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The investigation  o f  the p rop erties  o f fie ld  theoretic scattering am pli
tudes in the com p lex  angular m om entum  plane probably can be approached 
at present only within the fram ew ork  o f an approxim ation schem e. It is 
doubtful whether general con siderations can provide much inform ation on 
the nature and location  o f the singu larities in the j?-plane, though the a s 
sumption o f a M andelstam  representation  prov ides a certain  domain of ana
ly t ic ity . The present paper is  con cern ed  with the p rop erties  in the i-p la n e  
o f the B ethe-Salpeter scattering  amplitude in the ladder approxim ation, and 
is  based  on w ork  by B .W . L ee  and the author. This amplitude, though c lo s e 
ly related  to  a potential scattering am plitude, has severa l features of fie ld  
theory  which a re  not contained in potential scattering :

(aj 1+ is  fu lly  re la tiv istic  ;
(b) 1+ sa tis fies  a unitary relation  to which states of m ore  than two p a r 

t ic le s  contribute, i . e . ,  it takes account of possib ility  o f particle  
p rodu ction ;

(c) The c ro s s e d  ladder graphs represent a set of Feynman diagram s 
fo r  another scattering p ro ce s s , so  that one may hope to interpret 
the R egge lim it, t o o ,  as the high-energy lim it o f a genuine scat
terin g  am plitude.

In te rm s o f graphs, our aim  is  to d iscu ss  the behaviour in the i-p lane 
o f the sum shown in F ig . 1

Fig.l

and to  investigate the connection  with the high-energy lim it o f the graphs 
shown in F ig . 2

A
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F o r  sim plicity  we con sid er  the scattering o f two J = 0 bosons of m ass 
m  through exchanges o f a sca la r  boson  o f m ass ß . We w rite the relevant 
B ethe-Salpeter equation fo r  the scattering amplitude in momentum space 
a s :

< p, u |T(s)| j? ,V >  = <T$,u |b | ? ;u '>

+ j 0 , u  | T (s )| ? " ,u " > < ^ " ,U"|K (s)|-?',U'> d 3p "d o" ( 1 )

w here

< P ,u |b |p 'ju'>  = [g 2/  (2 tt)4] [ ( p - p ') 2 + M2 - i e  -(u -w ')2]-1,

( P , u |k (s )| = - iF '^ P .u , s )< p ,u , Ib Ip ' .u ' ) ,

F (p ,u , s) = [ j?2+ m2 - (n/ s/ 2 + u )2] [ ff2 + m 2 - (*/s/2-w)2] .

T hese  equations define a T m atrix  o ff the m ass shell, s is  the square of 
the tota l energy in the c e n tre -o f -m a s s  system . The solution to E q .( l )  fo r  
ph ysica l scattering is  to  be evaluated at

u = id' = 0,

p=Uf * /Is /4) -  m2, 

p =Uin/(s / 4) - m2.

The partia l wave p ro jection  o f Eq. (1) is of the form

T ,.(s )-B | + T | (s )K | (s ) (2)

w here

< p ,u  | B j p', w'>= [g 2/ (27r)3] Qf {[p 2 + p'2 V  - (u -u ')2] /2  p p '} ,  

< P , w | k c ( s ) |  p 'u '>  = -  i F _1(p, u, s )< p ,u , |Bt| p 'u '> .

O perator products are defined by

/
oo _+oo

dp 'J dw*<p,u| A|p', u '> < p ',u iB | p ;u ') .
o

W e m ake the extension to n on -in tegra l i  from  Eq. (2). We note that in 
the iteration  solution to Eq. (2) £ enters only in the function Qt.T h e function 
Q t is  analytic in the entire i-p la n e  except fo r  fixed poles at the negative inte
g e rs . W herever the iteration  solution con verges we may im m ediately con 
clude that the scattering amplitude is  analytic in the I  plane. The Regge 
po les , o f cou rse , re fle c t  the d ivergen ce  of this s e r ie s . T o prove a domain 
o f m erom orphy  in the j?-plane we use instead the developm ent of the solution 
o f E q. (2) as the ratio o f two se r ie s  via the Fredholm  m ethod. We w rite f o r 
m ally
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T{ = B t(l-K c)-i (3)

and use the identity

(1 -K j) '1 = -(ö /öK T jD f/D f

w here

Dt = D i + (1 -K c) = exp[Tr lo g ( l  -K {)]. (4)

