.33)

after redefining R2 = 4m(r − m) and α = 4m. This is the well-known Eguchi-Hanson

soliton [53].

On the other hand, if δ 6= 1 then by redefining the radial coordinate such that R2−n2 =

r2 − δ(r − 2m)2 with (1 − δ)n2 = 4m2δ and rescaling z we obtain:

ds2 =

(

R + n√
δ

)(

R + n
√
δ
)

R2 − n2
(dτ + 2n cos θdϕ)2 +

R2 − n2

(

R + n√
δ

)(

R + n
√
δ
)dR2

+(R2 − n2)dΩ2,

which we recognise as the Euclidean version of the Taub-NUT metric. It is possible now

to set again δ = 1 and recover the Taub-Nut instanton.

In summary, setting γ = 1 in our general metric yields the Euclidean version of the usual

Taub-NUT solution, whereas setting δ = 1 yields the Eguchi-Hanson soliton. Therefore

for general values of γ our solution (2.32) describes the Zipoy-Voorhees-like generalisation

of such objects.

Another case of interest is the one that corresponds to negative values for δ. Setting

δ → −δ, from the general form of the metric (2.32), we obtain a metric with Lorentzian
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signature:4

ds2 =
1 + δ

(

1 − 2m
r

)2γ

(

1 − 2m
r

)γ

[

(

r(r − 2m)

(r −m)2 −m2 cos2 θ

)γ2−1

(dr2 + r(r − 2m)dθ2)

+r(r − 2m) sin2 θdϕ2

]

− 4C2δ
(

1 − 2m
r

)γ

1 + δ
(

1 − 2m
r

)2γ (dt+
2mγ

C
cos θdϕ)2. (2.34)

where now δ takes positive values only. Consider now the γ = 1 member of this family

of solutions. After redefining the radial coordinate such that R2 +N2 = r2 + δ(r − 2m)2,

where (1 + δ)N2 = 4δm2, we obtain:

ds2 = −

(

R + N√
δ

)(

R−N
√
δ
)

R2 +N2
(dt+ 2N cos θdϕ)2 +

R2 +N2

(

R + N√
δ

)(

R−N
√
δ
)dR2

+(R2 +N2)dΩ2, (2.35)

i.e. the Taub-NUT solution. On the other hand, setting δ → 0 and taking the limit

C → ∞ while keeping the product C2δ constant, the metric is readily seen to reduce

to the Zipoy-Voorhees metric. Therefore, the general metric (2.34) describes the general

Zipoy-Voorhees-Taub-NUT family of vacuum solutions, indexed by a real number γ and

having two independent parameters δ and N .

2.3 Taub-NUT solutions: The first encounter

In this section we will consider more closely the properties of the Taub-NUT solution in

flat backgrounds, both in Lorentzian and Euclidean signature. This solution has been

found initially by Taub in 1951 [132] and later extended by Newman, Unti and Tamburino

in 1963 [120]. The properties of this solution have been later clarified by Misner in 1967

[115, 116].

4We changed the notation τ → t.
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2.3.1 The Taub-NUT solution in four dimensions

The metric (2.35) is in fact the general form of the Lorentzian Taub-NUT space. Indeed,

the four dimensional vacuum Taub-NUT solution is usually written as:

ds2 = −f(r)(dt+ 2N cos θdϕ)2 +
dr2

f(r)
+ (r2 +N2)(dθ2 + sin2 θdϕ2),

f(r) =
r2 − 2mr −N2

r2 +N2
(2.36)

and it is then clear that (2.35) can be cast into this form if we take m = δ−1
2
√
δ
N . Here

the angles θ and ϕ are the standard angles parameterizing S2 and they have the following

ranges: 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π.

There are two different regions of this spacetime, which appear as we vary r. They

are distinguished by the sign of gtt = f(r). Notice that f(r) = 0 at r± = m±
√
m2 +N2

and they correspond in a sense to horizons for this geometry. More precisely, they are

chronology horizons since across these horizons f(r) will change sign and the coordinate r

changes from spacelike to timelike and vice-versa.

For r− < r < r+ we have f(r) < 0 and it is clear that, in analogy with what happens

when one crosses the horizon for a Schwarzschild black hole, r will be a timelike coordinate

in this region while t is spacelike. This corresponds to a time-dependent geometry and in

fact this was the original solution discovered by Taub [132]. As we shall prove later on,

the coordinate t has the periodicity 8πN and in this case the spatial slices will have the

topology S3. However, the interesting feature of this geometry is that it naturally describes

a Big Bang (the volume of this universe is zero at the ‘initial’ time r = r−) followed by

a Big Crunch (the volume becomes zero again at the ‘final’ time r = r+) with the total

volume of the universe reaching a maximum value in between.

On the other sides of this cosmological region, i.e. for r < r− and r > r+, one has

f(r) > 0. Now the coordinate t plays the role of time and the geometry is stationary.

However, since for consistency tmust have the periodicity 8πN , this region has pathological

features as it contains closed timelike curves (CTCs) through every point. The constant

radial slices have the topology of a Lorentzian version of S3, since t is fibered over S2.

Notice that these two regions are naturally connected through the horizons. The metric

is singular at the location of these horizons, however, let us notice that the Taub-NUT
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solution has no curvature singularities and this suggests that one can extend the metric

to cover such regions (see for instance the discussion in [82]). We can focus on the regions

close to these horizons. Considering for instance the horizon located at r = r−, if we define

τ = r − r− then f(r) ≃ −τ/r− and the metric on a section with constant (θ, ϕ) becomes:

ds2 ≃ τ

r−
dt2 − dτ 2

τ/r−
. (2.37)

This is a two-dimensional version of the Misner space [115]. In the four-dimensional ge-

ometry, this space is fibered over S2. Therefore, the full Taub-NUT geometry describes

a cosmological Taub region connected through Misner-like spaces with regions containing

CTCs.

Moreover, it turns out that there are even geodesics that can pass from one region

to another and this is one very interesting feature of this geometry: one starts in the

cosmological region and after waiting a finite time one find oneself in a region containing

CTCs. There also exist the so-called quasi-regular singularities [99, 100], which correspond

to the end-points of incomplete and inextensible geodesics that spiral indefinitely around

a topologically closed spatial dimension. However, since the Riemann tensor and all its

derivatives remain finite in all parallelly propagated orthonormal frames we take the point

of view that these represent some of mildest of types of singularities and we shall ignore

them when discussing the singularity structure of the Taub-NUT solutions.

It is because of these very interesting features that the Taub-NUT solution has become

renowed in the GR community as being ‘a counterexample to almost anything’ [115].

This solution is usually interpreted as describing a so-called gravitational dyon with both

ordinary and magnetic mass. Here the NUT charge N plays the role dual to that of an

ordinary mass m, in the same way in which the electric and magnetic charges are dual

in Maxwell’s theory of electromagnetism. In order to understand this analogy let us first

recall the way Dirac-string singularities appear in the presence of a magnetic charge.

Dirac strings. The Hopf fibration

All experimental evidence so far tells us that all particles have electric charges that are

integer multiples of a fundamental unit of electric charge. In 1931 Dirac showed that

in order to have a consistent quantum mechanical description of the charged particles in
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the presence of magnetic monopoles, one has to impose a constraint on the values of the

allowed electric and magnetic charges: the so-called Dirac quantisation formula [50]. Dirac

considered the quantum mechanics of an electron (of charge e) in the magnetic field of a

magnetic monopole of charge g. As it is well-known, on R3 this field cannot be described

by a smooth and single-valued vector potential. Indeed, assuming that one could write
~B = ∇ × ~A then, if one computes the magnetic flux through some closed surface that

contains the monopole, one finds that the flux should be zero. On the other hand, this

contradicts the fact that the respective flux should be Φ = 4πg. However, Dirac found

that ~B = ∇ × ~A±, with vector potentials ~A± = A±
ϕ~eϕ. Now, the potentials A+

ϕ and A−
ϕ

are singular at θ = π (i.e. the negative z-direction), respectively θ = 0 (i.e. the positive

z-direction). These singularities are known as Dirac’s string singularities. The union of the

regions in which A±
ϕ are defined covers the whole of R3 and moreover, in the intersection

of these regions the vector potentials are related through a gauge transformation A+
ϕ =

A−
ϕ + ∂ϕ(2gϕ). Notice, however, that the function 2gϕ is multiple valued.

If one considers now an electron (of charge e) moving in the magnetic field of the

monopole, then its wave functions corresponding to the different vector potentials should be

related as Ψ+ = e2iegϕ/~cΨ− and the wave function will be single-valued if and only if eg =

n~c/2, where n is a natural number. This is the celebrated Dirac’s quantisation condition:

it implies that the mere existence of the magnetic monopoles requires the quantisation of

the electric charge in units of ~c/(2g)n.

In 1975 Wu and Yang reformulated Dirac’s magnetic monopole theory in the modern

language of fibre bundles, avoiding in this way the use of Dirac string singularities [140, 141].

They noticed that Dirac’s magnetic monopole of charge g = n~c/(2e) has a very natural

interpretation as a connection in a circle fibration over the two-sphere S2. The basic idea

was to consider a cover of the manifold with patches, each patch providing a local coordinate

system. When two such patches overlap, the coordinate systems in the intersection must

be related by diffeomorphisms. If one considers now the electromagnetic potential, it will

be defined as a 1-form on the manifold. Therefore, its definitions on different patches must

be related by the standard transformation rules of 1-forms under changes of coordinates.

However, the new freedom introduced by the notion of fibre bundles is that these different

definitions can also be related by gauge transformations.
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To better understand this situation let us consider again the example of the Dirac

monopole. We have two potentials (written here in natural units with ~ = c = e = 1):

A±
ϕ =

n

2
(±1 − cos θϕ)dϕ (2.38)

and they form a connection 1-form defined over S2. Notice that A±
ϕ are defined in two

charts covering the whole of S2, namely: U+, covering the northern hemisphere including

the equator and, respectively U−, covering the southern hemisphere (again including the

equator). The intersection U+∩U− corresponds to a small band around the equator and it

is parameterized by ϕ. Notice that when extended to U∓ the gauge fields A± are singular.

In the overlap the two gauge fields are related by a gauge transformation and the discussion

proceeds as above to find the quantisation condition. However, for consistency, the circle

coordinate (let us denote it by τ) must be defined in the overlap such that τ+ = τ− − nϕ,

with integer n. Then the Dirac monopole corresponds to a principal U(1)-bundle over S2.

The monopole of charge 1/2 is the connection on the celebrated Hopf fibration S3 → S2,

while the monopole of charge n/2 corresponds to the U(1)-bundle over S2 with n points

identified on the fibre S1, i.e. the lens space. We can in fact write down directly the metric

on S3 as a fibration over S2 as:

ds2 =
1

4
(dτ − cos θdϕ)2 +

1

4
dΩ2. (2.39)

where dΩ2 = dθ2 + sin2 θdϕ2 is the metric on the unit-sphere S2. Such fibre bundles over

spheres are classified by the values of certain topological invariants. In our case we consider

the so-called first Chern class:

c1 = − 1

2π

∫

S2

F (2.40)

where F = dA. This is nothing but the magnetic charge up to a factor of 2π and it

should be an integer, according to general topological arguments. This corresponds again

to Dirac’s quantisation formula.

The Misner string

Let us return now to the discussion of the Taub-NUT solution. Notice that the off-diagonal

component in the metric is Aϕ = gtϕ = 2N cos θ, which is sometimes called the gravito-

magnetic potential. this is none other the electromagnetic field of a magnetic monopole of



31

charge proportional to N . In this sense N can be considered as a sort of ‘magnetic mass’

and that is why the Taub-NUT solution is sometimes interpreted to describe a gravitational

dyon.

We can understand now the four dimensional Taub-NUT geometry as a radial exten-

sion of a circle fibration over S2. Indeed, for constant radius, we find that the geometry

describes a principal U(1)-fibration over S2, the circle coordinate being t. As we have seen

in the previous section, Aϕ cannot be globally defined without singularities – here they will

be called Misner string singularities – over the whole of S2 and we have to use two coor-

dinate patches that cover the S2. In analogy with the discussion of the Dirac strings, for

consistency we must require that the time coordinate t in the intersection of such patches

satisfies a relation of the form: t+ = t− + 4Nϕ. Since ϕ is periodic with periodicity 2π we

deduce that t must be periodically identified with period 8πN . Therefore, in order to elim-

inate the Misner string singularities we have to periodically identify the circle coordinate

t with period 8πN .

2.3.2 Euclidean Taub-NUT solutions

The Euclidean version of the Taub-NUT solution is easily found by performing the following

analytical continuations t→ iτ , N → in. The metric becomes:

ds2 = FE(r)(dτ − 2n cos θdϕ)2 + F−1
E (r)dr2 + (r2 − n2)dΩ2,

where

FE(r) =
r2 − 2mr + n2

r2 − n2
. (2.41)

The regularity of the Euclidean Taub-NUT solution requires that the period of τ be

β = 8πn to ensure removal of the Dirac-Misner string singularity. It is also necessary

to eliminate the singularities in the metric that appear as r is varied over the manifold.

Attention must be paid to the so-called endpoint values of r: these are the values for which

the metric components become zero or infinite. For a complete manifold r must range

between two adjacent endpoints – if any conical singularities occur at these points they

must be eliminated. In the above metric, finite endpoints occur at r = ±n or at the simple

zeros of FE(r). In general r = ±n are curvature singularities unless FE = 0 there as well.
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To eliminate a conical singularity at a zero r0 of FE(r) we must restrict the periodicity of

τ by:

β =
4π

|F ′
E(r0)|

, (2.42)

and this will generally impose a restriction on the values of the parameters once we match

it with 8πn.

The Euclidean sections of the Taub-NUT space can be classified as follows [66]: in

general, the U(1) isometry generated by the Killing vector ∂
∂τ

(that corresponds to the

coordinate τ that parameterizes the fibre S1) can have a zero-dimensional fixed point set

(referred to as a ‘Nut’ solution) or a two-dimensional fixed point set (correspondingly

referred to as a ‘Bolt’ solution).

For the Nut solution we impose FE(r = n) = 0 to ensure that the fixed point of the

Killing vector ∂
∂τ

is zero-dimensional and also βF ′
E(r = n) = 4π in order to avoid the

presence of the conical singularities at r = n. With these conditions we obtain m = n,

yielding

FE(r) =
r − n

r + n
. (2.43)

For the bolt solution the Killing vector ∂
∂τ

has a two-dimensional fixed point set in

the 4-dimensional Euclidean sector. The regularity of the solution is then ensured by the

following conditions [122, 34]: F (r = rb) = 0 and 4π
F ′(rb)

= 8πn
k

where k is an integer while

the period of τ is now given by β = 8πn
k

, i.e. we identify k points on the circle described by

χ. It is easy to see that these conditions are satisfied for rb = 2n
k

and m = mp = n(4+k2)
4k

.

However, we must demand that r ≥ rb > n, so that the fixed point set of ∂
∂τ

is not zero-

dimensional; this in turn avoids the curvature singularity at r = n and forces k = 1. Then

the period of the coordinate χ is 8πn and for the bolt solution we obtain [122]:

FE(r) =
(r − 2n)

(

r − 1
2
n
)

r2 − n2
. (2.44)

2.3.3 Other extensions in four dimensions

In four dimensions, a particularly interesting class of solutions that generalise the Schwarzschild

black-hole is the so-called C-metric. The static part of this metric was found by Levi-Civita
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almost one century ago (see for instance [77]), however, its physical interpretation was clar-

ified only after Kinnersley and Walker’s work decades later [97]. By performing appropriate

coordinate definitions, they found that this metric describes a pair of causally disconnected

black holes uniformly accelerating in opposite directions. The cause of the acceleration is

understood in terms of nodal/conical singularities along the axis that connects the two

black holes and these singularities are interpreted as strings/struts pulling or pushing the

black holes apart. A more general class of electrovacuum spacetimes that includes and con-

siderably generalises the C-metric was found by Plebański and Demiański [123]. Recent

analyses of this class of solutions have been performed in [90, 91, 73, 75, 74, 72], where a

new exact solution describing a pair of accelerating and rotating charged black holes having

also a NUT-charge has been presented. However, an accelerating NUT solution without

rotation has not been identified yet within that class. It is the goal of the next sections to

construct and analyse such an accelerated NUT-charged solution.

2.4 Accelerated Zipoy-Voorhees-like family of solu-

tions

Since in the previous sections starting from the Schwarzschild metric we have been able

to generate the Taub-NUT metric and its Zipoy-Voorhees generalisation, we shall simply

consider next the uncharged C-metric as the seed in our solution-generating procedure.

Expressed in the form given in [90] the C-metric takes the simple form:

ds2 =
1

A2(x− y)2

[

− (y2 − 1)F (y)dt2 +
dy2

(y2 − 1)F (y)
+

dx2

(1 − x2)F (x)
+ (1 − x2)F (x)dϕ2

]

,

where F (ξ) = 1 + 2mAξ. We restrict our attention to case in which 0 ≤ 2mA < 1 and, in

order to preserve the signature of the metric we restrict the values of the coordinates such

that:

− 1

2mA
≤ y ≤ −1, − 1 ≤ x ≤ 1. (2.45)

In terms of these coordinates, spatial infinity corresponds to x = y = −1, the black hole

horizon is located at y = − 1
2mA

, while acceleration horizon corresponds to y = −1. The
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part of the symmetry axis joining the black hole horizon with the acceleration horizon is

x = 1, while the one joining the black hole horizon to infinity is x = −1.

In order to apply our solution generating technique we need to write the C-metric in

Weyl form. Using the results from [90] we obtain:

ds2 = −e−ψdt2 + eψ
[

e2µ(dρ2 + dz2) + ρ2dϕ2
]

,

e−ψ =
(y2 − 1)F (y)

A2(x− y)2
, e2µ =

(y2 − 1)F (y)

f(x, y)G(x, y)
, (2.46)

where

f(x, y) = (y2 − 1)F (x) + (1 − x2)F (y),

G(x, y) =
[

1 +mA(x+ y)2
]2 −m2A2(1 − xy)2, (2.47)

while the canonical Weyl coordinates ρ and z are defined as:

ρ2 =
(y2 − 1)(1 − x2)F (x)F (y)

A4(x− y)4
, z =

(1 − xy)[1 +mA(x+ y)]

A2(x− y)2
,

dρ2 + dz2 =
f(x, y)G(x, y)

A4(x− y)4

(

dy2

(y2 − 1)F (y)
+

dx2

(1 − x2)F (x)

)

. (2.48)

Consider now the scaling transformation (ψ, µ) → (γψ, γ2µ), where γ is a real parameter.

Applying it to the C-metric we obtain a new vacuum solution of the form:

ds2 = −
[

(y2 − 1)F (y)

A2(x− y)2

]γ

dt2 +
[

A2(x− y)2]γ−2

[

(1 − x2)F (x)

[(y2 − 1)F (y)]γ−1
dϕ2

+
((y2 − 1)F (y))

γ2−γ

[

f(x, y)G(x, y)
]γ2−1

(

dy2

(y2 − 1)F (y)
+

dx2

(1 − x2)F (x)

)]

. (2.49)

It is clear that by taking γ = 1 we recover the initial C-metric. On the other hand, let us

consider the zero-acceleration limit of this metric. Performing the coordinate transforma-

tions:

x = cos θ, y = − 1

Ar
, t→ A2γ−1t, (2.50)

while taking the limit A → 0 and rescaling the metric by a constant factor A2γ−2 it is

readily seen that we recover the Zipoy-Voorhees solution (2.7). Therefore, we could naively
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interpret the metric (2.49) as describing an accelerating version of the Zipoy-Voorhees

solution. However, the fact that the above metric is not the ‘proper’ accelerating Zipoy-

Voorhees solution can also be seen from the fact that in fact the γ = 2 of this family

should reduce to the so-called accelerating Darmois solution. This is the coincident limit

of the accelerating Bonnor dihole solution that was recently found by Teo in [134]. In

fact, a different metric describing the proper accelerated Zipoy-Voorhees solution, however,

written in a very symmetric form has been presented by Teo in the same work. The proper

accelerating Zipoy-Voorhees solution reads:

ds2 = −e−ψdt2 + eψ
[

e2µ(dρ2 + dz2) + ρ2dϕ2
]

, (2.51)

e−ψ =
(y2 − 1)F (y)

A2(x− y)2

(

F (y)

F (x)

)α−1

, e2µ =
(y2 − 1)F (y)

f(x, y)G(x, y)

F (y)α
2−1F (x)(α−1)2

G(x, y)α2−1
,

where the canonical Weyl coordinates are again defined in (2.48). Indeed, we see that the

α = 2 member of this family is clearly different from the member γ = 2 of (2.49) and

therefore we cannot actually interpret (2.49) as being an accelerating version of the Zipoy-

Voorhees family. Nonetheless, since the metric (2.49) is used only as an intermediate step in

our solution-generating technique, we shall not further discuss its properties at this point,

but limit ourselves to notice that one can apply the scaling transformation on Teo’s solution

and generate a new family of vacuum metrics indexed by two distinct real parameters:

ds2 = −e−ψdt2 + eψ
[

e2µ(dρ2 + dz2) + ρ2dϕ2
]

, (2.52)

e−ψ =

[

(y2 − 1)F (y)

A2(x− y)2

(

F (y)

F (x)

)α−1 ]γ

, e2µ =

(

(y2 − 1)F (y)

f(x, y)G(x, y)

F (y)α
2−1F (x)(α−1)2

G(x, y)α2−1

)γ2

,

The next step is to charge the solution (2.52) using a general SL(2, R) transformation.

Using the formulae (2.15) we obtain:

ds2 = −e−ψ 1

Hγ(x, y)
dt2 + eψHγ(x, y)

[

e2µ(dρ2 + dz2) + ρ2dϕ2
]

,

A(1) =
4Cδ

(

A2(x−y)2
(y2−1)F (y)

(

F (x)
F (y)

)α−1
)γ

− δ

dt, Hγ(x, y) =

(

1 − δ

(

(y2−1)F (y)
A2(x−y)2

(

F (y)
F (x)

)α−1
)γ)2

4C2δ
.
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Let us consider a few limiting cases of the above metric. Taking δ → 0 and C → ∞
while keeping the product C2δ constant we recover the uncharged metric (2.52). On the

other hand, the γ = 1 member of this family should correspond to the charged accelerating

Zipoy-Voorhees solution. In particular, for α = 1 this should reduce to a charged version

of the C-metric. However, unlike the known form of the electrically charged C-metric,

in general, the above solution has a ring-like curvature singularity located at the roots of

Hγ(x, y) = 0. Therefore its interpretation as a new form of the charged C-metric is dubious.

Nonetheless, in absence of a true charged generalisation of the accelerating Zipoy-Voorhees

family, we will make use of the above metric in our solution-generating method.

By dimensionally reducing this solution down to three dimensions and dualising the

scalar field χ to an electromagnetic field as described in section 2.1, we find that the

magnetic potential is given by:

Aϕ =
γ

C

(1 − x2) (αF (x) + (1 − α)F (y))

A2(x− y)2
+

2mγαx

AC
, (2.53)

while the metric remains unchanged in this process. Finally, taking γ = 2 and using (2.29)

we find:

ds4 =
(y2 − 1)F (x)

A2(x− y)2

(

F (y)

F (x)

)α
C2δ

H(x, y)
(dt+ Aϕdϕ)2 +

H(x, y)

A2(x− y)2

[(

F (x)

F (y)

)α

(1 − x2)F (y)dϕ2

+
(F (x)F (y))α(α−1)

G(x, y)α2−1

(

dy2

(y2 − 1)F (y)
+

dx2

(1 − x2)F (x)

)]

, (2.54)

where we defined:

H(x, y) =
1 − δ

(

(y2−1)F (x)
A2(x−y)2

(

F (y)
F (x)

)α)2

2
. (2.55)

This is the main result of this section. In the limit δ → 0, C → ∞ (with C2δ constant

and rescaling the t coordinate by a constant factor) we recover the Euclidean form of the

accelerating Zipoy-Voorhees solution (2.52). It is manifest that the C-metric corresponds

to the α = 1 member of this family. Another interesting limit to consider is the zero-

acceleration limit. In this case it turns out that performing the coordinate transformations:

x = cos θ, y = − 1

Ar
, δ → δA4, t→ t

A
, (2.56)
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we recover the general Zipoy-Voorhees-Taub-NUT family of solutions (2.32) described in

the previous section. Therefore, we expect that this metric describes the proper accelerating

version of the family (2.32). Computing some of the curvature invariants for this metric

one finds that generically there is a curvature singularity located at the roots ofH(x, y) = 0

as long as x 6= y. However if we consider negative values of δ (i.e. replace δ → −δ) in the

above metric we obtain a vacuum solution with Lorentzian signature and furthermore, we

find that H(x, y) > 0 always (for x 6= y).

2.5 Properties of the accelerating Taub-NUT solution

In what follows we will concentrate our attention on the α = 1 member of this Lorentzian

family. The metric becomes:

ds4 = −(y2 − 1)F (y)

A2(x− y)2

C2δ

H(x, y)

(

dt+
1

C

(

(1 − x2)F (x)

A2(x− y)2
+

2mx

A

)

dϕ

)2

+
H(x, y)

A2(x− y)2

[

(1 − x2)F (x)dϕ2 +
dy2

(y2 − 1)F (y)
+

dx2

(1 − x2)F (x)

]

, (2.57)

where we denote:

H(x, y) =
1 + δ

(

(y2−1)F (y)
A2(x−y)2

)2

2
.

Let us first notice that the C-metric, respectively the Taub-NUT metric are included

as limiting cases in the above solution. Indeed, taking δ → 0 and C → ∞ while keeping

the product C2δ constant, after rescaling the time coordinate with a constant factor we

obtain the uncharged C-metric solution. On the other hand, the zero-acceleration limit is

taken by performing the coordinate redefinitions and scalings of the parameters:

x = cos θ, y = − 1

Ar
, δ → A4δ, t→ t

A
, (2.58)

in the limit A→ 0. It is readily seen that in this limit we obtain the Taub-NUT metric.

To understand the properties of this solution it turns out to be more convenient to
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consider the above metric in Weyl form:

ds2 = −e−φ(dt+ Aϕdϕ)2 + eφ
[

e2µ(dρ2 + dz2) + ρ2dϕ2
]

,

e−φ = e−ψ
2C2δ

1 + δe−2ψ
, e2µ =

(y2 − 1)F (y)

f(x, y)G(x, y)
, (2.59)

where the canonical Weyl coordinates ρ and z are given by (2.48) and the expressions

of e−ψ and e2µ in terms of the canonical Weyl coordinates are given in Appendix B. The

general analysis of the above metric can now be done in parallel with the one corresponding

to the uncharged C-metric. In particular, we see that if we restrict the values of m and A

such that 0 ≤ 2mA < 1, then, in order to preserve the correct signature of the metric, the

coordinates (x, y) have to take the range:

− 1 ≤ x ≤ 1, − 1

2mA
≤ y ≤ −1. (2.60)

Now, it is well known that, in Weyl cylindrical coordinates, black hole horizons correspond

to rods on the symmetry axis [56]. Our interpretation of the above solution as describing

an accelerating NUT-charged black hole will rely on the identification of such rods on the

symmetry axis.

We will define the symmetry axis to correspond to ρ = 0 i.e. it is the z-axis. Using

(2.48) one sees that it corresponds to the four intervals: x = −1, x = 1, y = − 1
2mA

and

y = −1. As we shall prove bellow, y = − 1
2mA

corresponds to the event horizon of the black

hole, y = −1 is the acceleration horizon, the line x = 1 is the part of the symmetry axis

between the event horizon and the acceleration horizon, while x = −1 is the part of the

symmetry axis joining up the event horizon with asymptotic infinity.

To this end, notice that the asymptotic region x = y = −1 corresponds to z = ±∞,

while the end-points of the range of the coordinates (x, y) are mapped into z(x, y) as

follows:

z1 = z

(

−1,− 1

2mA

)

= −m
A
, z2 = z

(

1,− 1

2mA

)

=
m

A
, z3 = z(1,−1) =

1

2A2
.

Note now that e−φ|ρ=0 vanishes at all the above points zi, i = 1..3, it is positive for

z < z1 and z2 < z < z3 whereas both e−φ|ρ=0 and e2µ|ρ=0 are zero for z1 < z < z2 and

z > z3. We may then follow a similar analysis with the one performed in [49] to conclude
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that the regions z1 < z < z2 and z > z3 are the Killing horizons of our accelerating solution.

One can also see this by noting that the location of the horizons is given by the equation

gyy = 0, which in our case corresponds to the equation (y2 − 1)F (y) = 0. Furthermore, by

computing the area of each of the above horizons one can check that z1 < z < z2 has finite

area and it corresponds then to a black hole horizon, while z > z3 has infinite area and it

corresponds to an accelerating horizon. Indeed, using the C-metric coordinates the area of

the black hole horizon is readily found to be:

AH =

∫ 2π

0

∫ 1

−1

√
gϕϕgxxdxdϕ =

8πm2

C
√
δ(1 − 4m2A2)

. (2.61)

while the area corresponding to y = −1 diverges.

Having determined that the above solution describes an accelerating object, let us

turn now to a consideration of the ‘cause’ of the acceleration. The analysis of the conical

singularities proceeds exactly as in the case of the uncharged C-metric. In particular, if

we denote the periodicity of ϕ as ∆ϕ, then along a portion of the axis where the metric

function e−φ is positive, e−φ > 0, the deficit of conical angle will be given by5:

∆ = 2π − ∆ϕe−µ|ρ=0. (2.62)

Recall that if ∆ < 0 one has an excess of conical angle and this corresponds to a strut,

if ∆ > 0 one has a deficit of conical angle that corresponds to a string, whereas if ∆ = 0

there is no conical singularity on that part of the symmetry axis. Since in our case the

function e2µ is precisely the same as the one corresponding to the uncharged C-metric, we

deduce that in general there is a conical singularity residing in this solution and that, for

appropriate values of ∆ϕ, it can be chosen to lie along z2 < z < z3 (i.e. x = 1) or z < z1

(i.e. x = −1). In particular we find:

∆x=±1 = 2π − (1 ± 2mA)∆ϕ. (2.63)

One can remove the conical singularity on the segment z2 < z < z3 (i.e. x = 1) if one

chooses ∆ϕ = 2π/(1 + 2mA) but then there will be a positive deficit angle for z < z1

5The measurement of the proper circumference and proper radius must be performed in a frame for

which the proper time dτ = dt + Aϕdϕ = 0.
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(i.e. x = −1) and this can be interpreted as an semi-infinite cosmic string pulling on the

black hole. Alternatively, for ∆ϕ = 2π/(1 − 2mA) one can eliminate the conical angle for

z < z1 (i.e. x = −1) but then there will be a excess of conical angle for z2 < z < z3 (i.e.

x = 1). This is interpreted as a strut pushing on the black hole. The strut continues past

the acceleration horizon and connects with the mirror black hole on the other side of it.6

Following the discussion in [91] let us consider next the presence of torsion singularities.

In general these appear when the conical singularities possess a non-zero angular velocity,

signified by a non-vanishing ω = gtϕ/gtt along the symmetry axis. As is apparent from the

metric written in Weyl-Papapetrou form, near the symmetry axis ρ → 0 for a non-zero

value of ω the coordinate ϕ will become a timelike coordinate and this will lead to the

apparition of CTCs sufficiently close to the axis. In general these CTCs can be eliminated

only when ω takes the same constant value along the entire axis of symmetry as in that

case it is possible to perform a global coordinate transformation t → t − ω|ρ=0ϕ to give a

metric without such pathologies. For our accelerating NUT solution we find that on the

symmetry axis ρ = 0:

ω|x=±1 = ± 2m

AC
, (2.64)

and therefore at the first sight there are unavoidable torsion singularities associated with

this metric. However, one can still perform a coordinate definition tN = t + 2m
AC
ϕ on the

line x = 1 respectively tS = t− 2m
AC
ϕ near x = −1. Since the coordinate ϕ is periodic, this

will introduce a periodicity for the time coordinate. As we have seen in section 2.3 this is

precisely what is expected in the case of a NUT-charged solution.

2.6 Summary

We have constructed new families of axisymmetric vacuum solutions in 4-dimensions. Using

the Schwarzschild solution as seed we obtained the Zipoy-Voorhees generalisation of the

Taub-NUT solution, respectively of the Eguchi-Hanson solitons. We then discussed in

detail the interesting features of the Taub-NUT geometry. We have seen that this geometry

6The existence of the second black hole on the other side of the acceleration horizon is obscured by the

use of the Weyl coordinates.
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can be understood as a radial extension of a circle fibration over the sphere S2. We will use

this observation in Chapter 3, where we will see that the higher dimensional NUT-charged

spaces can be thought of in a very similar way as radial extensions of circle fibrations over

products of Einsten-Kähler manifolds. Finally, using the C-metric as seed, we obtained

an accelerating version of the above solutions. These solutions are parameterized by a

real parameter γ. The γ = 1 member of this family reduces to a new solution, which we

interpreted as the accelerating version of the Taub-NUT solution.





Chapter 3

Higher-dimensional Taub-NUT

solutions in cosmological backgrounds

3.1 Overview of the higher dimensional NUT-charged

solutions

In this chapter we construct new solutions of the vacuum Einstein field equations with

multiple NUT parameters, with and without cosmological constant. These solutions de-

scribe spacetimes with non-trivial topology that are asymptotically dS, AdS or flat and

represent new generalisations of the spacetimes studied in refs. [11, 133, 9, 37].

As we have seen in Chapter 2, there are known extensions of the Taub-NUT solutions

to the case when a cosmological constant is present and also in the presence of rotation

[47, 68, 4, 98]. In these cosmological settings, the asymptotic structure is only locally de

Sitter (for a positive cosmological constant) or anti-de Sitter (for a negative cosmological

constant) and we speak about Taub-NUT-(A)dS solutions.

generalisations to higher dimensions follow closely the four-dimensional case [11, 122,

3, 133, 9, 37, 111, 105, 35, 60]. In constructing these metrics the idea is to regard Taub-

NUT spacetimes as radial extensions of U(1) fibrations over a 2k-dimensional base space

M endowed with an Einstein-Kähler metric gM . Then the (2k+2)-dimensional Taub-NUT

43
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spacetime has the metric:

ds2 = F−1(r)dr2 + (r2 +N2)gM − F (r)(dt+NA)2 (3.1)

where t is the coordinate on the fibre S1 and the one-form A has curvature J = dA, which

is proportional to some covariantly constant 2-form. Here N is the NUT charge and F (r)

is a function of r.

Another class of solutions introduced in [111] used a generalised ansatz:

ds2 = F−1(r)dr2 + (r2 +N2)gM + αr2gY − F (r)(dt+ 2NA)2 (3.2)

in which one constructs the higher dimensional Taub-NUT space as a generalised fibration

over an Einstein-Kähler manifold M endowed with the metric gM . The non-trivial feature

of this ansatz is that now the fibre contains besides the (r, t)-sector a general Einstein space

Y , endowed with an Einstein metric gY , while α is a constant. This type of solution was

later generalised to arbitrary dimensions by Lü, Page and Pope in [105].

In this chapter we generalise both of these types of solutions to include multiple NUT

parameters in arbitrary dimensions. We first describe the generalisation of the ansatz (3.1)

for an arbitrary number of factors Mi in the factored form of the base space B. To analyse

the possible singularities of these metrics we switch over to their Euclidean sections by

performing analytic continuations of the time coordinate t and of the NUT parameters.

We go on to analyse the regularity constraints to be imposed on these Euclidean sections in

order to obtain regular metrics that can be extended globally to cover the whole manifold.

We find that for generic values of the parameters these metrics are singular: it is only for

a astute choice of the parameters that they become regular. As an example of this general

analysis we focus on the six-dimensional case and we explicitly consider the cases of a

Taub-NUT-like fibration over the base spaces S2 × S2 and the complex projective space

CP 2.

In Section 3 we present a more general form of the solution (3.1) in which we replace

the 2-dimensional factors Mi by arbitrary even-dimensional Einstein-Kähler manifolds. We

use here the normalisation that the Ricci tensor for each manifold Mi can be written as

Ricci(Mi) = δig(Mi). For each factor Mi we associate a NUT parameter Ni. Consistent

with what was conjectured in [111], we find that generically there are constraints to be
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imposed on the possible values of the cosmological constant λ, the NUT parameters Ni

and the values of the various δ’s. These solutions represent the multiple NUT parameter

generalisation of the inhomogeneous Einstein metrics on complex line-bundles described in

[122]. We find that we can cast these solutions in another form that explicitly encodes the

constraint conditions into the metric.

Following the construction in [111], we discuss in section 4 the properties of the five

dimensional metrics in some detail. In Section 5 we present the multiple NUT parameter

extension of the metrics (3.2) constructed by Lü, Page and Pope [105]. In this case we

replace the Einstein-Kähler manifold M by a product of Einstein-Kähler manifolds Mi

with arbitrary even-dimensions and to each such factor we associate a NUT parameter Ni.

As is apparent from the five dimensional examples, the case in which Y is one-dimensional

is particularly interesting to us since it will provide us with the general form of the odd-

dimensional Eguchi-Hanson-type solitons [42]. This case will be analysed in section 6.

3.2 A more general form of the Bais-Batenburg solu-

tion

We assume that the (d − 2)-dimensional base space in our construction can be factored

as a product of p factors, B = M1 × · · · × Mp where Mi are 2-dimensional spaces of

constant curvature with metrics gMi
, normalised such that Ricci(Mi) = δig(Mi), where δi

are constants. The metric ansatz that we use is then:

ds2
d = −F (r)(dt+

p
∑

i=1

2NiAi)
2 + F−1(r)dr2 +

p
∑

i=1

(r2 +N2
i )gMi

(3.3)

where

Ai =

{ cos θidφi, for δ = 1 (sphere)

θidφi, for δ = 0 (torus)

cosh θidφi, for δ = −1 (hyperboloid)
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By solving the vacuum Einstein equations with cosmological constant we obtain:

F (r) =
r

p
∏

i=1

(r2 +N2
i )

[

r
∫
(

δ1 −
d− 1

l2
(s2 +N2

1 )

)

p
∏

i=1

(s2 +N2
i )

s2
ds− 2m

]

, (3.4)

where m is a constant of integration, while the constraints on the values of the NUT

parameters Ni and thecosmological constant λ can be expressed in the very simple form

for every i, j = 1 . . . p:

λ(N2
j −N2

i ) = δj − δi (3.5)

If all the factors δi coincide then we can satisfy this constraint in two ways: either we can

take all the NUT parameters to be equal Ni = N and keep the cosmological constant non-

vanishing or else we can take λ = 0 and keep the NUT parameters independent. However,

if at least two factors δi are different, it is inconsistent to set λ = 0. In this case all

the NUT parameters corresponding to identical δi factors must remain equal, while those

corresponding to different δi factors must remain distinct such that the above constraints

are still satisfied.

