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1 Introduction

The calculation of multi-gluon scattering processes in QCD is extremely complicated owing

to the cancellations that occur because of the gauge invariance of the theory. In this paper

we present simple and explicit analytical results for the six gluon scattering amplitude in the

helicity representation and its square summed over the colors and helicities of the gluons.

This is achieved by using an analogue with string theories to identify gauge invariant, dual

sub-amplitudes for multi-gluon processes. The sub-amplitudes are obtained by rewriting the

color factors of the Feynman diagrams in terms of traces of color matrices in the fundamental

representation of the gauge group. To evaluate the sub-amplitudes the polarization vectors

for the gluons are written in terms of Weyl spinors and the calculus of spinor products

is employed. The dual sub-amplitudes so defined and calculated have many remarkable

properties that are generally expected only of the full amplitude. The most important

property being the factorization of the sub-amplitudes in the soft gluon limit, in the two

gluon collinear limit and on the three gluon poles. The simple form of the sub-amplitudes

and their many surprising and beautiful properties suggests that there is a hidden simplicity

in QCD which is yet to be discovered. Also, the results obtained in this paper are the

first time the explicit matrix element squared has been derived for any six parton scattering

process in QCD.

These sub-amplitudes and their squares are also useful for Monte Carlo studies of multi-

jet physics. The present (Cern Spp̄S and Fermilab Tevatron) and future hadron colliders

(SSC or LHC) have or will have many multi-jet events. These events hold great promise for

quantitative tests of Quantum Chromodynamics (QCD) as well as being significant back-

grounds to many other processes of interest in the standard model and to the discovery

of new physics [1]. Up to now only the two and three jet final states cross sections have

been given analytically [2], although, numerical codes exist for evaluating all the four jet

QCD cross sections. The use of the squared amplitude contained in this paper represents a

significant improvement over previous calculations of the six gluon process [3].

This paper is the complete version of a conference presentation [4] and is organized as

follows; first, we write the amplitude for any tree level multi-gluon scattering process in

terms of a sum of gauge invariant dual sub-amplitudes and discuss the properties of these

sub-amplitudes. Second, we introduce the polarization vectors that we used to evaluate

the dual sub-amplitudes. Next, we give simple and beautiful analytic expressions for the
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sub-amplitudes for four, five and six gluon scattering. The next section demonstrates the

remarkable factorization properties of the sub-amplitudes and finally the square of the full

amplitude summed over color and helicities is given.

2 Duality and Gauge Invariance

In perturbative QCD the calculation of multi-gluon scattering amplitudes, even at tree level,

is very challenging. Part of the reason for the difficulty is that up to now there has been

no systematic way to efficiently identify the appropriate gauge invariant subsets of the full

amplitude. Here we propose that the appropriate way to make this division is to insure

that the gauge invariant subsets are invariant under cyclic permutations of the external

gluons. This results in tremendous cancellations occurring at the amplitude level and the

sub-amplitudes so defined have remarkable factorization properties.

Consider an SU(N) Yang-Mills theory, then at tree level in perturbation theory, any

vector particle scattering amplitude, with colors a1, a2 . . . an, external momenta p1, p2 . . . pn

and helicities ε1, ε2 . . . εn, can be written as

Mn =
∑

perm′
tr (λa1λa2 . . . λan) m(p1, ε1; p2, ε2; · · · ; pn, εn), (2.1)

where the sum, perm′, is over all (n− 1)! non-cyclic permutations of 1, 2, . . . , n and the λ’s

are the matrices of the symmetry group in the fundamental representation. The proof of

this statement is very simple using the identities [λa, λb] = ifabcλ
c and tr(λaλb) = 1

2
δab . In

any tree level Feynman diagram, replace the color structure function at some vertex using

fabc = −2i tr(λaλbλc − λcλbλa). Now each leg attached to this vertex has a λ matrix

associated with it. At the other end of each of these legs there is either another vertex or

this is an external leg. If there is another vertex, use the λ associated with this internal leg

to write the structure function of this vertex fcde λc as −i [λd, λe]. Continue this processes

until all vertices have been treated in this manner. Then this Feynman diagram has been

placed in the form of eqn(2.1). Repeating this procedure for all Feynman diagrams for a

given process completes the proof.

