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The investigation of the properties of field theoretic scattering ampli-
tudes in the complex angular momentum plane probably can be approached
at present only within the framework of an approximation scheme. It is
doubtful whether general considerations can provide much information on
the nature and location of the singularities in the £-plane, though the as-
sumption of a Mandelstam representation provides a certain domain of ana-
lyticity. The present paper is concerned with the properties in the £-plane
of the Bethe-Salpeter scattering amplitude in the ladder approximation, and
is based on work by B.W. Lee and the author. This amplitude, though close-
ly related to a potential scattering amplitude, has several features of field
theory which are not contained in potential scattering:

(a) I+is fully relativistic;

(b) 1. satisfies a unitary relation to which states of more than two par-
ticles contribute, i.e., it takes account of possibility of particle
production;

(c) The crossed ladder graphs represent a set of Feynmandiagrams
for another scattering process, so that one may hope to interpret
the Regge limit, t— w, as the high-energy limit of a genuine scat-
tering amplitude.

In terms of graphs, our aim is to discuss the behaviour in the £-plane

of the sum shown in Fig.1 .
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and to investigate the connection with the high-energy limit of the graphs
shown in Fig. 2
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- For simplicity we consider the scattering of two J = 0 bosons of mass
m through exchanges of a scalar boson of mass u, We write the relevant
Bethe-Salpeter equation for the scattering amplitude in momentum space
as: :

- 7 I = =, ./
<Pl B’y =¢B.ol BIBw
* f CB,0| (o) [B",0"> (B, 0" [ K(s) [ 07> d°pdw” (1) -
where ' '
¢BwlBIB WY = (g @M [ @-BI+u2-ic -(0w)T,
¢BulK(s)| B0y = - iF B0, )¢ B, [BlBw,
F(B,w,8) = [F?+m? - (fs/2 +0)? [p2+ m? - (Js/2)7] .
These equations define a T matrix off the mass shell. s is the square of

the total energy in the centre-of-mass system. The solution to Eq. (1) for
physical scattering is to be evaluated at

The partial wave projection of Eq. (1} is of the form
Ty(s) = By + Ty (s)Ky(s) (2)
where

¢ 0| Bl o' >= (g% (2m)°] Quf[p2 + B2 +12 - (w)?)/2p P}

¢p.wlKy(s)| plw’s = -iFY(p,0, s)¢ p,w, B,/ p/w’>.

Operator products are defined by
o0 40
_ <p,w|AB|p’,w’>=f dp'\/‘ dw'(p,w|A|p', w')(p',w'|B|p,’w'>.
. 5 J

We make the extension to non-integral £ from Eq.(2). We note that in
the iteration solution to Eq.(2) £ enters only in the function Q,.The function
Qis analytic in the entire £-plane except for fixed poles at the negative inte-
gers. Wherever the iteration solution converges we may immediately con-
clude that the scattering amplitude is analytic in the £ plane. The Regge
poles, of course, reflect the divergence of this series. To prove a domain
of meromorphy in the £-plane we use instead the development of the solution
of Eq. (2) as the ratio of two series via the Fredholm method. We write for-
mally
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T, = By(1-K,)™! (3)
and use the identity
(1-Kg)1=-(6/6 KT)Dy/ D,
where

Dy=D4L +(1-K) = exp[Tr log(1-K)]. (4)

This will be a useful representation wherever the perturbation series for

D, converges. As in the case of potential scattering, it can be shown that
for Re £> -3/2theintegrals of the form Tr Kj in the expansion for D converge
and also that the perturbation series for D (and for N) converges absolutely.
The proof, which is somewhat lengthy and will not be presented here, in-
volves finding changes of variable which reduce the integral equation (3) to
one with a bounded kernel and a finite range of integration. Standard methods
are now applicable to show the convergence of N, and D) in this region,

Re £ >-3/2.

It follows that Ty is meromorphic in the half-plane Re £>-3/2. The
Regge poles are zeros of Dy. Note that Ny and D) may have fixed singulari-
ties at £=-1. 'These are both, in fact, simple poles. The proof is analogous
to that in the case of potential scattering.

Before proceeding to the Regge trajectories and to their applications,
we note some properties of our ND-! factorization. First we discuss the
singularities of Dy as a function of s.

A typical trace in the evaluation of Dy has the form:

R 24142 - 2
TrK"= -dpldwlFl(pl,wl,s)Q,[p’ Rtk o w’)]

2p, Py

-dpy AW, FH{py, Wy, ) . ..