3.2.1 Singularity Analysis

Note that while the factors multiplying gMi
are never zero, this is not so for the Eu-

clidean section of the metric. Therefore, when we shall address the possible singularities of

the above metrics we shall focus mainly on their Euclidean sections, recognising that the

Lorentzian versions are singularity-free – apart from quasi-regular singularities [99, 100],

which correspond to the end-points of incomplete and inextensible geodesics that spiral

infinitely around a topologically closed spatial dimension. However, since the Riemann

tensor and all its derivatives remain finite in all parallelly propagated orthonormal frames

we take the point of view that these represent some of mildest of types of singularities

and we shall ignore them when discussing the singularity structure of the Taub-NUT solu-

tions. We also note that for asymptotically dS spacetimes that have no bolts quasi-regular

singularities are absent [5].

Scalar curvature singularities have the possibility of manifesting themselves only in

the Euclidean sections. These are simply obtained by the analytic continuations t → iτ
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and Nj → inj , and can be classified by the dimensionality of the fixed point sets of the

Killing vector ξ = ∂/∂τ that generates a U(1) isometry group. As we have seen in the

previous chapter, in four dimensions the Killing vector that corresponds to the coordinate

that parameterizes the fibre S1 can have a zero-dimensional fixed point set (we speak

about a ‘Nut’ solution in this case) or a two-dimensional fixed point set (referred to as a

‘Bolt’ solution). The classification in higher dimensions can be done in a similar manner.

If this fixed point set dimension is (d− 1) the solution is called a Bolt solution; if the

dimensionality is less than this then the solution is called a Nut solution.1 If d = 3, Bolts

have dimension 2 and Nuts have dimension 0. However if d > 3 then Nuts with larger

dimensionality can exist [111, 105]. Note that fixed point sets need not exist; indeed there

are parameter ranges of NUT-charged asymptotically dS spacetimes that have no Bolts

[5].

The singularity analysis of these metrics is a direct application of the one given in

[122]. In order to extend the local metrics presented above to global metrics on non-

singular manifolds the idea is to turn all the singularities appearing in the metric into

removable coordinate singularities. For generic values of the parameters in the solution

the singularities are not removable, corresponding to conical singularities in the manifold.

We are mainly interested in the case of compact Einstein-Kähler manifolds Mi. Generically

the Kähler forms Ji on Mi can be equal to dAi only locally. Hence we need to use a number

of overlapping coordinate patches to cover the whole manifold. In order to render the 1-

form dτ +
∑

2niAi well-defined we need to identify τ periodically. In general this can be

done if the ratios of all the parameters ni are rational numbers. If we choose them to be

positive integers we can define q = gcd{n1, . . . , np} and require the period of τ to be given

by:

β =
8πq

k
(3.6)

where k is a positive integer. It is also necessary to eliminate the singularities in the

metric that appear as r is varied over M . Attention must be paid to the so-called endpoint

values of r: these are the values for which the metric components become zero or infinite.

For a complete manifold r must range between two adjacent endpoints – if any conical

1In this thesis we will keep up with this terminology. By Nut we will mean the Taub-NUT-Nut solution,

while Bolt will refer to the Taub-NUT-bolt solution.
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singularities occur at these points they must be eliminated. The finite endpoints occur at

r = ±ni or at the simple zeros of FE(r). In general r = ±ni are curvature singularities

unless FE = 0 there as well. To eliminate a conical singularity at a zero r0 of FE(r) we

must restrict the periodicity of τ to be given by:

β =
4π

|F ′
E(r0)|

(3.7)

and this will generally impose a restriction on the values of the parameters once we match

it with (3.6). For compact manifolds the radial coordinate takes values between two finite

endpoints and the regularity constraint must be imposed at both endpoints. If the manifold

is noncompact then the cosmological constant is non-positive and the radial coordinate

takes values between one finite endpoint r0 and one infinite endpoint r1 = ∞. For our

asymptotically locally flat or (A)dS solutions the infinite endpoints are not within a finite

distance from any points r 6= r1 so there is no regularity condition to be imposed at r1.

In this case the regularity conditions to be satisfied are that FE(r) > 0 for r ≥ r0 and

β = 4π
|F ′
E(r0)| .

3.2.2 The six dimensional Taub-NUT metrics

Consider for example the six-dimensional case with a fibration over the base space S2×S2.

If the cosmological constant is non-zero, λ = −5/l2, then we must have n1 = n2 = n.

Regularity of the 1-form dτ − 2nA forces the periodicity of τ to be given by 8πn/k, where

k is an integer. We must match this periodicity with the one emerging by requiring absence

of conical singularities at the root r0 of FE(r), which is

FE(r) =
3r6 + (l2 − 15n2)r4 − 3n2(2l2 − 15n2)r2 − 6mrl2 − 3n4(l2 − 5n2)

3l2(r2 − n2)2
(3.8)

from the Einstein equations using (3.4). The Nut solution corresponds to r0 = n in which

case we obtain 4π

|F ′
E(r)| = 12πn. As there is no integer k for which the periodicities can be

matched, we conclude that this solution is singular. Indeed it is easy to check that r0 = n

is the location of a curvature singularity. To define a bolt solution it is sufficient to require

r0 > n and the regularity condition in this case is given by 4π

|F ′
E(r)| = 8πn

k
, with k an integer.
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Solving this constraint we find

r0 =
kl2 ±

√
k2l4 − 80n2l2 + 400n4

20n
.

If the cosmological constant vanishes then we can have different values for the NUT pa-

rameters. Without loss of generality, assume that n1 > n2 and that they are rationally

related. Then it is easy to see that, in order to keep the metric positive definite, we have

to restrict the range of the radial coordinate such that r > n1. As above, the periodicity of

the τ coordinate is found to be 8πn2/k, where k is an integer. We have to match this with

the periodicity imposed on τ by eliminating the conical singularities at a root r0 of FE(r).

We distinguish two types of solutions: a Nut and a bolt. The Nut solution corresponds to

r0 = n1 and in this case the periodicity 4π
|F ′
E(n1)| = 8πn1 cannot be matched with 8πn2/k

for any integer value of k. However note that r0 = n1 is not the location of a curvature

singularity! On the other hand, the bolt solution corresponds to r ≥ r0 > n1 and the

periodicity is found to be 4π
|F ′
E(n1)| = 8πn1

p
, where p is some integer. It is now possible to

match it with 8πn2/k with k an integer such that p/k = n1/n2. The bolt solution is then

non-singular.

The situation changes considerably if we take B = CP 2 as the base space [11, 122, 9].

In this case p = 1 in eq. (3.2) and the submanifold gM1 has the metric

dΣ 2
2 =

du2

(

1 + δu2

6

)2 +
u2

4
(

1 + δu2

6

)2 (dψ + cos(θ)dφ)2 +
u2

4
(

1 + δu2

6

)(dθ2 + sin2 θdφ2) (3.9)

with FE(r) still given by (3.8). However the one-form 2nA is now given by

A =
u2n

2
(

1 + δu2

6

) (dψ + cos θdφ) (3.10)

We need to find the smallest value of
∫

2ndA over a closed 2-chain. Changing coordinates

so that u =
√

6
λ

tanχ the CP 2 metric can be written as [2]

ds2 =
6

δ

(

dχ2 +
sin2 χ

4

(

dθ2 + sin2 θdφ2
)

+ sin2 χ cos2 χ (dψ + cos θdφ)2
)

(3.11)

A =
3n

2δ
sin2 χ (dψ + cos θdφ)
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where 0 ≤ χ ≤ π
2
, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, and 0 ≤ ψ ≤ 4π. We see from (3.11) that χ = 0

is a ‘nut’ in this subspace, and so there is no closed 2-chain on which to integrate 2ndA.

However at χ = π
2

the (θ, φ) sector is a 2-dimensional bolt. Hence at χ = π
2

we obtain

∫

2ndA = 2
3n

2δ
4π =

12πn

δ

implying that the periodicity of τ can be 12πn/k, where we use the normalisation δ = 1.

Equating this to 4π

|F ′
E(r=n)| = 12πn yields2 k = 1, and the geometry at r0 = n is smooth.

Thus we can obtain regular Nut and bolt solutions if the base space is CP 2. More generally,

for CP q the periodicity is 4πn(q+1)
kδ

, with k an integer [133, 122].

3.3 A more general class of solutions: Even dimen-

sions

In this section we present a more general class of Taub-NUT metrics in even dimension.

These spaces are constructed as complex line bundles over a product of Einstein-Kähler

spaces Mi, with dimensions 2qi and metrics gMi
. Then the total dimension is d = 2(1 +

p
∑

i

qi). The metric ansatz that we use is the following:

ds2
d = −F (r)(dt+

p
∑

i=1

2NiAi)
2 + F−1(r)dr2 +

p
∑

i=1

(r2 +N2
i )gMi

Here Ji = dAi is the Kähler form for the i-th Einstein-Kahler space Mi and we use the

normalisation such that the Ricci tensor of the i-th manifold is Rab = δigab. Then the

general solution to Einstein’s field equations with cosmological constant λ = ±(d − 1)/l2

is given by:

F (r) =
r

p
∏

i=1

(r2 +N2
i )
qi

[

r
∫
(

δ1 ∓
d− 1

l2
(s2 +N2

1 )

)

p
∏

i=1

(s2 +N2
i )
qi

s2
ds− 2m

]

(3.12)

2The parameter m = 4n3(6n2
−l2)

3l2
is fixed by requiring that FE(n) = 0.
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while the constraints on the values of the NUT parametersNi and the cosmological constant

λ can be expressed in the very simple form for every i, j = 1, p:

λ(N2
j −N2

i ) = δj − δi (3.13)

It is easy to see that if the Einstein-Kähler spaces are two-dimensional, i.e. qi = 1, we

recover the solution from the previous section.

The singularity analysis of these metrics proceeds as described in the previous section.

The Euclidean section of these metrics is obtained by analytical continuation of the time

coordinate and of the NUT parameters. From the general expression of the function FE(r)3

it is an easy matter to see that if the root r0 = nj where nj is the NUT parameter associated

with an Einstein-Kähler manifold Mj of dimension 2qj then:

4π

|F ′
E(nj)|

=
4πnj(qj + 1)

δj
(3.14)

otherwise, for generic roots r0 we deduce that:

β =
4π

|F ′
E(r0)|

=
4πr0

δ1 − λ(r2
0 − n2

1)
(3.15)

These formulae are very useful in the singularity analysis of these metrics.

It is also possible to incorporate the above constraints directly in the metric. However,

this would require the manifolds involved to be non-canonically normalised. Take for

instance the 6-dimensional Taub-NUT fibration constructed over S2 × S2. If we normalise

the spheres such that their Einstein constant is δ = 1 then the constraint equation on the

parameters takes the form λ(n2
1 − n2

2) = 1 − 1 = 0 and we can have a solution with non-

vanishing cosmological constant only if the NUT parameters are equal. Suppose now that

we normalise the spheres such that their Einstein constants are δ1, respectively δ2. Then

the constraint should read λ(n2
1 − n2

2) = δ1 − δ2. One way to change the Einstein constant

in a general equation of the form Ricci(Mi) = λig(Mi) is to multiply the metric g(Mi) by

a constant factor 1/δi. This yields λiδi as the normalised Einstein constant for the new

rescaled metric4. On the other hand, recall that for a 2q-dimensional Einstein-Kähler with

3This is deduced from (3.12) by analytical continuation of all the NUT charges Ni → ini.
4The Ricci tensor is invariant under an overall rescaling of the metric by a constant.
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Kähler form Ai, the product (dAi)
q is proportional to its volume form. When rescaling

the metric by 1/δi the volume form gets rescaled by a factor 1/δqi – hence we must rescale

Ai by a factor of 1/δi to obtain the Kähler form for the rescaled metric. For spheres we

should then multiply Ai by 1/δi and the metric elements dΩ2
i by 1/δi, for each i = 1, 2.

The expression for F (r) remains unchanged in this process5.

Applying this to the six-dimensional case, we obtain

ds2 = −F (r)

(

dt− 2n1

δ1
cos θ1dφ1 −

2n2

δ2
cos θ2dφ2

)2

+
dr2

F (r)

+
r2 + n2

1

δ1
(dθ2

1 + sin2 θ1dφ
2
1) +

r2 + n2
2

δ2
(dθ2

2 + sin2 θ2dφ
2
2) (3.16)

while the constraint equation takes the form

λ(n2
1 − n2

2) = δ1 − δ2

Solving this equation for δ2 and replacing its value in the metric we obtain:

ds2 = −F (r)

(

dt− 2n1 cos θ1dφ1 −
2n2

δ1 − λ(n2
1 − n2

2)
cos θ2dφ2

)2

+
dr2

F (r)

+
r2 + n2

1

δ1
(dθ2

1 + sin2 θ1dφ
2
1) +

r2 + n2
2

δ1 − λ(n2
1 − n2

2)
(dθ2

2 + sin2 θ2dφ
2
2) (3.17)

which is a solution of the Einstein field equations with cosmological constant λ for every

value of the NUT parameters n1 and n2. Notice that now the constraint equation is already

encoded in the metric, and we can for convenience scale δ1 = 1. When n2 = 0 it reduces

to the cosmological 6-dimensional Taub-NUT solution obtained previously in [111, 105].

It is interesting to note that the above form of the metric allows non-singular Nuts of

intermediate dimensionality constructed over the base S2 × S2. To see this let us notice

that the absence of Misner string singularities can be accomplished if n1/δ1 and n2/δ2 are

rationally related. Specifically, we can choose for example n1 = 2n2 and δ1 = 1 while

δ2 = 1/2. To satisfy these relations it is enough to take λn2
2 = −1/6, where λ = −5/l2

in 6-dimensions. Then regularity of the 1-form (dτ − 2n1/δ1A1 − 2n2/δ2A2) requires the

periodicity of τ to be given by 8πn1

kδ1
= 8πn2

kδ2
where k is some integer. It is easy to see that

5It can be read from the general form (3.12) for general values of δ’s.
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we can match this periodicity with 4π
|F ′
E(n1)| = 8πn1

δ1
if we take k = 1. Then there exists

a nut at r = n1 which is completely regular – it can be easily checked that there are no

curvature singularities in this case! We conclude that the Nut solution of intermediate

dimensionality constructed over the base space S2 × S2 is regular.

3.4 Warped-type Fibrations and Odd Dimensions

We can find a very general class of solutions of Einstein’s field equations if we use the

generalised ansatz [111, 105]

ds2
d = −F (r)(dt+

p
∑

i=1

2NiAi)
2 + F−1(r)dr2 +

p
∑

i=1

(r2 +N2
i )gMi

+ αr2gY (3.18)

As before Ji = dAi is the Kähler form for the i-th Einstein-Kahler space Mi, Y is a q-

dimensional Einstein space with metric gY and we use the normalisation such that the

Ricci tensor of the i-th manifold is Rab = δigab and RY
ab = δY g

Y
ab.

Then the general solution of Einstein’s field equations is given by

F (r) =
r1−q

p
∏

i=1

(r2 +N2
i )
qi

[

r
∫ (

δ1 ∓
d− 1

l2
(s2 +N2

1 )

)

sq−2

p
∏

i=1

(s2 +N2
i )
qids− 2m

]

,

α =
δY

δ1 − λN2
1

, (3.19)

where the constraints on the values of cosmological constant λ = ∓d−1
l2

and the NUT

parameters Ni can be expressed in the following simple form:

λ(N2
j −N2

i ) = δj − δi (3.20)

for every i, j. For p = 1 we recover the general solution found by Lü, Page and Pope in

ref. [105].

We can treat the case δY = 0 (or q = 1) if we take the limit in which λN2
1 = δ1 in order

to keep α finite in the above expressions. In general it is not necessary to have all the

NUT parameters identical, though NUT parameters Nj corresponding to Einstein-Kähler

spaces that have the same Einstein constants δj have to be equal.
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3.5 Taub-NUT-(A)dS spacetimes in five dimensions

In even-dimensions the usual Taub-NUT construction corresponds to a U(1)-fibration over

an even-dimensional Einstein space used as the base space. Since obviously this cannot be

done in odd-dimensions, we must modify our metric ansatz in such a way that we can realize

the U(1)-fibration as a fibration over an even dimensional subspace of the odd dimensional

base space. In five dimensions our base space is three dimensional and we shall construct

the NUT space as a partial fibration over a two-dimensional space of constant curvature.

The spacetimes that we obtain are not trivial in the sense that we cannot naively set the

NUT charge and/or the cosmological constant (now λ = 6
l2

) to vanish. In particular, it

turns out that both these limits are possible, however we will have more to say about this

in the next section.

Consider first a fibration over S2. The ansatz that we shall use in the construction of

these spaces is the following:

ds2 = −F (r)(dt− 2n cos θdφ)2 + F−1(r)dr2 + (r2 + n2)(dθ2 + sin2 θdφ2) + r2dy2 (3.21)

The above metric is a solution of the Einstein field equations with cosmological constant

λ provided

F (r) =
4ml2 − r4 − 2n2r2

l2(r2 + n2)
(3.22)

and

n2 =
l2

4
(3.23)

Let us consider next the Euclidean section of the above solution (obtained by making

the analytical continuations t→ iχ and n→ in):

ds2 = FE(r)(dχ− 2n cos θdφ)2 + F−1
E (r)dr2 + (r2 − n2)(dθ2 + sin2 θdφ2) + r2dz2 (3.24)

where

FE(r) =
r4 − 2n2r2 + 4ml2

l2(r2 − n2)
(3.25)

and the constraint λn2 = −3
2

holds. Since we analytically continue n we must also analyt-

ically continue l → il for consistency with the initial constraint on λ and n2.
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In order to get rid of the usual Misner type singularity in the metric we have to assume

that the coordinate χ is periodic with period β. Notice that for r = n the fixed point of

the Killing vector ∂
∂χ

is one dimensional and we shall refer to such a solution as being a

NUT solution. However, for r = rb, where rb > n is the largest root of FE(r), the fixed

point set is three-dimensional and we shall refer to such solutions as bolt solutions. Note

that for either situation the the period of χ must be β = 8πn to ensure the absence of the

Dirac-Misner string singularity.

In order to have a regular Nut solution we have to ensure the following additional

conditions:

• FE(r = n) = 0 in order to ensure that the fixed point of the Killing vector ∂
∂χ

is

one-dimensional.

• βF ′
E(r = n) = 4πk (where k is an integer) in order to avoid the presence of conical

singularities at r = n (in other words, the periodicity of χ must be an integer multiple

of the periodicity required for regularity in the (χ, r) section; we identify k points on

the circle described by χ).

It is easy to see that the above conditions lead to k = 1 and mn = n4

4l2
= l2

64
. It is

precisely for this value of the parameter m that the above solution becomes the Euclidean

AdS spacetime in five-dimensions.

Let us now turn to the regularity conditions that we have to impose in order to obtain

the bolt solutions. In order to have a regular bolt at r = rb we have to satisfy similar

conditions as before, with rb > n:

• FE(r = rb) = 0

• βF ′
E(r = rb) = 4πk where k is an integer.

The above conditions lead to rb = kn
2

and

m = mb = −k
2l2(k2 − 8)

1024
(3.26)
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To ensure that rb > n we have to take k ≥ 3; as a consequence the curvature singularity at

r = n is avoided. We obtain the following family of bolt solutions, indexed by the integer

k:

ds2 = FE(r, k)(dχ−2n cos θdφ)2 +F−1
E (r, k)dr2 +(r2−n2)(dθ2 +sin2 θdφ2)+ r2dz2 (3.27)

where

FE(r, k) =
256r4 − 128l2r2 − k2l4(k2 − 8)

256l2(r2 − n2)
(3.28)

and n = l
2
. One can check directly that the bolt solution is not simply the AdS space in

disguise by computing the curvature tensor of the bolt metric and comparing it with that

of the Euclidean AdS space.

We can obtain NUT spaces with non-trivial topology if we make partial base fibrations

over a two-dimensional torus T 2 or over the hyperboloid H2. We obtain

ds2 = −F (r)(dt− 2nθdφ)2 + F−1(r)dr2 + (r2 + n2)(dθ2 + dφ2) + r2dy2 (3.29)

for the torus, where

F (r) =
4ml2 + r4 + 2n2r2

l2(r2 + n2)
(3.30)

where now the constraint equation takes the form λn = 0 where λ = − 6
l2

; we can have

consistent Taub-NUT spaces with toroidal topology if and only if the cosmological constant

vanishes. The Euclidean version of this solution, obtained by analytic continuation of the

coordinate t→ it and of the parameter n→ in has a curvature singularity at r = n. Note

that if we consider n = 0 in the above constraint we obtain the AdS/dS black hole solution

in five dimensions with toroidal topology.

If the cosmological constant vanishes then we can have n 6= 0 and we obtain the

following form of the metric

ds2 = −F (r)(dt− 2nθdφ)2 + F−1(r)dr2 + (r2 + n2)(dθ2 + dφ2) + r2dy2 (3.31)

where

F (r) =
4m

r2 + n2
(3.32)
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The asymptotic structure of the above metric is given by

ds2 =
4m

r2
(dt− 2nθdφ)2 +

r2

4m
dr2 + r2(dθ2 + dφ2 + dy2) (3.33)

If y is an angular coordinate then the angular part of the metric parameterizes a three

torus. The Euclidean section of the solution described by (3.31) is not asymptotically flat

and has a curvature singularity localized at r = 0. However, let us notice that for r ≤ n the

signature of the space becomes completely unphysical. Hence, for the Euclidean section,

we should restrict the values of the radial coordinate such that r ≥ n.

In the case of a fibration over the hyperboloid H2 we obtain:

ds2 = −F (r)(dt− 2n cosh θdφ)2 + F−1(r)dr2 + (r2 + n2)(dθ2 + sinh2 θdφ2) + r2dy2 (3.34)

where now λ = − 6
l2

,

F (r) =
r4 + 2n2r2 − 4ml2

l2(r2 + n2)
(3.35)

and the constraint n2 = l2

4
holds.

The ‘Euclidean’ section of these spaces is described by the metric

ds2 = FE(r)(dt− 2n cosh θdφ)2 + F−1
E (r)dr2 + (r2 − n2)(dθ2 + sinh2 θdφ2) + r2dy2 (3.36)

where n2 = l2

4
and

FE(r) = −r
4 − 2n2r2 + 4ml2

l2(r2 − n2)
(3.37)

and it is a Euclidean solution of the vacuum Einstein field equations with positive cos-

mological constant. The coordinates θ and φ parameterize a hyperboloid, which after

performing appropriate identifications becomes a surface of any genus higher than 1. In

general the metric has a curvature singularity located at r = n = l
2

with the exception of

the case in which mn = − l2

64
when the space is actually the five-dimensional Euclidean dS

space in disguise.

In order to discuss the possible singularities in the metric first let us notice the absence of

Misner strings, the fibration over the hyperbolic space being trivial in this case. Moreover,

if we impose the condition that there are no conical singularities at r = rp, where rp is

the biggest root of FE(r), then we must set the periodicity β of the coordinate χ to be
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4π
|F ′
E(r=rp)| . If we take rp = n we obtain β = 8πn and m = − l2

64
, which means that the Nut

solution is the dS space in disguise.

In order to determine the bolt solution one has to satisfy the following conditions:

• FE(r = rb) = 0

• 4π
|F ′
E(rb)| = 8πn

k
where k is an integer and the period of χ is now given by β = 8πn

k
;

again we identify k points on the circle described by χ.

The above conditions lead to rb = kn
2

and

m = mb =
k2l2(k2 − 8)

1024
(3.38)

We must take k ≥ 3 to ensure that rb > n, which again avoids the curvature singularity at

r = n. We obtain the following family of bolt solutions, indexed by the integer k:

ds2 = FE(r)(dχ− 2n cosh θdφ)2 + F−1
E (r)dr2 + (r2 − n2)(dθ2 + sinh2 θdφ2) + r2dz2 (3.39)

where

FE(r) =
−256r4 + 512n2r2 + k2l4(k2 − 8)

256l2(r2 − n2)

and n = l
2
.

3.6 Eguchi-Hanson solitons in five dimensions

As advertised in the previous section, we would like to comment here on the limit when

the NUT charge and/or the cosmological constant are zero. Central to our construction is

the five dimensional metric (3.24) and recall that there is a constraint between the NUT

parameter and the cosmological constant, which can be expressed as 4n2 = l2. It should

be clear that the limit in which the cosmological constant is vanishing, i.e. l → ∞, the

NUT parameter n should also diverge. On the other hand, the limit in which the NUT

charge is vanishing is equivalent to the limit in which the cosmological constant diverges.

However, as noted there, there is a way to evade this situation: after performing a change
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of coordinates it turns out that that the metric can be cast in such a form that allows us

to take the limit of a vanishing cosmological constant.6

More precisely, start with the metric (3.21) in which we make use of the constraint

(3.23):

ds2 = −F (r)(dt− 2n cos θdφ)2 + F−1(r)dr2 + (r2 + n2)(dθ2 + sin2 θdφ2) + r2dy2, (3.40)

where:

F (r) =
4ml2 − r4 − 2n2r2

l2(r2 + n2)
(3.41)

Make now the coordinate change ρ2 = 4r2 + l2 and define a = 64ml2 − l4. Then the

metric becomes:

ds2 =
ρ2

4

(

1 − a

ρ4

)

(dt+ cos θdφ)2 − dρ2

(

ρ2

l2
− 1
)(

1 − a
ρ4

)

+
ρ2

4
(dθ2 + sin2 θdφ2) +

(

ρ2

l2
− 1

)

dỹ2, (3.42)

where we have absorbed an l/2 factor into ỹ = yl/2. This is a solution of the 5-dimensional

Einstein equations with positive cosmological constant λ = 6/l2, referred to as the Eguchi-

Hanson soliton [42, 41, 113]. The limit in which the cosmological constant vanishes is now

a smooth limit and the metric becomes the product of the four-dimensional Eguchi-Hanson

metric with a trivial flat direction. We have now two possibilities depending on the relative

magnitude of the parameters a and l. Consider first the case in which l < a1/4 ≤ ρ. Then it

is easy to see that ρ = a1/4 corresponds to a cosmological horizon: inside it the coordinate

t is timelike and there are closed timelike curves after one eliminates the Misner string

singularity in the metric. For a = 0 the metric reduces to the usual de Sitter metric,

with a cosmological horizon at ρ = l. Notice that the values ρ < l are not allowed if

a 6= 0. On the other hand, if l > a1/4 then we must restrict ρ ≥ a1/4 and there is now a

cosmological horizon at ρ = l. There are no closed timelike curves in this case and inside

the cosmological horizon ỹ is the timelike coordinate.

6The metric obtained this way is a generalisation of the four-dimensional Eguchi-Hanson metric to

higher dimensions [42, 41, 113].
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There also exists a limit in which we can set the NUT parameter to zero. Namely, our

5-dimensional metric can be written quite generally in the form [113]

ds2 = −F (r)(dt+ 2
n

δ
cos θdφ)2 +

dr2

F (r)
+
r2 + n2

δ
(dθ2 + sin2 θdφ2) + r2dy2,

F (r) =
r4 + 2n2r2 − 2ml2

r2 + n2
, (3.43)

and the constraint equation is now simply δ = −4n2

l2
. This metric is then a solution of

Einstein field equations with cosmological constant Λ = − 6
l2

. Once we fix δ as above,

there is no constraint on the values of Λ and n other than the requirement of a metric of

Lorentzian signature — this can be easily accommodated by analytically continuing the

coordinate θ → iθ. Defining now a new NUT parameter N = n
δ

and λ = − 4
l2

, the above

solution can be written in the following form:

ds2 = −F (r)(dt− 2N cosh θdφ)2 +
dr2

F (r)
+
λ2N2r2 + 1

(−λ)
(dθ2 + sinh2 θdφ2) + r2dy2,

F (r) =
16N2r4 + 2r2l2 −ml2

l2(16N2r2 + l4)
. (3.44)

When N 6= 0, a change of coordinates will bring the metric into a form similar to the one

discussed in Section 2. Notice however that, in the form written above, it is possible to

take a smooth limit of the metric in which the NUT charge N → 0. Then, we obtain a

metric that is the trivial product of a 3-dimensional Schwarzschild AdS (described by the

coordinates (t, r, y)) with a 2-dimensional hyperboloid (described by (θ, φ)).

3.7 Generalised higher dimensional Eguchi-Hanson soli-

tons

The case q = 1 of the general solution given in (3.18) is particularly interesting to us, as

it will provide a generalisation of Eguchi-Hanson metrics to arbitrary odd-dimensions [42].

For simplicity we shall work in the Euclidean sector. In this case the metric can be written

as

ds2
d = F (r)(dχ+

p
∑

i=1

2niAi)
2 + F−1(r)dr2 +

p
∑

i=1

(r2 − n2
i )gMi

+ r2dy2 (3.45)
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and we use δ1 + λn2
1 = 0 such that:

F (r) =
1

p
∏

i=1

(r2 − n2
i )
qi

[

− λ

r
∫ p
∏

i=1

(s2 − n2
i )
qisds− 2m

]

(3.46)

while the constraints on the values of the NUT parameters ni and the cosmological constant

λ take the form λn2
i = −δi. A positive value for the cosmological constant can still be

accommodated if we take δi < 0 (for instance a product of hyperboloids, for which δi = −1).

Let us take for simplicity a negative cosmological constant λ = −d−1
l2

and let us suppose

that all the δi’s are the same, i.e. δi = δ (for instance we can have a product of spheres or

more generally products CP ai factors, for various values of ai, normalised such that their

cosmological constant is δ). Assume then that the base space contains a product of bi CP
ai

factors. Then the dimension of the total space is d =
∑

i 2aibi + 3, n2
i = δl2

d−1
≡ n2 and we

have:

F (r) =
1

(r2 − n2)
P

i aibi

[

− λ

r
∫

(s2 − n2)
P

i aibisds− 2m

]

=
1

(r2 − n2)
P

i aibi

[

(r2 − n2)
P

i aibi+1

l2
− 2m

]

(3.47)

It is convenient at this time to make the change of variables such that ρ2 = r2 − n2:

F (ρ) =
ρ2

l2
− 2m

ρd−3

=
ρ2

l2

[

1 − 2ml2

ρd−1

]

≡ ρ2

l2
g(ρ) (3.48)

It is now easy to see that the metric (3.45) with p =
∑

i bi can be written in the

following form:

ds2
d =

4δρ2

d− 1
g(ρ)(dχ+

p
∑

i=1

Ai)
2+

(d− 1)dρ2

(

δ + (d−1)ρ2

l2

)

g(ρ)
+

p
∑

i=1

ρ2gMi
+

l2

d− 1

(

δ +
(d− 1)ρ2

l2

)

dy2

Making now the change of variables (d − 1)ρ2 → ρ2, defining ad−1 ≡ 2ml2(d − 1)
d−1
2



62

and rescaling y to absorb the constant factor l2

d−1
we eventually obtain

ds2
d =

4δρ2

(d− 1)2

(

1 − ad−1

ρd−1

)

(dχ+

p
∑

i=1

Ai)
2 +

dρ2

(

ρ2

l2
+ δ
)(

1 − ad−1

ρd−1

) +

p
∑

i=1

ρ2

d− 1
gMi

+

(

ρ2

l2
+ δ

)

dy2 (3.49)

which is the most general (Euclidean) form of the odd-dimensional Eguchi-Hanson solitons

[42], whose base space contains bi factors CP ai. The general solution whose base space

contains a number of unit curvature spheres CP 1 = S2 has been analysed in [42, 41].

More generally we can replace the CP a factors by arbitrary Einstein-Kähler manifolds

Mi normalised such that their Einstein constants are equal δi = δ for all i = 1..p. The

parameter δ is not essential and it can be absorbed by an appropriate rescaling of the radial

coordinate and redefinition of the parameter a. Without losing generality we can then set

δ = 1.

It is interesting to note that while the Eguchi-Hanson solitons constructed over Einstein-

Kähler spaces are in general nonsingular there are also Lorentzian sections in odd-dimensions

for which the curvature singularities at the origin can be easily avoided. Take for instance

the five-dimensional metric:7

ds2
5 = −ρ

2

4

(

1 − a4

ρ4

)

(dt−cosh θdφ)2+
dρ2

(

ρ2

l2
− 1
)(

1 − a4

ρ4

)+
ρ2

4
(dθ2+sinh2 θdφ2)+

(

ρ2

l2
− 1

)

dy2

which is a solution of vacuum Einstein field equations with negative cosmological constant

λ = − 4
l2

. In order to keep the signature of the metric Lorentzian we must restrict the

values of the radial coordinate such that ρ > l. Depending on the sign of the parameter

a4 we can have a horizon located at ρ = a and in both situations the curvature singularity

located at origin is avoided. In the limit in which the cosmological constant vanishes, i.e.

l → ∞, the metric describes the product of a four-dimensional Eguchi-Hanson-like metric

with a flat direction and there is no way to avoid the curvature singularity at r = 0 while

keeping the signature of the metric Lorentzian.8

7This metric can be formally obtained from (3.49) by setting p = 1 and δ = −1 and replacing CP 1 by

H2 (see also [8]).
8Or at least allow it to be Riemannian.
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3.8 Summary and overview of the thesis

In this chapter we constructed new solutions of the vacuum Einstein field equations with

multiple NUT parameters, with and without cosmological constant. These solutions de-

scribe spacetimes with non-trivial topology that are asymptotically dS, AdS or flat and

represent new generalisations of the spacetimes studied previously in literature.

We first described the generalisation of the Taub-NUT ansatz that corresponds to an

arbitrary number of factors Einstein-Kähler spaces Mi in the factored form of the base

space B. We have also provided a non-trivial generalisation of the Taub-NUT to odd

dimensions. In particular, we found that the five-dimensional Taub-NUT spaces correspond

to a generalisation of Eguchi-Hanson solitons and we provided the most general form of

such generalised solitons in general odd-dimensions.

To analyse the possible singularities of these metrics we switched over to their Euclidean

sections by performing analytic continuations of the time coordinate t and of the NUT

parameters. We analysed the regularity constraints to be imposed on these Euclidean

sections in order to obtain regular metrics that can be extended globally to cover the

whole manifold. We found that for generic values of the parameters these metrics are

singular: it is only for a astute choice of the parameters that they become regular. We

considered as particular examples the NUT-charged spaces in five and six dimensions.

Having presented the most general forms of the non-rotating Taub-NUT spaces in higher

dimensions, in the remainder of this thesis we shall address some of their physical properties

and possible applications. For instance, in the next two chapters we shall consider their

thermodynamical properties with some very interesting results. In Chapter 6 we describe

another application of the Taub-NUT solitons in the construction of Kaluza-Klein magnetic

monopoles. In Chapter 7 we describe new time-dependent bubble solutions that can be

obtained from the higher-dimensional NUT-charged spaces by analytical continuation.

Finally, in Chapter 8 we briefly present another generalisation of the NUT-charged

spaces as solutions in Einstein-Maxwell theory. However, for space reasons, we confined

ourselves to perform a simple singularity analysis of such metrics, leaving a full thermody-

namical description for further work.





Chapter 4

Gravitational thermodynamics

One of the most remarkable developments in theoretical physics was the discovery of the

close relationship between the laws of thermodynamics and certain laws of black hole

physics. In Einstein’s theory of general relativity, black holes are classical solutions that

represent matter that has collapsed down to a point of infinite density, forming a singular-

ity. This singularity indicates that the classical GR description in no longer appropriate

and that it must break down at the singularity. However, while classically the black holes

are perfectly stable objects, when treated quantum mechanically it turns out that black

holes radiate energy and they do ‘evaporate’ [80]. Since they emit thermal radiation with

a well-defined temperature – the so-called Hawking temperature – they also have thermo-

dynamical temperature and one can associate a gravitational entropy with them. While

classically one can understand the need to associate an entropy with a black hole – to

account for instance for the entropy of matter that falls into the black hole, a microscopic

description of such entropy is puzzling. Indeed, if one regards the black hole as essentially

a point mass singularity, then it is very hard to understand what could be the microscopic

states whose counting would give rise to that entropy. To properly understand black hole

thermodynamics from a microscopic point of view one should have recourse to a true

quantum gravity theory.

For detailed thermodynamical computations relevant to black hole physics one should

be able to compute the partition function of the system. It is well known that the par-

tition function for quantum fields in the canonical ensemble can be related in general to

65
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a path-integral by analytic continuation. In this approach, the partition function for the

gravitational field is defined by a sum over all smooth Euclidean geometries which are

periodic with a period β in imaginary time. The path-integral is computed by using the

saddle point approximation in which one considers that the dominant contributions will

come from metrics near the classical solutions of the Euclidean Einstein’s equations with

the given boundary conditions. In the semiclassical limit this yields a relationship between

gravitational entropy and other relevant thermodynamic quantities, such as mass, angular

momentum, and other conserved charges. This relationship was first explored in the con-

text of black holes by Gibbons and Hawking [65], who argued that the free energy is equal

to the Euclidean gravitational action multiplied by the temperature. The gravitational

entropy can then be regarded as arising from the quantum statistical relation applied to

the path-integral formulation of quantum gravity [81].

In this chapter we briefly review the path-integral approach to quantum gravity and

its relationship to gravitational thermodynamics for asymptotically flat or asymptotically

(A)dS spacetimes.

4.1 The path-integral approach to quantum gravity

for flat/AdS backgrounds

According to Feynman’s idea, for a quantum field φ the amplitude for going from a state

|t1, φ1〉 to a state |t2, φ2〉 can be expressed as a path-integral:

〈t2, φ2|t1, φ1〉 =

∫ 2

1

d[φ]eiI[φ] (4.1)

over all possible intermediate field configurations between the initial and final states. How-

ever, using the Schrödinger picture, this amplitude can also be expressed as:

〈t2, φ2|t1, φ1〉 = 〈φ2|e−iH(t2−t1)|φ1〉 (4.2)

where H is the Hamiltonian. By imposing the periodicity condition φ1 = φ2 for t2 − t1 =

−iβ, we sum over φ1 to obtain:

Tr [exp(−βH)] =

∫

d[φ]e−Î[φ] (4.3)
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The right-hand side is now a Euclidean path integral over all field configurations that are

real on the Euclidean section and periodic in the imaginary time coordinate with period

β, while Î is the Euclidean action.

Inclusion of gravitational effects can be carried out by considering the initial state to

include a metric on a surface S1 at time t1 evolving to another metric on a surface S2 at

time t2, yielding the relation:

〈g2,Φ2, S2|g1,Φ1, S1〉 =

∫

D [g,Φ] exp (iI [g,Φ]) (4.4)

This then represents the amplitude to go from a state with metric and matter fields [g1,Φ1]

on a surface S1 to a state with metric and matter fields [g2,Φ2] on a surface S2. The quantity

D [g,Φ] is a measure on the space of all field configurations and I [g,Φ] is the action taken

over all fields having the given values on the surfaces S1 and S2.

The left-hand side of (4.3) is simply the partition function Z for the canonical ensemble

for a field at temperature β−1 . This allows us to make the connection with thermodynamics

via lnZ = −βW , where W = M − TS is the Helmholtz free energy and M is the total

energy. Here Z can be interpreted as describing the partition function of a gravitational

system at temperature β−1 contained in a (spherical) box of finite radius.