The sub-amplitudes m(1, 2, . . . , n) ≡ m(p1, ε1; p2, ε2; . . . pn, εn) of eqn(2.1) satisfy a

number of important properties and relationships.
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(1) m(1, 2, . . . , n) is gauge invariant.
(2) m(1, 2, . . . , n) is invariant under cyclic permutations of 1, 2, . . . , n
(3) m(n, n− 1, . . . , 1) = (−1)n m(1, 2, . . . , n)
(4) The Ward Identity:

m(1, 2, 3, . . . , n) + m(2, 1, 3, . . . , n) + m(2, 3, 1, . . . , n) (2.2)

+ · · · + m(2, 3, . . . , 1, n) = 0

(5) Factorization of m(1, 2, · · · , n) on multi-gluon poles.
(6) Incoherence to leading order in number of colors:

∑
colors

|Mn|2 =
Nn−2(N2 − 1)

2n

∑
perm′

{
|m(1, 2, · · · , n)|2 +O(N−2)

}
. (2.3)

This set of properties for the sub-amplitudes, we will refer to as duality and the expansion

in terms of these dual sub-amplitudes the dual expansion. Properties (1) and (2) can be seen

directly from the properties of linear independence, for arbitrary N, and invariance under

cyclic permutations of tr (λ1λ2 . . . λn). Whereas (3) and (4) follow by studying the sum of

Feynman diagrams which contribute to each sub-amplitude. The sum of Feynman diagrams

which make the Ward Identity is such that each diagram is paired with another with opposite

sign so that the combination contained in eqn(2.2) trivially vanishes. Property (5) will be

discussed in great detail in section 6 and the incoherence to leading order in the number of

colors (6) follows from the color algebra of the SU(N) gauge group.

To the string theorist this expansion and the duality properties (1) to (6), see [5], are

quite familar since the string amplitude, in the zero slope limit, reproduces the Yang-Mills

amplitude on mass shell [6]. Each sub-amplitude is then represented by the zero slope

limit of a string diagram, and the sub-amplitude could be obtained by using the usual

Koba-Nielsen formula [7]. The traces of λ matrices are just the Chan-Paton factors. For

the string amplitude the properties (1) through (6) are satisfied even before the zero slope

limit is taken. Also from the string diagrams it is simple to see which Feynman diagrams

contribute to a given sub-amplitude, e.g. Fig. 1. The coefficients for the contributing

diagrams are obtained by the procedure developed earlier in this section for re-writing the

color factors. The relationship between the string diagram and our dual sub-amplitudes

suggests that a Yang-Mills amplitude expressed in terms of these dual sub-amplitudes will

assume a particularly simple form.

The gauge invariance and properties under cyclic and reverse permutations allows the

calculation of far fewer than the (n−1)! sub-amplitudes that appear in the dual expansion. In
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fact the number of sub-amplitudes that are needed is just the number of different orderings

of positive and negative helicities around a circle. Of course some of the sub-amplitudes

vanish because of the partial helicity conservation of tree level Yang-Mills and others are

simply related to one another through the properties (2) through (4).
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Figure 1: The zero-slope limit of the four gluon string diagram in terms of Feynman diagrams
(tri-gluon couplings only).

3 Evaluation of the Sub-Amplitudes

We use the helicity basis for the polarization vectors which was introduced by Xu, Zhang

and Chang[8] which is an important improvement over the CALKUL technique [9]. This is

achieved by introducing massless spinors, |p±〉, which have momentum p and helicity ±1.

The adjoint of this spinor is 〈p∓|. The spinor products are the scalar quantities obtained by

multiplying 〈p−| with |q+〉 or 〈p+| with |q−〉.
The properties of the spinor products that we want to recall here are the following:

Spq ≡ (p + q)2 = 〈p−|q+〉〈q+|p−〉

= 〈p+|q−〉〈q−|p+〉, (3.1)

〈p + |q−〉 = 〈q − |p+〉∗, (3.2)

and

〈p + |q+〉 = 〈p− |q−〉 = 0. (3.3)

Thus the spinor products, 〈p−|q+〉 and 〈p+ |q−〉, are square roots of the Lorentz invariant,

Spq, and differ only in a phase [10]. Many other properties of the spinor products [8], mainly

due to Fierz identities, are very useful in simplifying the expressions e.g.

p · γ = |p+〉〈p + | + |p−〉〈p− |, (3.4)
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〈p + |γµ|q+〉〈p′ − |γµ|q′−〉 = 2 〈p + |q′−〉 〈p′ − |q+〉, (3.5)

〈p− |q+〉〈p′ − |q′+〉 = 〈p− |q′+〉〈p′ − |q+〉 + 〈p− |p′+〉〈q − |q′+〉. (3.6)

By using these massless spinors, the two helicity eigenstates of a gluon with momentum

k are given by:

εµ
+(k, q) =

〈q−|γµ|k−〉√
2〈q − |k+〉

, εµ
−(k, q) =

− 〈q+|γµ|k+〉√
2〈q + |k−〉

. (3.7)

The momentum q is arbitrary, provided it satisfies q2 = 0 and q · k 6= 0. This freedom

in choosing the reference momentum, q, stems from gauge invariance of the theory. These

polarization vectors satisfy a number of identities which are extremely helpful in simplifying

the calculations.
(1) k · ε±(k, q) = 0,

ε±(k, q) · ε∗∓(k, q) = 0 and ε±(k, q) · ε∗±(k, q) = − 1.
(2) εµ(k, q′) = εµ(k, q) + β(k, q′, q) kµ.
(3) q · ε±(k, q) = 0.
(4) ε±(k1, q) · ε±(k2, q) = 0.
(5) ε±(k1, k2) · ε∓(k2, q) = 0.