T his w ill be a usefu l representation  w h erever the perturbation se r ie s  fo r  
D{ con v erg es . A s in the ca se  o f potential scattering, it can be shown that 
fo r  Re £ > - 3 /2  the in tegrals o f  the form  T r  K ( in the expansion fo r  D converge 
and a lso  that the perturbation se r ie s  fo r  D (and fo r  N) con verges absolutely. 
The p roo f, which is  somewhat lengthy and w ill not be presented here, in 
v o lv es  finding changes o f variab le  which reduce the integral equation (3) to 
one with a bounded kernel and a fin ite range of integration. Standard methods 
are  now applicable to show the con vergence  of Nt and Dt in this region,
Re £ > - 3 / 2 .

It fo llow s that T t is  m erom orph ic in the half-p lane Re £ > - 3 /2 . The 
R egge po les  a re  z e ro s  o f Dt. Note that Nt and Dc may have fixed singu lari
t ie s  at £ ■ - 1. T h e s e  are  both, in fact, sim ple p o les . The p roo f is  analogous 
to that in the ca se  of potential scattering.

B e fore  proceed in g  to the R egge tra je c to r ie s  and to their applications, 
we note som e p rop erties  o f our N D '1 fa ctoriza tion . F irs t we d iscu ss the 
sin gu larities of D{ as a function o f s.

A  typ ica l tra ce  in the evaluation o f Dc has the f o r m :

a transform ation , fo llow ing  W ick , which considerably  sim plifies the problem . 
In th is reg ion  the z e ro s  of F (p , u , s) in the u plane (giving the m asses a nega
tive im aginary part) a re  loca ted  as shown in F ig .3.

•dp2du2F ‘ 1(p2,u 2, s) . . .

F irs t  we consid< i may perform

x x
x x

Fig. 3
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The W ick  tr ick  is  now to rotate a ll the uj integration contours simultaneously 
cou nterclock w ise  into the im aginary ax is. No singularities of the Q{ functions 
in (5) are  encountered in th is rotation. Now we look  at the new denominators 
in E q. (5), F(pj, iu j, s) and see that fo r  rea l p, and they are non-vanishing 
in the region| Re Js|<2m . Dt(s) is  th ere fore  fr e e  of singularities in this 
region  o f the s -p la n e . W e anticipate that Df (s) has only the right hand cut 
beginning at s=  4 m2. W e must still show, how ever, that no spurious singu
la r it ie s  at com plex  s w ere  introduced by our N D 'i factorization . This can 
be shown by som e further d istortions of contour which w ill not be gone into 
here .

F o r  in tegra l S., Tj (s) is  defined by Eq. (1) with a left-hand cut beginning 
at s = 4 m 2-k 2 and a right-hand cut beginning at s = 4 m 2, with branch points 
at the production  thresholds s=  (2m +n k )2. F o r  non-in tegral S. there is  a 
fu rther kinem atic cut which can be renewed by factoring  out a fa ctor (s -4 m 2)*. 
Let us define n {(s) by N£(s )*  (s -4  m2)4n{ (s) and investigate the singularities 
o f n j(s ) . What can be shown is  that n j(s) has no cut from  s = 4m 2 to the first 
in elastic  threshold , s=  (2m  + k)2. Thus nf(s) has a left hand cut and a right 
hand cut beginning from  s — (2 m + k )2.T h e p roo f can be done in a com pact 
notation by proving the relation