We can compute Z using an analytic continuation of the action in (4.4) so that the

axis normal to the surfaces S1, S2 is rotated clockwise by π
2

radians into the complex plane

[65] (i.e. by rotating the time axis so that t → −iT ) in order to obtain a Euclidean

signature. The path-integral is computed by using the saddle point approximation in

which one considers that the dominant contributions will come from metrics near the

classical solutions of Euclidean Einstein’s equations with the given boundary conditions.

The positivity of the Euclidean action ensures a convergent path integral in which one can

carry out any calculations (of action, entropy, etc.). The presumed physical interpretation

of the results is then obtained by rotation back to a Lorentzian signature at the end of the

calculation.
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The counterterm action for AdS backgrounds. Conserved charges

For asymptotically AdS spacetimes, the action can be generally decomposed into two

distinct parts:

I = IB + I∂B (4.5)

where the bulk (IB) and boundary (I∂B) terms are the usual ones, given by

IB =
1

16πG

∫

M
dd+1x

√−g (R − 2Λ) +

∫

M
dd+1x

√−gLM(Φ) (4.6)

I∂B = − 1

8πG

∫

∂M
ddx

√
hK (4.7)

where ∂M represents the spatial infinity, and
∫

∂M represents an integral over the bound-

ary with the metric hab and extrinsic curvature K. The quantity LM(Φ) in (4.6) is the

Lagrangian for the matter fields, which we will not be considering here. The bulk action is

over theD-dimensional manifold M, and the boundary action is the surface term necessary

to ensure well-defined Euler-Lagrange equations.

There is however one major difficulty when applying the above procedure to spacetimes

of interest. This is related to the fact that when computing the action (4.5) one generally

gets infinite results for non-compact spaces. There is a standard procedure to cure this

problem: one regularises the action by performing the so-called ‘boundary substraction’

prescription. For this, one restricts the spacetime to the interior of some bounded region

and then one subtracts the action of some reference spacetime with the same boundary

geometry [65]. One then takes the limit in which the boundary is pushed to infinity to

obtain finite results for the final action. The idea is that, for an appropriate choice of the

reference spacetime, the infinities in the initial action will be cancelled out by the infinities

occurring in the action of the reference spacetime and the final result is finite. In fact one

can further consider the variation of this regularised action with respect to the boundary

metric and define an energy-momentum tensor that can be used to define conserved charges

[31].

Unfortunately, such background subtraction procedures are marred with difficulties:

even if some choices of such reference background spaces present themselves as ‘natural’,

in general these choices are by no means unique. Moreover, it is not always possible
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to embed a boundary with a given induced metric into the reference background and,

for different boundary geometries, one needs different reference backgrounds. A good

example where these problems are encountered is provided by the NUT-charged spacetimes

[84, 83, 37, 34, 54].

Recently, an alternative procedure has been proposed [13, 101]. This technique was

inspired by the AdS/CFT correspondence and consists of adding to the action suitable

boundary counterterms Ict, which are functionals only of curvature invariants of the induced

metric on the boundary. Such terms will not interfere with the equations of motion because

they are intrinsic invariants of the boundary metric. By choosing appropriate counterterms,

which cancel the divergences, one can then obtain well-defined expressions for the action

and the energy momentum of the spacetime. Unlike the background subtraction methods,

this procedure is intrinsic to the spacetime of interest and it is unambiguous once the

counterterm action is specified.

Thus we have to supplement the action (4.7) with [13, 46]:1

Ict =
1

8πG

∫

ddx
√
−h
{

−d− 1

ℓ
− ℓΘ (d− 4)

2(d− 2)
R − ℓ3Θ (d− 6)

2(d− 2)2(d− 4)

(

RabR
ab − d

4(d− 1)
R

2

)

+
ℓ5Θ (d− 8)

(d− 2)3(d− 4)(d− 6)

(

3d+ 2

4(d− 1)
RR

ab
Rab −

d(d+ 2)

16(d− 1)2
R

3

−2R
ab

R
cd

Racbd −
d

4(d− 1)
∇aR∇a

R + ∇c
R
ab∇cRab

)

+ ...

}

, (4.8)

where R and Rab are the curvature and the Ricci tensor associated with the induced metric

h. The series truncates for any fixed dimension, with new terms entering at every new

even value of d, as denoted by the step-function (Θ (x) = 1 provided x ≥ 0, and vanishes

otherwise).

Using these counterterms in odd and even dimensions, one can construct a divergence-

free boundary stress tensor from the total action I = IB + I∂B + Ict by defining a boundary

stress-tensor:

Tab =
2√−γ

δI

δhab
. (4.9)

1In odd dimensions, the action can also have logarithmic divergences that are not generally cancelled

by these counterterms. However, these logarithmic terms appear as effect of a trace anomaly and we have

to supplement the counterterm action with further terms. See for instance [128, 86, 112].
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Thus a conserved charge

Qξ =

∮

Σ

dd−1Sa ξbTab, (4.10)

can be associated with a closed surface Σ (with normal na), provided the boundary ge-

ometry has an isometry generated by a Killing vector ξa [26]. If ξ = ∂/∂t then Q is the

conserved mass/energy M .

The counterterm action for asymptotically flat spaces. Conserved charges

For asymptotically flat spacetimes, the gravitational action consists of the bulk Einstein-

Hilbert term and it must be supplemented by the boundary Gibbons-Hawking term in

order to have a well-defined variational principle [65]. In general (d + 1)-dimensions, the

gravitational action for an asymptotically flat spacetime is then taken to be:

IB + I∂B = − 1

16πG

∫

M

dd+1x
√−gR− 1

8πG

∫

∂M

ddx
√
−hK (4.11)

Here M is a (d+ 1)-dimensional manifold with metric gµν , K is the trace of the extrinsic

curvature Kij = 1
2
hki∇knj of the boundary ∂M with unit normal ni and induced metric

hij . When evaluated on non-compact solutions of the field equations it turns out that the

action (4.11) diverges. The general remedy for this situation is again to consider the values

of these quantities relative to those associated with some background reference spacetime,

whose boundary at infinity has the same induced metric as that of the original spacetime.

The background is chosen to have a topological structure that is compatible with that of

the original spacetime and also one requires that the spacetimes approaches it sufficiently

rapidly at infinity. This ‘background subtraction’ prescription suffers from all the problems

already mentioned in the AdS case.

While there is a general algorithm for generating the counterterms for asymptotically

AdS spacetimes [101], the asymptotically flat case is considerably less-explored (see however

[109] for some new results in this direction). Early proposals [102, 108, 87] engendered study

of proposed counterterm expressions for a class of (d + 1)-dimensional asymptotically flat

solutions whose boundary topology is Sn × Rd−n [101].

For asymptotically flat 4-dimensional spacetimes, the counterterm

Ict =
1

8πG

∫

d3x
√
−h

√
2R (4.12)
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was proposed [102, 108] to eliminate divergences that occur in (4.11). An analysis of the

higher dimensional case [101] suggested in (d+ 1)-dimensions the counterterm:

Ict =
1

8πG

∫

ddx
√
−h R 3

2

√

R2 −RijRij
, (4.13)

where Rij is the Ricci tensor of the induced metric hij and R is the corresponding Ricci

scalar. This counterterm removes divergences in the action for a general class of asymp-

totically flat spacetimes with boundary topologies Sn × Rd−n.

There also exists another simpler counterterm that removes the divergences in the action

for the general class of asymptotically flat spacetimes with boundary topologies Sn×Rd−n

[101, 109, 110]:

Ict =
1

8πG

∫

ddx
√
−h
√

nR
n− 1

. (4.14)

With an eye on a later application in Chapter 6 in the computation of the Kaluza-Klein

monopole energy, we will focus in the remaining of this section to the d = 4 case.

By taking the variation of the action (4.13) with respect to the boundary metric hij we

obtain the following boundary stress-energy tensor:

8πG(Tct)
ij =

R 1
2

(R2 −RklRkl)
3
2

[

3RijRklRkl −RijR2 + 2RRikRj
k + R3hij −RRklRklhij

]

+Φ
(i ;j)k
k − 1

2
�Φij − 1

2
hijΦkl

;kl,

where:

Φij =
R 1

2

(R2 −RklRkl)
3
2

[

2RRij +
(

R2 − 3RklRkl
)

hij
]

,

so that the final boundary stress energy tensor is given by:

Tij =
1

8πG
(Kij −Khij + (Tct)ij) (4.15)

For a five-dimensional asymptotically flat solution with a fibred boundary topology

R2 →֒ S2,2 we find that the action (4.11) can also be regularised using the following

2By R2 →֒ S2 we understand a that the boundary has the structure of a fibre bundle constructed over

the base space S2 whose fibres have a R2 topology.
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equivalent counterterm:

Ict =
1

8πG

∫

d4x
√
−h

√
2R (4.16)

where R is the Ricci scalar of the induced metric on the boundary, hij . By taking the

variation of this total action with respect to the boundary metric hij , it is straightforward

to compute the boundary stress-tensor, including (4.16):

Tij =
1

8πG
(Kij −Khij − Ψ(Rij −Rhij) − hij�Ψ + Ψ;ij) (4.17)

where we denote Ψ =
√

2
R . If the boundary geometry has an isometry generated by a

Killing vector ξi, then Tijξ
j is divergence free, from which it follows that the quantity

Q =

∮

Σ

d3SiTijξ
j,

associated with a closed surface Σ, is conserved. Physically, this means that a collection

of observers on the boundary with the induced metric hij measure the same value of Q,

provided the boundary has an isometry generated by ξ. In particular, if ξi = ∂/∂t then Q
is the conserved mass M.

The counterterm (4.13) was proposed in [101] for five-dimensional spacetimes with

boundary S2 × R2, or S3 × R. On the other hand, the counterterm (4.13) is essentially

equivalent to (4.16) for S2 × R2 boundaries. We find that when the boundary is taken to

infinity both expressions cancel the divergences in the action. Our choice of using (4.16) can

be motivated by the fact that the expression for the boundary stress-tensor is considerably

simpler. However, different counterterms can lead to different results when computing

the energy, seriously constraining the various choices of the boundary counterterms (see

for instance [88, 89] for a general study of the counterterm charges and a comparison

with charges computed by other means in AdS context). As we shall see in Chapter

6, when applied to the Kaluza-Klein monopole both expressions lead to a background-

independent Kaluza-Klein mass that agrees with other answers previously known in the

literature; however, we do find slight discrepancies in the diagonal components of the

boundary stress-tensor.
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4.2 The path integral approach for asymptotically dS

spacetimes

The extension of the previous path-integral considerations to the asymptotically dS spaces-

times is not straightforward and in this thesis we follow the proposal made by Clarkson,

Ghezelbash and Mann in [38, 40, 39].

In the case of D = (d+ 1)-dimensional asymptotically de Sitter spacetimes we replace

the surfaces S1, S2 with histories H1, H2 that have spacelike unit normals and are surfaces

that form the timelike boundaries of a given spatial region and so they will describe par-

ticular d-dimensional histories of (d− 1)-dimensional subspaces of the full spacetime. The

amplitude (4.4) becomes:

〈g2,Φ2, H2|g1,Φ1, H1〉 =

∫

D [g,Φ] exp (iI [g,Φ]) (4.18)

and describes quantum correlations between differing histories [g1,Φ1] and [g2,Φ2] of met-

rics and matter fields. The correlation between a history [g2,Φ2, H2] with a history

[g1,Φ1, H1] is obtained from the square of the modulus of this amplitude.

The surfaces H1, H2 are joined by spacelike tubes at some initial and final times,

so that the boundary and interior region are compact. In the limit where these times

approach past and future infinity one obtains the correlation between the complete histories

[g1,Φ1, H1] and [g2,Φ2, H2]. This correlation is given by summing over all metric and

matter field configurations that interpolate between these two histories. The quantity

〈g2,Φ2, H2|g1,Φ1, H1〉 depends only on the hypersurfaces H1 and H2 and the metrics and

matter fields over these hypersurfaces. It does not depend on any special hypersurface

between the hypersurfaces H1 and H2.

Since the action in (4.18) is real for Lorentzian metrics and real matter fields, the

path integral will not converge as its argument will be oscillatory. Its treatment therefore

requires some care.

In the asymptotically de Sitter case the action is in general negative definite near

past and future infinity (outside of a cosmological horizon). The natural strategy would

appear to be to analytically continue the coordinate orthogonal to the histories [g1,Φ1, H1]

and [g2,Φ2, H2] to complex values by rotating the axis normal to the histories H1, H2
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anticlockwise by π
2

radians into the complex plane. The action becomes pure imaginary,

yielding a convergent path integral:

Z ′ =

∫

e+Î , (4.19)

since Î = iI < 0. In this case we must take

+ βW = lnZ ′ (4.20)

In the semi-classical approximation this will lead to lnZ ′ = +Icl, where Icl is the action

evaluated on the solution of the Einstein equations.

Substituting this into (4.20) allows us to compute the entropy of the system:

S = βM − Icl (4.21)

As before, the presumed physical interpretation of the results is obtained by rotation

back to a Lorentzian signature at the end of the calculation.

4.2.1 The counterterm action in de Sitter backgrounds

For a general asymptotically dS spacetime, the action can be decomposed into three distinct

parts:

I = IB + I∂B + Ict (4.22)

where the bulk (IB) and boundary (I∂B) terms are the usual ones, given by

IB =
1

16πG

∫

M
dd+1x

√−g (R− 2Λ + LM(Φ)) (4.23)

I∂B = − 1

8πG

∫

∂M±
ddx

√
h±K± (4.24)

where ∂M± represents future/past infinity, and
∫

∂M± =
∫ ∂M+

∂M− represents an integral over

a future boundary minus an integral over a past boundary, with the respective metrics

h± and extrinsic curvatures K±. The quantity LM(Φ) in (4.23) is the Lagrangian for the

matter fields, which we shall not be considering here. The bulk action is over the (d+ 1)-

dimensional manifold M, and the boundary action is the surface term necessary to ensure
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well-defined Euler-Lagrange equations. For an asymptotically dS spacetime, the boundary

∂M will be a union of Euclidean spatial boundaries at early and late times.

The counter-term action Ict in (4.22) appears in the context of the dS/CFT correspon-

dence conjecture due to the counterterm contributions from the boundary quantum CFT

[13, 85]. It has a universal form for both the AdS and dS cases and it can be generated by

an algorithmic procedure, without reference to a background metric, with the result [61]

Ict = −
∫

ddx
√
h

[

− d− 1

l
+
lΘ(d− 3)

2(d− 2)
R − l3Θ(d− 5)

2(d− 2)2(d− 4)

(

RabR
ab − d

4(d− 1)
R

2

)

− l5Θ(d− 7)

(d− 2)3(d− 4)(d− 6)

(

3d+ 2

4(d− 1)
RR

ab
Rab −

d(d+ 2)

16(d− 1)2
R

3

−2R
ab

R
cd

Racbd −
d

4(d− 1)
∇aR∇a

R + ∇c
R
ab∇cRab

)

+ . . .

]

(4.25)

with R the curvature of the induced metric h at the future/past infinity and Λ = d(d−1)
2l2

.

The step-function Θ (x) is unity provided x ≥ 0 and vanishes otherwise. For example, in

four (d = 3) dimensions, only the first two terms appear, and only these are needed to

cancel divergent behavior in IB + I∂B near past and future infinity.

Conserved charges in dS backgrounds

Varying the action with respect to the boundary metric hij gives us the boundary stress-

energy tensor:

T±ab =
2√
h±

δI

δh±ab
(4.26)

If the boundary geometries have an isometry generated by a Killing vector ξ±µ, then T±
abξ

±b

is divergence free, from which it follows that the quantity

Q
± =

∮

Σ±
dd−1ϕ±√σ±n±aT±

abξ
±b (4.27)

is conserved between histories of constant t, whose unit normal is given by n±a. The ϕa

are coordinates describing closed surfaces Σ, where we write the boundary metric(s) of the

spacelike tube(s) as

h±abdx̂
±adx̂±b = dŝ±2 = N±2

T dT 2 + σ±
ab

(

dϕ±a +N±adT
) (

dϕ±b +N±bdT
)

(4.28)
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where ∇µT is a spacelike vector field that is the analytic continuation of a timelike vector

field. Physically this means that a collection of observers on the hypersurface all observe

the same value of Q provided this surface has an isometry generated by ξb.

If ∂/∂T is itself a Killing vector, then we define the conserved quantity associated with

it as the conserved mass3 associated with the future/past surface Σ± at any given point T

on the spacelike future/past boundary. Since all asymptotically de Sitter spacetimes must

have an asymptotic isometry generated by ∂/∂T , there is at least the notion of a conserved

total mass M± for the spacetime in the limit that Σ± are future/past infinity.

4.2.2 The maximal mass conjecture

Following the above prescription to compute the conserved charges in dS backgrounds,

Balasubramanian, de Boer and Minic put forward in Ref. [17] the following conjecture

(referred to as the maximal mass conjecture or the BBM conjecture)4:

Any asymptotically de Sitter space whose mass exceeds that of de Sitter contains a

cosmological singularity.

This conjecture is supported by explicit calculations of the masses of higher dimensional

(topological and dilatonic) Schwarzschild-dS solutions: it was found that these masses are

always less than those of dS spaces in the corresponding dimensions. In other words, the de

Sitter space is more massive than the black hole spacetimes. Furthermore they argued that

this result is consistent with the putative dS/CFT conjecture and also with the so-called

Bousso bound [27, 28]:

The entropy of dS space is an upper bound for the entropy of any asymptotically dS

space.

Balasubramanian et. al. argued that if dS is dual to a Euclidean CFT then defining

the conserved charges in a manner purely analogous with the one in AdS/CFT they should

correspond naturally to the energies and conserved quantities characterising states of the

dual theory. Since generic field theories have entropies that increase with energy, then the

large Schwarzschild-dS black holes should be mapped into states with lower energy than

3Technically, since ∂/∂T is a spacelike Killing vector, the conserved quantity associated with it should

be a momentum; however, here we are following the mass definition proposed in [17].
4By cosmological singularity we shall understand here a curvature singularity.
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that of dS. If Bousso’s entropy bound is valid and there are no asymptotically dS spaces

with entropy larger than that of dS, this would mean that a space with mass greater than

that of dS should be pathological and contain cosmological singularities.

As we shall see in Chapter 5, the NUT-charged spacetimes provide us with an explicit

counter-example to this conjecture.5

4.2.3 The R and C-approaches to thermodynamics

In order to compute the thermodynamic relationships between conserved quantities in

asymptotically de Sitter spacetimes, we must deal with the analytic continuation of the

metric into a Euclidean section. Analytic continuation in the rotating case requires special

care [25]. More recently it was noted that although the computation of conserved quan-

tities does not depend upon such analytic continuation, the path-integral foundations of

thermodynamics at asymptotic past/future infinity does, and that there are two apparently

distinct ways of expressing the metric, depending on which set of Wick rotations is chosen

[40, 38].

In the first approach, one deals with an analytically continued version of the metric

that involves not only a complex rotation of the (spacelike) t coordinate (t→ iT ), but also

an analytic continuation of the rotation and NUT charge parameters (if any) in the metric,

yielding a metric of signature (−,−,+,+, . . .). Upon calculation, this will give rise to a

negative action, and hence a negative definite energy. One must also periodically identify T

with period β in order to eliminate possible conical singularities in the (−,−) section of the

metric. This is the so-called C-approach, since it involves a rotation into the complex plane.

One advantage of using this approach is that T is a ‘time’ coordinate and the conserved

quantity associated with the Killing vector ∂/∂T can be identified unambiguously with a

total mass of the system.

In the R-approach, the analysis is carried out using the unmodified metric with Lorentzian

signature; no analytic continuation is performed on the coordinates and/or the parameters

that appear in the metric. This option appears because the t coordinate is spacelike outside

the cosmological horizon, and so (a semi-classical path-integral) evaluation of thermody-

5As long as we do not interpret the quasiregular singularities as cosmological singularities.
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namic quantities at past/future infinity does not necessarily require its analytical contin-

uation [40]. Instead, one evaluates the action at past/future infinity, imposing periodicity

in t, consistent with regularity at the cosmological horizon (given by the surface gravity of

the cosmological horizon of the (+,−) section). There is no need to analytically continue

either the rotation parameters or NUT charges to complex values, and consequently there

is no need to analytically continue any results to extract a physical interpretation. Note

that we do not actually compute path-integral quantities using this approach; rather in

this context the preceding path-integral methods are employed primarily as a device to

justify eq. (4.21).

4.2.4 A simple example: The Schwarzschild-dS solution

As a simple application of this formalism consider the Scharwzschild-dS solution in 4-

dimensions, outside the cosmological horizon

ds2 = − dτ 2

F (τ)
+ F (τ)dt2 + τ 2dΩ2

2

where

F (τ) =

(

τ 2

l2
+

2m

τ
− 1

)

Working in the Lorentzian signature (what we called the R-approach above) we obtain the

following results for the action and the conserved mass [61]:

ISdS = −

(

m+
τ3
+

l2

)

βr

2
, M = −m,

Here τ+ is the radius of the cosmological horizon and βr =
∫

dt .

If the range of the t-coordinate is infinite the action will in general diverge. It is however

tempting to impose a periodicity of the time coordinate even in the Lorentzian sector that

is consistent with the periodicity of the analytically continued time t → iT . We therefore

turn to the C-approach, in which the new metric has signature (−,−,+,+). The sector

(τ, T ) will have a conical singularity unless the T coordinate is periodically identified with

period

βc =
4π

|F ′(τ+)| (4.29)
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Since under the analytic continuation T → it the periodicity βc remains unaffected, there

is no obstruction in considering a similar condition in the Lorentzian sector as well; by

continuity we must require that βr = βc. This will render finite all the physical quantities

of interest and allow a definition of the entropy in the Lorentzian sector by means of the

extended Gibbs-Duhem relation (4.21). The result is S = πτ 2
+, equal to one quarter of the

area of the cosmological horizon.

While the Schwarzschild-dS case is somehow trivial, in the sense that the equivalence

between the C- and R- approaches fixes an otherwise arbitrary periodicity in the space-

like t coordinate, this method has been recently extended to the non-trivial case of four-

dimensional Kerr-dS spacetimes [63]. In NUT-charged spacetimes the situation is consid-

erably less trivial, since there are independent geometric reasons for fixing the periodicity

of t in the R-approach, i.e. in the Lorentzian sector.

4.3 Summary

In this chapter we briefly reviewed the path-integral approach to quantum gravity and

its relationship to gravitational thermodynamics for asymptotically flat or asymptotically

(A)dS spacetimes. In this approach, the partition function for the gravitational field is

defined by a sum over all smooth Euclidean geometries which are periodic with a period β

in imaginary time. The path-integral is computed by using the saddle point approximation

in which one considers that the dominant contributions to the path-integral will come from

metrics near the classical solutions of Euclidean Einstein’s equations with the given bound-

ary conditions. In the semiclassical limit this yields a relationship between gravitational

entropy and other relevant thermodynamic quantities, such as mass, angular momentum,

and other conserved charges. In particular, we have seen that the gravitational entropy

can then be regarded as arising from the the quantum statistical relation or the generalised

Gibbs-Duhem applied to the path-integral formulation of quantum gravity.

In general, for spaces that are asymptotically AdS or flat, we can compute the partition

function using an analytic continuation of the action so that the axis normal to the surfaces

S1, S2 is rotated clockwise by π
2

radians into the complex plane (i.e. by rotating the time axis

so that t→ −iT ) in order to obtain a Euclidean signature. The positivity of the Euclidean
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action ensures a convergent path integral in which one can carry out any calculations (of

action, entropy, etc.). The presumed physical interpretation of the results is then obtained

by rotation back to a Lorentzian signature at the end of the calculation.

However, for spaces that are asymptotically de Sitter, we have described two approaches

to do thermodynamics. In one approach (referred to as the R-approach), the analysis is

carried out using the unmodified metric with Lorentzian signature; no analytic continuation

is performed on the coordinates and/or the parameters that appear in the metric. In the

alternative C-approach one deals with an analytically continued version of the metric and

at the end of the computation all the final results are analytically continued back to the

Lorentzian sector.

We have also presented a set of counterterms that will cancel-out the divergences that

appear in the gravitational action for spaces that are asymptotically (A)dS. These coun-

terterms are motivated by the AdS/CFT, respectively by the still unknown dS/CFT con-

jecture. Since holography for asymptotically flat spaces is an even-less explored subject,

there is no known6 simple universal choice of the counterterm terms to cancel all the di-

vergences in the action of such spaces. However, we have presented two counterterms that

cancel out the divergences in a large class of asymptotically flat spacetimes with general

boundary topology Sn × Rd−n.

The results from this chapter will provide us with the main tools to use in the next

chapters when we will discuss and analyse in detail the thermodynamics of various NUT-

charged spaces.

6To our present knowledge.



Chapter 5

On the Thermodynamics of NUT

Charged Spaces

As we have seen in the previous chapter, in asymptotically flat or (A)dS settings, the ther-

modynamic relationships between the various conserved charges may be established using

the path-integral formalism of semi-classical quantum gravity. For spaces with rotation

or NUT charge, such relationships depend upon how one analytically continues these pa-

rameters into a Euclidean section. We have described two main approaches to discuss the

thermodynamics of these spaces.

In one approach (referred to as the R-approach), the analysis is carried out using the

unmodified metric with Lorentzian signature; no analytic continuation is performed on

the coordinates and/or the parameters that appear in the metric. In the alternative C-

approach one deals with an analytically continued version of the metric and at the end

of the computation all the final results are analytically continued back to the Lorentzian

sector.

However, the simple analytic continuation of Euclidean time into the Lorentzian time

T → it fails in many physically interesting cases (for example, if the spacetimes are mani-

festly not static, or even in the stationary cases). While this is a known issue in rotating

spacetimes [25], it is shown most strikingly in the case of NUT-charged spacetimes. Con-

sider for example Ricci flat Taub-NUT spacetime. As we have seen in Chapter 2,1 this

1In this chapter we choose to denote by t, n the ‘time’, respectively the NUT charge in the Lorentzian

81
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spacetime is non-singular only if we make the time coordinate t periodic with period 8πn,

in order to eliminate the Misner string singularity. To obtain the Euclidean sector we

perform the analytic continuation of the time coordinate t → iT and of the NUT param-

eter n → iN . To keep the Euclidean section non-singular, that is in order to eliminate a

possible conical singularity that would appear in the (r, T ) section, a constraint relating

the mass to the NUT charge must be imposed, consistent with the preceding periodicity

requirements (which imply β = 8πn). For the Taub-Nut solution this is m = n whereas

for the Taub-Bolt solution m = 5
4
n. However, the physical interpretation of the results in

terms of the parameters appearing in the Lorentzian sector is somewhat problematic since

a naive analytic continuation would send T → it and N → iN and render imaginary the

physical quantities of interest.

Our main goal in this chapter is to clarify the relationship between the R and C ap-

proaches, with an eye toward understanding how to physically interpret the results obtained

in each case. We find that the results of both these approaches are completely equivalent

modulo analytic continuation. Furthermore, we provide an exact prescription that relates

the results in both methods. Extending our methods to asympotically AdS/flat cases

yields a physical interpretation of the thermodynamics of NUT-charged spacetimes in the

Lorentzian sector. We discuss the constraints that appear by imposing the first law of

thermodynamics. We find that the first law will hold precisely for the (asymptotically

AdS) Bolt and Nut solutions that we obtain in the C-and R-approaches, which we take as

a sign of the validity of our results regarding the thermodynamics of the Lorentzian Taub-

NUT-(A)dS solutions. We also briefly discuss the case of higher dimensional NUT-charged

spacetimes.

5.1 Thermodynamics of Taub-NUT-dS spaces

In asymptotically (A)dS/flat spacetimes with NUT charge there is an additional periodicity

constraint for t that arises from demanding the absence of Misner-string singularities.

When matched with the periodicity β, this yields an additional consistency criterion that

relates the mass and NUT parameters, the solutions of which produce generalisations of

section, while T, N will be the ‘time’ and the NUT charges in the Euclidean section.
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asymptotically flat Taub-Bolt/Nut space to the asymptotically (A)dS case.

For simplicity we shall concentrate mainly on the four-dimensional case. However, as

we shall see in the last section, our results can be easily generalised to higher dimensional

situations.

Consider the spherical Taub-NUT-dS solution, which is constructed as a circle fibration

over the sphere in de Sitter background:

ds2 = V (τ)(dt+ 2n cos θdφ)2 − dτ 2

V (τ)
+ (τ 2 + n2)(dθ2 + sin2 θdφ2) (5.1)

where

V (τ) =
τ 4 + (6n2 − l2)τ 2 + 2ml2τ − n2(3n2 − l2)

(τ 2 + n2)l2
(5.2)

As noted in the previous section, there are two different approaches to describe the thermo-

dynamics of such solutions, namely the C- and the R-approach depending on the various

analytic continuations that can be done.

5.1.1 The C-approach results

In the C-approach one analytically continues the coordinates in the (t, τ) sector such that

the signature in this section becomes (++) or (−−). One way to accomplish this is to

analytically continue the coordinate t → iT and the nut charge parameter n → iN . One

obtains the metric:

ds2 = −F (τ)(dT − 2N cos θdφ)2 − dτ 2

F (τ)
+ (τ 2 −N2)(dθ2 + sin2 θdφ2) (5.3)

where now

F (τ) =
τ 4 − (6N2 + l2)τ 2 + 2ml2τ −N2(3N2 + l2)

(τ 2 −N2)l2
(5.4)

The conserved mass associated with this solution is [40, 38]

Mc = −m (5.5)

independently of whether the function F (τ) has any roots. Note that if we take m < 0, this

will violate the maximal mass conjecture. When F (τ) has roots the parameters (m,N) are
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constrained relative to one another by additional periodicity requirements. Even in this

case the maximal mass conjecture can be violated [40, 38].

Notice that indeed the signature of the metric becomes in this case (−−++), while the

action becomes complex and the path-integral in (4.19) converges. When analysing the

singularity structure of such spaces we have to take into account the presence of Misner

string singularities as well as the possible conical singularities in the (T, τ) sector. To

eliminate the Misner string singularity we impose the condition that the coordinate T has

in general the periodicity 8πN
q

, where q is a positive integer which will also determine the

topological structure of these solutions (see also [95]). To see this, notice that regularity

of the 1-form (dT − 2N cos θdφ) is achieved once we set the periodicity of t to be given

compatible with the integrals of 2N sin θdθ ∧ dφ over all 2-cycles in the base manifold.

In 4-dimensions the base is S2 thence the value of the integral is 8πN . While one could

simply consider the Bolt solution corresponding to q = 1, if q > 1 then the topology of

the Bolt solution is in general that of an R2/Zq fibration over S2. In order to get rid of

the conical singularities in the (T, τ) sector we require the coordinate T be periodically

identified with periodicity given by βc = 4π
|F ′(τc)| , where τc is a root of F (τ), i.e. F (τc) = 0,

provided that such a root exists. For consistency, we have to match the values of the two

obtained periodicities and this yields the condition:

βc =
4π

|F ′(τc)|
=

8π|N |
q

(5.6)

After some algebra, it can be readily checked that in this case we obtain

m = mc = −τ
4
c − (l2 + 6N2)τ 2

c −N2(l2 + 3N2)

2l2τc

where

τ±c =
ql2 ±

√

q2l4 + 48N2l2 + 144N4

12|N |
In order to satisfy the condition |τc| > |N | we must consider the positive sign in the

preceding expression for N > 0, and the negative sign for N < 0 and in the last case we

should also require q = 1.

Working at future infinity it can be shown that if function F (τ) has roots then we



85

obtain the action, respectively the entropy:

Ic = −βc(τ
3
c − 3N2τc +mcl

2)

2l2
, Sc =

βc(τ
3
c − 3N2τc −mcl

2)

2l2
(5.7)

A more detailed account of the thermodynamics of these solutions can be found in [40,

38]. An interesting path-integral study of these solutions aimed at their cosmological

interpretations appeared in [95]. However, while τ = τ+
c is the largest root of the upper

branch solutions, it can easily be checked that for all lower branch solutions the function

F (τ, τ−c ) has always two roots τ1 and τ2 such that τ1 < τ−c < τ2. Hence these solutions,

though they apparently respect the first law of thermodynamics, are not valid dS-bolt

solutions. Rather they are the analytic continuation of lower-branch AdS-bolt solutions,

as we shall see below. Furthermore, they have no counterpart in the R-approach, as we

shall also see.

5.1.2 The R-approach results

In the R-approach one does not analytically continue either the coordinates or the param-

eters in the metric. Instead one directly uses the metric in the Lorentzian signature

V (τ) =
τ 4 + (6n2 − l2)τ 2 + 2ml2τ − n2(3n2 − l2)

(τ 2 + n2)l2
(5.8)

where n is the nut charge. In [40] the conserved mass was found to be

Mr = −m (5.9)

for arbitrary values of the parameters (m,n). Again, setting m < 0 will violate the maximal

mass conjecture.

Notice that in this case the coordinate t parameterizes a circle fibered over the 2-sphere

with coordinates (θ, φ). In the R -approach one imposes directly the periodicity condition

on the spacelike coordinate t:

βr =
4π

|V ′(τr)|
=

8πn

k
(5.10)

for points where V (τr) = 0 (provided that τr exists) with k a positive integer. Since these

surfaces are two-dimensional (they are the usual Lorentzian horizons) we shall still refer
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to them as ‘bolts’. From the above condition one obtains:

m = mr = −τ
4
r + (6n2 − l2)τ 2

r + n2(l2 − 3n2)

2l2τr
(5.11)

where now

τ±r =
kl2 ±

√
k2l4 − 144n4 + 48n2l2

12n
(5.12)

In order to have real roots we must impose the condition that the discriminant above be

positive. This restricts the possible values of n and l such that:

|n| ≤
(

2 +
√

4 + k2

12

) 1
2

l

Provided that such a τr exists we obtain

Ir = −βr(mrl
2 + τ 3

r + 3n2τr)

2l2
, Sr = −βr(mrl

2 − 3n2τr − τ 3
r )

2l2
(5.13)

for the action and entropy respectively. Although the additional periodicity constraint (5.6)

imposes further restrictions, the maximal mass conjecture can again be violated for certain

values of the parameters [40, 38]. It can be readily checked the first law of thermodynamics

is satisfied for both the upper (τ+
r )and lower (τ−r ) branch solutions. However, as in the

previous situation using the C-approach, the function V (τ) will always have two roots τ1

and τ2 such that τ1 < τ−r < τ2. That the first law holds for the lower branch is a direct

consequence of the fact that this solution can be regarded as the analytic continuation

l → il of one of the Bolt solutions in the Taub-NUT AdS case (see equation (5.39) bellow),

for which the first law holds.

In what follows we shall restrict our analysis only to the upper branch solutions given

by τ+
r .

5.1.3 From the C-approach to the R-approach

As we have seen above we have two apparently distinct approaches for describing thermody-

namics of Taub-NUT-dS spaces. In the C-approach we consider the analytic continuation

of the spacelike t coordinate and of the nut parameter. While this procedure will generally
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lead to a ‘wrong signature’ metric, this is simply a consequence of the fact that we work in

the region outside the cosmological horizon; the metric inside the cosmological horizon has

Euclidean signature. The signature in the (T, τ) sector is in this case (−,−) and we impose

a periodicity of the coordinate T in order to get rid of the possible conical singularities

in this sector. When matched with the periodicity required by the absence of the Misner

string singularity, this will fix, in general, the form of the mass parameter and the location

of the nuts and bolts. We can now use the counterterm method to compute conserved

quantities and study the thermodynamics of these solutions.

On the other hand, in the R-approach we work directly with the fields defined in the

Lorentzian signature section. There is a periodicity of the spacelike coordinate t that

appears from the requirement that there are no Misner string singularities; however since

the signature in the (t, τ) sector is now (+,−) there are no conical singularities to be

eliminated, so that there is no apparent reason to impose an extra condition as in (5.10).

Indeed, in the absence of the Hopf-type fibration the coordinate t is not periodic.

However, there is no a-priori obstruction in formally satisfying eq. (5.10), and then

using2 the counterterm method to compute the conserved quantities and study the ther-

modynamics of these solutions as it was done in refs. [40, 38]. We shall show in what follows

that in general the R-approach results are just the analytic continuation of the C-approach

results and vice-versa. We shall later show that this affords a physical interpretation of

the thermodynamics of Lorentzian nut-charged spacetimes.

To motivate this claim we consider the following. In order to obtain a Euclidean

signature (positive or negative definite) in the (t, τ) sector we must perform the analytic

continuations t → iT and n → iN . However, since the function V (τ) depends only on n

and not on t its analytic continuation will be given by:

F (τ) =
τ 4 − (6N2 + l2)τ 2 + 2ml2τ −N2(3N2 + l2)

(τ 2 −N2)l2
(5.14)

It is readily seen that using these analytical continuations we obtain the metric used in

the C-approach. The key point to notice here is that we can go back to the Lorentzian

section by again employing the analytic continuations T → it and N → in. Since only

2 Notice that we use the metric in the Lorentzian signature.
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even powers of n appear we are guaranteed that the above continuations will take us from

the Lorentzian section to the ‘Euclidean’ one and back.

In the C-approach it makes sense to consider the removal of conical singularities in the

(T, τ) sector (since the signature of the metric in that sector is (−−)), as well as to match

this periodicity condition with the one arising by requiring the absence of Misner string

singularities. Hence we are fully entitled to impose the condition:

βc =
4π

|F ′(τc)|
=

8πN

q
(5.15)

where q is a positive integer and τc is such that F (τc) = 0.

Let us consider now the effect of the analytic continuations T → it and N → in

on the above condition. Since nothing depends on T explicitly, all that matters is the

effect of the analytic continuation of the NUT charge. If we continue N → in we obtain

V (τ) = F (τ)|N=in. Thus in the above periodicity condition we obtain

(

4π

|F ′(τc)|

)

N=in

=
4π

|V ′(τr)|
(5.16)

where now τr is such that V (τr) = F (τc) = 0. Hence βr = (βc)N=in. However, as we can

see from the second equality in (5.15) we can consistently analytically continue N → in

only if we also continue q → ik. Again this assures us that βr = (βc)N=in and that it is

real.

Thus the prescription to get the R-results from the C-results is as follows: using the

C-results perform the analytic continuations T → it, N → in and q → ik. A naive analytic

continuation only of T and N but without continuing q is simply inconsistent3: from eq.

(5.15) the left hand side remains real while the right hand side becomes complex!

Let us check this prescription by obtaining the R-results starting from the C-results for

the thermodynamic quantities given above. Consider first the location of the bolts in the

C-approach:

τ+
c =

ql2 +
√

q2l4 + 48N2l2 + 144N4

12N
(5.17)

3If we rewrite eq. (5.15) by taking the absolute value of both sides then the continuation q → ik while

no longer necessary, is still permitted.
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If we perform N → in and q → ik we obtain τc → τr where:

τ+
r =

kl2 +
√
k2l4 − 144n4 + 48n2l2

12n
(5.18)

This is indeed the location of the ‘bolt’ in the R-approach as we can see from (5.12).