The properties in (1) are the standard properties of polarization vectors. Whereas (2)

together with the gauge invariance of the sub-amplitudes, i.e. m(1, 2, · · · , n)|εi=pi = 0,

implies that β is irrelevant and hence we can choose different reference momenta for each

of the gluons and different reference momenta for a given gluon in different sub-amplitudes.

Property (3) eliminates many terms if the reference momenta are chosen to be other light-

like momentum vectors in the calculation. Whereas, (4) and (5) suggest that for a given

sub-amplitude calculation all gluons with the same helicity should have the same reference

momentum and that this reference momentum should be the momentum of a gluon with

opposite helicity. Of course for a given sub-amplitude it is an art to choosing the reference

momenta of the gluons so as to minimize the complexity of the resulting expression, but in

general minimizing the number of nonzero εi · εj’s is the most useful choice.

4 Four and Five Gluon Scattering

In the rest of this paper we will use the shorthand notation for the spinor products, 〈ij〉 = 〈pi−
|pj+〉 and [ij] = 〈pi + |pj−〉 ; then using the techniques of the last section it is easy to derive

the following results. For the four gluon process, expand the color factors for the Feynman

diagrams in terms of the trace of four λ’s using

fabXfXcd = −2 tr([λa, λb][λc, λd]).
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Thus, the diagrams which contribute to the m(1, 2, 3, 4) sub-amplitude are just the Feynman

diagrams of Fig. 1 plus the parts of the four-gluon vertex diagram with the same color factors

as these diagrams. With the appropriate choice of reference momenta for the external gluons,

this weighted sum of diagrams either vanishes or contains one term. The only sub-amplitudes

which are non-zero have equal numbers of positive and negative helicity gluons. Consider the

sub-amplitude m(1−, 2−, 3+, 4+) with reference momenta for gluons (1,2,3,4) as the momenta

of gluons (3,3,2,2), respectively. For this choice of reference momenta the only non-zero εi ·εj

is ε1 · ε4 and the one term contributing is

m(1−, 2−, 3+, 4+) = −8ig2 ε1 · ε4 ε2 · k1 ε3 · k4

S12

,

= −4ig2 〈12〉2[34]2

S12 S23

,

if the properties of the spinor dot products are used.

In general the helicity conserving sub-amplitudes are given by

m(1, 2, 3, 4) = −4ig2 〈IJ〉2[KL]2

S12 S23

= 4ig2 〈IJ〉4

〈12〉〈23〉〈34〉〈41〉
. (4.1)

The momenta I and J (K and L) in the numerator are the momenta of the negative (positive)

helicity gluons independent of their ordering in the sub-amplitude, whereas the order of the

spinor products in the denominator is only determined by the order of the momenta in the

sub-amplitude. Using the properties of the spinor product is simple to demonstrate that

eqn(4.1) satisfies the four particle Ward Identity (2.2).

In squaring the four gluon amplitude and summing over colors the O(N−2) terms in

eqn(2.3) can be shown to vanish by using only the general properties, especially the Ward

Identity, of the sub-amplitudes. Therefore,

∑
colors

|M4|2 =
N2(N2 − 1)

16

∑
perm′

|m(1, 2, 3, 4)|2, (4.2)

and the square of each sub-amplitude is very simple because the spinor product is the square

root of twice the dot product. The final result is the standard four gluon matrix element

squared.

∑
hel.

∑
colors

|M4|2 = N2(N2 − 1) g4

∑
i>j

S4
ij

 ∑
perm′

1

S12S23S34S41

. (4.3)
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Here we have not averaged over incoming helicities or colors.

For five gluon scattering only those Feynman diagrams, or part there of, with color

structure the same as the diagrams of Fig. 2 contribute to the m(1, 2, 3, 4, 5) sub-amplitude.

This is easily seen by rewriting the color factors for the Feynman diagrams as

fabXfXcY fY de = 2i tr([λa, λb][λc, [λd, λe]]).

Again, it is a straight forward, simple calculation [4] to show that the only nonzero sub-

amplitudes have either two or three negative helicity gluons and that the three positive -

two negative helicity sub-amplitude is given by

m3+2−(1, 2, 3, 4, 5) = 4
√

2ig3 〈IJ〉4

〈12〉〈23〉〈34〉〈45〉〈51〉
. (4.4)

Where I and J are again the momenta of the negative helicity gluons and the denominator

ordering is determined by the order of the momenta in the sub-amplitude. The two positive -

three negative helicity amplitude is obtained from this last equation by complex conjugation.

By using the Fierz properties of the spinor product it is easy to demonstrate that eqn(4.4)

satisfies the five particle Ward Identity, eqn(2.2).
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Figure 2: The zero-slope limit of the five gluon string diagram in terms of Feynman diagrams
(tri-gluon couplings only).