2 2 2 2
'dPn d‘”n F-I(Pn. Wy, S) Ql [pn *pit k® - (wn'wl) } .
2 P 1
|<am. In this region we may perform
a transformation, following Wick, which considerably simplifies the problem.
In this region the zeros of F(p,w, s) in the w plane (giving the masses a nega-
tive imaginary part) are located as shown in Fig. 3.
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The Wick trick is now to rotate all the w; integration contours simultaneously
counterclockwise into the imaginary axis. No singularities of the Q, functions
in (5). are encountered in this rotation. Now we look at the new denominators
in Eq.(5), F(p, iw;, s) and see that for real p; and w;, they are non-vanishing
in the region| Re Js|<2m. Dy(s) is therefore free of singularities in this
region of the s-plane. We anticipate that D,(s) has only the right hand cut
beginning at s= 4m?, We must still show, however, that no spurious singu-
larities at complex s were introduced by our N D-1 factorization. This can
be shown by some further distortions of contour which will not be gone into
here.

For integral £, Ty(s) is defined by Eq. (1) with a left-hand cut beginning
at s=4m2-k? and a right-hand cut beginning at s=4m?2, with branch points
at the production thresholds s= (2 m +nk)2, For non-integral £ there is a
further kinematic cut which can be renewed by factoring out a factor(s-4m2)t,
Let us define ny(s) by N, (s)= (s-4m?)!n,(s) and investigate the singularities
of ny(s). What can be shown is that ny(s) has no cut from s=4m? to the first
inelastic threshold, s=(2m +k)?. Thus ny(s) has a left hand cut and a right
hand cut beginning from s= (2 m +k)2, The proof can be done in a compact
notation by proving the relation

[Dy(s-i€)]/[Dy(s+i€)]=exp[2ié(s, £)] (6)

in the region 4m< s <(2m +k)2, v
Using a property of determinants we write:

Da[}§§§§§§3]=na{1+qu+¢e>-KAs-ien[1-KAsﬁqrﬁxn

In the region 4 m?< s <(2m +k)2 Cutkosky's method for evaluating discon-
tinuities is equivalent to the replacement :
<P.w|K¢(s+i< ) -Ky(s-i€)|pu">
— [gY1(2m)®]8[ p2+m? - (w - (1/2)J5)2]6[p? +m?2 - (w - (1/2)Js)]

QR e ], ®)

We may then write Eq.(7) as

D(s-i€)/D(s+ie)=1+ [1"2 JS[(1/4)s-m2] ](P, ol B,(1-K,)7

p,0% (9)

where the infinite determinant was evaluated by noting that aside from the
ones along the diagonal, there is only one non-vanishing column of the matrix
of which the determinant is being taken, as indicated by the é-functions in
Eq. (8). With our definitions the right hand side of the Eq.(9) is the S matrix
element. Thus Eq. (6) is proved and it is furthermore clear that n,(s) has
no cut beginning at s=4m?, '
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The Regge trajectories are given by the roots of the function
D(Z, s) = Dy(s).

The two properties of the trajectories which we shall now discuss are:
(1) The asymptote (lim s ., «) of the leading trajectory;
(2) The development of the trajectory, @ (s), in a perturbation series.
We shall need two properties of Dy(s) which can be proved:
(a) Dy(s) has a simple pole at £= -1. This follows, as in potential scat-
tering, from the dependence of the singular (at £ = -1) part of the kernel,
Kj, on only the first indices:

<P:U|Ksing|p':"">= -[i/(e+ D] FYp,0,s)

(b) For £ #-1, Dy —> 1 as s — « with the remainder terms ap-
proaching zero at least as fast as s1/2 | This follows from the transformed
form of the kernel, K;, which we referred to above, in which K, is bounded
and the range of indices finite. We find, for this new kernel, K< (1/s)n,
where n is some finite constant. The details are in 1] .

Now D,(s) may be written in the form

Dy(s)=1+[f(s)/ (2 + 1)] +g(s,4) (10)
where f(s) and g(s, £)approach zero at infinite s and g(s, £) is regular in £
for Re £ > -3/2. For large s there may be a root, D;(s)=0, only near £=-1.
The Regger trajectory is given by the solution to

=-11f(s) - g(s, )£+ 1) (11)
and the asymptote is clearly £= -1,

The lowest order Regge trajectory follows from computing the lowest
order f(s)(which we call f;(s)) in Eq.(10). Using the expansion of Dy(s):

2 _ 2
Dy(s)=1-TrK+ TrK)2 TrK .

we see that [f1(s)/(2+1)] is given by the singular part of -TrK,

Tk o if? dpdw __ g2 [ ds ,
“Trking * Gap(+1)) Fp,w,s) 8742 +1) (s'-s-iels(s-4m3

Therefore afs) is given in lowest order by :

2 ds’ .
a(s)= '1+égﬁﬂs'_s_ie) Jote-ame 084 ... (12)

This is a valid expansion for sufficiently weak coupling except near threshold,
s = 4m?. It is straightforward but tedious to work out the next order in the
expansion of @(s) and we have not done it. In the next order the formula
should show some effect of the production threshold.