Performing the analytic continuations N → in and τ+
c → τ+

r in the expression for the

mass parameter in the C-approach we obtain mc → mr where:

mr = −(τ+
r )4 + (6n2 − l2)(τ+

r )2 + n2(l2 − 3n2)

2l2τ+
r

(5.19)

which again is the mass parameter from the R-approach. Notice that if we naively analyti-

cally continue N → in and ignore the condition q → ik we obtain imaginary values for the

corresponding results in the R-approach. However both the above analytic continuations

conspire to always produce real quantities in the final results.

A closer look at the expressions for the action, conserved mass and the entropy in the

C-approach shows that if we perform the continuations N → in, τ+
c → τ+

r and mc → mr

we obtain the respective expressions from the R-approach.

5.2 No dS Nuts

It is known that in the asymptotically AdS/flat case, besides the usual Taub-Bolt solutions,

one can also obtain the so-called Taub-Nut solutions. For these solutions the fixed-point

set of the Killing vector ∂
∂T

is zero-dimensional.

Superficially, a similar situation appears to hold in the C-approach in dS backgrounds

[40]. This can happen only if τc = N in the above equations, that is if F (τc = N) = 0 and

also
4π

|F ′(τc = N)| =
8πN

q
(5.20)

are satisfied. Although such an equation has solutions, we find that the situation is some-

what more complicated than previously described in ref. [40].

Solving (5.20) we find q = 1, i.e. the periodicity of the T coordinate is 8πN , while the

mass parameter becomes:

mc =
N(l2 + 4N2)

l2
(5.21)
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and indeed τc = N is a fixed point set of zero dimensionality. However it is not the largest

root of the function F (τ) as given in (5.14). Instead this nut is contained within a larger

cosmological ‘bolt’ horizon located at τ = τch =
√

4N2 + l2 −N . In this sense there are no

dS Nuts, i.e. no outermost cosmological horizons that are dimension zero fixed point sets

of the Killing vector ∂
∂T

.

Note, however that if we insert this value for the mass parameter into eqs. (5.5) and

subsequently (4.21) we obtain the action and respectively the entropy:

Ic = −4πN2(l2 + 2N2)

l2
, Sc = −4πN2(l2 + 6N2)

l2
(5.22)

These values correspond to those derived for the Taub-Nut-dS solution studied in [40], and

it is straightforward to show that the first law of thermodynamics is obeyed.

However the physical interpretation of this solution is not as a Taub-Nut in dS back-

ground, since the use of such formulae is predicated on τc = N being the largest root of

F . Rather this solution is the AdS-NUT under the analytic continuation l → il (see (5.28)

below). We shall discuss the corresponding solution when we address the AdS case.

It is straightforward to show that the putative ‘bolt’ solution, with τch =
√

4N2 + l2−N ,

yields an entropy that does not respect the first law of thermodynamics. This presumably

is a consequence of the fact that we eliminated the conical singularity at the root τc = N , by

fixing the periodicity of the Euclidean time T to be 8πN , while leaving a conical singularity

that can not be eliminated at the outer root τch! However, upon further inspection we

find that if we choose to eliminate the conical singularity at the outer root and fix the

periodicity of the Euclidean time coordinate to be βc = 4π
|F ′(τch)| , we still obtain a singular

space. This is because the Misner string singularity cannot be simultaneously eliminated

unless we impose a relationship between the NUT charge and the cosmological constant.4

Furthermore, the entropy (as computed via the counterterm method) does not satisfy the

first law. The difficulties in ascribing a consistent thermodynamic interpretation to this

solution make its physical relevance a dubious prospect.

4In this case we might be able to recover a regular Euclidean instanton, having a topology similar with

that of CP 2: with a nut at τc = N and a bolt at τch.
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5.3 Taub-NUT solutions in AdS/flat backgrounds

Motivated by the results of the previous sections we shall now extend our prescription

to describe the thermodynamics of the Taub-NUT solutions in AdS or flat backgrounds.

To our knowledge, the thermodynamics of such solutions have been discussed only in the

C-approach (i.e. in Euclidean regime) in [108, 84, 34, 37, 54]. To begin with, let us recall

the metric of the Taub-NUT AdS solution in four dimensions:

ds2 = −V (r)(dt− 2n cos θdφ)2 + V −1(r)dr2 + (r2 + n2)dΩ2 (5.23)

where dΩ2 = dθ2 + sin2 θdφ2 is the metric on the sphere S2 and

V (r) =
r4 + (l2 + 6n2)r2 − 2mrl2 − n2(l2 + 3n2)

l2(n2 + r2)
(5.24)

This metric is a solution of the vacuum Einstein field equations with negative cosmological

constant λ = − 3
l2

. In the limit l → ∞ it reduces to the usual asymptotically (locally) flat

Taub-NUT solution.

In the C-approach we analytically continue the time coordinate t → iT and the NUT

charge n→ iN . We obtain a Euclidean signature metric of the form:

ds2 = F (r)(dT − 2N cos θdφ)2 + F−1(r)dr2 + (r2 −N2)dΩ2 (5.25)

where

F (r) =
r4 + (l2 − 6N2)r2 − 2mrl2 +N2(l2 − 3N2)

l2(r2 −N2)
(5.26)

When discussing the singularity structure of these spaces we must impose two regularity

conditions. First, removal of the Misner string singularities leads us to periodically identify

the coordinate T with period 8πN
q

, where q is a non-negative integer. Now, if we match

this value with the periodicity obtained by removing the conical singularities at the roots

rc of the function F (r) we obtain in general

βc =
4π

F ′(rc)
=

8πN

q
(5.27)

Again we have two distinct cases to consider: in the Taub-Nut solution we impose rc = N

(which makes the fixed-point set of the isometry ∂T zero-dimensional), whereas for the bolt

solutions rc = rb± > N (for which the fixed-point set of ∂T is two-dimensional).
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For the Taub-Nut solution rc = N , the periodicity of the coordinate T is found to be

8πN , i.e. q = 1, and the value of the mass parameter is:

mc =
N(l2 − 4N2)

l2

The action and entropy are:

Ic =
4πN2(l2 − 2N2)

l2
, Sc =

4πN2(l2 − 6N2)

l2
(5.28)

while the specific heat C = −βc∂βcS is given by:

Cc =
8πN2(12N2 − l2)

l2

Notice that the energy M = m becomes negative if N > l
2

while the action becomes

negative for N > l√
2

. When this latter inequality is saturated we recover the Euclidean

AdS spacetime. The entropy is negative if N > l√
6

while for N < l√
12

the specific heat

becomes negative, which signals thermodynamic instabilities. Therefore, as it has been

argued in ref. [54], in order to obtain physically relevant solutions with both positive

entropy and specific heat, one should restrict the values of the NUT charge such that:

l√
12

≤ N ≤ l√
6

(5.29)

The other possibility corresponds to the Bolt solutions, for which r = rc > N . In this

case the periodicity of the coordinate T is 8πN
q

, with q a non-negative integer. While value

q = 1 is somehow singled out as it leads to identical periodicity with the one from the

Nut solution, other values q > 1 are allowed as well. For a general q the topology on the

boundary is that of a lens space S3/Zq, while the topology of the Bolt is in general that of

an R2/Zq-fibration over S2. The value of the mass parameter is

mc =
r4
c + (l2 − 6N2)r2

c +N2(l2 − 3N2)

2l2rc
(5.30)

while the location of the bolts is given by:

rc =
ql2 ±

√

q2l4 − 48N2l2 + 144N4

12N
(5.31)
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Notice that the condition rc > N restricts the values of the NUT charge parameter N

such that (for q = 1):

N ≤
(

1

6
−

√
3

12

)
1
2

l (5.32)

For the bolt solutions the action is given by [37]

Ic = −π(r4
c − l2r2

c +N2(3N2 − l2))

3r2
c − 3N2 + l2

(5.33)

and the entropy is

Sc =
π(3r4

c + (l2 − 12N2)r2
c +N2(l2 − 3N2))

3r2
c + l2 − 3N2

(5.34)

Note that the properties of the bolt solution with r > rb+ are very different from those

of the bolt solution with r > rb−. It can be shown that the upper branch solution r > rb+

is thermally stable whereas the lower branch r > rb− is thermally unstable [37, 54].

We shall now apply our prescription to convert all C-results to the corresponding results

in the R-approach, for which the metric used has the Lorentzian signature.

Since we do not perform any analytic continuations in the R-approach, the metric that

we use is given by (5.23). The periodicity condition for the coordinate t is then given by:

4π

|V ′(rr)|
=

8πn

k
(5.35)

where V (rr) = 0 and k is a positive integer.

5.4 Euclidean to Lorentzian

Before we plunge into the details of the Euclidean to Lorentzian transition by analyti-

cal continuation it is necessary first to discuss what is to become of the first law of the

thermodynamics in this process.
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5.4.1 When is the first law of thermodynamics satisfied?

It has been recently argued in [6] that there is a breakdown of the entropy/area relationship

for NUT-charged AdS-spacetimes and that this result does not depend on the removal of

Misner string singularities (if present) but rather is entirely a consequence of the first law

of thermodynamics.

In the Euclidean sector (or the C-approach) the argument goes as follows: using the

counterterm method for a general bolt located at r = rc we compute

Ic =
βc
2l2

(l2mc + 3N2rc − r3
c )

for the action, where βc = 4π
|F ′(rc)| is the periodicity of the Euclidean time coordinate and

rc is the biggest root of F (r) given in (5.25). This fixes the value of the mass parameter

to be that given by (5.30). Using the boundary stress-energy tensor we can compute the

conserved mass for this solution as being given by M = mc [54, 6]. We define now the

entropy Sc = βcmc − Ic by using the Gibbs-Duhem relation. It is easy to see that in order

for the first law of thermodynamics dSc = βcdmc to hold in this case we must have:

mc = ∂βcIc (5.36)

For generic values of rc we find that the above relation is not satisfied in general. However,

if we assume a functional dependence rc = rc(N) then the first law is satisfied if and only

if rc is given by (5.31) where now q is a constant of integration or rc = ±n.

We can see now that we are guaranteed to have satisfied the first law of thermodynamics

for the Nut and Bolt solutions in AdS backgrounds, even though no Misner-string singu-

larities have been explicitly removed. We also find that using the expressions from (5.31)

we obtain β = 8π|N |
q

. Now, removal of Misner-string singularities forces the parameter q to

be an integer, but this is not required in order to satisfy the first law.

Let us consider next the restrictions imposed by the first law of thermodynamics in

the R-approach, i.e. in the Lorentzian solutions. Using the counterterm method for the

Lorentzian solution given in (5.23) with a ’bolt’ located at rr, which is a root of (5.24), we

obtain the action:

Ir =
βr
2l2

(l2mr − 3n2rr − r3
r)
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Here we set βr = 4π
|V ′(rr)| to be the periodicity of the time coordinate, though there is no

direct justification for this5. We find the value of the mass parameter mr to be

mr =
r4
r + (l2 + 6n2)r2

r − n2(l2 + 3n2)

2l2rr
(5.37)

Using the boundary stress-energy tensor we can compute the conserved mass for this

solution as being given by M = mr. We can now define the entropy Sr = βrmr − Ir

by using the Gibbs-Duhem relation. It is easy to see that in order for the first law of

thermodynamics dSr = βrdmr to hold in this case we must have:

mr = ∂βrIr

Again, for generic values of rr we find that the above relation is not satisfied in general.

However if we assume a functional dependence rr = rr(n) then the first law is satisfied if

and only if:

rr =
kl2 ±

√
k2l4 − 48n2l2 − 144n4

12n
(5.38)

where k is a constant of integration. As we shall see in the next section, this is precisely

the location of the Lorentzian bolt solutions, when k is an integer. The first law of thermo-

dynamics will be automatically satisfied for these solutions. It is interesting to note that

using the expressions from (5.37) and (5.38) we obtain β = 8π|n|
k

= 4π
|V ′(rr)| . If we impose the

further requirement that Misner string singularities be removed then k must be an integer.

5.4.2 The Bolt case

Let us consider now the analytic continuation of the bolt solutions from the C-approach.

In this case we perform the analytic continuations T → it, N → in together with q → ik.

From (5.31) we obtain the location of the Lorentzian ‘bolts’ at:

rr =
kl2 ±

√
k2l4 − 48n2l2 − 144n4

12n
(5.39)

5Note however that the removal of the Misner string singularity in the Lorentzian metric forces the

time coordinate to be periodic.
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the value of the mass parameter is:

mr =
r4
r + (l2 + 6n2)r2

r − n2(l2 + 3n2)

2l2rr
(5.40)

while the periodicity of the time coordinate t is given by βr = 8πn
k

.

In order to obtain real values for rr we must require that the discriminant is non-

negative. This leads to the condition:

n ≤ nmax =

(√
4 + k2 − 2

12

)
1
2

l (5.41)

Then there is a maximum value nmax of the NUT charge for which the bolt solutions are

physically acceptable. This means that below a certain temperature Tmin = k
8πnmax

the

bolt solutions do not exist.

If we analytically continue the action and the entropy of the bolt solutions we obtain:

Ir = −π(r4
r − l2r2

r + n2(3n2 + l2))

3r2
r + 3n2 + l2

(5.42)

respectively

Sr =
π(3r4

r + (l2 + 12n2)r2
r − n2(l2 + 3n2))

3r2
r + l2 + 3n2

(5.43)

The specific heats can be computed using C = −β∂βS = −n∂nS ; for brevity we shall not

list here their explicit expressions.

In figure 5.1 we plot the masses of the upper branch (r > rb+) and the lower branch

(r > rb−) solutions as a function of the NUT parameter n. We can see that there is a range

for the NUT charge for which the mass of the lower branch solution becomes negative,

while the mass of the upper branch solution is always positive.

We plot the entropy as a function of the NUT charge in figure 5.2, including the lower

branch solutions. As is obvious from this figure, the entropy for the lower branch does

become negative if n < 1.19355. The entropy for the upper branch solutions is always

positive.

In figure 5.3 we plot the entropy and the specific heat versus the NUT charge for the

upper branch solutions. In this case the entropy and the specific heat are always positive.
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Figure 5.1: Plot of the upper (rb = rb+) and lower ( rb = rb−) TB masses (for k = 10,

l =
√

3).

n

1.41.210.80.60.40.2

80

60

40

20

0

Upper branch            

Lower branch            

Figure 5.2: Plot of the upper (rb = rb+) and lower ( rb = rb−) TB entropies (for k = 10,

l =
√

3).
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Figure 5.3: Plot of the upper branch bolt entropy and specific heat (for k = 10, l =
√

3).
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Figure 5.4: Plot of the lower branch bolt entropy and specific heat (for k = 10, l =
√

3).
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In figure 5.4 we plot the entropy and the specific heat as a function of the NUT charge

for the lower branch bolt solutions. We can see again that the entropy is negative if

n < 1.19355 while the specific heat is positive if n < 0.91338 and negative otherwise,

implying that the Lorentzian version of the lower branch solutions is thermally unstable.

In both cases the specific heat diverges near T = Tmin (or n = nmax).

5.4.3 The Nut case

As we have seen above in the C-approach, besides the usual Bolt solutions, one can also

obtain the so-called Nut-solutions. For these solutions the fixed-point set of the Killing

vector ∂
∂T

is zero-dimensional. This can happen only if τc = N in the above equations,

that is if F (τc = N) = 0 and also

4π

|F ′(τc = N)| =
8πN

q
(5.44)

are satisfied. Recall that q = 1 for the Nut solution in the C-approach.

However, since we are interested in the analytic continuations that could take the

C-results to the R-results we shall slightly modify our ansatz using the lesson learned in

dealing with the Bolt cases. Namely, instead of focussing on τc = N (which clearly becomes

imaginary when we analytically continue N → in) we shall look for a solution of the form

τc = pN where p is a positive real number. Then the usual Taub-Nut solution in the

C-approach corresponds to p = 1, while other values of p > 1 correspond to Bolt-type

solutions.

The limit p = 1 must be treated with special care since in the Nut solution τc = N is a

double root of the numerator of F (r), while in the Bolt case we assume that τc is a single

root. The difference arises when computing the periodicity βc = 4π
|F ′(pN)| ; accounting for

the double root, it turns out that one should multiply by 2 the result from the Bolt case

in order to recover the correct periodicity of the Nut.

It is easy to check now that the above conditions will fix the periodicity of the coordinate

T to be βc = 8πN
q

where now q is a complicated function of p, l and N while the value of

the mass parameter is given by

mc =
N [(1 + p2)l2 + (p4 − 6p2 − 3)N2]

2pl2
(5.45)
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Using the counterterm method, for a bolt located at rc = pN we obtain:

Ic =
πN2[(p2 + 1)l2 − (p4 + 3)N2]

l2 + 3N2(p2 − 1)

Sc =
πN2[(p2 + 1)l2 − 3(p4 + 3)N2]

l2 − 3N2(p2 − 1)
(5.46)

Notice that in the limit p → 1 one recovers the previous expressions for the action and

respectively the entropy of the Taub-Nut-AdS solution (5.28) up to the factor of 2, as

explained above.

Let us apply now our prescription for going from the C-approach to the R-approach.

In this case we shall analytically continue N → in and also q → ik (which in the Nut case

corresponds in fact to p → −ip). Then the location of the nut becomes τr = pn in the

R-approach, yielding a real value for τr, while the value of the mass parameter is also real

mr =
n[(p4 + 6p2 − 3)n2 − l2(1 − p2)]

2pl2
(5.47)

Now the periodicity of the coordinate t is given by 8πn
|k| , with k = (q)p=−ip. For p = 1 we

obtain:

k = 2

(

6n2

l2
+ 1

)

(5.48)

while value of the mass parameter is mr = 2n3

l2
, the action is

Ir = − 4πn4

l2 + 6n2
(5.49)

However, since the location of the ‘bolt’ r = n is not of the form (5.38) unless we assume

a relationship between n and l we conclude that the first law of thermodynamics is not

satisfied for the Lorentzian Taub-Nut-AdS solution in the R-approach.

5.4.4 The flat-space limit

Leaving the more detailed study of the thermodynamics of the above solutions for future

work, let us now briefly discuss the case in which the cosmological constant vanishes.

Notice that this condition corresponds to l → ∞ and in this limit we recover the Taub-

NUT solutions in a flat background. Special care must be taken when discussing the
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analytic continuation from the Euclidean sector to the Lorentzian one. Let us consider

first the Lorentzian Taub-Nut-AdS solution. In the limit l → ∞ we obtain the action

Ir = 0, the conserved mass is also zero in this limit. These results are in agreement with

the expectation that the only way to have r = n as a root of the Lorentzian function

F (r) =
r2 − 2mr − n2

r2 + n2

is to take m = 0.

In the bolt case we obtain by analytic continuation rr = 2n
k

and the mass parameter is

mr = n
4 − k2

4k

while the action and the entropy are given by:

Ir = πn2 4 − k2

k2
, Sr = πn2 4 − k2

k2
, Cr = 2πn2k

2 − 4

k2
(5.50)

As in the Euclidean sector we have q = 1 (since if q > 1 then rb is less than n) this will fix

k = 1 in the above relations. Further, note that although these expressions satisfy the first

law of thermodynamics, the entropy and specific heat for the Lorentzian bolt in the flat

spacetime have opposite signs, which means that the solution is thermally unstable. This

is not unexpected if we recall that the Taub-NUT solutions in flat background correspond

to the lower-branch Taub-NUT-AdS solutions, which are thermodynamically unstable.

5.5 Higher dimensional Taub-NUT-dS spaces

The above results can be easily extended to higher dimensional Taub-NUT spacetimes. As

an example, we shall focus only on the asymptotically de Sitter spacetimes.

First, let us notice the absence of higher dimensional Taub-Nut-dS solutions, which is

a result analogous with that stating the absence of hyperbolic nuts in AdS-backgrounds

[34, 6]. Quite generally we can see this by observing the behaviour of the function F (τ)

near the root τc = N . Since F (τ) takes negative values for points τ > τc we deduce

that there always exists a larger root of F (τ) that will contain the nut. Therefore, in our

discussion we shall refer only to the higher-dimensional Bolt solutions. An analysis similar



102

to the one performed in Section (5.4.1) assures us that the first law is satisfied in both

approaches.

An analysis of the thermodynamics of the higher-dimensional Taub-NUT-dS spaces has

been presented in [40]. It has been shown there that the thermodynamic behaviour of both

the R-approach and C-approach quantities are qualitatively the same in 4s-dimensions,

a behaviour that is distinct from the common behaviour in 4s + 2 dimensions6. This

means that spaces of dimensionality 8, 12, 16, ... have the same qualitative thermodynamic

behaviour as the four-dimensional case, while spaces of dimensionality 10, 14, 18, ... have

the same behaviour as the six-dimensional case. We shall now illustrate equivalence of the

two approaches in six-dimensions; the other 4s+2 higher-dimensional cases are analogous.

The Taub-NUT-dS metric in six dimensions, constructed over an S2 ×S2 base is given

by:

ds2 = V (τ)(dt+ 2n cos θ1dϕ1 + 2n cos θ2dϕ2)
2 − dτ 2

V (τ)
+ (τ 2 + n2)(dΩ2

1 + dΩ2
2)

where

V (τ) =
3τ 6 − (l2 − 15n2)τ 4 − 3n2(2l2 − 15n2)τ 2 + 3n4(l2 − 5n2) + 6ml2τ

3(τ 2 + n2)2l2

dΩ2
i = dθ2

i + sin2 θidϕ
2
i (5.51)

Removal of the Misner string singularities in the metric forces us to take 12π|n| as the

periodicity of the time coordinate. Similar with the 4-dimensional case, we shall impose

an extra periodicity 4π
|V ′(τr)| . Matching the two values leads to the condition:

βr =
4π

|V ′(τr)|
=

12π|n|
k

where V (τr) = 0 and k is a positive integer.7 This fixes the bolt location to be given by

the formula:

τr =
kl2 +

√
k2l4 − 900n4 + 180n2l2

30n

6Here s = 1, 2, ....
7The parameter k will determine the topology on the boundary τ → ∞. For k = 1 the boundary is

Q(1, 1), which is the 5-dimensional circle fibration over S2 × S2, while for k > 1 we obtain Q(1, 1)/Zk.
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and by requiring real values for τr we must restrict the allowed range of the NUT charge

to be:

|n| ≤ l

√

90 + 30
√
k2 + 9

30

In the C-approach we make the analytic continuations t → iT and n → iN . Then the

function V (τ) is continued to F (τ) . Imposing the periodicity condition

βc =
4π

|F ′(τc)|
=

12π|N |
q

where τc is a root of F (τ) we find

τc =
ql2 +

√

q2l4 + 900N4 + 180N2l2

30N

It is easy to see now that starting, for instance, with the C-quantities and using the

analytic continuations N → in and q → ik we recover the corresponding R-quantities and

vice-versa. This equivalence extends to all thermodynamic quantities computed using the

counterterm approach.

5.6 Summary

The work of this chapter was motivated by the observation made in Chapter 4 that the

path-integral formalism can be extended to asymptotically de Sitter spacetimes to describe

quantum correlations between timelike histories, providing a foundation for gravitational

thermodynamics at past/future infinity [40]. The key result is the generalisation of the

quantum statistical relation or the generalised Gibbs-Duhem relation (4.21) to asymptoti-

cally dS spacetimes.

In order to employ this relation it is generally necessary to analytically continue the

spacetime near past/future infinity. There are two apparently distinct ways of doing this

– the R-approach and the C-approach. The C-approach is closest to the more traditional

method of obtaining Euclidean sections for asymptotically flat and AdS spacetime. The

R-approach refers to the Lorentzian section, and makes use of the path integral formalism

only insofar as the generalised Gibbs-Duhem relation is employed.
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The main result of this chapter is the demonstration that the R and C-approaches

are equivalent, in the sense that we can start from the C-approach results and derive by

consistent analytic continuations (i.e., using a well-defined prescription for performing the

analytic continuations) all the results from the R-approach. There are no a-priori obstacles

in taking the opposite view, in which the C-approach results are derived from the respective

R-approach results. However, one could still argue that the C-approach is the more basic

one, as in it the periodicity conditions appear more naturally than in the R-approach.

On the other hand, the R-approach, when used without the justification that comes

from the C-approach, raises some interesting questions. Even applied to simple cases such

as the Schwarzschild-dS solution, one may take the view that in the absence of the nut

charge one could still consider a periodicity on the time coordinate in the Lorentzian sector

given by βr = 8πm. A more orthodox interpretation would be that βr in the Lorentzian

sector is simply the inverse temperature (as related by the surface gravity of the black hole

horizon) and is not related to a real periodicity of the time coordinate. Whether or not

this is indeed a necessary condition remains to be seen.

Using this equivalence we then proposed an interpretation of the thermodynamical

behaviour of nut-charged spacetimes. In the asymptotically dS case, we showed that while

a subset of the Bolt solutions can have a sensible physical interpretation, the same does not

hold for the Taub-Nut-dS solutions. Indeed, in the putative Taub-Nut-dS solution the nut

is always enclosed in a larger cosmological ‘bolt’ and moreover it does not have a Lorentzian

counterpart (i.e. it has no equivalent solution in the R-approach). From these facts we

conclude that there are no Taub-Nut-dS solutions. This situation holds despite the fact

that a naive application of (4.21) to this case yields thermodynamic quantities that respect

the first law of thermodynamics. Rather these quantities are the analytic continuations of

their AdS counterparts under l → il. Similar remarks apply to the lower-branch dS bolt

cases. We have also found that this situation holds in higher dimensions: there are no

Taub-Nut-dS solutions, in analogy with the non-existence of the hyperbolic nuts in AdS

backgrounds [54].

Moreover, the C-approach has been previously applied with success to more general

cases - it has been proven to be very useful when treating for instance asymptotically

AdS or flat Taub-NUT spaces. In particular, we have shown in section 5.4 that starting
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from the well-known results regarding the thermodynamics of the Nut and Bolt solutions

in the Euclidean Taub-NUT-AdS case (which corresponds to our C-approach) we can

consistently make analytic continuations back to the Lorentzian sections, yielding a physical

interpretation of the thermodynamics of such spacetimes. However, this holds only for the

bolt solutions; we found that the Lorentzian AdS-Nut solution did not respect the first law

of thermodynamics, rendering the physical interpretation of the Nut solution dubious at

best.





Chapter 6

Higher dimensional Kaluza-Klein

monopoles

6.1 Overview

Although magnetic monopole solutions were found in vacuum Kaluza-Klein theories in the

1980s [129, 76], an outstanding problem has been generalisation of these soliton solutions

(here termed Kaluza-Klein monopoles, or KK monopoles) to include a cosmological con-

stant. Given current theoretical interest in asymptotically (anti)-de Sitter spacetimes and

recent experimental results that indicate that the universe does indeed possess a small

positive cosmological constant, it is reasonable to pursue such an objective.

One such attempt was recently made by Onemli and Tekin [121]. They concluded that

there is no five-dimensional static Kaluza-Klein monopole with cosmological constant. The

metric ansatz they employed was tailored to describe a static ‘Kaluza-Klein’ monopole in

an AdS2 × AdS3 background. In the limit in which the cosmological constant λ tends to

zero, the ‘KK-AdS monopole’ should reduce to the ‘KK monopole’ in flat space. Moreover,

if the monopole charge tends to zero then the ‘KK-AdS monopole’ should reduce smoothly

to the AdS2 × AdS3 background. If we relax the requirement that the monopole solution

be static it is easy to construct a time-dependent five-dimensional soliton that has all the

desired properties. Two such solutions in five dimensions have been obtained in [121].

In the present chapter we consider other possible extensions of Kaluza-Klein monopole

107
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solutions that admit a cosmological constant. The essential ingredient in the original

Kaluza-Klein monopole construction is a Euclidean section of the four dimensional Taub-

NUT space; the ‘trick’ employed in [129, 76] to obtain the monopole solution was to lift

this Euclidean section up to five-dimensions by adding a flat time coordinate and then

to dimensionally reduce along the ‘Euclidean time’ direction from the Euclidean Taub-

NUT section. However, in a presence of the cosmological constant it is not possible to

use the above technique without introducing an explicit time dependence in the metric.

Therefore, in order to obtain cosmological four-dimensional magnetic monopole solutions

our strategy is to consider directly in five-dimensions the new cosmological Taub-NUT-

like solutions discussed in sections 3.5, 3.6 and perform a Kaluza-Klein compactification

along the fifth dimension. The new feature of these solutions is that the four-dimensional

dilaton acquires a potential term as an effect of the cosmological constant. However their

asymptotics are not very appealing physically since they are not asymptotically flat or

(A)dS in the Einstein frame. Their metric description simplifies when considered in the

string frame: for our explicit examples the four-dimensional metric in the string frame is

very similar to the AdS form in the (r, t) sector, except for a deficit of solid angle in the

angular sector.

In higher than five dimensions we have more choices: we can consider solutions that are

Ricci flat with different NUT parameters or we can consider Taub-NUT like spaces that are

constructed as circle fibrations over base spaces that have non-trivial topology. We also

perform Kaluza-Klein (KK) reductions of the above solutions down to four dimensions,

obtaining new magnetic monopole solutions. More specifically, in six and seven dimen-

sions we have considered non-singular Ricci-flat solutions for which one can use the KK

trick to obtain similar KK magnetic brane solutions for which the background spaces are

Ricci flat Bohm spaces of the form Sp × Sq and generically have conical singularities. We

considered their further reduction down to four dimensions on Riemannian spaces of con-

stant curvature and specifically considered such reductions on spheres. In contrast with the

KK procedure to untwist the U(1)-fibration, we have considered in six dimensions another

method that is known to untwist the circle fibration, namely Hopf duality in string theory.

We extended these duality rules to the case of a timelike Hopf-duality of the truncated

six-dimensional Type II theories and applied them to generate charged string solutions
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in six-dimensions. By performing sphere reductions we obtained the corresponding four-

dimensional solutions. In general, the presence of the cosmological constant in the higher

dimensional theory induces a scalar potential for the Kaluza-Klein scalar fields. If the

isometry generated by the Killing vector ∂
∂z

, which is associated with the circle direction

on which we perform the reduction has fixed points, then the dilaton, which describes the

radius of that extra-dimension, will diverge at the fixed point sets and the D-dimensional

metric will be singular at those points. In certain cases we find that the dilaton field also

diverges at infinity. Respectively this means that, physically, the space-time decompacti-

fies near the KK-brane and at infinity; the higher-dimensional theory should be used when

describing such objects in those regions.

The organization of this chapter is as follows. We begin in section 6.2 by reviewing how

the flat KK monopole can be obtained from the four dimensional Taub-Nut solution. We

also briefly discuss the features of the monopole solution obtained by using the Euclidean

Taub-Bolt solution. At this point we consider the solution obtained by dimensionally

reducing an Eguchi-Hanson-like monopole and we prove that even if the four-dimensional

metric is non-asymptotically flat, its geometry is nonetheless U-dual to that of a Taub-Bolt

monopole.

We next present in section 6.3 the new metric ansatz which is a solution of vacuum Ein-

stein’s equations with cosmological constant in five dimensions and we perform a Kaluza-

Klein reduction to obtain a new four-dimensional monopole solution. In the following

sections we consider similar monopole solutions in higher dimensions and we also perform

Kaluza-Klein sphere reductions to four dimensions. In six dimensions we apply spatial and

timelike Hopf-dualities to generate new solutions.

6.2 Kaluza-Klein magnetic monopoles

We begin by reviewing the original Kaluza-Klein magnetic monopole solution in 4 dimen-

sions that arises as a Kaluza-Klein compactification of a 5 dimensional vacuum metric

[129, 76]. The essential ingredient used in the monopole construction is a four dimensional

Euclidean version of the Taub-NUT solution:

ds2 = FE(r)(dχ− 2n cos θdϕ)2 + F−1
E (r)dr2 + (r2 − n2)dΩ2
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where

FE(r) =
r2 − 2mr + n2

r2 − n2
(6.1)

As we have seen in Chapter 2, in general, the U(1) isometry generated by the Killing

vector ∂
∂χ

(that corresponds to the coordinate χ that parameterizes the fibre S1) can have

a zero-dimensional fixed point set (referred to as a ‘Nut’ solution) or a two-dimensional

fixed point set (correspondingly referred to as a ‘Bolt’ solution). The regularity of the Nut

solution forces m = n, yielding

FE(r) =
r − n

r + n
(6.2)

In the Bolt solution the Killing vector ∂
∂χ

has a two-dimensional fixed point set in the

4-dimensional Euclidean sector. The regularity of the Bolt solution is then ensured by

taking r ≥ 2n and m = 5n/4. Then we obtain:

FE(r) =
(r − 2n)

(

r − 1
2
n
)

r2 − n2
(6.3)

In both cases the periodicity of the χ-coordinate is 8πn.

6.2.1 The Gross-Perry-Sorkin magnetic monopole

The GPS monopole solution is constructed as follows. Taking the product of the Euclidean

Taub-Nut space-time with the real line, we obtain the following 5-dimensional Ricci flat

metric:

ds2 = −dt2 + FE(r)(dχ− 2n cos θdϕ)2 + F−1
E (r)dr2 + (r2 − n2)dΩ2

which solves the 5-dimensional vacuum Einstein equations.

If we perform now a Kaluza-Klein reduction along the coordinate χ (which is periodic

with period 8πn) we obtain the following 4-dimensional fields (with α = 1
2
√

3
) [129, 76]

ds2 = −F
1
2
E dt

2 + F
− 1

2
E (r)dr2 + F

1
2
E (r2 − n2)dΩ2

A = −2n cos θdϕ, e
φ√
3 = F

− 1
2

E , (6.4)

which is a solution of the equations of motion derived from the action:

L = eR− 1

2
e(∂φ)2 − 1

4
ee−

√
3φF2, (6.5)
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where F = dA. It is clear now that the metric is asymptotically flat. The above solution

describes a magnetic monopole and its properties have been discussed in detail in [129, 76].

6.2.2 Taub-Bolt monopoles

There are a few extensions of the above construction that we can consider. The obvious

one to explore is the Taub-Bolt solution in four-dimensions instead of the Nut solution. As

in the case of the Nut solution, we take the product with the real line and obtain a metric

in five-dimensions that is a solution of the vacuum Einstein field equations. Performing

the Kaluza-Klein compactification along the χ direction yields (6.4), where now FE(r) is

given by (6.3). The five-dimensional metric is regular everywhere for r ≥ 2n. However,

the four-dimensional solution obtained by Kaluza-Klein reduction, while asymptotically

flat, is now singular at the location of the bolt r = 2n where the dilaton field diverges as

expected.

The physical interpretation of this solution was recently clarified by Liang and Teo

[103] (see also [33]). It corresponds to a pair of coincident extremal dilatonic black holes

with opposite magnetic charges. To see this we can use as a seed in the KK procedure the

Euclidean rotating version of the Bolt solution [47, 68]. We add a timelike flat direction in

order to lift the solution to five dimensions, after which we reduce down to four dimensions.

When n 6= 0 it has been shown in [103] that the above solution describes a pair of extremal

dilatonic black holes carrying opposite but unbalanced magnetic charges and separated by

a distance 2a, a being the rotation parameter, which in this case serves as a measure of the

proper distance between the black holes. In the limit a→ 0 we obtain the the solution (6.4)

and (6.3) which corresponds then to a pair of coincident monopoles that carry opposite

unbalanced magnetic charges. The total magnetic charge of the system is n.

Since the above dihole has unbalanced charges it is not possible to introduce a back-

ground magnetic field to stabilize the system [103]. Consequently the solution is unstable

and is expected to decay (possibly to a pure Nut solution (the KK soliton in this case)

with total charge n).
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6.2.3 The black version of the Kaluza-Klein monopole

We will digress here for a moment to notice that the action (6.5) is the particular case

a = −
√

3 of a more general Einstein-Maxwell-Dilaton theory, with arbitrary coupling

constant a. In particular, the four-dimensional fields (6.4) describe the extremal version

of the charged dilatonic black hole solution found by Garfinkle, Horowitz and Strominger

[58]. The charged dilatonic black hole with coupling constant a = −
√

3 takes the form:

ds2 = − 1 − 2m
r

(

1 + 2p
r

)
1
2

dt2 +

(

1 +
2p

r

) 1
2
[

dr2

1 − 2m
r

+ r2dΩ2

]

,

A = −2
√

p(p+m) cos θdϕ, e
2φ√

3 = 1 +
2p

r
. (6.6)

If we oxidise this black hole solution to five dimensions we obtain the following Ricci flat

metric:

ds2 = −
(

1 − 2m

r

)

dt2 +

(

1 +
2p

r

)[

dr2

1 − 2m
r

+ r2dΩ2

]

+
1

(

1 + 2p
r

)(dχ− 2
√

p(p+m) cos θdϕ)2. (6.7)

This is the black version of the Kaluza-Klein monopole and it describes a five-dimensional

black hole whose horizon is a squashed 3-sphere. The Kaluza-Klein monopole is recovered

by setting m = 0, while if we set p = 0 we obtain the uniform black string solution.

6.2.4 The mass of the Kaluza-Klein Monopole

In General Relativity there are many known expressions for computing the energy in asymp-

totically flat spacetimes. The general idea is to study the asymptotic values of the gravita-

tional field, far away from an isolated object, and compare them with those corresponding

to a gravitational field in the absence of the respective object. However, most of these

proposals will provide results that are relative to the choice of a reference background (be

it a spacetime metric or merely a connection). The background must be chosen such that

its topological properties match the solution whose action and conserved charges we want

to compute. However, this does not fix the choice of the background and moreover, there
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might be cases in which the topological properties of the solution rule out any natural

choice of the background.

As we have seen in Chapter 4, most of these difficulties are simply avoided once we

resort to the counterterm-method. The main advantage of this approach is that it gives

results that are intrinsic to the solutions considered, that is, the results are not ‘relative’

to some reference background. In this section we investigate the various local counterterm

prescriptions, considered in Chapter 4, to compute the action and the conserved charges

in the five-dimensional Kaluza-Klein theory and, more specifically, for the Kaluza-Klein

monopole solution.

The computation of the mass

Before we apply the counterterm prescription to compute the components of the boundary

stress-tensor, let us notice that the boundary topology of the KK monopole for constant,

finite values of the radial coordinate r is that of a squashed 3-sphere times a real line.

Therefore, one might expect that the proper counterterm action to use should be the one

corresponding to an S3 × R topology. However using that counterterm we find that it is

impossible to cancel out the divergences as r → ∞. Rather we note that, as r → ∞, the

boundary topology is that of a fibre bundle R × S1 →֒ S2 as the radius of S2 grows with

r, while the radius of S1 reaches a constant value. Thence, asymptotically, the choice of

the counterterm (4.16) is natural and indeed, we find that using this counterterm we can

eliminate the divergences in the action and obtain finite values for the total mass.