Again, the general properties of the sub-amplitude can be used to show that the O(N−2)

terms in eqn(2.3) vanish for the five gluon process giving the following standard result [2]

that

∑
hel.

∑
colors

|M5|2 = 2 N3(N2 − 1) g6

∑
i>j

S4
ij

 ∑
perm′

1

S12S23S34S45S51

. (4.5)

Here we have not averaged over incoming helicities or colors.
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5 The Six Gluon Process

For the six gluon process only those Feynman diagrams, or part there of, with the same color

structure as the diagrams of Fig. 3 contribute to the m(1, 2, 3, 4, 5, 6) sub-amplitude. To see

this, expand the Feynman diagram color factors in terms of the trace of the λ’s using

fabXfXcY fY dZfZeg = 2 tr([[λa, λb], λc][λd, [λe, λg]])

or

fabXf cdY f egZfXY Z = 2 tr([λa, λb][λc, λd][λe, λg])− 2 tr([λe, λg][λc, λd][λa, λb]).

Then, by using the appropriate reference momenta for the polarization vectors it is easy

to see that the only non-zero sub-amplitudes are those with four positive - two negative,

two positive - four negative and three positive - three negative helicities. After a lengthy

calculation we have obtained the following expressions for the six gluon sub-amplitudes.
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Figure 3: The zero-slope limit of the six gluon string diagram in terms of Feynman dia-
grams (tri-gluon couplings only).

The sub-amplitudes for the four positive - two negative helicity processes are a straight

forward generalization of the four and five-gluon sub-amplitudes;

m4+2−(1, 2, 3, 4, 5, 6) = 8ig4 〈IJ〉4

〈12〉〈23〉〈34〉〈45〉〈56〉〈61〉
. (5.1)

Again, I and J represent the momenta of the negative helicity gluons. Different permutations

can be obtained as before by keeping fixed the numerator and permuting the momenta in
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the denominator. The two positive - four negative helicity sub-amplitude is obtained from

eqn(5.1) by complex conjugation.

The three positive - three negative helicity sub-amplitudes are not as simple, but like the

two positive - two negative helicity sub-amplitudes they can be written down in two different

ways. First, to exhibit the factorization on the three particle channels these sub-amplitudes

are

m3+3−(1, 2, 3, 4, 5, 6) = 8ig4

[
α2

t123S12S23S45S56

+
β2

t234S23S34S56S61

+
γ2

t345S34S45S61S12

+
t123βγ + t234γα + t345αβ

S12S23S34S45S56S61

]
(5.2)

where the tijk ≡ (pi + pj + pk)
2 = Sij + Sjk + Ski. The coefficients α, β and γ for the

three distinct orderings of the helicities are given in Table I. With this representation it is a

simple exercise to show that these sub-amplitudes factorize on the three particle pole into a

product of two four particle sub-amplitudes, eqn(4.1), times the three particle propagator.

Table I

Coefficients for the m3+,3− Sub-amplitudes:

where 〈I|K|J〉 ≡ 〈I + |K · γ|J+〉, which is linear in K

and if K2 = 0 is given by [IK]〈KJ〉.

1+2+3+4−5−6− 1+2+3−4+5−6− 1+2−3+4−5+6−

X = 1 + 2 + 3 Y = 1 + 2 + 4 Z = 1 + 3 + 5

α 0 −[12]〈56〉〈4|Y |3〉 [13]〈46〉〈5|Z|2〉
β [23]〈56〉〈1|X|4〉 [24]〈56〉〈1|Y |3〉 [51]〈24〉〈3|Z|6〉
γ [12]〈45〉〈3|X|6〉 [12]〈35〉〈4|Y |6〉 [35]〈62〉〈1|Z|4〉

There exist many identities that allow these expressions to be rewritten e.g.

〈2 + | 3̂(4̂ + 5̂)6̂ + 1̂(2̂ + 3̂)4̂| 5+〉 = (1 + 2 + 3)2 〈2 + | 3̂ + 4̂ |5+〉, (5.3)

where ı̂ = pi · γ and
∑

pi = 0. An alternative representation for the m3+,3− , which

is especially useful in exhibiting the two particle factorization of the sub-amplitudes and

hence the Altarelli-Parisi [13] behaviour of the squared amplitude when two gluons become

collinear, is

m3+3−(1, 2, 3, 4, 5, 6) =
8ig4

t123t234t345
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[
a1

〈12〉〈23〉[45][56]
+

a2

〈23〉〈34〉[56][61]
+

a3

〈34〉〈45〉[61][12]

+
a4

〈45〉〈56〉[12][23]
+

a5

〈56〉〈61〉[23][34]
+

a6

〈61〉〈12〉[34][45]

]
. (5.4)

where the coefficients a1 through a6 are given in Table II. In this representation the two

particle propagators always appear as a spinor product, i.e. as a square root of the prop-

agator, therefore the square of this sub-amplitude only diverges like a single power of the

propagator when two gluons become collinear. This is the Altarelli-Parisi behaviour for the

sub-amplitudes. Further properties of these amplitudes will be discussed in the next section.