[D { (s - i e ) ] /[D { (s + ie  )] = exp[2  i 6 (s, i ) ]

in the reg ion  4 m <  s < (2  m +k)2.
Using a property  o f determ inants we w r it e :

rl - K t ( s - i e )

(6)

Det
1 - K t(s  + ie )

Det { l  + [ K * ( s + ie ) - K t( s - i e ) ]  [ 1 - K{ (s+i

In the region  4 m2< s < (2 m +k)2 C utkosky's method fo r  evaluating d iscon 
tinuities is  equivalent to the rep la cem en t:

< p ,u | K { (s + ie  ) -K t(s -ie )| p ',u > '>

[g 2/i(27r)3]6[ p 2+ m 2 -  (w - ( l /2 )» /s )2]6[p2 + m 2 - (u - ( l /2 ) s/s)]

q  j~p2 + p'2 + k 2-  ( u -<j ')2~
2 p p ’ (8)

We may then w rite  Eq. (7) as

D ( s - i e ) / D ( s + i e )  = l  + *7*Js[(l/4 )s-ir?11 < p, 0 1 B£(1 - K j) '1! p, 0 > (9)

w here the infinite determ inant w as evaluated by noting that aside from  the 
ones along the diagonal, there is  only one non-vanishing colum n of the m atrix 
o f which the determ inant is  being taken, as indicated by the 6-functions in 
Eq. (8). With our definitions the right hand side of the Eq. (9) is  the S m atrix 
elem ent. Thus E q. (6) is  proved  and it is  fu rtherm ore c lea r  that nt(s) has 
no cut beginning at s = 4 m 2.
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The R egge tra je c to r ie s  a re  given by the roots of the function

D (i, s) =  D j(s).

The two prop erties  of the tra je c to r ie s  which we shall now d iscuss are :
(1) The asym ptote (lim  s _> oo) of the leading tr a je c to r y ;
(2) The developm ent o f the tra je cto ry , a (s), in a perturbation se r ie s .
W e shall need two prop erties  o f Df(s) which can be p ro v e d :
(a) D p(s) has a sim ple pole at i  ■ -1 . This fo llow s, as in potential sca t

terin g , from  the dependence o f the singular (at £ = - l )p a r t  o f the kernel,
Kc, on only the firs t  in d ices :

<P<u lKsinglp'*u '> = - t i /(-£+ l ) ] F -1(p ,u , s)

(b) F o r  £ ^=-1, Dc — > 1 as s — ) oo with the rem ainder term s ap
proaching z e ro  at least as fast as s"1/ 2 . This fo llow s from  the transform ed 
fo rm  o f the kernel, R,c, which we re fe rre d  to above, in which K c is  bounded 
and the range of in d ices fin ite . We find, fo r  this new kernel, K{<(lA/s)n, 
w here n is  som e finite constant. The details are in [1] .

Now Dc(s) may be w ritten in the form

D( (s) = l + [ f ( s ) / ( i + l ) ] + g ( s , i )  (10)

w here f(s ) and g(s, i)ap proach  z e ro  at infinite s and g(s, i ) i s  regular in £ 
fo r  Re £ > - 3 / 2 .  F o r  la rge  s there may be a root, Df (s) = 0, only near i =  -1 . 
The R egger tra jectory  is  given by the solution to

£ = -  l*f(s) - g (s , £)(£ + 1) (11)

and the asym ptote is  c lea r ly  £ = -1 .
The low est o rd er  R egge tra jectory  fo llow s from  computing the lowest 

ord er  f(s)(w hich  we ca ll f j ( s ) ) in Eq. (10). Using the expansion o f Dc( s ) :

D , < s ) . l - T r K . <T r K ^ -T- ^ * . . .

we see that [ f i ( s ) / ( i  +1)] is  given by the singular part of -T r  K,

r i g 2 r  dpdu g2 r _ds|______'
" T rK sing (2 i )3( i  + l ) j F ( p , i 1), s) 8 ir2(£ +1) J (s '-S -ie )N/s '(s '-4  m^