Using the metric with the general expression (6.1) for the function FE(r) we find

8πGT tt =
m

r2
+O(r−3),

8πGT χχ =
2m

r2
+O(r−3),

8πGT χφ =
4mn cos θ

r2
+O(r−3),

8πGT θθ = −m
2 − 2n2

2r3
+O(r−4),

8πGT φφ = −m
2 − 2n2

2r3
+O(r−4), (6.8)
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the rest of the terms being of order O(r−3) or higher. Then the conserved mass associated

with the Killing vector ξ = ∂/∂t is found to be:

M =
4πmn

G
.

However using the counterterm (4.13) and the boundary stress-tensor (4.15) we obtain

8πGT tt =
m

r2
+O(r−3),

8πGT χχ =
2m

r2
+O(r−3),

8πGT χφ =
4mn cos θ

r2
+O(r−3),

8πGT θθ = −m
2 − 4n2

2r3
+O(r−4),

8πGT φφ = −m
2 − 4n2

2r3
+O(r−4). (6.9)

It is easy to see that this boundary stress-energy tensor leads to the same mass as above.

Notice however that some of the components of the stress-energy tensor (6.9) are different

from the ones obtained in (6.8).

For Kaluza-Klein monopole we have m = n and we obtain M = 4πn2

G
, which is easily

seen to be the same with the one derived in [24, 48] by using a background subtraction

procedure.1 For the Bolt monopole we have m = 5n/2 and using either prescription (4.13)

or (4.16) we obtain M = 10πn2

G
. In both cases the regularized action takes the form

I = βM, where β is the periodicity of the Euclidean time τ = it. Upon application of

the Gibbs-Duhem relation S = βM− I we find that the entropy is zero, as expected since

there are no horizons.

The GPS monopole mass from the four dimensional perspective

It is instructive to compute the conserved mass after we perform the dimensional reduction

along the χ direction down to four-dimensions. While both the metric and the fields in

general have singularities at the origin, this is not necessarily an obstruction since the

conserved charges are in general computed as surface integrals at infinity.

1The parameter λ∞ used in [24] corresponds in our case to 4n, while k = 8πG.



115

In four-dimensions we can use the counterterm (4.12), whose only difference from

(4.16) is that we are integrating now over a three-dimensional boundary instead of a four-

dimensional one. A similar computation with the one performed in five-dimensions yields

8πG4T
t
t =

m

r2
+O(r−3),

8πG4T
θ
θ =

n2 −m2

2r3
+O(r−4),

8πG4T
φ
φ =

n2 −m2

2r3
+O(r−4), (6.10)

for boundary stress-energy tensor, where G4 is Newton’s constant in four-dimensions. Then

the conserved mass associated with the Killing vector ξ = ∂/∂t is found to be:

M =
m

2G4
.

Noting that we have the relation G = 8πnG4 we find that the mass computed using the

four-dimensional geometry agrees precisely with the one computed in the five-dimensional

theory.

Finally, we shall compute the mass using the methods from [109]. In that work, Mann

and Marolf put forward a new counterterm that is also given by a local function of the

boundary metric and its curvature tensor. The new counterterm is taken to be the trace

K̂ of a symmetric tensor K̂ij that is defined implicitly in terms of the Ricci tensor Rij of

the induced metric on the boundary via the relation

Rik = K̂ikK̂ − K̂m
i K̂mk. (6.11)

In contrast to previous counterterm proposals (such as (4.13)) this new counterterm assigns

an identically zero action to the flat background in any coordinate systems while giving

finite values for asymptotically flat backgrounds. The renormalized action leads to the

usual conserved quantities that can also be expressed in terms of a boundary stress-tensor

whose expression involves the electric part of the Weyl tensor:2

T 0
iju

j =
1

8πG4

rEiju
j.

2Even if the four-dimensional solution is not a vacuum metric, the net effect of the matter fields is to

give only sub-leading order corrections and to leading order we can still replace the bulk Riemann tensor

with the Weyl tensor.
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Here Eij is the pull-back to the boundary of the contraction of the bulk Weyl tensor

Cµνρτ with the induced metric hµν while ui is the normal to the spacelike surface Σ on the

boundary. More precisely, introducing the unit normal vector to the boundary nµ then the

electric part of the bulk Weyl tensor is defined by:

Eµν = Cµρντn
ρnτ = −Cµρντhρτ . (6.12)

Now Eij is simply the pull-back to the boundary of the above tensor. Computing this

expression in the r → ∞ limit and contracting with the Killing vector ξ = ∂/∂t we obtain:

T 0
ijξ

iuj =
1

8πG4

m

r2
+O(r−3),

while the conserved mass is found by simple integration to be:

M =
m

2G4
,

in agreement with previous computations.

6.2.5 The mass of the black version of the KK soliton

For completeness we also present here a computation of the thermodynamic quantities of

the black version of the Kaluza-Klein monopole. By employing a counterterm prescription

using the counterterm (4.17) we arrive at the following components of the boundary stress-

tensor:

8πGT tt =
2m+ p

r2
+O(r−3)

8πGT χχ =
2p+m

r2
+O(r−3),

8πGT χφ =
2
√

p(p+m)(2p+m) cos θ

r2
+O(r−3),

8πGT θθ =
p2 + pm−m2

2r3
+O(r−4),

8πGT φφ =
p2 + pm−m2

2r3
+O(r−4). (6.13)
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By performing an analytical continuation of the time coordinate and eliminating the conical

singularities we find the periodicity of the Euclidean time to be:

β = 8π
√

m(m+ p), (6.14)

while the periodicity of the χ coordinate is easily seen to be L = 8π
√

p(m+ p). We find

then the mass of the black soliton:

M =
4π(2m+ p)

√

p(p+m)

G
. (6.15)

We can also evaluate the total action of this solution, by noting that the only non-zero

contribution appears from the surface terms only. In particular we find the total action to

be:

I =
32π2(m+ p)2√mp

G
. (6.16)

Finally, by means of the Gibbs-Duhem relation we evaluate the total entropy of this solution

to be:

S = βM− I =
32π2(p+m)m

√
pm

G
. (6.17)

Computing now the horizon area of the black soliton it is easily seen that the entropy is

in fact equal to one quarter of the area, as expected.

6.3 Eguchi-Hanson monopoles

One could also use the Eguchi-Hanson soliton in the above Kaluza-Klein monopole con-

struction, in place of the Taub-NUT solution. Indeed, both solutions present a similar

structure involving a squashed 3-sphere so that it is natural to expect that the four-

dimensional solution will describe a magnetic monopole object as well. However, there

is one important difference between the two solutions. Recall that in the usual Taub-NUT

solitons the radius of the χ coordinate remains finite in the asymptotic regions, while the

radius of the corresponding coordinate in the Eguchi-Hanson soliton becomes infinite in

the same limit. In particular, since the dilaton in four dimensions is directly connected to
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the radius of the extra dimension it turns out that the dilaton has to diverge as well at

infinity and the four-dimensional solution is manifestly non-asymptotically flat. By con-

trast, in the Kaluza-Klein monopole the four-dimensional dilaton becomes constant in the

asymptotic regions and the metric is asymptotically flat.

However, as it will become apparent in this section, it is possible to employ a particular

U-duality transformation [44] and regularise in this way the asymptotic behaviour of the

KK Eguchi-Hanson monopole. In particular, we will show that the Eguchi-Hanson soliton

is U-dual to the usual Kaluza-Klein Taub-Nut/Bolt magnetic monopoles.

6.3.1 Eguchi-Hanson Kaluza-Klein Monopole

Start with the four dimensional Eguchi-Hanson metric to which we add a flat time direc-

tion3:

ds2 = −dt2 +
r2f(r)

4
(dz − cos θdφ)2 +

dr2

f(r)
+
r2

4
(dθ2 + sin2 θdφ2), (6.18)

where

f(r) = 1 − δ4

r4
. (6.19)

We follow the method described in [44] to dimensionally reduce from five to three

dimensions, perform a SL(2, R) transformation and oxidize back to four dimensions. This is

done to scale and shift the harmonic functions so as to obtain asymptotically Minkowskian

limits.

The ansatz for the dimensional reduction from five dimensions to four dimensions in

Kaluza-Klein theory is given by:

ds2
5 = e

ψ√
3ds2

4 + e
− 2√

3
ψ
(dz + A1

(1))
2. (6.20)

Then the four dimensional theory will be described by the action:

L4 = eR− 1

2
e(∂ψ)2 − 1

4
e · e−

√
3ψ(F1

(2))
2. (6.21)

Here F1
(2) = dA1

(1) and A1
(1) = A1

µdx
µ is the one-form potential that appears in the Kaluza-

Klein form of the metric. The superscript 1 is used to denote the one-form which appears

3We changed the notation for the extra coordinate since we reserve χ to denote a scalar field later on.
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from the dimensional reduction from five to four dimensions. The subscript in the brackets

is used to denote the degree of the respective differential form.

Performing dimensional reduction along the z-direction we obtain the four dimensional

solution:

ds4 = −r
√

f(r)

2
dt2 +

r

2
√

f(r)
dr2 +

r3
√

f(r)

8
(dθ2 + sin2 θdφ2)

e
− 2√

3
ψ

=
r2f(r)

4
, A1

(1) = − cos θdφ. (6.22)

Notice that as r → ∞, ψ → −∞; near infinity the spacetime decompactifies and the

physical description is essentially five-dimensional.

Let us now perform a further dimensional reduction down to three-dimensions. The

ansatz for the dimensional reduction along the time direction t from four dimensions to

three dimensions in Kaluza-Klein theory is given by:

ds2
4 = eϕds2

3 − e−ϕ(dt+ A2
(1))

2. (6.23)

The four dimensional Lagrangian (6.21) will reduce in three dimensions to the Lagrangian

given by:

L3 = eR− 1

2
e(∂ψ)2 − 1

2
e(∂ϕ)2 +

1

4
e · e−2ϕ(F2

(2))
2 − 1

4
e · e−ϕ−

√
3ψ(F ′1

(2))
2

+
1

2
e · eϕ−

√
3ψ(F1

(1)2)
2. (6.24)

Here F1
(1)2 = dA1

(0)2 and F2
(2) = dA2

(1) where A2
(1) = A2

µdx
µ is the one-form potential that

appears in the Kaluza-Klein form of the metric. We have defined F ′1
(2) = F1

(2)−F1
(1)2∧A2

(1).

The superscript 2 is used to denote the dimensional reduction from four to three dimensions

along the timelike direction. Note that the kinetic terms of the field strengths that have the

value 2 of the internal index have the opposite sign to the one that corresponds to a usual

dimensional reduction on a spacelike direction. Performing the dimensional reduction we

get the following three-dimensional fields:

ds2
3 =

r2dr2

4
+

(r4 − δ4)

16
(dθ2 + sin2 θdφ2),

e
− 2√

3
ψ

=
r2f(r)

4
, e−2ϕ =

r2f(r)

4
, A1

(1) = − cos θdφ. (6.25)
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6.3.2 SL(2, R) invariance of the reduced action

Defining new scalar fields φ1 and φ2 by:

φ1 =

√
3

2
ψ +

ϕ

2
, φ2 =

√
3

2
ϕ− ψ

2
. (6.26)

we can see that the three dimensional Lagrangian can be cast in the following form:

L3 = eR − 1

2
e(∂φ1)

2 − 1

2
e(∂φ2)

2 +
1

4
e · e−φ1−

√
3φ2(F2

(2))
2 − 1

4
e · e−2φ1(F ′1

(2))
2

+
1

2
e · e−φ1+

√
3φ2(F1

(1)2)
2. (6.27)

We shall define a new radial coordinate R = r2

4
and define α = δ2

4
. In the new variables

our solution corresponds to:

ds2
3 = dR2 + (R2 − α2)(dθ2 + sin2 θdφ2),

eφ1 =
R

R2 − α2
, eφ2 = 0, A1

(1) = − cos θdφ. (6.28)

Notice that it is consistent to truncate the fields A2
(1) and A1

(0) (which also vanish in our

solution) in the above three dimensional Lagrangian. We next dualize the 1-form potential

field A1
(1) to a scalar field χ.

Details on the dualization

To dualize the 2-form F1
(2) one adds the Lagrange multiplier of the form dχ∧F1

(2). Then

the Lagrangian that dictates the dynamics of the F1
(2) field is given by4:

LF1
(2)

= −1

4
ee−2φ1(F1

(2))
2 + dχ ∧ F1

(2)

= −1

4
ee−2φ1(F1)µ1µ2(F1)µ1µ2 +

1

2
ǫµ1µ2µ3(F1)µ1µ2∂µ3χ. (6.29)

Treating F1
(2) as an auxiliary field we can trivially solve its equation of motion to obtain:

e(F1)µ1µ2 = e2φ1ǫµ1µ2µ3∂µ3 .χ. (6.30)

4Here ǫ is the Levi-Civita symbol.
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Replacing this expression in the above Lagrangian and noticing that ǫijkǫijl = 2δkl (since

the three-dimensional space has Euclidean signature) we obtain in the end:

LF1
(2)

= −1

4
ee−2φ1(F1)µ1µ2(F1)µ1µ2 +

1

2
ǫµ1µ2µ3(F1)µ1µ2∂µ3χ

= +
1

2
ee2φ1∂µχ∂

µχ. (6.31)

For the our solution, we obtain the scalar field χ to be given by

χ =
R2 + βR+ α2

R
, (6.32)

where β is an arbitrary integration constant.

In terms of the new fields the three dimensional Lagrangian becomes:

L3 = eR− 1

2
e(∂φ1)

2 − 1

2
e(∂φ2)

2 +
1

2
e · e2φ1(dχ)2. (6.33)

The unusual sign for the kinetic term of the scalar field χ appears because we have per-

formed the dualization in the three-dimensional space, which has Euclidean signature.

We shall next show that the above Lagrangian has a global SL(2, R) symmetry, with

the scalars φ1 and χ parameterizing the coset SL(2, R)/O(1, 1). To see this we shall define

the following 2 × 2 scalar matrix:

M =

(

eφ1 χeφ1

χeφ1 −e−φ1 + χ2eφ1

)

. (6.34)

Note that detM = −1 hence M is not an SL(2, R) matrix.

Then it is easy to see that the truncated three dimensional Lagrangian can be written

in the following compact form:

L = eR− 1

2
e(∂φ2)

2 +
1

4
etr[∂M−1∂M]. (6.35)

The Lagrangian is manifestly invariant under SL(2, R) transformations if we consider the

following transformation law of the potentials:

M → UTMU, φ2 → φ2, (6.36)
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where U ∈ SL(2, R)/O(1, 1). We can parameterize the matrix U in the form

U =

(

a b

c d

)

, ad− bc = 1. (6.37)

Then the two scalar fields φ1 and χ transform under (6.36) as:

eφ
′
1 = a2eφ1 + 2acχeφ1 − c2e−φ1 + c2χ2eφ1 ,

χ′eφ
′
1 = abeφ1 + (ad+ bc)χeφ1 − dce−φ1 + dcχ2eφ1 . (6.38)

Then new primed solution after the SL(2, R) transformation is:

ds2
3 = dR2 + (R2 − α2)(dθ2 + sin2 θdφ2),

χ′ =
(bc+ da+ 2dcβ)R2 + (4ba + 4daβ + 4dcβ2 + dcα2 + 4bcβ)R + daα2 + bcα2 + 2dcβα2

(cR + 2(a+ cβ)) (2(a+ cβ)R + cα2)
,

eφ
′
1 =

(cR + 2(a+ cβ)) (2(a+ cβ)R + cα2)

R2 − α2
, φ2 = 0. (6.39)

6.3.3 Oxidation from three to four dimensions

We are now ready to lift the solution from three to four dimensions. For this we have to

dualise the scalar field strength dχ to an electromagnetic field strength.5 Using the formula

(6.30) we obtain in a straightforward manner:

F1
(2) = [(a+ cβ)2 − 4α2c2] sin θdθ ∧ dφ. (6.40)

Next we rotate back the scalar fields by inverting the relations (6.26) and we obtain:

ψ =

√
3

2
φ1 −

φ2

2
, ϕ =

√
3

2
φ2 +

φ1

2
. (6.41)

Notice that for our solutions φ2 = 0 therefore eψ = e
√

3
2
φ1 and eϕ = e

φ1
2 . Using (6.23) we

obtain the following field configuration in four dimensions:

ds2
4 = F (R)

1
2dt2 + F (R)−

1
2dR2 + F (R)−

1
2 (R2 − α2)(dθ2 + sin2 θdφ),

e
ψ√
3 = F (R)−

1
2 , A1

(1) = −[(a + cβ)2 − 4α2c2] cos θdφ,

F (R) =
(2cR + p)(pR + 2α2c)

R2 − α2
, (6.42)

5We will drop from here on the prime superscript.
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which is a solution of the equations of motion derived from the Lagrangian (6.21).

Let us notice that the asymptotic form of the metric is given by:

ds2
4 ∼ −dT 2 + dR̃2 + R̃2(dθ2 + sin2 θdφ2), (6.43)

after rescaling t = [2c(a+cβ)]
1
4T and R̃ = [2c(a+cβ)]

1
4R. Moreover, since the dilaton field

is constant at infinity the solution is asymptotically flat. It describes a magnetic monopole

located at R = α, with magnetic charge given by:

1

4π

∫

S2

F1
(2) = (a+ cβ)2 − 4α2c2. (6.44)

We can further oxidize this solution to five dimensions and we obtain the following

Ricci flat metric:

ds2
5 = −dt2 +

R2 − α2

g(R)
(dz −A1

(1))
2 +

g(R)

R2 − α2
dR2 + g(R)(dθ2 + sin2 θdφ2), (6.45)

where6

g(R) = (2cR + p)(pR + 2α2c), A1
(1) = (p2 − 4α2c2) cos θdφ. (6.46)

Since this metric is Ricci flat and it is the trivial product of a four-dimensional metric with

a time direction, we expect that:

ds2
4 =

R2 − α2

g(R)
(dz −A1

(1))
2 +

g(R)

R2 − α2
dR2 + g(R)(dθ2 + sin2 θdφ2) (6.47)

is a Ricci flat metric and it can be easily checked that this is indeed the case.

Let us discuss next the regularity conditions on this metric. Elimination of Misner

string singularities requires the coordinate z be periodic with periodicity 8πn, where n =

p2 − 4α2c2. By requiring the absence of conical singularities in the (z, R) sector we obtain

2π(p + 2αc)2 as the periodicity of the z coordinate. By equating this value with the

periodicity required by the absence of Misner string singularities we obtain the following

restriction: αc = 3n
8

on the values of the parameters n, α and c. However, it can be

easily checked that after imposing this constraint the final solution depends on only one

6We denote a + cβ by p.



124

parameter (the NUT charge n), as the parameter α leads only to a global rescaling of the

metric. As g(R) is not zero at R = α the above four-dimensional solution corresponds to a

Taub-Bolt solution and therefore the four-dimensional monopole is the Taub-Bolt magnetic

monopole.

On the other hand, if we start with the flat space in five dimensions, i.e.if we consider

α = 0, then it has been proven in [44] that the final solution is the Kaluza-Klein soliton

constructed using the Taub-Nut.

6.3.4 Monopole solutions in 4 dimensions

We are now ready to generate new magnetic monopole solutions in four dimensions using

a similar procedure as in the GPS case. In order to obtain cosmological four-dimensional

magnetic monopole solutions our strategy is to consider directly in five-dimensions the new

cosmological Taub-NUT-like solutions discussed in Chapter 3 and perform a Kaluza-Klein

compactification along the fifth dimension. As we have seen in section 3.6 the Euclidean

version of these solutions can be cast into the form:

ds2 =
r2

4

(

1 − a4

r4

)

(dχ+ cos θdφ)2 +
dr2

(

±r2

l2
+ 1
) (

1 − a4

r4

)

+
r2

4
(dθ2 + sin2 θdφ2) +

(

±r
2

l2
+ 1

)

dy2, (6.48)

after performing a coordinate transformation and redefining the parameter m. This is a

solution of the vacuum Einstein equations with cosmological constant Λ = ∓6/l2.

The Eguchi-Hanson soliton is non-singular if we periodically identify the coordinate

χ with period β = 4π
k

(to remove the Misner string singularities), where k is an integer.

However, we have to match this periodicity with the one that appears by eliminating the

conical singularities at r = a in the (χ, r) sector. Considering for instance the AdS case,

this condition leads to:

a2 = l2
(

k2

4
− 1

)

. (6.49)

One has to consider then k > 3 and this yields a > l.
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Notice that these regularity conditions remain unchanged if we we can further consider

the analytic continuation y → it. We can perform now a Kaluza-Klein reduction along the

χ direction.

Since our initial space-time is a solution of the Einstein field equations with non-zero

cosmological constant, the field content in four dimensions will be given by the metric

tensor gµν , a magnetic one-form potential A and a scalar field φ with a non-trivial scalar

potential V (φ). We obtain in general:

ds2 = −
(

1 +
r2

l2

)

r

2
f(r)

1
2dt2 +

rdr2

2
(

1 + r2

l2

)

f(r)
1
2

+
r3

8
f(r)

1
2dΩ2,

A = − cos θdϕ, e
φ√
3 =

2

r
f(r)−

1
2 , (6.50)

where

f(r) = 1 − a4

r4
.

This solution differs from the Kaluza-Klein GPS solution in terms of both the metric

coefficients and by the fact that the scalar field φ has a potential of the exponential type

V (φ) = − 8

l2
e
− φ√

3 ,

indicating that our Kaluza-Klein dimensional reduction yields a massive scalar field.

To study the properties of the above 4-dimensional spaces, let us consider first the

Taub-Nut solution, which we have seen in Chapter 3 that corresponds to the pure AdS

solution in five-dimensions. For a = 0 we obtain the five-dimensional metric:

ds2 = −(1 +
r2

l2
)dt2 +

1

1 + r2

l2

dr2 +
r2

4

[

(dχ− cos θdϕ)2 + dθ2 + sin2 θdϕ2

]

.

After Kaluza-Klein compactification we obtain the following four-dimensional fields:

ds2 = −r
2
(1 +

r2

l2
)dt2 +

rdr2

2
(

1 + r2

l2

) +
r3

8
dΩ2,

A = − cos θdϕ, e
− φ√

3 =
r

2
. (6.51)

The four-dimensional metric has a curvature singularity at r = 0, where the scalar field

also diverges. Its asymptotic structure is given by

ds2 = −2r̃4/3

l2
dt2 +

l2

2r̃4/3
dr̃2 + r̃2dΩ2,
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where we have rescaled t and defined r̃ by r̃2 = r3

8
and we can see that it is not asymp-

totically flat. However, one can check by computing some of the curvature scalars (like

RabcdR
abcd) that the above asymptotic metric is well-behaved at infinity and that it has a

curvature singularity at r̃ = 0. Notice however that at both r = 0 and r → ∞ the dilaton

is blowing up and the extra dimension opens up, which means that the physical description

is effectively five-dimensional.

For the Bolt solution we must take k ≥ 3 and a 6= 0. The compactified four-dimensional

solution is given again by (6.50) and its asymptotic structure is the same as the one obtained

from the five-dimensional AdS spacetime. Again the four-dimensional metric will have a

curvature singularity at the bolt while the dilaton diverges at r = a and at infinity.

Next, let us notice that in the string frame the situation changes as follows. The

five-dimensional Nut solution reduces to the following metric:

ds2 = −(1 +
R2

l2
)dt2 +

1

1 + R2

l2

dR2 +
R2

4

[

dθ2 + sin2 θdϕ2

]

.

While this metric resembles a four-dimensional AdS metric with cosmological constant

λ = − 3
l2

in fact there is a deficit of solid angle as the area of the 2-sphere is πR2 instead

of 4πR2. This behavior is characteristic of a global monopole [18]. The above metric has

a curvature singularity at the origin (the location of the monopole) and the dilaton field

diverges both at origin and at infinity. The magnetic charge is computed using the formula

[130]:
1

4π

∫

S2

F = 1.

Note that if we reduce directly the five-dimensional metric (6.48) for Λ > 0, which is

time-dependent (outside the cosmological horizon the coordinate r is timelike) we obtain

a time-dependent four-dimensional magnetic monopole solution.

On the other hand, if we set the cosmological constant to zero, i.e. we take the limit

l → ∞, the five dimensional metric reduces to the Eguchi-Hanson times a trivial time

direction. Therefore, upon a Kaluza-Klein compactification to four dimensions we obtain

the Eguchi-Hanson monopole.
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6.4 Higher dimensional magnetic monopoles

We now consider some of the higher dimensional Taub-NUT spaces constructed in Chapter

3. We will discuss in some detail the six-dimensional metrics and we will also use the Hopf-

duality to generate new solutions.

6.4.1 Six dimensional metrics

In six dimensions the base space is four-dimensional and we can use products of the form

M1×M2 of two-dimensional Einstein spaces or we can use CP 2 as a four-dimensional base

space over which to construct the circle fibrations. If we use products of two dimensional

Einstein spaces then we can consider all the cases in which Mi, i = 1, 2 can be a sphere

S2, a torus T 2 or a hyperboloid H2. The circle fibration can be constructed in these cases

over the whole base space M1 ×M2 or just over one factor space Mi.

We shall consider first the case in which M1 = M2 = S2 and assume that the U(1)

fibration is constructed over the whole base space S2 × S2. In what follows we shall look

at the case of two different NUT charges, that is we set the cosmological constant to zero.

Let us consider the Euclidean section, obtained by the following analytic continuations

t→ iχ and nj → inj where j = 1, 2:

ds2 = FE(r)(dχ− 2n1 cos θ1dϕ1 − 2n2 cos θ2dϕ2)
2 + F−1

E (r)dr2

+(r2 − n2
1)(dθ

2
1 + sin2 θ1dϕ

2
1) + (r2 − n2

2)(dθ
2
2 + sin2 θ2dϕ

2
2), (6.52)

where

FE(r) =
r4 − 3(n2

1 + n2
2)r

2 + 6mr − 3n2
1n

2
2

3(r2 − n2
1)(r

2 − n2
2)

. (6.53)

This metric is a solution of the vacuum Einstein field equations without cosmological

constant, for any values of the parameters n1 and n2. In order to analyze the possible

singularities we have to consider two cases, depending on the values of the NUT charges

n1 and n2. We will assume that the two NUT charges n1 and n2 differ, and we can set

n1 > n2 without loss of generality. In this case in the Euclidean section the radius r cannot

be smaller than n1 or the signature of the spacetime will change. The Taub-Nut solution in

this case corresponds to a two-dimensional fixed-point set located at r = n1. There is still a
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curvature singularity located at r = n1, removed by setting the periodicity of the coordinate

χ to be 8πn1, while the value of the mass parameter must be m = mp =
n3

1+3n1n2
2

3
.

The Bolt solution corresponds to a four-dimensional fixed-point set located at r = rb =
2n1

k
, for which the periodicity of the coordinate χ is given by 8πn1

k
and the value of the mass

parameter is m = mp =
n1(12n2

2−4n2
1)

12
. In order to avoid the curvature singularity at r = n1

we must choose k = 1 so that r > rb = 2n1.

In the following we consider the Taub-Nut solution for which n1 > n2. The periodicity

of the coordinate χ is taken to be 8πn1 while the value of the mass parameter is fixed to be

m = mp =
n3

1+3n1n2
2

3
. For these values the six-dimensional metric is nonsingular at r = n1.

Employing the usual Kaluza-Klein procedure we obtain a six-dimensional magnetic

monopole: we add a flat time direction to obtain a seven-dimensional solution of the

vacuum Einstein field equations and after that perform a Kaluza-Klein compactification

along the coordinate χ using the metric ansatz:

ds2
7 = e

φ√
10ds2

6 + e
− 4φ√

10 (dχ−A(1))
2.

It is easy to check that we obtain the following six-dimensional fields

ds2
6 = −F

1
4
E dt

2 + F
− 3

4
E dr2 + F

1
4
E

[

(r2 − n2
1)(dθ

2
1 + sin2 θ1dϕ

2
1) + (r2 − n2

2)(dθ
2
2 + sin2 θ2dϕ

2
2)
]

,

A(1) = −2n1 cos θ1dϕ1 − 2n2 cos θ2dϕ2, e
− φ√

10 = F
1
4
E , (6.54)

where we now restrict r ≥ n1 > n2 and

FE(r) =
r3 + n1r

2 − (2n2
1 + 3n2

2)r + 3n1n
2
2

3(r + n1)(r2 − n2
2)

.

One can check that the above six-dimensional monopole solution has a curvature sin-

gularity located at r = n1. It is interesting to note that the asymptotic structure of this

solution, after rescaling the coordinates t→ 31/4T and r → 3−3/8R is given by

ds2
asymp = −dT 2 + dR2 +

1

3
R2(dθ2

1 + sin2 θ1dϕ
2
1) +

1

3
R2(dθ2

2 + sin2 θ2dϕ
2
2).

The area of each 2-sphere is not 4πR2 but instead 4πR2

3
: each has a deficit solid angle of 8π

3

steradians. Furthermore, the above asymptotic form of the metric is Ricci flat, and can be
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obtained from our solution by setting n = 0. Therefore we conclude that the background

for our monopole is a Ricci flat Bohm metric constructed as a cone over S2 × S2 [23, 64].

The corresponding six-dimensional Lagrangian obtained after Kaluza-Klein reduction

is given by

L6 = eR− 1

2
e(∂φ)2 − 1

4
ee

− 5√
10
φ
F 2

(2),

where F(2) = dA(1) = 2n1Ω1+2n2Ω2 and we have denoted by Ωi the volume form sin θidθi∧
dϕi of the sphere Mi, i = 1, 2.

In the following we shall perform a Kaluza-Klein reduction on M2. The general sphere

reduction formulae have been presented in [29]. The metric ansatz that we have to use in

the dimensional reduction from six to four dimensions is given by:

ds2
6 = e

ϕ√
2ds2

4 + e
− ϕ√

2 (dθ2
2 + sin2 θ2dϕ

2
2).

The dimensionally-reduced Lagrangian will take now the form

L4 = eR − 1

2
e(∂ϕ)2 − 1

2
e(∂φ)2 − 1

4
ee

− ϕ√
2
− 5√

10
φ
F 2 + ee

√
2ϕR2 − e2n2

2e
3√
2
ϕ− 5√

10
φ
,

where F = dA = d(−2n1 cos θ1dφ1) and R2 = 4 is the Ricci scalar of the sphere M2. The

full solution in four dimensions will be given by:

ds2
4 = −F

1
2
E (r2 − n2

2)dt
2 + F

− 1
2

E (r2 − n2
2)dr

2 + F
1
2
E (r2 − n2

1)(r
2 − n2

2)(dθ
2
1 + sin2 θ1dϕ

2
1),

F = dA = 2n1 sin θ1dθ1 ∧ dϕ1, e
− φ√

10 = F
1
4
E , e

− ϕ√
2 = F

1
4
E (r2 − n2

2). (6.55)

The asymptotic form of the above four-dimensional monopole metric is given by:

ds2
asymp ∼ −Rdt2 + dR2 +

4R2

3
(dθ2

1 + sin2 θdϕ2
1), (6.56)

(after defining r2 = 2R

3
1
4

and rescaling the time coordinate t) and we can see that the

spacetime is not asymptotically flat. Moreover the metric has infinite redshift at the

origin7, which is also the location of a curvature singularity. It takes an infinite time for a

photon to reach infinity and, indeed, the (r, t)-sector is asymptotically flat; however, while

7A similar BPS monopole solution with an infinite redshift at the origin but with a deficit of solid angle

has been obtained in [79].
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the metric it is singularity-free at infinity the scalar field ϕ diverges there. It is interesting

to note that the asymptotic form has a surfeit of solid angle, as the area of a sphere of

radius R is not 4πR2 but 16πr2

3
. Asymptotically conical metrics are reminiscent of global

monopoles [18]. The magnetic charge is computed to be 2n1.

The second case to discuss in six dimensions is a generalisation of the five-dimensional

solution presented in the previous section. The metric ansatz is as follows:

ds2 = −F (r)(dt− 2n cos θ1dφ1)
2 + F−1(r)dr2 + (r2 + n2)(dθ2

1 + sin2 θ1dφ
2
1) + αr2(dθ2

2 + dφ2
2),

F (r) =
−3r5 + (l2 − 10n2)r3 + 3n2(l2 − 5n2)r + 6ml2

3rl2(r2 + n2)
, (6.57)

and the vacuum Einstein field equations with cosmological constant are satisfied if and only

if α(2−λn2) = 0. Since α cannot be zero we must restrict the values of n and λ = 10
l2

such

that λn2 = 2, forcing a positive cosmological constant. The Euclidean section is obtained

by taking the analytic continuation t → iχ and n → in and l → il with l =
√

5n. Notice

that in this case the Taub-Nut solution corresponds to a two-dimensional fixed-point set

of the vector field ∂
∂χ

located at r = n. The periodicity of the χ coordinate is in this case

equal to 8πn and the value of the mass parameter is fixed to mb = n3

15
. For this value

of the mass parameter the solution is regular at the nut location. The Bolt spacetime

has a four-dimensional fixed-point set of ∂
∂χ

located at rb = kn
2

and the value of the mass

parameter is mb = k3n3(20−3k2)
960

where the periodicity of the coordinate χ is 8πn
k

, where k

is an integer. To ensure that rb > n we have to take k > 3 ; in this way the curvature

singularity at r = n is avoided as well. We next perform another analytic continuation of

one of the coordinates on T 2 (say θ2 → it) and then two Kaluza-Klein reductions along

the χ and φ2 directions down to four dimensions. We obtain the final solution:

ds2 = −r3F
1
2
E dt

2 + F
− 1

2
E (r)rdr2 + F

1
2
E r

(

r2 − l2

5

)

dΩ2,

A = −2n cos θ1dφ1, e
−3ϕ1√

6 = r2, e
−ϕ2√

3 = r
1
3F

− 1
2

E , (6.58)

where

FE(r) =
15r5 − 5l2r3 + 30ml2

3l2r(5r2 − l2)
,

which is a solution of the equations of motion derived from the following Lagrangean:

L4 = eR− 1

2
e(∂ϕ1)

2 − 1

2
e(∂ϕ2)

2 − 1

4
ee−

√
3ϕ2F2 + 2ee

ϕ1√
6
+
ϕ2√

3λ,
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with λ = −10
l2

and F = dA. The asymptotic form of the metric is:

ds2
4 = −R2dt2 +

√
l

4R
dR2 +R2dΩ2,

after rescaling R2 = r4

l
. It is clearly not asymptotically flat, it has infinite redshift at

origin, which is also the location of a curvature singularity and as expected the dilaton

fields diverge at infinity. However, notice that while ϕ2 diverges at the root of FE, ϕ1 is

finite there. The magnetic charge is found to be 2n.

Hopf reductions in six dimensions

It is well-known that odd-dimensional spheres S2n+1 may be regarded as circle bundles

over CP n and one can use the so-called Hopf duality (a T-duality along the U(1)-fibre) to

generate new solutions [51, 52, 45] by untwisting S2n+1 to CP n× S1. The six-dimensional

case is particularly interesting for us since it has been shown in [52] that it is possible

to make consistent truncations of the maximal Type II supergravity theories to a bosonic

sector which exhibits an O(2, 2) global symmetry with the T -duality transformation taking

a simple form. The theories at hand are the toroidal reductions of Type IIA, respectively

Type IIB ten-dimensional supergravities while the reduction ansatz for the fields is that

the six-dimensional fields that are retained are precisely the ten-dimensional ones, with the

spacetime indices restricted to run over the six-dimensional range only. The two truncated

theories in D = 6 are then related by a T-duality transformation upon reduction to D = 5.

The explicit mappings of the fields have been given in [52] and we follow their notational

conventions. For convenience we also provide the derivation of the T -duality rules in

Appendix C.

Let us start with the solution given in (7.25) in which we set λ = 0. We shall perform

first the analytic continuations t→ iz, n1 → in1 and subsequently ϕ2 → it:

ds2 = F̃ (r)(dz − 2n1 cos θ1dϕ1 − 2n2 cos θ2dt)
2 + F̃−1(r)dr2

+(r2 − n2
1)(dθ

2
1 + sin2 θ1dϕ

2
1) + (r2 + n2

2)(dθ
2
2 − sin2 θ2dt

2), (6.59)

where

F̃ (r) =
r4 − 3(n2

1 − n2
2)r

2 + 6mr + 3n2
1n

2
2

3(r2 − n2
1)(r

2 + n2
2)

.
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Considering the above metric as a solution of the pure gravity sector of the truncated Type

IIA theory we can now perform a Hopf-duality along the spacelike z-direction to obtain a

solution of six-dimensional Type IIB theory. Following the procedure given in Appendix C,

we first perform a Kaluza-Klein dimensional reduction down to five dimensions to obtain:

ds2
5A = F̃ (r)−

2
3dr2 + F̃ (r)−

1
2

[

(r2 − n2
1)(dθ

2
1 + sin2 θ1dϕ

2
1) + (r2 + n2

2)(dθ
2
2 − sin2 θ2dt

2)],

e
−ϕA√

6 = F̃ (r)
1
3 , A(1) = −2n1 cos θ1dϕ1 − 2n2 cos θ2dt. (6.60)

We can now rotate the scalars using (C.10) and map the field A(1) → ANS(1)1 as in (C.9).

Finally, lifting the solution back to six-dimensions we obtain the following Type IIB solu-

tion:

ds6B = F̃ (r)−
1
2dz2 + F̃ (r)−

1
2dr2 + F̃ (r)

1
2 (r2 − n2

1)dΩ
2
1 + F̃ (r)

1
2 (r2 + n2

2)(dθ
2
2 − sin2 θ2dt

2),

e2φ1 = e2φ2 = F̃ (r), ANS(2) = −2n1 cos θ1dϕ2 ∧ dz + 2n2 cos θ2dt ∧ dz. (6.61)

We can also make the analytic continuations t→ iϕ2 and n1 → in1 to obtain the solution:

ds6B = −F (r)−
1
2dt2 + F (r)−

1
2dr2 + F (r)

1
2 (r2 + n2

1)dΩ
2
1 + F (r)

1
2 (r2 + n2

2)dΩ
2
2,

e2φ1 = e2φ2 = F (r), ANS(2) = 2n1 cos θ1dϕ2 ∧ dt− 2n2 cos θ2dϕ2 ∧ dt. (6.62)

Were we to consider (6.59) as a solution of the pure gravity sector of Type IIB theory,

then after performing the spacelike Hopf dualisation we would obtain as an intermediate

step the five-dimensional solution (6.60) where now the fields belong to the Type IIB

theory. Applying now the formulae (C.9), respectively rotating the scalars as in (C.10)

and oxidizing the solution back to six dimensions we obtain:

ds6A = F̃ (r)−
1
2dz2 + F̃ (r)−

1
2dr2 + F̄ (r)

1
2 (r2 − n2

1)dΩ
2
1 + F̄ (r)

1
2 (r2 + n2

2)(dθ
2
2 − sin2 θ2dt

2),

e2φ1 = e2φ2 = F̄ (r), A(2) = −2n1 cos θ1dϕ2 ∧ dz + 2n2 cos θ2dt ∧ dz. (6.63)

Performing the analytic continuations we recover (6.62) except that we have now to replace

ANS(2) with A(2).