The six gluon sub-amplitudes satisfy the three distinct Ward Identities obtained from

the following equation

m(1, 2, 3, 4, 5, 6) + m(2, 1, 3, 4, 5, 6) + m(2, 3, 1, 4, 5, 6)

+ m(2, 3, 4, 1, 5, 6) + m(2, 3, 4, 5, 1, 6) = 0 (5.5)

using the helicity ordering of the first term as either m(1+, 2+, 3+, 4+, 5−, 6−),

m(1+, 2+, 3+, 4−, 5−, 6−) or m(1+, 2−, 3+, 4−, 5+, 6−). These three Identities are ex-

tremely powerful and relate sub-amplitudes with different orderings of the helicities.
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Table II

Coefficients for the alternative representation of m3,3 Sub-amplitudes:

where 〈I|K|J〉 ≡ 〈I + |K · γ|J+〉, which is linear in K

and if K2 = 0 is given by [IK]〈KJ〉.

1+2+3+4−5−6− 1+2+3−4+5−6− 1+2−3+4−5+6−

X = 1 + 2 + 3 Y = 1 + 2 + 4 Z = 1 + 3 + 5

a1 t2123〈1|X|4〉〈3|X|6〉 −〈1|Y |3〉〈4|Y |6〉〈4|Y |3〉2 [35][51]〈24〉〈62〉〈5|Z|2〉2
a2 −t123[12]〈45〉〈1|X|4〉2 [12]〈35〉〈4|Y |3〉〈1|Y |3〉2 [15]2〈24〉2〈1|Z|4〉〈5|Z|2〉
a3 0 [12]3〈56〉〈35〉2〈1|Y |3〉 [51][13]〈24〉〈46〉〈1|Z|4〉2
a4 0 −[12]3[24]〈56〉3〈35〉 [13]2〈46〉2〈3|Z|6〉〈1|Z|4〉
a5 0 −[12][24]2〈56〉3〈4|Y |6〉 [13][35]〈46〉〈62〉〈3|Z|6〉2
a6 −t123[23]〈56〉〈3|X|6〉2 −[24]〈56〉〈4|Y |3〉〈4|Y |6〉2 [35]2〈26〉2〈5|Z|2〉〈3|Z|6〉

Given the simplicity of the sub-amplitudes with two negative helicities and all the others

positive, equations (4.1), (4.4) and (5.1), it is obvious that the generalization to arbitrary n

is

m(1, 2, . . . , n) = 2n/2ign−2 〈IJ〉4

〈12〉〈23〉 · · · 〈n1〉
(5.6)

where once again I and J are the momenta of the negative helicity gluons. Apart from this

being the natural square root of the expression given by Parke and Taylor [11], [12], it also

satisfies the Ward Identity for arbitrary n. Once again the proof is simple, multiply the

(n− 1)-gluon Ward Identity for this helicity structure by

〈(n− 1) 2〉
〈(n− 1) n〉〈n2〉

then all but the first term are part of the n-gluon Ward Identity. For the first term multiply

the numerator and denominator by 〈n 1〉 and use the Fierz Identity to write the numerator

as

〈(n− 1) 2〉〈n 1〉 = 〈(n− 1) 1〉〈n 2〉 + 〈(n− 1) n〉〈1 2〉.

The two terms thus generated are exactly the extra terms needed for the n-gluon Ward

Identity for this helicity structure. This provides further evidence that this is indeed the

sub-amplitude for the (n− 2) positive - two negative helicity gluon scattering process.
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6 Factorization Properties of the Sub-Amplitudes

The most important and remarkable properties of the Yang-Mills dual sub-amplitudes are

their factorization properties, whose origin can be traced back to the string picture. In this

section we show that the sub-amplitudes discussed in this paper factorize in
(1) the soft gluon limit,
(2) when two gluons become collinear and
(3) when three gluons add to form an on mass-shell gluon

i.e. on the three gluon pole.

For arbitrary n-gluon scattering these factorization properties of the sub-amplitudes will

extend up to factorization on the [n/2]-gluon poles.

First, we consider the soft gluon limit. Consider the sub-amplitudes when gluon 1 has

an energy which is small compared to all the other energies in the process. Then the five

and six gluon sub-amplitudes calculated here, satisfy

m(1+, 2 . . . , n)
1+ soft−→

{
g
√

2 〈n 2〉
〈n 1〉〈1 2〉

}
m(2, 3 . . . , n) (6.1)

m(1−, 2 . . . , n)
1− soft−→

{
g
√

2 [n 2]

[n 1][1 2]

}
m(2, 3 . . . , n). (6.2)

(6.3)

The factors in braces are square roots of the eikonal factor

g2 (pn · p2)

(pn · p1) (p1 · p2)
.