344 R. SAWYER

Now we shall use our first order expression for a(s) to determine the
asymptotic behaviour of the sum of the graphs (Fig.4) in the A¢3 theory«

Fig.4

To be able to make this connection we need, of course, to open up the Watson
contour as in the work of Regge. That is, we need convergence of an inte-
gral along a line Re £ = {( and the vanishing of an integral along an infinite
semicircle. For our amplitude we have proved these properties only for

£,> -1/2, but we shall need them for 4, slightly less than -1. So let us simp-
ly assume for the moment that everything is all right. In addition we require
a modification of the Regge formula, due to Mandelstam. to take account

of poles to the left of £=-1/2. The outcome is simply that the leading asymp-
totic term in the sum of the above graphs is simply :

T(s, t) =2 B(t)s*® (13)
where "f"(s,t) is the T-matrix element for the above "crossed ladder graphs",
‘a(t) is the trajectory we just computed (s and t were interchanged when the
graphs were crossed). ’

We write:
a(t)=-1 +g2al (ty+gas(t) +...
B(t)=g2B,(t) +g* Bolt) +...

According to our previous calculation:

_
“l‘t"mfz(v-t) Tlt-dm)) (14)
4m

It turns out that the lowest order 8 is given by :

B, = (2

Now expanding Eq.(13) in powers of g2we obtain:

T(s, 1) = EB1 , Bl ealtogs , g8l | g(en). (15)
§ — =

Note that the fourth order term which goes as log s/s’can be computed exact-
ly in terms of the second order ¢ and 3. We have checked this connection



REGGE POLES IN FIELD THEORY 345

by calculating the logs term in the fourth order box diagram directly, We
see also the term in the second order diagram of order g2'(log s)"s-! can
also be given in terms of the lowest order 3; and o; functions. It is simply :

g2n31 (o 1(t))n (log S)"/S.

Thus it is seen that the Regge idea coupled with perturbation theory provides
a very powerful technique for summing the most divergent parts (as s« )
of sets of Feynman graphs. This technique may be useful in field theory
whether the entire scattering amplitude is an analytic function of £ or not.

One trivial generalization of our model is the inclusion of a mass spec-
trum for the exchanged particle. We consider a scattering amplitude derived
from replacing By in Eq. (2) by :

p2+p'2 +y_(w_wl)2
fQ”( 2pp! ) ey

The interesting change in the previous results occurs when o(y), the mass
spectral function, goes to zero more slowly than y-2, Let us assume a be-
haviour:

oly) —>y™
as
y—/
where
0<n<l1.

The asymptote of the leading Regge trajectory is now, £=-n. This is the
generalization of a result for potential scattering with a potential given by :

0 _J'yr
V(r) = _e_r__ dy ofy).
Yo

There is one difference; our method in potential scattering fails when

n s+ 1/2, that is, when the potential is more singular than r-2at the origin.
In the relativistic theory all n> 0 are allowed. In relativistic theory, there-
fore, the asymptote may move as far to the right as £=0 in the limitn » 0.
This would be the case for the A4 theory, in the sum of the diagrams shown
in Fig. 5.

Fig.5
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Here the basic bubble exchange has a mass spectral function which tends
to a constant at infinity.

We see that the asymptotes of the trajectories are extremely dependent
on the details of the short range force. It is this that makes me pessimistic
about the possibility of doing calculations of trajectories in a realistic model
using present day techniques. One surely must include, in addition to ex-
change of pions, nucleon exchanges, hyperon exchanges and exchanges of
everything else if one sets out to calculate the asymptotic parts of the tra-
jectories (which would be useful in interpreting high-energy scattering at
large momentum transfers). Is there, nevertheless, a reason why the long
range terms alone should dominate the trajectories nearo¢ =0 (the diffraction
region)? Probably there is not, Note that what I am discussing here is not

|

Fig.6

peripheralism, In the high-energy diagram shown in Fig,.6, it is not a
question of what the masses of the horizontal lines should be (the peripheral
question), It is rather a question of whether the immensely massive inter-
mediate state, (m,, mj.,...m,), should consist of many particles of low
mass or of somewhat fewer particles, some of which are quite massive,
The first possibility corresponds to considering only the long range force in
the crossed (ladder) channel; the second to including shorter range effects
as well,