It is interesting to note that we can perform directly a timelike Hopf reduction in six-

dimensions8. In this case if we start with a solution of Type IIA theory by performing the

8In which case we do not need to perform any analytical continuations.
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timelike T-duality we obtain a solution of the appropriate truncation of Type IIB∗ theory

[93]. If we start instead with a solution of Type IIB theory and perform a timelike Hopf

duality we end up with a solution of an appropriate truncation of Type IIA∗ theory. The

details of these reductions are gathered in the Appendix A.

As an example we shall perform a Hopf duality starting from Type IIA theory. Consider

(7.25) as a solution of the pure gravity sector of the truncated six-dimensional Type IIA

theory. Then the final solution of Type IIB∗ will be given by:

ds6B∗ = −F (r)−
1
2dt2 + F (r)−

1
2dr2 + F (r)

1
2 (r2 + n2

1)dΩ
2
1 + F (r)

1
2 (r2 + n2

2)dΩ
2
2,

e2φ1 = e2φ2 = F (r), ANS(2) = 2n1 cos θ1dϕ1 ∧ dt− 2n2 cos θ2dϕ2 ∧ dt, (6.64)

where now

F (r) =
r4 − 3(n2

1 + n2
2)r

2 + 6mr − 3n2
1n

2
2

3(r2 + n2
1)(r

2 + n2
2)

.

If we start with (7.25) as a solution of Type IIB then peforming a timelike Hopf dualisation

we obtain a similar solution of Type IIA∗ for which:

A(2) = 2n1 cos θ1dϕ1 ∧ dt− 2n2 cos θ2dϕ2 ∧ dt. (6.65)

As we can see, some of the solutions obtained for Type IIA (respectively IIB) and Type

IIA∗ (respectively IIB∗) are identical after we perform appropriate analytic continuations9.

This is to be expected once we notice that they are solutions of the NSNS-sector only,

which is the same for both theories (their actions would differ only by the sign of the kinetic

terms of the RR-fields).

As an application of these solutions let us set for convenience n2 = 0 in (6.62) and

perform a sphere reduction using the ansatz (6.4.1) down to a four-dimensional solution:

ds4B = −r2dt2 + r2dr2 + F (r)r2(r2 + n2
1)dΩ

2
1,

e−
√

2φ = r4F (r), e2φ1 = e2φ2 = F (r), ANS(2) = 2n1 cos θ1dϕ2 ∧ dt, (6.66)

which is a solution of the equations of motion derived from the following Lagrangian:

L4B = eR− 1

2
e(∂ϕ)2 − 1

2
e(∂φ1)

2 − 1

2
e(∂φ2)

2 − 1

4
ee

− ϕ√
2
−ϕ1−ϕ2(FNS

(3) )2 + ee
√

2ϕR2.

9 Which keep the metric and the fields real.
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The asymptotic form of the metric (6.66) is (after defining R = r2

2
and rescaling t)

ds4B ∼ −Rdt2 + dR2 +
4

3
R2dΩ2

1.

Amusingly, the asymptotic form of the metric is the same with (6.56). The magnetic

charge is found to be 2n and notice that there is an excess of solid angle as the area of the

asymptotic sphere is 16πR2

3
instead of the expected 4πR2.

6.4.2 Monopoles in D ≥ 7 dimensions

Similarly, we can construct Kaluza-Klein monopoles in seven and higher dimensions. For

example, in seven dimensions the base space is five-dimensional and can be factorized in the

form B = M×Y , where M is an even dimensional space endowed with an Einstein-Kähler

metric and Y is a Riemannian Einstein space.

Let us consider the case in which M = S2 while Y can be a sphere S3, a torus T 3 or a

hyperboloid H3. The solution is [111]

ds2 = −F (r)(dt2 + 2n cos θdϕ)2 + F−1(r)dr2 + (r2 + n2)(dθ2 + sin2 θdϕ2) + βr2gY ,

where gY is the metric on the unit-sphere S3, torus T 3 or hyperboloid H3:

F (r) =
4r6 + (l2 + 12n2)r4 + 2n2(l2 + 6n2)r2 + 4ml2 + n4(l2 + 6n2)

4l2r2(r2 + n2)
. (6.67)

The cosmological constant is λ = −15
l2

and the parameters β, n and λ are constrained via

the relation β(5 − 2λn2) = 10k, where k = 1, 0,−1 for S3, T 3 and H3 respectively. We

must have β > 0, which in turn imposes a joint constraint on λn2 that can be satisfied in

various ways depending on the value of k. Since we are interested in a Ricci flat solution

we shall consider λ = 0 and also k = 1, in which case Y = S3 and β = 2. The Euclidean

section of this solution, which is obtained by analytic continuation of the coordinate t→ iχ

and of the parameter n→ in is given by:

ds2 = FE(r)(dχ2 + 2n cos θdϕ)2 + F−1
E (r)dr2 + (r2 − n2)(dθ2 + sin2 θdϕ2) + 2r2gY ,

where

F (r) =
r4 − 2n2r2 + n4 + 4m

4r2(r2 − n2)
. (6.68)
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The metric has a scalar curvature singularity located at r = n as can be checked by

computing for instance the Kretschman scalar. However, if we take m = 0 then the metric

is well-behaved at r = n. Furthermore, if r < n the signature of the metric is unphysical;

therefore we can restrict ourselves to the interval r ≥ n for which the solution is non-

singular. In order to obtain the magnetic brane in seven-dimensions we employ the usual

procedure: add a flat timelike direction and compactify the Ricci-flat eight-dimensional

metric using the ansatz

ds2
8 = e

φ√
15ds2

7 + e
− 5φ√

15 (dχ−A(1))
2.

We obtain the following seven-dimensional fields:

ds2
7 = −F

1
5
E dt

2 + F
− 4

5
E dr2 + F

1
5
E

(

(r2 − n2)(dθ2 + sin2 θdϕ2) + 2r2dΩ2
3

)

,

A(1) = −2n cos θdϕ, e
− φ√

15 = F
1
5
E , (6.69)

where now r ≥ n and

FE(r) =
r2 − n2

4r2
,

which are a solution of the equations of motion derived from the following Lagrangian:

L7 = eR− 1

2
e(∂φ)2 − 1

4
ee

− 6√
15
φ
F 2

(2).

The above seven-dimensional metric has a curvature singularity at r = n. Its asymptotic

structure, after we rescale the coordinates t→ 41/10T and r → 4−2/5R, is given by

ds2
asymp = −dT 2 + dR2 +

R2

4
(dθ2 + sin2 θdϕ2) + 23/5R2dΩ2

3.

This space has a deficit of solid angle corresponding to the sphere S2 while the factor S3

has a surfeit of solid angle.

Let us perform now a further dimensional reduction of the above seven-dimensional

solution on the three-sphere S3. The metric ansatz that we can use in the dimensional

reduction from 7 to 4 dimensions is given by:

ds2
7 = e

3ϕ

2
√

15ds2
4 + e

− ϕ√
15dΩ2

3.
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The four-dimensional fields will be given by

ds2
4 = 2

3
2 r3
(

−F
1
2
E dt

2 + F
1
2
E dr

2 + F
1
2
E (r2 − n2)(dθ2 + sin2 θdϕ2)

)

,

A(1) = −2n cos θdϕ, e
− φ√

15 = F
1
5
E , e

− ϕ√
15 = 2r2F

1
5
E , (6.70)

and they are a solution of the equations of motion derived from the following dimensionally

reduced Lagrangian:

L4 = eR − 1

2
e(∂ϕ)2 − 1

2
e(∂φ)2 − 1

4
ee

− 3ϕ

2
√

15
− 6√

15
φ
F 2

(2) + ee
5√
15
ϕ
R3,

where R3 = 6 is the curvature scalar of the unit sphere S3.

One can check that the above four-dimensional solution has a scalar curvature singu-

larity at r = n. Its asymptotics are given by:

ds2 = R3

[

− dT 2 + dR2 +R2(dθ2 + sin2 θdϕ2)

]

,

after we make the rescaling R =
√

2r and T = t/2. Consequently the spacetime that we

obtain is conformally flat and singularity free at infinity. The magnetic charge is found to

be 2n.

generalisation to more than seven dimensions is straightforward. Another interesting

solution can be found in eleven dimensions by using the ansatz:

ds2 = −F (r)(dt+ 2n cos θdφ)2 +
dr2

F (r)
+ (r2 + n2)(dθ2 + sin2 θdφ2) + 6r2dΩ2

7,

By solving the vacuum Einstein field equations we find:

F (r) =
3r8 + 4n2r6 + 24m

24r6(r2 + n2)
.

Here dΩ2
7 is the metric on the 7-sphere, normalized such that its Ricci tensor is Rij = 6gij.

The Euclidean section is obtained by analytic continuations t → iχ and n → in. We can

also replace the sphere element by any other Einstein space of positive curvature. For
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example, if we embed the seven dimensional de Sitter solution we obtain the metric:

ds2 = F̃ (r)(dχ+ 2n cos θdφ)2 +
dr2

F̃ (r)
+ (r2 − n2)(dθ2 + sin2 θdφ2)

+r2

[

−
(

1 − R2

6

)

dt2 +
dR2

1 − R2

6

+R2dΩ2
5

]

,

F̃ (r) =
3r8 − 4n2r6 + 24m

24r6(r2 − n2)
. (6.71)

It can be easily checked there is a curvature singularity located at r = 0. Misner string

singularities can be removed by requiring the χ coordinate to have period 8πn and m =
n8

24
. The values of the coordinate r are then restricted to r > n avoiding the curvature

singularity at r = 0. This solution corresponds to a seven dimensional fixed-point set of

the isometry ∂χ; since this is not the maximal possible co-dimension, it is a Taub-Nut

solution.

The other possibility is that of a nine-dimensional fixed-point set of the isometry ∂χ,

located at rb = 2n. The periodicity of the χ coordinate is still 8πn but now the values of

the r coordinate are such that r ≥ rb = 2n. This in turn avoids the curvature singularities

located at r = 0 and r = n, provided the value of the mass parameter is m = −64n8

3
.

Let us perform now a Kaluza-Klein compactification along the coordinate χ. The

reduction ansatz is:

ds2
11 = e

ϕ
6 ds2

10 + e−
4ϕ
3 (dχ+ A)2,

and we obtain the following ten-dimensional fields:

ds2
10 = F̃

1
8 (r)r2

[

−
(

1 − R2

6

)

dt2 +
dR2

1 − R2

6

+R2dΩ2
5

]

+F̃− 7
8dr2 + F̃

1
8 (r)(r2 − n2)(dθ2 + sin2 θdφ2),

A = 2n cos θdφ, e−
4ϕ
3 = F̃ (r). (6.72)

Now let us perform a sphere reduction of this solution down to five-dimensions using the

metric ansatz:

ds2
10 = e

√
5
12
φds2

5 + e−
√

3
20
φdΩ2

5. (6.73)
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We obtain the following fields:

ds5A = −F̃ 1
3 r

16
3 R

10
3

(

1 − R2

6

)

dt2 + F̃
1
3 r

16
3 R

10
3
dR2

1 − R2

6

+ F̃− 2
3 r

10
3 R

10
3 dr2 + F̃

1
3R

10
3 r

10
3 (r2 − n2)dΩ2

2,

A = 2n cos θdφ, e−
4ϕ
3 = F̃ (r), e−

√
3
20
φ = F̃

5
24 r

10
3 R

10
3 , (6.74)

which give a solution of the equations of motion derived from the Lagrangian:

L5 = eR− 1

2
e(∂ϕ)2 − 1

2
e(∂φ)2 − 1

4
ee−

3ϕ
2
−
√

5
12
φ(F(2))

2 + ee
4√
15
φ
R5,

where R5 is the curvature scalar of the unit 5-sphere. We can dualize F(2) to a 3-form field

strength and we find that the above solution would describe a non-uniform electric string in

five dimensions as our solution depends explicitly on the fifth dimension R. This solution

is very likely to be unstable as in eleven dimensions the ‘de Sitter horizon’ is delocalised

along the noncompact direction r.



Chapter 7

Nutty Bubbles

Many important problems in physics, such as cosmological evolution or black hole evap-

oration, involve time in an essential way. Therefore, a key problem in string theory is

understanding its behaviour in time-dependent backgrounds. In order to carry out this

investigation one needs to construct simple enough time dependent-solutions that would

provide consistent test-beds on which one could try to address these problems.

‘Bubbles of nothing’ are smooth, time-dependent1 vacuum solutions of Einstein’s equa-

tions and so are consistent backgrounds for string theory, at least at leading order in α′.

The characteristic feature of such a solution is that it has a (minimal) area with no space

inside. For example, a bubble solution can be obtained from a four-dimensional static,

spherically symmetric black hole by a double analytic continuation in the time coordinate

and some other combination of coordinates on the S2-section. This way, the sphere is

effectively changed into a two-dimensional de Sitter spacetime.

The first example was provided by Witten [138] as the endstate of the decay of the

Kaluza-Klein (KK) vacuum. Balasubramanian et at. [15] found a similar process in Anti-

de Sitter (AdS) spacetime. That is, a certain orbifold in AdS (analogue of the flat space

KK vacuum) decays via a bubble of nothing. This opens the possibility that highly non-

perturbative processes in gravity might be described (via AdS/CFT correspondence [106])

as barrier penetration in a dual field theory effective potential.

1 There are also time-independent bubbles. Properties of bubbles of nothing in different situations are

studied in [138, 1, 20, 16, 62, 22, 32].

139
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More recently there has been renewed interest in bubbles of nothing since it was pointed

out that they provide new endpoints for Hawking evaporation [92]. Closed string tachyon

condensation is at the basis of a topology changing transition from black strings to bubbles

of nothing.

In a recent work Ghezelbash and Mann studied the so-called ‘nutty bubbles’ — time-

dependent backgrounds obtained by double analytic continuations of the coordinates/parameters

of (locally asymptotically flat AdS) NUT-charged solutions in four dimensions [62]. At

that time no five (or higher)-dimensional NUT-charged solutions with more than one NUT

charge were known and based on the properties of the NUT-charged spaces with only one

NUT parameter, they conjectured that one cannot construct consistent nutty bubble so-

lutions (with only one timelike direction) in higher dimensions. However, using the new

higher dimensional Taub-NUT solutions described in Chapter 3 we are able to provide

interesting time-dependent nutty bubble solutions in higher-dimensions.

This chapter is organized as follows: in the next section we construct bubble solutions

starting from the 5-dimensional Taub-NUT solutions. Recall that in five dimensions these

solutions have only one NUT parameter. Moreover there is in general a restriction that

connects the value of the NUT parameter to the cosmological constant. The bubbles

are obtained by performing appropriate double analytic continuations of the coordinates.

While our focus is primarily on the asymptotically AdS solutions, we will also provide

non-trivial bubble solutions that are asymptotically dS as well as a five-dimensional non-

asymptotically flat solution. Remarkably, we find a locally asymptotically AdS solution

with a boundary geometry of AdS3 × S1. In the Discussion section at the end of this

chapter we will calculate its boundary stress tensor and show that it has two pieces: one

that depends on the parameters of the bubble, and the other one which is universal and is

reproduced by the universal anomaly contribution to the stress tensor of Yang-Mills theory

on AdS3 × S1.

In the third section we construct interesting higher dimensional nutty bubbles from

some of the six-dimensional Taub-NUT solutions. However we focus on describing in

detail only a couple of representative six-dimensional spaces. In contrast to the lower-

dimensional spaces, in higher than six-dimensions there can be at least two independent

NUT parameters and, quite generically, we have seen that there exits a set of constraints
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that relate the values of these NUT parameters to the cosmological constant. We can

analytically continue the NUT parameters independently, as long as we can still satisfy the

constraints (or their analytically continued avatars). We consider first the case when the

base space of the circle fibration characteristic of the Taub-NUT solution is S2×S2. In this

case there are two independent NUT parameters only if the cosmological constant vanishes.

In six dimensions there exists a different class of cosmological Taub-NUT solutions, which

are characterized by one NUT parameter only. The fibration is constructed over the first

2-dimensional factor M1 and we consider the warped product with M2. The novelty of this

type of solution is that the warp factor depends non-trivially on the cosmological constant

and the NUT charge. The time-dependent bubble solutions are obtained by double analytic

continuations of the coordinates and the nut parameter. Finally, we also present a method

to generate new time-dependent solutions by using Hopf-dualities using the Hopf-duality

rules deduced in Appendix C. We apply this method to some of our 6-dimensional bubble

solutions to generate new interesting time-dependent backgrounds.

7.1 Five dimensional ‘nutty’ bubbles

As we have seen in Chapter 3, the five-dimensional Taub-NUT space is built as a ‘partial’

fibration over a two-dimensional Einstein-Kähler space. However, in five dimensions there

is a constraint to be satisfied on the possible values of the NUT charge and the cosmological

constant. The effect of this constraint is such that for a circle fibration over the sphere, S2,

the cosmological constant can take only positive values, for a fibration over the torus, T 2,

the cosmological constant must vanish, while in the case of a fibration over the hyperboloid,

H2, the cosmological constant can have only negative values.2 It is worth mentioning that

one cannot simultaneously set the NUT charge and/or the cosmological constant to zero

— i.e. there is no smooth limit in which one can obtain five dimensional Minkowski space

in this way. However, we have also seen in Chapter 3 that there are some ways to evade

this situation.

2We are considering here the Lorentzian sections of the metric.



142

7.1.1 Nutty bubbles in AdS

As noted above, the cosmological constant can be negative (Λ = − 6
l2

) only in the case of

a fibration over the hyperboloid H2. The metric is

ds2 = −F (r)(dt− 2n cosh θdφ)2 + F−1(r)dr2 + (r2 + n2)(dθ2 + sinh2 θdφ2) + r2dy2, (7.1)

where

F (r) =
4r4 + 2l2r2 − 16ml2

l2(4r2 + l2)
. (7.2)

Moreover, there is a constraint on the NUT parameter n2 = l2

4
, which we already used to

simplify the expression of F (r). If we analytically continue the coordinate t→ iχ and then

perform further analytic continuations in the H2 sector, the following distinct metrics are

obtained:

ds2 = F (r)(dχ+ l cos tdφ)2 + F−1(r)dr2 + (r2 + l2/4)(−dt2 + sin2 tdφ2) + r2dy2

ds2 = F (r)(dχ+ l sinh θdt)2 + F−1(r)dr2 + (r2 + l2/4)(dθ2 − cosh2 θdt2) + r2dy2,

ds2 = F (r)(dχ+ l cosh θdt)2 + F−1(r)dr2 + (r2 + l2/4)(dθ2 − sinh2 θdt2) + r2dy2,

ds2 = F (r)(dχ+ leθdt)2 + F−1(r)dr2 + (r2 + l2/4)(dθ2 − e2θdt2) + r2dy2. (7.3)

They are solutions of the vacuum Einstein field equations with negative cosmological con-

stant Λ = −6/l2.

For the last three geometries the coordinate θ is no longer periodic and can take any

real value. The geometry in the second bracket is described by a two-dimensional AdS

space. As is well known, this space can have non-trivial identifications and so the 2-

dimensional sector can describe a 2-dimensional black hole (as in the second and third

metrics above), while the first metric describes pure AdS in standard coordinates. Notice

however that in this case, the geometry of a fixed (χ, r, y)-slice is AdS2 modified by the

term F (r)l2 sinh2 θdt2 as an effect of the non-trivial fibration over the (θ, t)-sector. This

extra term will vanish only at points where F (r) = 0 (thence, on the bubble).

After a coordinate transformation the last three metrics can be written in a compact

form

ds2 = F (r)(dχ+ lxdt)2 + F−1(r)dr2 + (r2 + l2/4)

(

dx2

x2 + k
− (x2 + k)dt2

)

+r2dy2, (7.4)
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with k = −1, 1, 0. They are all locally equivalent under changes of coordinates. However,

depending on the identifications made, the global structure can be quite different.

The quartic function in the numerator of F (r) can have only two real roots — for

m > 0, one is positive (denoted by r+) and the other one is negative (denoted by r−):

r± = ± l

2

√

√

1 + 64m/l2 − 1. (7.5)

The conical singularities at either root of F (r) in the (χ, r)-sector can be eliminated if the

periodicity of the χ-coordinate is

β =
4π

|F ′(r±)| =
2πl

√

√

1 + 64m/l2 − 1
. (7.6)

Now, for r > r+ (or r < r−) the first three metrics will describe stationary backgrounds.

Note that the metric (7.4) is stationary and it possesses the Killing vector ξ = ∂
∂t

. The

norm of this Killing vector is

ξ · ξ = l2x2F (r) − (r2 + l2/4)(x2 + k),

and we find that in general there is an ergoregion iff
(

4l2F (r)

4r2 + l2
− 1

)

x2 > k.

However, since the expression in the bracket is always negative we find that there exists

an ergoregion only if k = −1 in which case the following constraint is obtained:

|x| < 4r2 + l2

l
√

64m+ l2
.

The ergoregion corresponds to a strip in the (r, x) plane bounded by the horizons located

at |x| = 1 and two curves that asymptote to 1 for r → r±, while for large values of r the

strip will largely broaden (see figure 7.1) and the curves asymptote to 4x2

l
√

64m+l2
. Also, as it

is apparent from the above formula, the strip broadens as m decreases.

In the remaining cases, for k = 0, 1 there is no ergoregion.

The asymptotic structure of the above metrics is

ds2 = r2/l2(dχ+ lxdt)2 + l2/r2dr2 + r2

(

dx2

x2 + k
− (x2 + k)dt2

)

+ r2dy2. (7.7)
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Figure 7.1: Ergoregion of the topological metric k = −1 (for m = 20 and l = 1).

Now, it is easy to read the boundary geometry — up to a conformal rescaling factor r2/l2,

the boundary metric is

ds2 = l2(dχ̃+ xdt)2 + l2
(

dx2

x2 + k
− (x2 + k)dt2

)

+ l2dy2. (7.8)

Here, we use a rescaled coordinate χ̃ = χ/l. From (7.6) it is easy to see that ifm = l2s2(s2+8)
1024

then χ̃ has periodicity 4π/s, with s an integer. Remarkably, for s = 1 the boundary

geometry is conformally flat. This can be easily seen from the fact that the boundary

metric is the product of a 3-dimensional space of constant curvature (i.e. pure AdS3) with

a line (or a circle if we also compactify the y coordinate). Furthermore, one can also make

nontrivial identifications in the AdS3 sector which turn it into the BTZ black hole. We

will have to say more about these solutions in the Discussion section.

Finally, let us consider the first metric from (7.3). Even if formally it can be trans-

formed into the k = −1 metric by a coordinate transformation3, if φ is periodic then the

global structure of these spaces is completely different. The geometry in the (χ, t, φ)-sector

3Notice however that the range of the x coordinate is different: for the k = −1 metric x ≥ 1, while for

the first metric in (7.3) we must take |x| ≤ 1. Another difference is that the periodicity in χ would be

related to a periodicity in φ for the first metric, while for the second one, with k = −1, it would require us
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resembles the usual Hopf-type fibration. The χ-circle is now fibred over the circle described

by φ. However, the fibration is twisted as a function of time. At t = 0 we have a pair

of orthogonal circles provided we define χ appropriately. As time increases we have the

χ-circle twisting around relative to the φ-circle, while the φ-circle is getting bigger. The

latter reaches a maximum, and then begins to shrink. However the χ-circle is still twisting,

and by the time the φ-circle has shrunk back to zero, the χ-circle has twisted only ‘halfway’

round. Over this cycle the integral
∫

d(l cos tdφ) is well-defined, and it equals 4πℓ since

we are integrating t from 0 to π. This will set the periodicity of χ to be 4πl/s, where s

is an integer. Recall now that the quartic function F (r) can have only two real roots, one

positive (r+) and one negative (r−) for m > 0. If φ is an angular coordinate with period

2π, then in order to eliminate the Misner string singularity we require that the period

β = 4π/|F ′(r±)| be equal to 4πl/s, where s is some integer. This further restricts the value

of the mass parameter such that m = l2s2(s2+8)
1024

.

For r > r+ (or r < r−), this metric describes then a bubble located at r = r+,

which expands from zero size to a finite size and then contracts to zero size again. All the

spacetime events are causally connected with each other. Near the initial expansion (or the

final contraction) the scale factor is linear in time and the spacetime expands or contracts

like a Milne universe. The boundary geometry for this bubble spacetime is given by

ds2 = (dχ+ l cos tdφ)2 + l2(−dt2 + sin2 tdφ2) + l2dy2, (7.9)

where χ is periodic with period 4πl/s.

7.1.2 Nutty bubbles in dS

The Taub-NUT ansatz that we shall use in the construction of these spaces is the following:

ds2 = −F (r)(dt− 2n cos θdϕ)2 + F−1(r)dr2 + (r2 + n2)(dθ2 + sin2 θdϕ2) + r2dz2. (7.10)

The above metric will be a solution of the Einstein field equations with positive cosmological

constant Λ = 6
l2

provided

F (r) =
4ml2 − r4 − 2n2r2

l2(r2 + n2)
, (7.11)

to make t periodic. Therefore we find that while there are no hyperbolic Misner strings for k = −1, the

fourth metric could have Misner strings.
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where the field equations impose the constraint4 4n2 = l2. Notice that, for large values of

r, the function F (r) takes negative values and r becomes effectively a timelike coordinate

as one should expect in a region outside the cosmological horizon. In order to remove the

usual Misner string singularity in the metric, we have to assume that the coordinate t is

periodic with period 4πl. If we analytically continue the coordinate t→ iχ and one of the

coordinates in the S2 sector we obtain the following metrics:

ds2 = F (r)(dχ+ l cos θdt)2 + F−1(r)dr2 + (r2 + l2/4)(dθ2 − sin2 θdt2) + r2dy2,

ds2 = F (r)(dχ+ l cosh tdφ)2 + F−1(r)dr2 + (r2 + l2/4)(−dt2 + sinh2 tdφ2) + r2dy2,

ds2 = F (r)(dχ+ l sinh tdφ)2 + F−1(r)dr2 + (r2 + l2/4)(−dt2 + cosh2 tdφ2) + r2dy2,

ds2 = F (r)(dχ+ letdφ)2 + F−1(r)dr2 + (r2 + l2/4)(−dt2 + e2tdφ2) + r2dy2. (7.12)

These metrics satisfy the vacuum Einstein field equations with positive cosmological con-

stant Λ = 6/l2, where F (r) is given by (7.11). However, for large values of r the function

F (r) becomes negative and the signature of the spacetime will change accordingly. To

avoid this situation one possibility is to consider two roots of the function F (r) and to re-

strict the values of the r coordinate such that F (r) is always positive. Namely we restrict

the range of the r coordinate such that r− < r < r+, where r± are two roots of F (r) and

in this way we avoid the change in the metric signature. It is easy to see that if m > 0

then F (r) has two real roots only if

r± = ± l

2

√

√

1 + 64m/l2 − 1 .

Fortunately, the conical singularities at the roots of F (r) in the (χ, r)-sector can both be

eliminated at the same time if we choose the periodicity of the χ-coordinate to be given

by

β =
4π

|F ′(r±)| =
2πl

√

√

1 + 64m/l2 − 1
.

To eliminate the Misner string singularity in the first metric in (7.12), we require that

the period β be equal to 4πl/s, where s is some integer. This further restricts the value

of the mass parameter such that m = l2s2(s2+8)
1024

. Notice that, locally, all these metrics

4In the following we shall use this constraint to eliminate n from the metric.
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are equivalent, being related by coordinate transformations. However, these spaces will

be equivalent globally only if the coordinate φ is unwrapped. At every fixed (χ, r, y) the

geometry is that of a perturbed two-dimensional de Sitter spacetime as an effect of the

non-trivial fibration.

To better understand the geometry in the (χ, r, y) sector let us focus on a section with

t, φ held fixed. Then the metric in the (χ, r, y)-sector becomes

ds2 = F (r)dχ2 + F−1(r)dr2 + r2dy2.

We restrict the values of the r-coordinate between the two roots of F (r) and since they

have the same magnitude, we shall take r2
+ = r2

− = r2
0. Then, it is easy to see that we can

write

F (r) = (r2
0 − r2)

4r2 + 2l2 + 4r2
0

l2(4r2 + l2)
= (r2

0 − r2)f(r),

where f(r) is strictly positive everywhere. Now if we make the following change of coordi-

nates

r2 = r2
0(1 − x2),

the metric in the (χ, r, y) sector becomes

ds2 =
dx2

(1 − x2)f(r0
√

1 − x2)
+ r2

0(1 − x2)dy2 + r2
0x

2f(r0
√

1 − x2)dχ2.

A further change of coordinates x = sinψ will bring it in the form:

ds2 =
dψ2

f(r0 cosψ)
+ r2

0 cos2 ψdy2 + r2
0 sin2 ψf(r0 cosψ)dχ2,

where

f(r0 cosψ) =
1

l2

[

1 +
4r2

0

4r2
0 cos2 ψ + l2

]

.

It can be easily seen that the geometry in this sector is one of a deformed 3-sphere. We

conclude that our bubble metrics describe non-trivial fibrations of a 3-sphere over a 2-

dimensional dS space.

If the coordinate φ is periodic, the circle geometry that it describes will evolve differently

for each of the above geometries. For instance, for the second metric in (7.12) the evolution
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is that of a circle that begins with zero radius at t = 0 and then expands exponentially

as t → ∞, while for the third metric we obtain a de Sitter evolution of a circle with

exponentially large radius at t → −∞ that exponentially shrinks to a minimal value and

then expands again. Finally the fourth geometry describes the evolution of a circle which

begins with zero radius at t→ −∞ and then expands exponentially as t→ ∞. Similar to

the four-dimensional situation considered in [62], a null curve in a geometry for which the

bubbles are expanding has |φ̇| ≤ e−t|ṫ| at late times, where the overdot refers to a derivative

with respect to proper time. Hence, observers at different values of φ will eventually lose

causal contact. On the other hand null rays at fixed φ and y obey the relation

ṙ2 + V (r) = 0, (7.13)

where V (r) = p2
χ + 4p2

yF (r)/r2 − 4E2F (r)/(4r2 + l2) is an effective potential, pχ = χ̇F

is the conserved momentum along the χ direction, py = r2ẏ is the conserved momentum

along the y direction and E = (r2 + l2/4)ṫ is the conserved energy. Generically, if py = 0

then the null geodesics oscillate between some minimal and maximal values of r, which

can be chosen to be within the admitted range of r. Hence observers at any two differing

values of r can be causally connected. However, if the observers are at different values of y

then the effective potential diverges at r = 0, which means that there will be two regions

that can be causally disconnected. It is easy to check that it is possible for observers at

different values of χ, respectively y to be causally connected at fixed values of r.

Let us notice that the first metric from (7.12) is stationary since it possesses the Killing

vector ξ = ∂
∂t

. The norm of this Killing vector is

ξ · ξ = l2F (r) − (r2 + l2/4 − l2F (r)) sin2 θ (7.14)

and so it becomes spacelike unless θ̂(r) ≤ |θ| ≤ π − θ̂(r). Here, we use the notation

θ̂(r) = tan−1

(

2l
√

F (r)√
4r2 + l2

)

. (7.15)

As in the four-dimensional case [62] these limits will describe an ‘ergocone’ for the space-

time. The above angle vanishes at r = r± while it attains a maximum value at r = 0.
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7.1.3 Nutty Rindler bubbles in flat backgrounds

We can also obtain NUT spaces with non-trivial topology if we construct the circle fibration

over a two-dimensional torus T 2,

ds2 = −F (r)(dt− 2nθdφ)2 + F−1(r)dr2 + (r2 + n2)(dθ2 + dφ2) + r2dy2 (7.16)

where

F (r) =
4ml2 + r4 + 2n2r2

l2(r2 + n2)
(7.17)

and the constraint equation takes now the form Λn2 = 0. Consistent Taub-NUT spaces

with toroidal topology exist if and only if the cosmological constant vanishes. The Eu-

clidean version of this solution, obtained by analytic continuation of the coordinate t→ it

and of the parameter n→ in, has a curvature singularity at r = n. Note that if we consider

n = 0 in the above constraint we obtain the AdS/dS black hole solution in five dimensions

with toroidal topology.

If the cosmological constant vanishes, then we can have n 6= 0 and the metric becomes

ds2 = −F (r)(dt− 2nθdφ)2 + F−1(r)dr2 + (r2 + n2)(dθ2 + dφ2) + r2dy2, (7.18)

where

F (r) =
4m

r2 + n2
. (7.19)

The asymptotic structure of the above metric is given by

ds2 =
4m

r2
(dt− 2nθdφ)2 +

r2

4m
dr2 + r2(dθ2 + dφ2 + dy2). (7.20)

If y is an angular coordinate then the angular part of the metric parameterizes a three

torus. The Euclidean section of the solution described by (7.18) is not asymptotically flat

and has a curvature singularity localized at r = 0. However, let us notice that for r ≤ n the

signature of the space becomes completely unphysical. Hence, for the Euclidean section,

we should restrict the values of the radial coordinate such that r ≥ n.

Consider now the analytic continuations of the coordinates t → iχ and θ → −it
(respectively φ→ −it) in the case of fibration over a torus. We obtain the spacetimes

ds2 = F (r)(dχ+ 2ntdφ)2 + F−1(r)dr2 + (r2 + n2)(−dt2 + dφ2) + r2dy2,

ds2 = F (r)(dχ+ 2nθdt)2 + F−1(r)dr2 + (r2 + n2)(dθ2 − dt2) + r2dy2 (7.21)
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whose metrics are locally equivalent under coordinate transformations. However, if one of

the coordinates φ or θ is periodic then they represent globally different spaces. Another

metric — related to the above by coordinate transformations — is a generalisation to five-

dimensions of the four dimensional nutty Rindler spacetime. Since F (r) has no roots these

spaces are not really bubbles. However they still represent interesting time-dependent

backgrounds, with metrics given by

ds2 = F (r)(dχ+ nt2dφ)2 + F−1(r)dr2 + (r2 + n2)(−dt2 + t2dφ2) + r2dy2,

ds2 = F (r)(dχ+ nθ2dt)2 + F−1(r)dr2 + (r2 + n2)(dθ2 − θ2dt2) + r2dy2. (7.22)

Let us notice that, by analogy with the four-dimensional case, in the first case, the geometry

of a slice (r, θ, y) is that of a twisted torus which has a Milne-type evolution. The second

geometry describes a static spacetime (with the Killing vector ξ = ∂
∂t

) with an ergoregion

described by

θ2 >
r2 + n2

n2F (r)
.

For large values of r, the ergoregion includes almost the entire (θ, r) plane except for a

strip bounded by two curves, opposite the r-axis, which asymptote to parabolas. For small

values of r the strip narrows and the boundary curves asymptote to ±n/
√

2m. For the

first geometry, as t2φ̇2 ≤ ṫ2 we have φ ∼ ln t and observers with different values of φ can

communicate with each other for arbitrarily large t. In the second geometry we obtain

θ̇2 ≤ θ2ṫ2, i.e. θ ∼ e|t| and we see that there is no restriction as to the maximum change of

coordinate θ for points on the null curve as t→ ±∞ and observers at points with different

θ can communicate with each other.

7.2 Higher dimensional Nutty Bubbles

We now consider some of the higher dimensional Taub-NUT spaces described in Chapter

3. As we have seen, the most general ansatz for the higher dimensional Taub-NUT spaces

corresponds to factorizations of the base space of the form B =
∏

iMi × Y , where each

factorMi is endowed with an Einstein-Kähler metric gMi
while Y is a general Einstein space

with metric gY . In these cases one can consider the U(1)-fibration only over the factored
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space M =
∏

iMi of the base B and take then a warped product with the manifold Y .

Quite generically, we can associate a NUT parameter Ni with every such factor Mi and

the general ansatz is then given by

F−1(r)dr2 +
∑

i

(r2 +N2
i )gMi

+ r2gY − F (r)(dt+
∑

i

2NiAi)
2. (7.23)

We now consider particular cases of these ansätze. To be more specific we shall focus on a

couple of six-dimensional metrics.

7.2.1 Bubbles in flat backgrounds

In six dimensions the base space is four-dimensional and we can use products of the form

M1×M2 of two-dimensional Einstein-Kähler spaces or we can use CP 2 as a four-dimensional

base space over which to construct the circle fibrations. If we use products of two dimen-

sional Einstein-Kähler spaces then we can consider all the cases in which Mi, i = 1, 2 can be

a sphere S2, a torus T 2 or a hyperboloid H2. The circle fibration can be constructed over

the whole base space M1 ×M2, in which case we can have two distinct NUT parameters

associated with each factor Mi or, in the case of metrics with only one NUT parameter,

just over one factor space M1, in which case we also take the warped product with M2 as

in (7.23).

We shall consider first the case in which M1 = M2 = S2 and assume that the U(1)

fibration is constructed over the whole base space S2 × S2. Then the corresponding six-

dimensional Taub-NUT solution is given by [111]

ds2 = −F (r)(dt− 2n1 cos θ1dϕ1 − 2n2 cos θ2dϕ2)
2 + F−1(r)dr2

+(r2 + n2
1)(dθ

2
1 + sin2 θ1dϕ

2
1) + (r2 + n2

2)(dθ
2
2 + sin2 θ2dϕ

2
2), (7.24)

where

F (r) =
3r6 + (l2 + 5n2

2 + 10n2
1)r

4 + 3(n2
2l

2 + 10n2
1n

2
2 + n2

1l
2 + 5n4

1)r
2

3(r2 + n2
1)(r

2 + n2
2)l

2

−6ml2r + 3n2
1n

2
2(l

2 + 5n2
1)

3(r2 + n2
1)(r

2 + n2
2)l

2
. (7.25)
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Here the above metric is a solution of vacuum Einstein field equations with cosmological

constant (λ = −10
l2

) if and only if (n2
1 − n2

2)λ = 0. Consequently, we see that differing

values for n1 and n2 are possible only if the cosmological constant vanishes. For n1 =

n2 = n the above solution reduces to the six-dimensional solution found and studied in

[11, 122, 9, 3, 133, 37]. In the case of only one NUT charge n there are no consistent

analytic continuations of the coordinates that lead to acceptable time-dependent metrics

with Lorentzian signature [62]. Basically, the reason for this is that if we perform analytic

continuations of the coordinates on one factor space S2 we also have to send n→ in, which

will force us to analytically continue the coordinates in the second sphere S2 yielding spaces

with two timelike directions. However, if the NUT parameters are independent then we can

analytically continue the coordinates in one factor Mi only and analytically continue the

NUT parameter associated with the second factor Mj . This enables us to construct nutty

bubble spacetimes in virtually any dimension. For this reason, in what follows we shall look

at the case of two different NUT charges, that is we set the cosmological constant to zero.