This soft gluon factorization and the Incoherence of these sub-amplitudes to leading order

in the number of colors, N, leads to the soft gluon factorization of the full matrix element

squared as proposed by Bassetto, Ciafaloni and Marchesini [12],

∑
colors

|Mn|2
1 soft−→

∑
ij

(
g2 (pi · pj)

(pi · p1) (p1 · pj)

)
|Aij(2, · · · , n)|2. (6.4)

In the limit when two gluons become collinear, Altarelli and Parisi [13] demonstrated

that the double poles associated with this collinear pair do not appear in the full amplitude

squared i.e. there is a cancellation of one power of the propagator of the sum of the two

collinear gluons. This cancellation occurs at the amplitude level rather than the square of

the amplitude in this dual formulation. In the collinear limit each sub-amplitude diverges no

more rapidly than the square root of the propagator formed from the sum of the collinear glu-

ons, see eqn(5.4). The cancellation has occurred explicitly in each sub-amplitude Therefore
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the sub-amplitudes square diverges no more rapidly than a single power of the propagator for

the collinear gluons, this is the Altarelli and Parisi observation. The origin of this behaviour

of the dual sub-amplitudes stems from the factorization properties of string amplitudes.

To demonstrate this square root divergence of the sub-amplitudes in the collinear limit,

consider the case when the momenta of particles 1 and 2 become parallel. Let 1 → z P

and 2 → (1− z) P with P 2 = 0, and z is the momentum fraction of particle 1. Then the

sub-amplitudes become

m(1+, 2+, 3, . . .)
1+ ‖ 2+

−→

 ig
√

2 [12]√
z(1− z)

 −i

S12

m(P+, 3, . . .) (6.5)

m(1+, 2−, 3, . . .)
1+ ‖ 2−−→

ig
√

2 z2〈12〉√
z(1− z)

 −i

S12

m(P+, 3, . . .) (6.6)

+

ig
√

2 (1− z)2 [12]√
z(1− z)

 −i

S12

m(P−, 3, . . .)

m(1−, 2−, 3, . . .)
1− ‖ 2−−→

 ig
√

2 〈12〉√
z(1− z)

 −i

S12

m(P−, 3, . . .). (6.7)

Note that either 〈12〉 or [12] appears in the numerator of each term. Also, it is useful to

interpret the factor in braces as the “three gluon sub-amplitude” in the limit when two

gluons become collinear. This three gluon sub-amplitude has the square root suppression

of the pole as well as having the square root of the appropriate Altarelli-Parisi gluon-fusion

function. From this result and the incoherence of the sub-amplitudes in the square of the

matrix element the standard results of Altarelli and Parisi are obtained in a simple manner.

The sub-amplitudes also factorize in the three particle channel; here let P = 1 + 2 + 3,

then as P 2 → 0 it is easy to see that

m(1, 2, 3, 4, 5, 6) → 1

2
m(1, 2, 3,−P )

−i

P 2
m(P, 4, 5, 6) (6.8)

for the helicity structure three positive and three negative. Since helicity is conserved in

the four gluon process, the helicity of the intermediate gluon is determined for this helicity

structure and the four positive - two negative helicity sub-amplitude has no three particle

poles.

Of course the full matrix element must also factorize. This is trivial in Feynman diagram

language but here it is not so obvious because of the way we have added diagrams together.
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The color factors almost factorizes for an SU(N) gauge group,

tr (λ1λ2 . . . λn) = 2
∑
x

tr (λ1 . . . λmλx)tr (λxλm+1 . . . λn) (6.9)

+
1

N
tr (λ1 . . . λm)tr (λm+1 . . . λn).

This “factorization” property of the traces follows from the identity

∑
a

λa
ij λa

kl =
1

2
(δil δjk −

1

N
δij δkl). (6.10)

The 1/N term could destroy the full factorization, but it does not. Terms proportional to

1/N vanish at the pole because of the Ward Identity for the sub-amplitudes. Therefore, all

the gluon amplitudes discussed in this paper satisfy, as expected, the factorization property

Mn+n′ →
∑

Mn+1
−i

P 2
Mn′+1 (6.11)

as P 2 → 0 for n, n′ ≥ 2. The sum is over the color and helicity of the intermediate state.

7 The Square of the Six Gluon Amplitude

The complete square of the six-gluon amplitude, including the non-leading color terms is

∑
colors

|M6|2 =
N4(N2 − 1)

64

∑
perm′

H(1, 2, 3, 4, 5, 6) (7.1)

where the function

H(1, 2, 3, 4, 5, 6) = | m(1, 2, 3, 4, 5, 6) |2 (7.2)

+
1

N2

(
m∗(1, 2, 3, 4, 5, 6)

[
m(1, 3, 5, 2, 6, 4)

+ m(1, 3, 6, 4, 2, 5) + m(1, 4, 2, 6, 3, 5)
]
+ c.c

)
.