Let us consider the Euclidean section, obtained by the following analytic continuations

t→ iχ and nj → inj where j = 1, 2:

ds2 = FE(r)(dχ− 2n1 cos θ1dϕ1 − 2n2 cos θ2dϕ2)
2 + F−1

E (r)dr2

+(r2 − n2
1)(dθ

2
1 + sin2 θ1dϕ

2
1) + (r2 − n2

2)(dθ
2
2 + sin2 θ2dϕ

2
2),

FE(r) =
r4 − 3(n2

1 + n2
2)r

2 − 6mr − 3n2
1n

2
2

3(r2 − n2
1)(r

2 − n2
2)

. (7.26)

This metric is a solution of the vacuum Einstein field equations without cosmological

constant, for any values of the parameters n1 and n2. We set n1 > n2 without loss of

generality. In this case in the Euclidean section the radius r cannot be smaller than n1 or

the signature of the spacetime will change. The Taub-Nut solution in this case corresponds

to a two-dimensional fixed-point set located at r = n1. There is still a curvature singularity

located at r = n1. While superficially it would seem that this could removed by setting the

periodicity of the coordinate χ to be 8πn1 (thereby setting m = mp = −n3
1+3n1n2

2

3
), a more

careful analysis reveals that this Nut solution is actually still singular. This is because

the nut parameters n1,2 must be rationally related, in which case the periodicity of the χ

coordinate is 8πn2/k, where k is an integer. As n2 < n1 it is not possible to match this

periodicity with 8πn1 for any integer k.



153

On the other hand, the Bolt solution corresponds to r ≥ r0 > n1 and the periodicity is

found to be 4π
|F ′
E(n1)| = 4πr0. It is now possible to match it with 8πn2/k with k the integer

and we obtain r0 = 2n2

k
. The Bolt solution is then non-singular as long as r0 > n1, that is

for k = 1 and n1 < 2n2.

We are now ready to perform analytic continuations on the sphere factors in order to

generate new time-dependent backgrounds. For instance, we can consider θ1 → it + π
2
,

which will force us to take n1 → in1. We obtain the following time dependent solution:

ds2 = F̃E(r)(dχ+ 2n1 sinh tdφ1 + 2n2 cos θ2dφ2)
2 + F̃−1

E (r)dr2

+(r2 + n2
1)(−dt2 + cosh2 tdφ2

1) + (r2 − n2
2)(dθ

2
2 + sin2 θ2dφ

2
2),

F̃E =
r4 + 3(n2

1 − n2
2)r

2 − 6rm+ 3n2
1n

2
2

3(r2 + n2
1)(r

2 − n2
2)

. (7.27)

More generally, as with the four-dimensional case, after performing appropriate analytic

continuations we end up with the following metrics:

ds2 = F̃E(r)(dχ+ 2n1 cosh tdφ1 + 2n2 cos θ2dφ2)
2 + F̃−1

E (r)dr2,

+(r2 + n2
1)(−dt2 + sinh2 tdφ2

1) + (r2 − n2
2)(dθ

2
2 + sin2 θ2dφ

2
2),

ds2 = F̃E(r)(dχ+ 2n1e
tdφ1 + 2n2 cos θ2dφ2)

2 + F̃−1
E (r)dr2,

+(r2 + n2
1)(−dt2 + e2tdφ2

1) + (r2 − n2
2)(dθ

2
2 + sin2 θ2dφ

2
2),

ds2 = F̃E(r)(dχ+ 2n1 cos θdt+ 2n2 cos θ2dφ2)
2 + F̃−1

E (r)dr2,

+(r2 + n2
1)(dθ

2
1 − sin2 θ1dt

2) + (r2 − n2
2)(dθ

2
2 + sin2 θ2dφ

2
2). (7.28)

They are also solutions of vacuum Einstein field equations with the same function F̃E as

in (7.27).

While locally all these spaces are equivalent under coordinate transformations, if we

compactify the coordinate φ1(respectively θ1 for the last metric in (7.28)) the global struc-

ture and in particular the evolution of the bubble will be different. The bubble will be

located at the biggest root r0 of F̃E(r) such that r0 > n2 and we also restrict the range of

the r coordinate such that r ≥ n2. Elimination of the Misner string sets the periodicity

of the χ coordinate to be 8πn2/k, which in turn must be matched with the periodicity

4π/|F̃ ′
E(r0)|, introduced after we eliminate any possible conical singularities in the (χ, r)

sector. Again we have two solutions: a Nut and a Bolt.
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The Nut solution corresponds to r0 = n2 and in this case the mass parameter is

n2(3n
2
1 − n2

2)/3. Notice that the mass parameter can have either sign. The coordinate

χ has periodicity 8πn2. It is very interesting to note that the fixed-point set of the isom-

etry generated by ∂/∂χ is effectively two dimensional. The induced geometry on the

‘bubble-nut’ is a two-dimensional de Sitter space, whose metrics are one of the following

ds2
2 = (n2

1 + n2
2)(−dt2 + cosh2 tdφ2

1),

ds2
2 = (n2

1 + n2
2)(−dt2 + sinh2 tdφ2

1),

ds2
2 = (n2

1 + n2
2)(−dt2 + e2tdφ2

1),

ds2
2 = (n2

1 + n2
2)(dθ

2
1 − sin2 θ1dt

2). (7.29)

which differ globally but not locally. If the coordinate φ1 is periodically identified then

at any fixed time r = n2 is our ‘bubble-nut’: a circle with minimal circumference that

expands or contracts. The first three de Sitter geometries above correspond to three

different evolutions of this circle: the first geometry describes the evolution of a circle with

exponentially large radius at t → −∞, which shrinks to a minimal value and expands

exponentially again for t → ∞; the second geometry describes the evolution of a circle

which begins with zero radius at t = 0 and expands exponentially, while the third geometry

describes a circle that begins with exponentially small radius at t→ −∞ and then expands

exponentially. The last geometry is stationary as in these coordinates the metric has a

Killing vector ξ = ∂/∂t. The norm of this Killing vector is

ξ · ξ = 4n2
1F̃E(r) − (r2 + n2

1 − 4n2
1F̃E(r)) sin2 θ1

so that it will become spacelike unless θ̂1(r) ≤ |θ1| ≤ π− θ̂1(r); here, we used the notation:

θ̂1(r) = tan−1





2n1

√

F̃E(r)
√

r2 + n2
1



 .

As in the four-dimensional case [62] these limits will describe an ‘ergocone’ for the space-

time. The above angle vanishes at r = r0 and at infinity, while it attains a maximum value

in between.

The Bolt solution corresponds to a four-dimensional fixed-point set of the isometry

generated by ∂/∂χ. By solving the above constraint on the possible periodicities of the
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χ coordinate we obtain the location of the bolt r0 = 2n2/k. Requiring that r ≥ r0 > n2

implies k = 1, in which case the periodicity of the χ coordinate is 8πn2 and the mass

parameter is m = n2(15n2
1 + 4n2

2)/12. Notice that in this case the mass parameter is

positive. The induced geometry on the ‘bubble-bolt’ is a two-dimensional de Sitter space

times a sphere S2:

ds2
2 = (n2

1 + 4n2
2)(−dt2 + cosh2 tdφ2

1) + 3n2
2(dθ

2
2 + sin2 θ2dφ

2
2),

ds2
2 = (n2

1 + 4n2
2)(−dt2 + sinh2 tdφ2

1) + 3n2
2(dθ

2
2 + sin2 θ2dφ

2
2),

ds2
2 = (n2

1 + 4n2
2)(−dt2 + e2tdφ2

1) + 3n2
2(dθ

2
2 + sin2 θ2dφ

2
2),

ds2
2 = (n2

1 + 4n2
2)(dθ

2
1 − sin2 θ1dt

2) + 3n2
2(dθ

2
2 + sin2 θ2dφ

2
2). (7.30)

At any fixed time, r = 2n2 is the ‘bubble-bolt’, which is topologically S1 × S2. The S2

factor is described by the (θ2, φ2) coordinates and it has constant size in time. On the

other hand, the circle S1 described by the φ1 coordinate expands or contracts in time.

Again, the first three geometries describe three different evolutions of this circle. The last

geometry is static and it is easy to see that it possesses an ergocone with qualitatively the

same features as described above for the static bubble-nut ergocone.

We can also consider Taub-NUT spaces for which both the 2-dimensional factors Mi are

taken to be both a torus T 2 or a hyperboloid H2. Such geometries and the nutty bubbles

obtained from them are presented in Appendix A.

Finally, let us notice that all the nutty bubbles geometries exhibited so far have no

curvature singularities. Generically, from the form of the metrics one would expect that

r = n2 be a curvature singularity. However, the bubble-nut solution described above is

completely regular at r = n2 as one can check by looking at some of the curvature invariants

(for example RαβγδR
αβγδ). For the bubble-bolt, this curvature singularity is simply avoided

by requiring that r ≥ 2n2.

7.2.2 Bubbles in cosmological backgrounds

Another class of solutions is given for base spaces that are products of 2-dimensional

Einstein manifolds M1 ×M2. In this case, the metric ansatz that we use to construct the

Taub-NUT solution is the one given in (7.23), where now M = M1 while Y = M2.
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As an example we shall consider again the case in which M1 = M2 = S2. The metric

is written in the form [111]:

ds2 = −F (r)(dt− 2n cos θ1dφ1)
2 + F−1(r)dr2

+(r2 + n2)(dθ2
1 + sin2 θ1dφ

2
1) + αr2(dθ2

2 + sin2 θ2dφ
2
2). (7.31)

In order to satisfy the field equations we must take

α =
2

2 − λn2
, F (r) =

3r5 + (l2 + 10n2)r3 + 3n2(l2 + 5n2)r − 6ml2

3rl2(r2 + n2)
.

The metric (7.31) is a solution of the vacuum Einstein field equations with cosmological

constant λ = −10
l2

, for any values of n or λ. However, in order retain a metric of Lorentzian

signature we must ensure that α > 0, which translates in our case to λn2 < 2. For

convenience, we have given above the form of F (r) using a negative cosmological constant

and in this case the constraint on n and λ is superfluous. We can also use a positive

cosmological constant (we have to analytically continue l → il in F (r)) and as long as the

above condition on α is satisfied the final metric has Lorentzian signature. The Euclidean

section is

ds2 = FE(r)(dχ+ 2n cos θ1dφ1)
2 + F−1

E (r)dr2

+(r2 − n2)(dθ2
1 + sin2 θ1dφ

2
1) + αEr

2(dθ2
2 + sin2 θ2dφ

2
2)

αE =
l2

l2 − 5n2
, FE(r) =

3r5 + (l2 − 10n2)r3 − 3n2(l2 − 5n2)r − 6ml2

3rl2(r2 − n2)
(7.32)

obtained by continuing t→ iχ and n→ in.

We are now ready to construct the nutty bubbles. First, let us notice that we can

analytically continue the coordinates independently in the two S2 sectors. Let us perform

the analytic continuation of one of the coordinates in the second S2 factor, in which case
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we obtain the metrics:

ds2 = FE(r)(dχ+ 2n cos θ1dφ1)
2 + F−1

E (r)dr2,

+(r2 − n2)(dθ2
1 + sin2 θ1dφ

2
1) + αEr

2(−dt2 + cosh2 tdφ2
2),

ds2 = FE(r)(dχ+ 2n cos θ1dφ1)
2 + F−1

E (r)dr2,

+(r2 − n2)(dθ2
1 + sin2 θ1dφ

2
1) + αEr

2(−dt2 + sinh2 tdφ2
2),

ds2 = FE(r)(dχ+ 2n cos θ1dφ1)
2 + F−1

E (r)dr2,

+(r2 − n2)(dθ2
1 + sin2 θ1dφ

2
1) + αEr

2(−dt2 + e2tdφ2
2),

ds2 = FE(r)(dχ+ 2n cos θ1dφ1)
2 + F−1

E (r)dr2,

+(r2 − n2)(dθ2
1 + sin2 θ1dφ

2
1) + αEr

2(dθ2
2 − sin2 θ2dt

2). (7.33)

The above metrics are solutions of Einstein field equations with cosmological constant for

any values of λ = −10/l2 and n. In the case considered here, for a negative cosmological

constant, αE can have negative values if 5n2 > l2. However, while in the Euclidean sector

negative values of αE are not permitted, for our nutty bubbles a negative value for αE

amounts to an overall sign change of the metric in the (t, φ2) (respectively (t, θ2)) sectors.

We shall see that this can have a dramatic influence on the dynamical evolution of the

bubble.

The bubble will be located at the highest root r0 of FE(r) chosen such that r0 > n and

in general we restrict the range of the r coordinate r ≥ r0. Elimination of the Misner string

sets the periodicity of the χ coordinate to be 8πn/k and we also have to match it with the

periodicity 4π/|F ′
E(r0)| introduced after we eliminate any possible conical singularities in

the (χ, r) sector. Again we have two solutions: a Nut and a Bolt.

The Nut solution corresponds to a two-dimensional fixed-point set of the vector ∂
∂χ

located at r = n. The periodicity of the χ coordinate is in this case equal to 8πn and the

value of the mass parameter is fixed tomn = n3(4n2−l2)
3l2

. Notice that the mass parameter can

take any values: positive, negative or zero. There is a curvature singularity at the bubble

location! Furthermore, if n = l
2

then curvature singularity present at r = n disappears

and the spacetime has constant curvature. The fixed-points set of the isometry generated

by ∂/∂χ is effectively two dimensional. The induced geometry on the ‘bubble-nut’ is a
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two-dimensional de Sitter space:

ds2
2 = αEn

2(−dt2 + cosh2 tdφ2
2),

ds2
2 = αEn

2(−dt2 + sinh2 tdφ2
2),

ds2
2 = αEn

2(−dt2 + e2tdφ2
2),

ds2
2 = αEn

2(dθ2
2 − sin2 θ2dt

2). (7.34)

If the coordinate φ2 is periodically identified then at any fixed time r = n is our ‘bubble-

nut’: a circle with minimal circumference which expands or contracts. The first three de

Sitter geometries above correspond to three different evolutions of this circle as with (7.12).

The last geometry is static as in these coordinates the metric has a hypersurface-orthogonal

Killing vector ξ = ∂/∂t.

Now let us consider the effect of changing the sign of αE. This can be easily accommo-

dated by taking l2 < 5n2. As we can easily see from the metric induced on the bubble, a

negative sign of αE amounts to changing the induced de Sitter geometry of the bubble-nut

into a two-dimensional anti-de Sitter geometry. As it is well known, this space can have

non-trivial identifications and so it can describe for instance a two-dimensional black hole

(as in the second and third metrics above), while the first metric describes pure AdS in

standard coordinates. After a coordinate transformation these metrics can be written in

the form:

ds2 = (−αE)n2

(

dx2

x2 + k
− (x2 + k)dt2

)

,

ds2
2 = (−αE)n2(−dt2 + sin2 tdφ2

2), (7.35)

where k = −1, 1, 0 for the respective first three metrics in (7.34). They are all locally

equivalent under changes of coordinates. However, depending on the identifications made,

the global structure can be quite different. For example, the second metric from (7.35) can

be locally transformed into the k = −1 metric by a coordinate transformation. However,

if φ2 is periodic then the global structure of these spaces is completely different. For r ≥ n

this metric describes a bubble located at r = n, which expands from zero size to a finite

size (−αEn2) and then contracts to zero size again. Near the initial expansion (or the final

contraction) the scale factor is linear in time and the spacetime expands or contracts like

a Milne universe.
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The bubble-bolt geometry has a four-dimensional fixed-point set of ∂
∂χ

located at r = rb

with:

rb =
kl2 ±

√
k2l4 − 80n2l2 + 400n4

20n
, (7.36)

while the value of the mass parameter is:

mb =
3r5

b + (l2 − 10n2)r3
b − 3n2(l2 − 5n2)rb

6l2
. (7.37)

The periodicity of the coordinate χ is 8πn
k

, where k is an integer. The induced geometry

on the ‘bubble-bolt’ is a two-dimensional de Sitter space times a sphere S2:

ds2
2 = (r2

b − n2)(dθ2
1 + sin2 θ1dφ

2
1) + αEr

2
b (−dt2 + cosh2 tdφ2

2),

ds2
2 = (r2

b − n2)(dθ2
1 + sin2 θ1dφ

2
1) + αEr

2
b (−dt2 + sinh2 tdφ2

2),

ds2
2 = (r2

b − n2)(dθ2
1 + sin2 θ1dφ

2
1) + αEr

2
b (−dt2 + e2tdφ2

2),

ds2
2 = (r2

b − n2)(dθ2
1 + sin2 θ1dφ

2
1) + αEr

2
b (dθ

2
2 − sin2 θ2dt

2). (7.38)

At any fixed time, r = rb is the ‘bubble-bolt’, which is topologically S1×S2. The S2 factor

is described by the (θ1, φ1) coordinates and it has constant size in time. On the other

hand, the circle S1 described by φ2, expands or contracts in time. Again, the first three

geometries describe three different evolutions of this circle. The last geometry in (7.38)

is static. As for the bubble-nut, changing the sign of αE has dramatic consequences as it

effectively turns the two-dimensional dS geometry into AdS.

The boundary geometry for these bubble spacetimes is given by

ds2 = 4n2/l2(dχ̃+ cos θ1dφ1)
2 + (dθ2

1 + sin2 θ1dφ
2
1) + αEdS2,

ds2 = 4n2/l2(dχ̃+ cos θ1dφ1)
2 + (dθ2

1 + sin2 θ1dφ
2
1) + (−αE)dΣ2, (7.39)

where χ̃ = χ/2n is periodic with period 4π. Here dS2 (respectively dΣ2) describes the

metric of a two-dimensional de Sitter space (respectively AdS). The (χ, θ1, φ1)-sector

describes a squashed three-sphere, the squashing parameter being controlled by 4n2/l2. It

is interesting to note that, for negative αE , one can perform identifications on the AdS

part of the metric which turn it into a black-hole.
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Finally, the other possibility to obtain bubble spacetimes is to analytically continue

t→ iχ and one of the coordinates in the first S2 factor in (7.31):

ds2 = F (r)(dχ+ 2n sinh tdφ1)
2 + F−1(r)dr2

+(r2 + n2)(−dt2 + cosh2 tdφ2
1) + αr2(dθ2

2 + sin2 θ2dφ
2
2),

ds2 = F (r)(dχ+ 2n cosh tdφ1)
2 + F−1(r)dr2

+(r2 + n2)(−dt2 + sinh2 tdφ2
1) + αr2(dθ2

2 + sin2 θ2dφ
2
2),

ds2 = F (r)(dχ+ 2netdφ1)
2 + F−1(r)dr2,

+(r2 + n2)(−dt2 + e2tdφ2
1) + αr2(dθ2

2 + sin2 θ2dφ
2
2),

ds2 = F (r)(dχ+ 2n cos θ1dt)
2 + F−1(r)dr2,

+(r2 + n2)(dθ2
1 − sin2 θ1dt

2) + αr2(dθ2
2 + sin2 θ2dφ

2
2). (7.40)

The above metrics are solutions of vacuum Einstein field equations with cosmological con-

stant for any values of n or λ = −10/l2. However, in order to keep the signature of the

metric Lorentzian we have to ensure that α > 0 i.e. λn2 < 2. We can have a positive5

or negative cosmological constant as long as this relation is satisfied. Notice that for a

negative cosmological constant α is always positive. The bubble is located at the biggest

root r0 of F (r) and in order to eliminate a conical singularity in the (χ, r)-sector, we have

to periodically identify χ with period given by 4π/|F ′(r0)| = 4πl2r0/[l
2 + 5(r2

0 + n2)]. At

any fixed time, r = r0 is the bubble, which is topologically S1 × S2. The S2 factor is

described by the (θ2, φ2) coordinates and it has constant size. On the other hand, the

circle S1 described by φ1 expands or contracts in time. Again, the first three geometries

describe three different evolutions of this circle. The last geometry is stationary and it is

easy to see that it possesses an ergocone with qualitatively the same features as described

above for the static bubble-nut ergocones encountered in the previous sections.

Similar nutty bubbles can be obtained by considering Taub-NUT metrics for which

M1 6= M2. Such metrics have been studied in [111, 105, 113]. In six dimensions, such

metrics can have two independent NUT parameters and there exists a constraint on the

values of these NUT parameters and the cosmological constant. Quite generically this

constraint makes it impossible to set the cosmological constant to zero. Having two NUT

5To write the solution for a positive cosmological constant we have to send l → il in F (r) in (7.2.2).
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parameters at our disposal it is very easy to construct various nutty bubble solutions by

analytically continuing the coordinates in only one of the factors Mi.

7.2.3 Nutty bubbles and Hopf dualities

In this section we apply Hopf-duality rules from Appendix C to some of our nutty bubbles

to generate new time dependent backgrounds. However, since these rules work only for

solutions that do not have cosmological constant, we shall focus mainly on the cases in

which M1 = M2. For simplicity, and just to illustrate the method we shall use just a few

nutty bubble solutions as seeds.

Let us start with the solution given in (7.27). Considering this metric as a solution

of the pure gravity sector of the truncated Type IIA theory we can now perform a Hopf-

duality along the spacelike χ-direction to obtain a solution of six-dimensional Type IIB

theory:

ds6B = F̃E(r)−
1
2dχ2 + F̃E(r)−

1
2dr2 + F̃E(r)

1
2 (r2 + n2

1)(−dt2 + cosh2 tdφ2
1)

+F̃E(r)
1
2 (r2 − n2

2)(dθ
2
2 + sin2 θ2dφ

2
2)

2

e2ϕ1 = e2ϕ2 = F̃E(r), ANS(2) = 2n1 sinh tdφ1 ∧ dχ+ 2n2 cos θ2dφ2 ∧ dχ. (7.41)

Were we to consider (7.27) as a solution of the pure gravity sector of Type IIB theory,

then after performing the spacelike Hopf dualisation we would obtain a solution of Type

IIA theory:

ds6A = F̃ (r)−
1
2dχ2 + F̃ (r)−

1
2dr2 + F̄ (r)

1
2 (r2 + n2

1)(−dt2 + cosh2 tdφ2
1)

+F̄ (r)
1
2 (r2 − n2

2)(dθ
2
2 + sin2 θ2dφ

2
2)

e2ϕ1 = e2ϕ2 = F̄ (r), A(2) = 2n1 sinh tdφ1 ∧ dχ+ 2n2 cos θ2dφ2 ∧ dχ. (7.42)

The analysis of these charged bubbles proceeds as in the previous sections. The bubble

will be located at the largest root of F̃E(r). Generically there exists a curvature singularity

at the bubble location, which cannot be cured by any appropriate choices of the parameters.

Another difference with the previous bubble solutions is that in the (χ, r)-sector there is

no conical singularity to be eliminated and χ need not be compactified.
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As another example of this method, let us consider a bubble solution, which corre-

sponds to a six-dimensional Taub-NUT constructed as a circle fibration over T 2 ×T 2. The

Euclidean version of such spaces is [111]:

ds2 = FE(r)(dχ+ 2n1θ1dφ1 + 2n2θ2dφ2)
2 + F−1

E (r)dr2

+(r2 − n2
1)(dθ

2
1 + dφ2

1) + (r2 − n2
2)(dθ

2
2 + dφ2

2)

FE(r) =
3r6 − 5(n2

2 + 2n2
1)r

4 + 15n2
1(n

2
1 + 2n2

2)r
2 + 6ml2r + 15n4

1n
2
2

3(r2 − n2
1)(r

2 − n2
2)l

2
(7.43)

The above metric is a solution of vacuum Einstein field equations with cosmological con-

stant if and only if (n2
2 − n2

1)λ = 0. Hence in the case of a vanishing cosmological constant

we can have two independent NUT charges in the metric. We can similarly analytically

continue the coordinates from one factor space T 2 only:

ds2 = F̃E(r)(dχ+ 2n1tdφ1 + 2n2θ2dφ2)
2 + F̃−1

E (r)dr2

+(r2 + n2
1)(−dt2 + dφ2

1) + (r2 − n2
2)(dθ

2
2 + dφ2

2)

ds2 = F̃E(r)(dχ+ 2n1θ1dt+ 2n2θ2dφ2)
2 + F̃−1

E (r)dr2

+(r2 + n2
1)(dθ

2
1 − dt2) + (r2 − n2

2)(dθ
2
2 + dφ2

2)

F̃E(r) =
2mr

(r2 + n2
1)(r

2 − n2
2)

(7.44)

However, if λ 6= 0 we are forced to have n1 = n2 and it is impossible to analytically continue

the coordinates of the T 2 factors separately.

Taking the first bubble solution given in (7.44) as a solution of Type IIA theory, then

after performing a Hopf duality along the χ direction we obtain:

ds6B = F̃E(r)−
1
2dχ2 + F̃E(r)−

1
2dr2 + F̃E(r)

1
2 (r2 + n2

1)(−dt2 + dφ2
1) + F̃E(r)

1
2 (r2 − n2

2)(dθ
2
2 + dφ2

2)

e2ϕ1 = e2ϕ2 = F̃E(r), ANS(2) = 2n1tdφ1 ∧ dχ+ 2n2θ2dφ2 ∧ dχ. (7.45)

which is a solution of the Type IIB theory. Notice that F (r) = 0 only if r = 0. On the

other hand, we have to restrict the values of the radial coordinates such that r ≥ n2, or

else the signature of this metric will change. There is however a curvature singularity at

r = n2, which cannot be eliminated by any appropriate choices of the parameter m.
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7.3 Discussion

In this chapter, we have constructed a wide variety of time-dependent backgrounds using

the standard techniques of analytic continuation. Since many of the presented solutions are

locally asymptotically (A)dS, they are relevant in the context of gauge/gravity dualities.

For example, let us discuss one of our solutions (7.12) in the context of the AdS/CFT

correspondence. The bulk-boundary correspondence in the Lorentzian section demands

the inclusion of both normalizable and non-normalizable modes of the bulk fields [14]. The

former propagate in the bulk and correspond to physical states while the latter serve as

classical, non-fluctuating backgrounds and encode the choice of operator insertions in the

boundary theory.

Since the bulk theory is a theory of gravity, one of the bulk fields will always be the

graviton (metric perturbations). The AdS/CFT dictionary tells us that its dual operator

is the stress-energy tensor of the CFT. We will compare the dual CFT stress tensor to the

rescaled boundary stress tensor calculated from the bulk spacetime using the counterterm

subtraction procedure of [13, 128]. Typically, the boundary of a locally asymptotically

spacetime will be an asymptotic surface at some large radius r. However, the metric

restricted to the boundary γab diverges due to an infinite conformal factor r2/ℓ2, and so

the metric upon which the dual field theory resides is usually defined using the rescaling

hab = lim
r→∞

ℓ2

r2
γab. (7.46)

Corresponding to the boundary metric hab, the stress-energy tensor < τab > for the dual

theory can be calculated using the following relation

√
−hhab < τbc >= lim

r→∞

√−γγabTbc. (7.47)

In our case, the boundary metric is

ds2 = habdx
adxb = (dχ+ lxdt)2 + l2

(

dx2

x2 + k
− (x2 + k)dt2

)

+ l2dy2, (7.48)

and so the conformal boundary, where the N = 4 SYM lives, is AdS3 × S1. The rescaled
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boundary stress tensor is

τ tt =
256m+ 5l2

1024πGl3
,

τ tχ = 0,

τχt = −(l2 + 64m)x

64πGl3

τχχ = −11l2 + 768m

1024πGl3
,

τxx =
5l2 + 256m

1024πGl3
,

τ yy =
l2 + 256m

1024πGl3
. (7.49)

Since the boundary metric is the product of a circle and a three-dimensional Einstein

space, the trace anomaly vanishes. Indeed, as we expected, the stress tensor (7.49) is

finite, covariantly conserved, and manifestly traceless.

For four dimensions, it was shown in [62] that in the special case when the NUT charge

vanishes (n = 0), the metric (stress tensor) reduces to the 4-dimensional Schwarzschild-

AdS metric (stress tensor). In five dimensions, the constraint between the NUT charge

and the cosmological constant changes dramatically the situation. However, the limit we

are interested here is m = −64/l2. Then, the bulk geometry has constant curvature and

it is the static bubble obtained from AdS5 by analytic continuation. Indeed, in this case

F (r) = r2

l2
+ 1

4
and by redefining the coordinate r2 → r2 − l2

4
and rescaling y to absorb an

l2 factor, the metric can be cast in the form:

ds2 =

(

r2

l2
− 1

4

)

dy2 +
dr2

(

r2

l2
− 1

4

) + r2
[

(dχ̃+ sinh θdt)2 + dθ2 − cosh2 θdt2
]

.

One can recognize it as being the analytic continuation of AdS5 with a non-canonically

normalized H3 factor. For this particular value of the parameter m, the stress tensor (7.49)

becomes

τab =
N2

512π2l4
diag(1, 1, 1,−3), (7.50)

where we have used the standard relation l3/G = 2N2/π to rewrite the stress tensor in

terms of field theory quantities.6

6The convention for the coordinates is 1, 2, 3, 4 = t, χ, x, y.
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Let us move now to the dual theory that is in terms of N = 4 SYM on the AdS3 × S1

spacetime. This is a conformally flat spacetime and, fortunately, there is a standard result

for the stress tensor [21]:

〈τab 〉 = − 1

16π2

(

A(1)Ha
b +B(3)Ha

b

)

+ τ̃ab . (7.51)

Here, (1)Ha
b and (3)Ha

b are conserved quantities constructed from the curvature (see [21] for

their definitions), and τ̃ab is a traceless state-dependent part. In our case they are given by

(1)Ha
b =

3

8l4
diag[1, 1, 1,−3],

(3)Ha
b = − 1

16l4
diag[1, 1, 1,−3]. (7.52)

The coefficients A and B are calculated as in [16]. The trace of (7.51) is compared with

the conformal anomaly for N = 4 SYM [128]:

〈τaa 〉 = − 1

16π2

(

−6A�R − B(RabR
ab − 1/3R2)

)

=
(N2 − 1)

64π2
(2RabR

ab − 2/3R2). (7.53)

This fixes A = 0 and B = (N2 − 1)/2 and so the field theory stress tensor becomes

〈τab 〉 =
1

2

(N2 − 1)

256π2l4
diag(1, 1, 1,−3) + τ̃ab . (7.54)

In the large N limit, the geometrical part of the stress tensor precisely reproduces (7.50).

The fact that the geometrical part is non zero is a direct consequence of analytic continu-

ation — the quantum field theory on the AdS boundary can have a nonvanishing vacuum

(Casimir) energy. Consequently, the above comparison of the stress tensor (7.50) to (7.54)

does result in a non-trivial connection between them.





Chapter 8

New Taub-NUT-Reissner-Nordström

spaces in higher dimensions

8.1 Overview

As we have seen in Chapter 2, in four dimensions there also exists NUT-charged generalisa-

tions of the Reissner-Nordström solution [4, 30] and they are included in the general family

described recently by Griffiths and Podolsky [73, 75, 72]. However, until recently [114, 10],

the higher dimensional generalisations of NUT-charged solutions in Einstein-Maxwell the-

ory has not been discussed previously in the literature.

In this chapter, our main purpose is to provide the generalisation of these spaces to

higher dimensions. These solutions will represent the electromagnetic generalisation of the

NUT-charged spacetimes studied in refs. [105, 11, 133, 9, 37] as well as the NUT-charged

generalisation of the higher dimensional Reissner-Nordström solutions [34].

Einstein-Maxwell theory in D-dimensions is described by the following action:

I = − 1

16πG

∫

dDx
√−g

[

R− 2Λ − F 2
]

(8.1)
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The equations of motion derived from this action can be written in the following form1:

Rµν = 2

(

FµρF
ρ
ν − 1

2(D − 2)
F 2gµν

)

+ λgµν

∇µF
µν = 0 (8.2)

where F = dA is the electromagnetic 2-form field strength corresponding to the gauge

potential A.

8.2 The general solution

Let us recall first the form of the 4-dimensional Taub-NUT-Reissner-Nordström metric.

The metric is given by [30]:

ds2 = −f(r)(dt− 2NA)2 + F−1(r)dr2 + (r2 +N2)gM (8.3)

where M is a 2-dimensional Einstein-Kähler manifold, which can be taken to be the unit

sphere S2, torus T 2 or the hyperboloid H2. In each case we have:

A =

{ cos θdφ, for δ = 1 (sphere)

θdφ, for δ = 0 (torus)

cosh θdφ, for δ = −1 (hyperboloid),

while the function f(r) and the gauge field potential A have the following expressions:

f(r) =
r4 + (l2 + 6N2)r2 − 2ml2r − 3N4 + l2(q2 −N2)

l2(r2 +N2)

A = − qr

r2 +N2
(dt− 2NA) (8.4)

Here m, q and N are respectively the mass, charge and the NUT parameter. As one can

see directly from the expression of the 1-form gauge potential, one noteworthy feature of

this solution is that the electromagnetic field strength carries both electric and magnetic

components. Moreover, if we try to compute the electric and magnetic charges the results

will depend on the radius of the 2-sphere on which we integrate (see also [96]). However,

1We use here λ = ±D−1
l2

.
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if we take the limit in which the 2-sphere is pushed to infinity we find that the magnetic

charge vanishes and the solution is purely electric with charge q.

We are now ready to present the general class of electrically-charged Taub-NUT metrics

in even dimensions D = 2d+2. These spaces are constructed as complex line bundles over

an Einstein-Kähler space M , with dimension 2d and metric gM . The metric ansatz that

we use is the following:

ds2
D = −f(r)(dt− 2NA)2 + F−1(r)dr2 + (r2 +N2)gM (8.5)

Here J = dA is the Kähler form for the Einstein-Kahler space M and we use the normal-

isation such that the Ricci tensor of the Einstein-Kähler space M is Rab = δgab.

Motivated by the known four-dimensional solution we shall make the following ansatz

for the electromagnetic gauge potential:

A = −
√

D − 2

2

qr

(r2 +N2)
D−2

2

(dt− 2NA) (8.6)

Then the general solution to Einstein’s field equations with cosmological constant λ =

±(D − 1)/l2 is given by:

f(r) =
r

(r2 +N2)
D−2

2

[

r
∫
(

δ ∓ D − 1

l2
(s2 +N2)

)

(s2 +N2)
D−2

2

s2
ds− 2m

]

+q2 (D − 3)r2 +N2

(r2 +N2)D−2
. (8.7)

As in the 4-dimensional case the electromagnetic field strength has both electric and

magnetic components. If we try to compute the electric and magnetic charges we obtain

again results that depend on the radial coordinate r. However, if we push the integration

surfaces to infinity the magnetic charge will vanish leaving us only with an effective electric

charge.

As an example of this general solution, let us assume that the (D−2)-dimensional base

space in our construction is a product of d factors, M = M1 × · · · ×Md where Mi are two

dimensional Einstein-Kähler spaces or more generally CP n factors. In particular, we can

use the sphere S2, the torus T 2 or the hyperboloid H2 as factor spaces. It is then easy to
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see that if q = 0 we recover the previously known higher dimensional Taub-NUT solutions

with only one NUT parameter, studied in Chapter 3. On the other hand, if N = 0 then

we recover the topological Reissner-Nordström-AdS solutions given in [34].

8.3 Regularity conditions

The singularity analysis performed here is a direct application of the one given in Chapter

3. In order to extend the local metrics presented above to global metrics on non-singular

manifolds the idea is to turn all the singularities appearing in the metric into removable

coordinate singularities. For generic values of the parameters the singularities are not

removable, corresponding to conical singularities in the manifold. We are mainly interested

in the case of a compact Einstein-Kähler manifold M . Generically the Kähler form J on

M can be equal to dA only locally and we need to use a number of overlapping coordinate

patches to cover the whole manifold. Now, in order to render the 1-form dτ − 2nA well-

defined we need to identify τ periodically. We will require the period of τ to be given

by:

β =
4πnp

kδ
(8.8)

where k is a positive integer, while p is a non-negative integer, defined as the integer such

that the first Chern class, c1, evaluated on H2(M) is Z · p, i.e. the integers divisible by

p. Among all the Einstein-Kähler manifolds the integer p is maximised in CP q, for which

p = q+ 1 [122]. It is also necessary to eliminate the singularities in the metric that appear

as r is varied over M . The critical points are to the so-called endpoint values of r: these

are the values for which the metric components become zero or infinite. For a complete

manifold r must range between two adjacent endpoints and we must eliminate the conical

singularities (if any) which occur at these points. The finite endpoins occur at r = ±n or

at the simple zeros of fE(r). Quite generally, when the electrical charge q is zero, r = ±n
give the location of curvature singularities unless fE = 0 there as well. By contrast with

the uncharged case, it turns out that if q 6= 0 then the curvature singularities at r = ±n
cannot be eliminated for any choices of the parameters. This can be seen from the fact

that fE(r) diverges badly when r → ±n for any values of m and the components of the

curvature tensor will diverge there as well. Therefore, in order to obtain non-singular
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Euclidean sections we have to restrict the range of the radial coordinate such that the

values r = ±n are avoided. We should then restrict our attention to simple roots r0 of

fE(r) different from ±n. In general, to eliminate a conical singularity at a root r0 of fE(r)

we must restrict the periodicity of τ to be given by:

β =
4π

|f ′
E(r0)|

and this will generally impose a restriction on the values of the parameters once we match

it with (8.8). This condition will also fix the location of the bolt, which will be given by a

solution of the equation:

npq2
[

(D − 3)2r4
0 − 2n2r2

0 + n4
]

+

[

np
(

δ − λ(r2
0 − n2)

)

− kδr0

]

(r2
0 − n2)D−1 = 0 (8.9)

For compact manifolds the radial coordinate takes values between two finite endpoints

and we have to impose this constraint at both endpoints. If the manifold is noncompact

then the cosmological constant must be non-positive and the radial coordinate takes values

between one finite endpoint r0 and one infinite endpoint r1 = ∞. Since for our asymptot-

ically locally (A)dS or flat solutions the infinite endpoints are not within a finite distance

from any points r 6= r1 there is no regularity condition to be imposed at r1. In this case

the only regularity conditions are that fE(r) > 0 for r ≥ r0 and β = 4π
|f ′E(r0)| to be satisfied.

The only way to avoid a curvature singularity at r = n is to restrict the values of the radial

coordinate such that r ≥ r0 > n, i.e. the only non-singular Taub-NUT-RN spaces are the

TNRN-bolt solutions2.

8.4 The Taub-NUT-RN solution in six dimensions

As an illustration of the general analysis performed in the previous section, in this section

we shall look more closely at a six-dimensional Taub-NUT-RN solution constructed over

the four-dimensional base S2×S2. Performing the analytical continuations t→ iτ , N → in

2We are focussing here on non-compact manifolds. For compact manifolds we could restrict the range

of the radial coordinate r to the interval between two adjacent roots r1 ≤ r ≤ r2 of fE(r) such that the

values ±n are avoided.
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and q → iq, the metric in the Euclidean sector can be written in the form:

ds2 = fE(r) (dτ − 2n cos θ1dφ1 − 2n cos θ2dφ2)
2 +

dr2

fE(r)

+(r2 − n2)(dθ2
1 + sin2 θ1dφ

2
1) + (r2 − n2)(dθ2

2 + sin2 θ2dφ
2
2) (8.10)

where the function fE(r) and the 1-form potential A are given by:

fE(r) =
3r6 + (l2 − 15n2)r4 + 3n2(15n2 − 2l2)r2 − 6ml2r + 3n4(5n2 − l2)

3(r2 − n2)2l2

−q
2 (3r2 − n2)

(r2 − n2)4

A = −
√

2qr

(r2 − n2)2
(dτ − 2n cos θ1dφ1 − 2n cos θ2dφ2) (8.11)

Regularity of the 1-form dτ − 2nA forces the periodicity of the Euclidean time to be 8πn
k

,

for some integer k. As mentioned in the previous section, the Nut solution is singular

thence we restrict our attention directly to the Bolt solutions. These solutions correspond

to a four-dimensional fixed-point set located at a simple root rb of fE(r) and we restrict

the values of the radial coordinate such that r ≥ rb > n. The periodicity of τ is given

by 8πn
k

and we have to match it with the periodicity obtained by eliminating the conical

singularities at rb. This will fix the location of the bolt as given by a root of

2nq2(9r4
b − 2n2r2

b + n4) +

[

2n

(

1 +
5

l2
(r2
b − n2)

)

− krb

]

(r2
b − n2)5 = 0

As this is a polynomial equation of rank 12, an analytical solution for rb seems out of the

question.