Thus, the complete matrix element squared, summed over helicities and colors, is given by

∑
hel.

∑
colors

|M6|2 =
N4(N2 − 1)

32

[ ∑
perm′

∑
i>j

H ij
0 (1, 2, 3, 4, 5, 6)

+
∑

all perm

{1

6
H1(1, 2, 3, 4, 5, 6) + H2(1, 2, 3, 4, 5, 6)

+
1

2
H3(1, 2, 3, 4, 5, 6) }

]
(7.3)

where the subscripts on the functions, H, determine the helicity structure of the squared

sub-amplitudes. H ij
0 is the four positive - two negative (gluons I and J) helicity structure,
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H1 is the alternating helicity structure (1+2−3+4−5+6−), H2 is the mixed helicity structure

(1+2+3−4+5−6−) and H3 is the adjacent structure (1+2+3+4−5−6−). These H functions can

be calculated either numerically from the sub-amplitudes, eqns(5.1, 5.2), or for the leading

color terms from the analytic form of the square of the sub-amplitudes given below.

To calculate the squares of the sub-amplitudes many properties of the spinor products

developed by Xu et al[8] were used. In fact very compact expression in terms of the Lorentz

invariants, Sij, were obtained for two out of the four sub-amplitudes squared. The other

two sub-amplitude structures are not as compact but consist of less than two hundred terms

when expressed purely in terms of the elementary kinematical invariants Sij and tijk. Here,

we give the two simpler squares (the others are in the Appendix).

First, the four positive - two negative helicity sub-amplitude squared is

|m4+2−(1, 2, 3, 4, 5, 6)|2 = 64 g8 S4
IJ

S12S23S34S45S56S61

(7.4)

where I and J are the negative helicity gluons. Of course the two positive - four negative

helicity sub-amplitudes are given by the same expression with I and J now being the positive

helicity gluons. For the three positive - three negative helicity sub-amplitude, the square is

given by

|m(1+, 2+, 3+, 4−, 5−, 6−)|2 = 64 g8

[
t3123(t123S34S61 + t234S45S12 + t345S56S23)

t234t345S12S23S34S45S56S61

− 4 t2123

t234t345S34S61

(7.5)

+
( t123t234t345 − t234S45S12 − t345S56S23)

2

t2234t
2
345S

2
34S

2
61

]
.

Note that the sub-amplitudes add Incoherently to leading order in the number of col-

ors and the simplicity of the non-leading color terms is achieved by the properties of the

sub-amplitudes, especially the Ward Identity equation (2.2). This result together with the

expressions for the sub-amplitudes, eqn(5.1) and (5.2), can be used to calculate the matrix

element squared by evaluating the sub-amplitudes as complex numbers. Owing to the sim-

plicity of the sub-amplitudes and the simplicity of the leading and non-leading terms in the

number of colors this method of calculation is appreciable faster than previous numerical

algorithms [3].

The ordering of the gluons in the non-leading color terms is of particular import. These

terms are the only possible ones which have no two or three particle propagators in common
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with the original ordering (1, 2, 3, 4, 5, 6) and as such are less singular in the collinear limit

than the leading part in N. In fact the non-leading color terms are finite in the collinear

limit so that in this limit they are completely irrelevant compared to the leading color terms.

Also by comparing numerically the leading to non-leading pieces for N= 3, the non-leading

terms contribute in general only a few percent to the total cross-section. This result is even

true in the soft gluon limit. Therefore the non-leading terms can be ignored given that this

calculation is only to tree level, and the other uncertainties in any Monte Carlo application

are much larger than this uncertain. The smallness of the non-leading color terms and the

fact that the leading color terms are just the squares of the simple sub-amplitudes implies

that the square of this matrix element is easy to obtain.

The double poles of S34 and S61 in |m(1+, 2+, 3+, 4−, 5−, 6−)|2, eqn(7.5), are only appar-

ent. This can be seen by using the identity

tr(1̂2̂3̂4̂5̂6̂) = t123t234t345 − t123S34S61 − t234S45S12 − t345S56S23,

here ı̂ = pi · γ, and realizing that for adjacent momenta this trace goes to zero as the

square root of the Lorentz invariant, Sij , as this invariant goes to zero. The Altarelli -

Parisi relationship can be obtained from this squared sub-amplitude by using∫ dφ

2π
tr2(1̂2̂3̂4̂5̂6̂) → 2 S12S23S34S45S56S61

as any two momenta that are adjacent in the trace become parallel and the integral is the

standard azimuthal averaging for these two momenta.