Finally, the value of the mass parameter is given by:

mb =
3r10

b + (l2 − 21)r8
b + n2(78n2 − 8l2)r6

b + 10n4(l2 − 9n2)r4
b + (15n8 − 9q2l2)r2

b

6(r2
b − n2)2l2rb

−3n2(n6l2 − q2l2 − 5n8)

6(r2
b − n2)2l2rb

.

Generically there is a curvature singularity at r = n, which is simply avoided if we restrict

the range of the radial coordinate such that r ≥ rb > n. If q = 0 we recover the six-

dimensional cosmological Taub-NUT solution over the base space S2 × S2, which was
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discussed in Chapter 3. If n = 0 the solution reduces to the topological Reissner-Nordström

solution whose horizon topology is S2 × S2.

Similar results are obtained for a fibration over CP 2. The only difference appears in

the periodicity of τ , which has to be now 12πn/k and this will also modify the equation

for rb (as can be read from the general expression (8.9) with p = 3 and δ = 1). Unlike the

uncharged case, the NUT solution is singular as there will be a curvature singularity at

r = n.

8.5 Summary

In this chapter we presented new families of higher dimensional solutions of the sourceless

Einstein-Maxwell field equations with or without cosmological constant. Following the

general structure of the NUT-charged spaces, these solutions are constructed as radial

extensions of circle fibrations over even dimensional spaces that can be in general products

of Einstein-Kähler spaces.

We have given the Lorentzian form of the solutions. However in order to understand

the singularity structure of these spaces, we have concentrated mainly on their Euclidean

sections – recognising that the Lorentzian versions are singularity-free – apart from quasi-

regular singularities.

As previously discussed in Chapter 2, in general the Euclidean section is simply obtained

using the analytic continuations t → iτ , N → in and q → iq. Generically the Taub-NUT

solutions present themselves in two classes: ‘Nuts’ and ’Bolts’. While in the uncharged case

there can exist Nuts with intermediate dimensionality, for our Nut solutions the fix-point

set has always dimension 0 and it is singular. Indeed, we found that at the Nut location

there always exists a curvature singularity that cannot be eliminated for any choice of

the parameters. This is clearly in contrast with the uncharged case: in absence of the

electrical charge, there are Nut solutions that are non-singular – for example, if we use

M = CP q then for an appropriate choice of the mass parameter we find that there is

no curvature singularity at r = n. The only regular charged solutions are then the Bolt

metrics. The regularity conditions require us to fix the periodicity of the Euclidean time

τ . This periodicity is determined in two ways and by matching the two obtained values
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we get restrictions on the values of the parameters in our solutions. These restrictions will

also fix the location of the bolt. However, as in D-dimensions the equation that we have

to solve is a polynomial equation of rank 2D, there is no chance to obtain the bolt location

in a closed analytical form.



Chapter 9

Summary

It is appropriate at the conclusion of this thesis to summarise the main results that we

have obtained and to point out some areas that need further clarification.

9.1 New exact solutions

In Chapter 2 we constructed new solutions of the vacuum Einstein field equations in four

dimensions via a solution generating method utilizing the SL(2, R) symmetry of the di-

mensionally reduced action in three dimensions. Our method was based on the simple

observation that a static axisymmetric metric as written in Weyl-Papapetrou coordinates

exhibits a simple ‘scaling’ symmetry that allows one to generate a family of new static vac-

uum axisymmetric solutions, indexed by a real parameter. In particular, using this scaling

symmetry one can easily generate the Zipoy-Voorhees solution from the Schwarzschild

solution.

We also made use of a charging method for static vacuum metrics, which dates back

to Weyl [137]. We demonstrated a simpler alternative derivation of this transformation

by using a SL(2, R) symmetry of the reduced Lagrangian in three dimensions. However,

unlike previous applications of this transformation, we showed that with our simplified

mapping and by combining this charging method with the scaling property, one is able to

generate new solutions starting with the Schwarzschild solution as a seed. In particular,

we obtained new vacuum stationary axisymmetric metrics. The Lorentzian version of the

175
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generated solutions gives a Zipoy-Voorhees like generalisation of the Taub-NUT solutions,

while the Euclidean version gives a non-trivial generalisation of the Eguchi-Hanson solitons

in four dimensions. Much like the original Zipoy-Voorhees solution [142, 135], such metrics

are parameterized by a real number γ. For γ = 1 we recover the usual Taub-NUT/Eguchi-

Hanson solitons and, for higher positive integer values of γ, they can be interpreted as the

‘superposition’ of γ NUT-charged objects/solitons.

Inspired by the success in obtaining the Zipoy-Voorhees Taub-NUT and Eguchi-Hanson

solitons, we attempted the same procedure on a different seed metric, this time using

another well-known Weyl solution, the C-metric. This metric is known to describe two

black holes uniformly accelerated in opposite directions where the source of acceleration is

a strut in between the black holes pushing them apart, or alternatively two strings pulling

on the black holes from infinity. For our purpose, it was more convenient to use the form

of the C-metric given in [90], which has been cast into a nice factorized form. Using a

similar procedure to the one that generated the Zipoy-Voorhees Taub-NUT family, we

finally obtained new vacuum solutions that we interpreted as describing the accelerating

Zipoy-Vorhees-like family of Taub-NUT solutions, respectively Eguchi-Hanson instantons.

We focused our attention on a particular member of this family and we showed that it

describes the accelerated version of Taub-NUT space.

As avenues for further research, it would be interesting to study in more detail the

connection of the singular charged C-metric that we obtained with the usual form of the

C-metric. In particular, it would be interesting to find a proper dilatonic generalisation

of the accelerated Zipoy-Voorhees metric, one that would reduce to the proper charged

C-metric in the appropriate limit.

In Chapter 3 we considered higher dimensional solutions of the vacuum Einstein field

equations with and without cosmological constant. These solutions are constructed as

radial extensions of circle fibrations over even dimensional spaces that can be factored

in general as products of Einstein-Kähler spaces. The novelty of our solutions is that, by

associating a NUT charge with every such factor of the base space, we have obtained higher

dimensional generalisations of Taub-NUT spaces that can have quite generally multiple

NUT parameters. In our work we have given the Lorentzian form of the solutions, however,

in order to understand the singularity structure of these spaces we have concentrated
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mainly on the their Euclidean sections. In most of the cases the Euclidean section is

simply obtained using the analytic continuations t → it and Nj → inj . When continuing

back the solutions to Lorentzian signature the roots of the function F (r) will give the

location of the chronology horizons since across these horizons F (r) will change the sign

and the coordinate r changes from spacelike to timelike and vice-versa.

To render such metrics regular one follows a procedure described in Ref. [122] in

which the basic idea is to turn all the singularities appearing in the metric into removable

coordinate singularities. For generic values of the parameters the metrics are singular –

it is only for careful choices of the parameters that they become regular. Specifically, in

order to globally define the 1-form dτ +
p
∑

i=1

2niAi we use various coordinate patches to

cover the manifold, defining the 1-form on each patch. This can be done consistently only

if we identify τ periodically, while the NUT parameters ni must be rationally related. On

the other hand, r = ±ni correspond to curvature singularities, unless we also require that

FE = 0 there as well. Now by removing the possible conical singularities at the roots

of FE(r) (be they at r = ±ni or elsewhere) we get another periodicity for the Euclidean

time τ . By matching the two periodicities we obtained for τ we get another restriction on

the value of the parameters appearing in the metric. As an example of this analysis we

have considered the 6-dimensional Taub-NUT spaces constructed over both S2 × S2 and

CP 2. While the fibration over CP 2 is in general non-singular, we found that only the Bolt

solution was non-singular for the fibration over S2 × S2, with distinct NUT parameters.

While one could think that, more generally, there are no regular fibrations with distinct

NUT parameters over base spaces that are products of identical factors, it turns out that

this is not the case for fibrations over products of distinct manifolds. Take for instance the

8-dimensional metric constructed as a fibration over CP 2×S2. If the cosmological constant

is zero, we can have in general two distinct NUT parameters. There then exists a Nut

solution of intermediate dimensionality: assuming that the NUT parameter corresponding

to the CP 2 factor is n1, while the one corresponding to S2 is n2, then the periodicity of

the Euclidean time can be set to 8πn2 = 12πn1. There exists a regular 4-dimensional nut

located at r = n2 = 3
2
n1. As discussed in Chapter 3, there also exists another way to obtain

Nuts of intermediate dimensionality constructed over spaces of the same nature. However

the price to pay is the use of non-canonically normalised Einstein-Kähler manifolds.
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We would also like to take the opportunity and comment at this point on the exis-

tence of Misner string singularities in cases where the base space contains 2-dimensional

hyperboloids H2 (respectively planar geometries T 2). In literature it is often stated that

in these cases there are no hyperbolic (respectively planar) Misner strings [34, 6, 7]. From

the general discussion in Chapter 3 we can see that this statement is true only if the

Einstein-Kähler geometries H2 (respectively T 2) are not compact. Otherwise, we find that

the integral of the 2-form 2ndA over closed 2-cycles in H2(respectively T 2) can have a finite

value. This implies that the Euclidean time τ must have (under appropriate normalization

of the compact space) periodicity 8πn/k, for an integer k; we can therefore speak about

hyperbolic (planar) Misner strings.

Our construction applies more generally, yielding multiple NUT-charged generalisations

of inhomogeneous Einstein metrics on complex line bundles found in Ref. [111, 105]. In this

case we replace the Einstein-Kähler manifold M by a product of Einstein-Kähler manifolds

Mi with arbitrary even-dimensions. To each such factor we associate a NUT parameter

Ni. As conjectured in [111], we find that, quite generally, in higher dimensions there are

various constraints to be imposed on the possible values of the cosmological constant λ,

the NUT parameters Ni and the values of the various δ’s. These solutions represent the

multiple NUT parameter extension of the inhomogeneous Einstein metrics on complex line-

bundles described in [122]. It is also possible to cast these solutions into a different form,

by explicitly encoding the constraint conditions into the metric. However this requires us

to resort to non-canonically normalised Einstein-Kähler manifolds.

Finally, in Chapter 8 we briefly presented another generalisation of the NUT-charged

spaces as solutions in Einstein-Maxwell theory. However, for space reasons, we confined

ourselves to performing a simple singularity analysis of such metrics, leaving a full ther-

modynamic description for further work.

9.2 Properties and applications

In Chapter 4 we briefly reviewed the path-integral approach to quantum gravity and its

relationship to gravitational thermodynamics for asymptotically flat or asymptotically AdS

spacetimes. For detailed thermodynamic computations that include effects from the grav-
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itational fields one should be able to compute the partition function of the respective

systems. It is well known that the partition function for quantum fields in the canonical

ensemble can be related in general to a path-integral by analytic continuation. In this

approach, the partition function for the gravitational field is defined by a sum over all

smooth Euclidean geometries which are periodic with a period β in imaginary time. The

path-integral is computed by using the saddle point approximation in which one considers

that the dominant contributions will come from metrics near the classical solutions of Eu-

clidean Einstein’s equations with the given boundary conditions. In the semiclassical limit

this yields a relationship between gravitational entropy and other relevant thermodynamic

quantities, such as mass, angular momentum, and other conserved charges. This relation-

ship was first explored in the context of black holes by Gibbons and Hawking [65], who

argued that the free energy is equal to the Euclidean gravitational action multiplied by

the temperature. The gravitational entropy can then be regarded as arising from the the

quantum statistical relation applied to the path-integral formulation of quantum gravity

[81]. It has been recently noted that the path-integral formalism can be extended to asymp-

totically de Sitter spacetimes to describe quantum correlations between timelike histories,

providing a foundation for gravitational thermodynamics at past/future infinity [40]. The

key result is the generalisation of the Gibbs-Duhem relation (or the generalised quantum

statistical relation) to asymptotically dS spacetimes. In order to employ this relation it

is necessary to analytically continue the spacetime near past/future infinity. There are

two apparently distinct ways of doing this – the R-approach and the C-approach. The

C-approach is closest to the more traditional method of obtaining Euclidean sections for

asymptotically flat and AdS spacetime. The R-approach refers to the Lorentzian section,

and makes use of the path integral formalism only insofar as the generalised Gibbs-Duhem

relation is employed.

The main result in Chapter 5 is the demonstration that the R and C-approaches are

equivalent, in the sense that we can start from the C-approach results and derive by

consistent analytic continuations (i.e., using a well-defined prescription for performing the

analytic continuations) all the results from the R-approach. There are no a-priori obstacles

in taking the opposite view, in which the C-approach results are derived from the respective

R-approach results. However, one could still argue that the C-approach is the more basic
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one, as in it the periodicity conditions appear more naturally than in the R-approach. On

the other hand, the R-approach, when used without the justification that comes from the

C-approach, raises some interesting questions. Even applied to simple cases such as the

Schwarzschild-dS solution, one may take the view that in the absence of the NUT charge

one could still consider a periodicity on the time coordinate in the Lorentzian sector given

by βr = 8πm, which can be used when computing the action and the conserved charges.

A more orthodox interpretation would be that βr in the Lorentzian sector is simply the

inverse temperature (as related to the surface gravity of the black hole horizon) and is

not related to a real periodicity of the time coordinate. Whether or not this is indeed a

necessary condition remains to be seen.

Using this equivalence we then proposed an interpretation of the thermodynamic be-

haviour of NUT-charged spacetimes. In the asymptotically dS case, we showed that while

a subset of the Bolt solutions can have a sensible physical interpretation, the same does not

hold for the Taub-Nut-dS solutions. Indeed, in the putative Taub-Nut-dS solution the Nut

is always enclosed in a larger cosmological ‘Bolt’. Moreover it does not have a Lorentzian

counterpart (i.e. it has no equivalent solution in the R-approach). From these facts we

conclude that there are no Taub-Nut-dS solutions. This situation holds despite the fact

that a naive application of (4.21) to this case yields thermodynamic quantities that respect

the first law of thermodynamics. Rather these quantities are the analytic continuations of

their AdS counterparts under l → il. Similar remarks apply to the lower-branch dS bolt

cases. We have also found that this situation holds in higher dimensions: there are no

Taub-Nut-dS solutions, in analogy with the non-existence of the hyperbolic Nuts in AdS

backgrounds [54, 7].

Moreover, the C-approach has been previously applied with success to more general

cases - it has been proven to be very useful when treating for instance asymptotically

AdS or flat Taub-NUT spaces. In particular, we have shown here that starting from the

well-known results regarding the thermodynamics of the Nut and Bolt solutions in the Eu-

clidean Taub-NUT-AdS case (which corresponds to our C-approach) we can consistently

make analytic continuations back to the Lorentzian sections, yielding a physical interpre-

tation of the thermodynamics of such spacetimes. However, this holds only for the Bolt

solutions; we found that the Lorentzian AdS-Nut solution did not respect the first law of
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thermodynamics, rendering the physical interpretation of the Nut solution dubious at best.

In de Sitter backgrounds, it has been shown that there exist broad ranges of parameter

space for which NUT-charged spacetimes violate both the maximal mass conjecture and the

N-bound, in both four dimensions and in higher dimensions. However it was subsequently

argued [12] that even if the Taub-NUT-dS spaces do violate the maximal mass conjecture

they also suffer causal pathologies. However, this is not necessarily the case. As noted

above in both the R and C-approaches the maximal mass conjecture can be violated by

choosing the parameter m < 0, independent of whether or not the metric function has any

roots [38, 40]. A detailed discussion of this situation has appeared recently [5], where it

was emphasized that globally hyperbolic asymptotically dS spacetimes exist that violate

the maximal mass conjecture. In the present context this will take place whenever the

parameters m and N are such that the function (5.2) has no roots. If horizons are present,

the maximal mass conjecture and N-bound can both be violated – we have shown that this

holds consistently for both approaches. Although these cases have regions containing closed

timelike curves (CTC’s), our computations pertain to regions where CTCs are absent,

namely outside the cosmological horizon. However, one could argue that such spacetimes

are causally unstable. Whether any spacetimes containing horizons exist that violate one

or both conjectures and that satisfy rigid constraints of causal stability remains an open

question.

In AdS backgrounds it would be interesting to understand how the AdS-CFT corre-

spondence works in this case, since the Lorentzian sections of Taub-NUT spaces contain

closed timelike curves, and so are causally pathological. In fact it was recently noted [6, 7]

that the boundary metric for the four-dimensional Lorentzian Taub-NUT-AdS spacetime is

in fact the three-dimensional Gödel metric. This metric also has a bad reputation as being

causally ill-behaved since for generic values of the parameters, the Gödel spacetime admits

CTC’s through every point. The meaning of a quantum field theory in this background is

still an open problem.

Recently, the authors of [63] used successfully the R-approach methods to study the

Kerr-dS space-times. As the metric is stationary in this case and the continuation to the

complex section involves the analytical continuation of the rotation parameter a → ia, it

would be interesting to see if there is a similar prescription for the analytical continuation
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of the results from the R-approach and the C-approach and vice-versa.

In Chapter 6 we describe another application of the Taub-NUT-Eguchi-Hanson soli-

tons in the construction of Kaluza-Klein magnetic monopoles. We began by reviewing

how the flat Kaluza-Klein monopole can be obtained from the four dimensional Taub-

Nut solution. We also briefly discussed the features of the monopole solution obtained by

using the Euclidean Taub-Bolt solution. The physical interpretation of this ‘monopole’

solution was recently clarified by Liang and Teo [103]: it corresponds to a pair of coin-

cident extremal dilatonic black holes with opposite magnetic charges. Motivated by this

result, at this point we considered the solution obtained by dimensionally reducing an

Eguchi-Hanson-like monopole and we have proven that even if the four-dimensional met-

ric is non-asymptotically flat, its geometry is nonetheless U-dual to that of a Taub-Bolt

monopole.

Next, using two distinct proposals for the boundary counterterm action we computed

the mass of the Kaluza-Klein magnetic monopole and found agreement in both cases with

previous results derived by other means [24, 48]. We also extended our results to the case of

the Kaluza-Klein Bolt-monopole solution. In the general context of Kaluza-Klein theory it

is also tempting to examine the energy from the point of view of the dimensionally-reduced

theory. While the metric and also the fields do have in general singularities at origin, this

is not necessarily an obstruction since the conserved charges are in general computed as

surface integrals at infinity. In the four-dimensional theory, using the counterterm (4.12)

proposed by Lau [102] and Mann [108] as well as the new counterterm proposed in [109]

we computed the mass of the monopole and found it to be equal to the five-dimensional

mass. A similar result was proved in [24] using background subtraction methods.

However, as we have seen in Chapter 3, the five-dimensional Eguchi-Hanson soliton in

the limit of a vanishing cosmological constant reduces to this flat Eguchi-Hanson monopole

solution. In light of this fact, we described in the remaining sections in Chapter 6 another

application of the Taub-NUT-Eguchi-Hanson solitons in the construction of Kaluza-Klein

magnetic monopoles. More specifically, we attempted to construct possible extensions

of Kaluza-Klein monopole solutions that admit a cosmological constant. The essential

ingredient in the original Kaluza-Klein monopole construction is a Euclidean section of the

four dimensional Taub-NUT space; the ‘trick’ employed in [129, 76] to obtain the monopole
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solution was to lift this Euclidean section up to five-dimensions by adding a flat time

coordinate and then to dimensionally reduce along the ‘Euclidean time’ direction from the

Euclidean Taub-NUT section. However, in the presence of the cosmological constant it is

not possible to use the above technique without introducing an explicit time dependence in

the metric. Therefore, in order to obtain cosmological four-dimensional magnetic monopole

solutions our strategy was to consider directly in five-dimensions the new cosmological

Taub-NUT-like solutions discussed in sections 3.5, 3.6 in Chapter 3 and perform a Kaluza-

Klein compactification along the fifth dimension. The new feature of these solutions is

that the four-dimensional dilaton acquires a potential term as an effect of the cosmological

constant. However their asymptotics are not very appealing physically since they are not

asymptotically flat or (A)dS in the Einstein frame. Their metric description simplifies

when considered in the string frame: for our explicit examples the four-dimensional metric

in the string frame is very similar to the AdS form in the (r, t) sector, except for a deficit

of solid angle in the angular sector.

In higher than five dimensions we have more choices: we can consider solutions that are

Ricci flat with different NUT parameters or we can consider Taub-NUT like spaces that

are constructed as circle fibrations over base spaces that have non-trivial topology. We also

performed Kaluza-Klein (KK) reductions of the above solutions down to four dimensions,

obtaining new magnetic monopole solutions. More specifically, in six and seven dimensions

we have considered non-singular Ricci-flat solutions for which one can use the KK trick

to obtain similar KK magnetic brane solutions for which the background spaces are Ricci

flat Bohm spaces of the form Sp × Sq and generically have conical singularities. We con-

sidered their further reduction down to four dimensions on Riemannian spaces of constant

curvature and specifically considered such reductions on spheres. In contrast with the

KK procedure to untwist the U(1)-fibration, we have considered in six dimensions another

method that is known to untwist the circle fibration, namely Hopf duality in string theory.

We extended these duality rules to the case of a timelike Hopf-duality of the truncated

six-dimensional Type II theories and applied them to generate charged string solutions

in six-dimensions. By performing sphere reductions we obtained the corresponding four-

dimensional solutions. In general, the presence of the cosmological constant in the higher

dimensional theory induces a scalar potential for the Kaluza-Klein scalar fields. If the isom-



184

etry generated by the Killing vector that is associated with the circle direction on which

we perform the reduction has fixed points, then the dilaton, which describes the radius of

that extra-dimension, will diverge at the respective fixed point sets and the D-dimensional

metric will be singular there. In certain cases we find that the dilaton field also diverges at

infinity. Respectively this means that, physically, the space-time decompactifies near the

KK-brane and at infinity; the higher-dimensional theory should be used when describing

such objects in those regions.

In Chapter 7 we constructed new explicit solutions of general relativity from double

analytic continuations of Taub-NUT spacetimes. This generalises previous studies of the

four-dimensional nutty bubbles. One five-dimensional locally asymptotically AdS solution

in particular has a special conformal boundary structure of AdS3 × S1. We computed

its boundary stress tensor and related it to the properties of the dual field theory. In-

terestingly enough, we also found consistent six-dimensional bubble solutions that have

only one timelike direction. The existence of such spacetimes with non-trivial topology is

closely related to the existence of the Taub-NUT(-AdS) solutions with more than one NUT

charge. Finally, we began an investigation of generating new solutions from Taub-NUT

spacetimes and nuttier bubbles. Using the so-called Hopf duality, we provided new explicit

time-dependent backgrounds in six dimensions.



Appendix A

The effective actions of the

Superstring theories in 10-dimensions

In the following, we present briefly the bosonic effective actions of the five superstring

theories in ten dimensions [104].

• Type IIA superstring - This theory is a theory of closed strings. The N = 1 super-

symmetry on the world - sheet of the string induces N = 2 supersymmetries between

the bosonic and fermionic fields in space-time. However, in this case the two space-

time supersymmetries appear with opposite chirality. Hence one is dealing with a

N = 2, D = 10 non-chiral supergravity theory, whose bosonic action is given by:

SIIA =
1

16πα′4

[
∫

d10x
√−g10[e

−2φ(R10 + 4(∂φ)2 − 1

12
H2

(3))

− 1

4
F 2

(2) −
1

48
(F ′

(4))
2] +

1

2

∫

B(2) ∧ F(4) ∧ F(4)

]

,

where R10 is the Ricci scalar curvature of the space-time with metric gµν and g10 =

det gµν . The dilaton field φ determines the value of the string coupling parameter

gs = e−φ. The antisymmetric tensor field strengths that appear in the action are

defined in terms of the potentials by the formulae:

H(3) = dB(2), F(2) = dA(1), F(4) = dA(3), F ′
(4) = F(4) + A(1) ∧H3.
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The NS-NS sector of the action contains the graviton, the antisymmetric two form

potential B(2), and the dilaton field φ. The RR sector contains a 1-form potential

A(1) and a 3-form potential A(3). As one can see from the action, the NS-NS sector

couples directly to the dilaton field, while the RR fields do not. Finally, the last term

in the action is the so-called Chern-Simons term and it is a necessary consequence of

the supersymmetry requirement.

• Type IIB superstring - This is a theory of closed strings with N = 2 supersymmetries.

However in this case the two space-time supersymmetries appear with the same

chirality, so the theory is chiral. The field content of this theory is the following: the

NS −NS sector contains the graviton gµν , the dilaton field φ and an antisymmetric

two-form potential B
(1)
2 . The RR sector contains a scalar axion field χ, a two-form

potential B
(2)
2 , and a four-form potential A(4). The field equations for the four-form

imply that its five-form field strength is self-dual. Because of this fact we cannot write

down a covariant ten-dimensional low-energy action for the Type IIB superstring

theory. However, we can drop the self-duality constraint by introducing new degrees

of freedom at the level of the action. We can then use the following action, and

impose the self-duality condition as an extra equation of motion for the four-form:

SIIB =
1

16πα′4

[
∫

d10x
√−g10[e

−2φ(R10 + 2(∂φ)2 − 1

12
(H

(1)
3 )2)

− 1

2
(∂χ)2 − 1

12
(H

(2)
3 + χH

(1)
3 )2 − 1

240
(F5)

2] +

∫

A(4) ∧H(2)
3 ∧H(1)

3

]

,

where the RR field strengths are defined by

H
(2)
3 = dB

(2)
2 , F(5) = dA(4) + B

(2)
2 ∧H(1)

3

and we impose the self-duality condition F(5) = ⋆F5.

• Type I superstring - This is a theory of open strings. Notice that closed strings are

also included in the theory since two interacting open strings can interact and join to

form a closed string. The boundary conditions on the open strings halve the number

of the supersymmetries in the theory from N = 2 to N = 1 supersymmetry. One can

attach charges at the endpoints of the strings introducing in this way a Yang-Mills
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gauge group in the theory. However, the theory is free from anomalies and quantum

mechanically consistent only if the gauge group is SO(32). The low energy bosonic

action for this N = 1, D = 10 supergravity theory is given by:

SI =
1

16πα′4

∫

d10x
√−g10[e

−2φ(R10 + 4(∂φ)2) − 1

12
H2

(3) −
1

4
e−

2φ
2 F 2

(2)] (A.1)

where F(2) is the Yang-Mills field strength of the vector field corresponding to the

SO(32) group and H(3) = dB(2) is the field strength of a two-form potential B(2).

Notice that this field strength is not coupled to the dilaton field.

• Heterotic superstring - The heterotic superstring theories have only one supersym-

metry N = 1. A Yang-Mills group arises from the compactification of the bosonic

string theory on a 16-dimensional compact space. Quantum consistency restricts the

gauge group to be SO(32) or E8 ×E8. The bosonic part of the low-energy action of

the heterotic superstring theory is given by:

SH =
1

16πα′4

∫

d10x
√−g10e

−2φ[R10 + 4(∂φ)2 − 1

12
H2

(3) −
1

4
F

(2)
2 ] (A.2)

where F(2) is the Yang-Mills field strength corresponding to the gauge groups SO(32)

or E8×E8. Notice that Type I superstring theory and heterotic string theory have the

same particle content. However, their actions differ because all the bosonic degrees of

freedom couples directly to the dilaton field in heterotic theory, whereas the two-form

potential is a RR degree of freedom in Type I theory.

• Eleven dimensional supergravity - This is the unique N = 1 supergravity theory in

eleven dimensions. The bosonic content of the low energy effective action is given by

the graviton gµν and a three-form potential A(3). The action is given by:

S11D =
1

16πG11

[
∫

d11x
√−g11[R11 −

1

48
F 2

(4)] +
1

6

∫

A(3) ∧ F(4) ∧ F(4)

]

(A.3)

where F(4) = dA(3) is the four-form field strength of the three-form potential A(3).

The eleven dimensional Newton constant G11 is the only parameter in the theory. The

last term, the Chern-Simons term, arises as a direct consequence of supersymmetry.





Appendix B

The Weyl form of the accelerating

Taub-NUT metric

Following Emparan and Reall [55] we introduce the notation:

ζi = z − zi, Ri =
√

ρ2 + ζ2
i , Yij = ρ2 +RiRj + ζiζj. (B.1)

It can then be shown [55] that:

R1 − ζ1 =
(y2 − 1)F (x)

A2(x− y)2
,

R1 + ζ1 =
(1 − x2)F (y)

A2(x− y)2
,

R2 − ζ2 =
(x− 1)(y + 1)F (x)

A2(x− y)2
,

R2 + ζ2 = −(x+ 1)(y − 1)F (y)

A2(x− y)2
,

R3 − ζ3 =
(x− 1)(y + 1)F (y)

A2(x− y)2
,

R3 + ζ3 = −(x+ 1)(y − 1)F (x)

A2(x− y)2
, (B.2)
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while:

Y12 =
(x− 1)(y − 1)(2mA− 1)2

2A4(x− y)2

Y13 =
(x− 1)(y − 1)F (x)F (y)

2A4(x− y)2

Y23 =
2F (x)F (y)

A4(x− y)2
(B.3)

Then the Weyl form of the uncharged C-metric corresponds to the following expressions:

e−ψ =
(R1 − ζ1)(R3 − ζ3)

R2 − ζ2
,

e2µ =
1

4(2mA− 1)2R1R2R3

Y12Y23

Y13

(R1 − ζ1)(R3 − ζ3)

R2 − ζ2
, (B.4)

from which we can readily find e−φ in (2.59). Finally, expressing x in terms of ρ and z we

find [90]:

Aϕ =
1

C

(

(R1 + ζ1)(R2 − ζ2)

R3 − ζ3
+

2m

A

F1 + F2

2F0

)

, (B.5)

where:

F0 = 4m2AR1 +m(1 + 2mA)R2 +m(1 − 2mA)R3,

F1 = −4mR1 − 2m(1 + 2mA)R2 + 2m(1 − 2mA)R3,

F2 =
2m

A2
(1 − 2m2A2). (B.6)

This completes the derivation of the Weyl-Papapetrou form of the accelerated Taub-NUT

solution.



Appendix C

T-duality in six-dimensional Type II

Superstring theories

The Lagrangian in D = 6 obtained by dimensional reduction of Type IIB on a torus and

after performing a consistent truncation is given by [52]:

L6B = eR− 1

2
e(∂ϕ1)

2 − 1

2
e(∂ϕ2)

2 − 1

2
ee2ϕ1(∂χ1)

2 − 1

2
ee2ϕ2(∂χ2)

2

− 1

12
ee−ϕ1−ϕ2(FNS

(3) )2 − 1

12
eeϕ1−ϕ2(FRR

(3) )2 + χ2dA
NS
(2) ∧ dARR(2) (C.1)

where FNS
(3) = dANS(2) and FRR

(3) = dARR(2) + χ1dA
NS
(2) . This Lagrangian is related by T-duality

in D = 5 to a different six-dimensional theory obtained by making a consistent truncation

of Type IIA compactified on a four-dimensional torus. The corresponding Lagrangian is

given by:

L6A = eR− 1

2
e(∂ϕ1)

2 − 1

2
e(∂ϕ2)

2 − 1

48
ee

ϕ1
2
− 3ϕ2

2 (F(4))
2 − 1

12
ee−ϕ1−ϕ2(F(3))

2

−1

4
ee

3ϕ1
2

−ϕ2
2 (F(2))

2 (C.2)

where F(4) = dA(3) − dA(2) ∧A(1), F(3) = dA(2) corresponds to the NS-NS 3-form F(3)1 and

F(2) = dA(1) is the RR 2-form F1
(2), with the index ‘1’ denoting here the first reduction step

from D = 11 to D = 10.
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Let us focus on Type IIA theory first. Under a dimensional reduction using the formulae

from the previous appendix we have:

ds2
6 = e

ϕ√
6ds2

5 + e
−3ϕ√

6 (dz + A(1))
2 (C.3)

and we obtain the following 5-dimensional Lagrangian:

L5A = eR− 1

2
e(∂ϕ1)

2 − 1

2
e(∂ϕ2)

2 − 1

2
e(∂ϕ)2 − 1

48
ee

− 3ϕ√
6
+
ϕ1
2
− 3ϕ2

2 (F ′
(4))

2 − 1

12
ee

ϕ√
6
+
ϕ1
2
− 3ϕ2

2 (F(3)1)
2

− 1

12
ee

− 2ϕ√
6
−ϕ1−ϕ2(F ′

(3))
2 − 1

2
ee

− 4ϕ√
6F2

(2)

−1

4
ee

− ϕ√
6
+

3ϕ1
2

−ϕ2
2 (F ′

(2))
2 − 1

4
ee

2ϕ√
6
−ϕ1−ϕ2(F(2)1)

2 − 1

2
ee

3ϕ√
6
+

3ϕ1
2

−ϕ2
2 (dA(0)1)

2 (C.4)

where the field strengths are defined as follows:

F ′
(2) = dA(1) − dA(0)1 ∧ A(1), F ′

(3) = dA(2) − dA(1) ∧A(1)

F(3)1 = dA(2)1 + dA(1) ∧A(1) − dA(2) ∧A(0)1, F ′
(4) = dA(3) − dA(2) ∧ A(1) − F(3)1 ∧A(1)

while F(2) = dA(1) and F(2)1 = dA(1)1. Upon dualising F(4) to a 1-form field strength dχ′

its kinetic term in the above Lagrangian will be replaced by:

− 1

2
ee

3ϕ√
6
−ϕ1

2
+

3ϕ2
2 (dχ′)2 + χ′F ′

(3) ∧ F ′
(2) + χ′F(3)1 ∧ F(2) (C.5)

If we perform the field redefinitions:

A′
(1) = A(1) −A(0)1 ∧ A(1), A

′
(2) = A(2) − A(1)1 ∧ A(1), A′

(2)1 = A(2)1 + A(1)1 ∧ A′
(1)

we find:

F ′
(2) = dA′

(1) + A(0)1 ∧ F(2), F ′
(3) = dA′

(2) −A(1)1 ∧ F(2)

F(3)1 = dA′
(2)1 + dA′

(1) ∧A(1)1 − A(0)1(dA
′
(2) − A(1)1 ∧ F(2))

χ′F ′
(3) ∧ F ′

(2) + χ′F(3)1 ∧ F(2) = χ′(dA′
(2) ∧ dA′

(1) + dA′
(2)1 ∧ F(2)) (C.6)

Similarly, for the dimensional reduction of Type IIB Lagrangian we obtain:

L5B = eR− 1

2
e(∂ϕ1)

2 − 1

2
e(∂ϕ2)

2 − 1

2
e(∂ϕ)2 − 1

2
ee2ϕ1(∂χ1)

2 − 1

2
ee2ϕ2(∂χ2)

2

− 1

12
ee

− 2ϕ√
6
+ϕ1−ϕ2(F

′ RR
(3) )2 − 1

12
ee

− 2ϕ√
6
−ϕ1−ϕ2(F

′ NS
(3) )2 − 1

2
ee

− 4ϕ√
6F2

(2) −
1

4
ee

2ϕ√
6
+ϕ1−ϕ2(FRR

(2)1)
2

−1

4
ee

2ϕ√
6
−ϕ1−ϕ2(FNS

(2)1)
2 − χ2dA

RR
(2) ∧ dANS(1)1 + χ2dA

NS
(2) ∧ dARR(1)1 (C.7)
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where FNS
(2)1 = dANS(1)1, F(2) = dA(1) and:

F
′ NS
(3) = dANS(2) − dANS(1)1 ∧A(1), FRR

(2)1 = dARR(1)1 + χ1dA
NS
(1)1

F
′ RR
(3) = dARR(2) − dARR(1)1 ∧A(1) + χ1dA

NS
(2) ∧A(1) (C.8)

As shown in [52], the T -duality rules relating the two truncated theories (C.4) and (C.7)

are:

A(0)1 → χ1, A(1)1 → A(1), A(1) → ANS(1)1, χ′ → χ2,

A′
(1) → ARR(1)1, A′

(2) → ANS(2) , A′
(2)1 → −ARR(2) , (C.9)

together with a rotation of the scalars:







ϕ1

ϕ2

ϕ







IIA,B

=







3
4

−1
4

−
√

6
4

−1
4

3
4

−
√

6
4

−
√

6
4

−
√

6
4

−1
2













ϕ1

ϕ2

ϕ







IIB,A

(C.10)

which takes care of the dilaton couplings of the field strengths.

We are also interested in performing a timelike T -duality. As it is known this duality

will relate Type IIA (respectively IIB) to Type IIB∗ (respectively IIA∗). We wish to see if

at the level of our truncated theories the timelike T-duality rules are still valid.

Consider first the Type IIA theory. Upon a timelike dimensional reduction the La-

grangian of the reduced theory will have a form similar with (C.4); however the kinetic

terms for F(3)1, F(2)1, F(2) and dA(0)1 will have the reversed sign [43]. The five-dimensional

metric is now of Euclidean signature and when we dualize the 4-form F ′
(4) to a scalar field

strength χ′ we obtain a positive kinetic term for this scalar. We expect to be able to relate

this theory to a timelike reduction of a truncated six-dimensional Type IIB∗ theory by

applying the T -duality rules given above. Now, it is known that the action of Type IIB∗

in ten dimensions is obtained from the usual Type IIB action after we reverse the signs

of the RR kinetic terms. As the sign of such kinetic terms was irrelevant when discussing

the truncation to six dimensions we see that a consistent truncation of Type IIB∗ in six

dimensions will be given by the Lagrangian (C.1) in which we must reverse the sign on

the kinetic terms for the RR fields, i.e. we must reverse the sign of the kinetic terms for

FRR
(3) and also for χ2 (which appears from the dualisation of the RR field B(4)). When
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performing a timelike dimensional reduction the final Type IIB∗ Lagrangian will be similar

with (C.7) with reverted signs for the kinetic terms of χ2, F
RR
(3) , FNS

(2)1 respectively F(2). It

is then straightforward to see that the T -duality will relate our truncated Type IIA theory

with the truncated Type IIB∗. It is easy to extend the above considerations to show that

a timelike T -duality will relate Type IIB with Type IIA∗ at the level of our truncated

theories. Also Type IIA∗ and Type IIB∗ are related by a usual T -duality along a spacelike

direction.
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