8 Conclusion

Here we have presented an extremely powerful technique for evaluating multi-gluon scat-

tering processes by using an analogue with string theories to identify gauge invariant sub-

amplitudes. Not only are these sub-amplitudes straight forward to calculate but they are

simple and satisfy many important properties. The most remarkable properties are their

factorization in the soft gluon limit, the two gluon collinear limit and on multi-particle

poles. This suggests that there is a hidden simplicity in QCD yet to be discovered. We have

demonstrated the power of these techniques and simplicity of the results by presenting the

amplitude and its square for the four, five and six gluon scattering processes. These results

are also useful for Monte-Carlo studies of multi-jet events at hadron colliders.
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We have enjoyed many discussions on this topic with E. Eichten, K. Ellis, P. Marchesini

and T. Taylor.
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9 Appendix

The fundamental relations used in calculating the square of the matrix elements are the

following:

[i1 i2]〈i2 i3〉[i3 i4] · · · 〈i2n i1〉 = tr (i1i2 · · · i2nP+), (9.1)

〈i1 i2〉[i2 i3]〈i3 i4〉 · · · [i2n i1] = tr (i1i2 · · · i2nP−), (9.2)

where P± = 1
2
(1 ± γ5) , 〈i j〉 ≡ 〈i − |j+〉 and [i j] ≡ 〈i + |j−〉. Equations (9.1) and (9.2)

are complex conjugates of each other. These equations are used to obtain the square of the

independent sub-amplitudes for the three positive - three negative helicity structure which

are given in Table A. The first column of this Table is the product of poles multiplying the

terms appearing in the other columns. The following definitions were used in this Table;

T1 = t123S12S23S45S56,

T2 = t234S23S34S56S61,

T3 = t345S34S45S61S12,

S = S12S23S34S45S56S61,

{ij · · · k} = tr (ij · · · k),

X = p1 + p2 + p3, Y = p1 + p2 + p4 and Z = p1 + p3 + p5.
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The symbols π± and πr generate permutations of the momenta according to the following

rules:

π+ : (123456) → (234561),

π− : (123456) → (612345),

πr : (123456) → (654321).

πr is a symmetry of all of the three matrix elements squared, while π± are symmetries of

|m(+ − + − +−)|2 only. Whenever either of the π’s appears as an entry in Table A, this

entry has to be filled in such a way as to enforce these symmetries. For example, the term

proportional to T−2
3 in |m(+−+−+−)|2 is given by S2

35S
2
26{1Z4Z}2, and in |m(+++−−−)|2

is given by S2
12S

2
45{3X6X}2.

Finally, the symbol χ.c. after a product of traces is the chiral conjugate and its meaning

is clear from the following example:

{356Y 4Y }{124Y 3Y }+ χ.c. = {356Y 4Y }{124Y 3Y }+ {356Y 4Y γ5}{124Y 3Y γ5}.

To express the amplitude squared in terms of the elementary kinematical invariants Sij

and tijk, it is necessary to expand the traces appearing in the Table. Below we give the

set of identities that we have used to carry out this expansion which generates eqn(7.5) for

|m(1+, 2+, 3+, 4−, 5−, 6−)|2 and fewer than two hundred terms for the other sub-amplitudes

squared.

As an immediate consequence of (9.1) and (9.2)

tr2 (i1i2 · · · i2n) − tr2 (i1i2 · · · i2nγ5) = 4 Si1i2Si2i3 · · ·Si2ni1 . (9.3)

A straight forward generalization of this identity is

tr (i1i2 · · · i2nγ5) tr (j1j2 · · · j2mγ5) = tr (i1i2 · · · i2n) tr (j1j2 · · · j2m) (9.4)

− 2
[
[i1 i2]〈i2 i3〉 · · · 〈i2n i1〉〈j1 j2〉[j2 j3] · · · [j2m j1] + c.c.

]
.

These two identities reduce all of the traces containing a γ5 and thus one can show that

{462135γ5}{642315γ5} = {462135}{642315}

− S13S46 ( {1235}{4562} − {1235γ5}{4562γ5} ) (9.5)

{356Y 4Y γ5}{356Y 421Y γ5} = −t2V
(
{356X}{124356}+ 2S56S35{124356}

+2S34S35S56{1246}
)
, (9.6)
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where we have defined:

(p1 + p2 + p3)
2 = t123 ≡ tU , (p1 + p2 + p4)

2 ≡ tV , (p1 + p3 + p5)
2 ≡ tW .

The traces of eight gamma-matrices and a γ5 can be reduced by using the following identity

together with its permutations and equation (9.3):

{321X456Xγ5} = tU{123456γ5}. (9.7)

The proper reduction formulae for the other traces appearing in the Table and in the former

relations are given by:

{1X4X} = 2t123t234 − 2S23S56 (9.8)

{124X} = t234S12 − tV S23 + t123S24 (9.9)

{123456} = t123t234t345 − t123S34S61 − t234S12S45 − t345S23S56 (9.10)

{124Y 3Y } = −tV {124X}+ 2S12S24S56 (9.11)

{124Y 3Y γ5} = tV {1234γ5} (9.12)

{321X456X} = −tU{123456} − 2S12S23S45S56 (9.13)

This completes all definitions needed to reduce the traces of Table A to the elementary

kinematical invariants.
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