T h ere fo re  a ( s) is  given in low est ord er  by :

<j2 P d s ' , , '
a  s = - l + ^ - ö  : o+ 0(g4) . . .  128 7T2 J ( s '- s - ie )  4 m2 vs

T his is  a valid expansion fo r  sufficiently weak coupling except near threshold, 
s = 4 m2. It is  straightforw ard but tedious to w ork out the next order in the 
expansion of a ( s) and we have not done it. In the next ord er the form ula 
should show som e effect o f the production  threshold .
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Now we shall use our firs t  o rd e r  expression  fo r a ( s )  to determ ine the 
asym ptotic behaviour of the sum of the graphs (F ig . 4) in the Ac3 theoryr

V
+ +

A T T

Fig. 4

T o be able to m ake th is connection  we need, of cou rse , to open up the Watson 
contour as in the w ork o f R egge. That is , we need convergence o f an inte
gra l along a line Re £ = £o and the vanishing o f an integral along an infinite 
s e m ic ir c le . F o r  our amplitude we have proved  these properties  only for 
£g> -1 /2 ,  but we shall need them fo r  £Q slightly le s s  than -1 . So let us sim p- 
’ y  assum e fo r  the mom ent that everything is  a ll right. In addition we require 
a m od ification  o f the R egge form ula, due to M andelstam , to take account 
o f p o le s  to the left o f  £ = -1 /2 .  The outcom e is  sim ply that the leading asym p
totic  term  in the sum o f the above graphs is  sim ply :

T ( s , t ) i= r fß (t )s ‘ w (13)
As

w here T (s , t) is  the T -m atrix  elem ent fo r  the above "c r o s s e d  ladder graphs",
o (t) is  the tra je cto ry  we just com puted (s and t w ere interchanged when the
graphs w ere  c ro s s e d ).

We w r i t e :

a(t)= -1 + g 2o1(t) +g4az(t) + . . .  

ß(t) = g 2ß1(t )+g«ß2(t) + . . .

A ccord in g  to ou r prev iou s calcu lation  :

(t) "  8^2 /  ( t '- t )J t 'f -4 m 4 )  ' (14)
4 m2

It turns out that the low est o rd er  ß is  given b y ;

ß1 = (2 7r)-4

Now expanding E q. (13) in pow ers o f g 2we obtain:

T (s , t) = + e %  <n(t)iog s + g l M i  + O(g0) (15)
$ —> oo s s s

Note that the fourth o rd er  term  which goes as log  s /s 'c a n b e  computed exact
ly  in te rm s o f the second  ord er  a and ß.  W e have checked this connection
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by calcu lating the logs  term  in the fourth ord er  box diagram  d irectly . We 
see a lso  the te rm  in the second  o rd er  diagram  of o rd er g2n(log s)ns"1 can 
a lso  be given in te rm s o f the low est o rd er  ß1 and o 1 functions. It is  sim ply :

g 2nß1(a 1(t))n (log s)n/ s .

Thus it is  seen that the R egge idea coupled with perturbation theory provides 
a very  pow erfu l technique fo r  sum m ing the m ost divergent parts (as s-*  oo) 
o f sets of Feynm an graphs. This technique may be useful in fie ld  theory 
whether the entire scattering am plitude is  an analytic function of £ o r  not.

One tr iv ia l generalization  o f our m odel is  the inclusion of a m ass sp e c 
trum  fo r  the exchanged p a rtic le . W e con sid er a scattering amplitude derived 
fro m  rep lacing  B c in Eq. (2) by :

The in teresting  change in the previous resu lts o ccu rs  when a(y), the m ass 
sp ectra l function, goes to z e r o  m ore  slow ly  than y 2. Let us assum e a b e 
haviour :

cr(y) — » y 'i

as

y  — » oo

w here

0 < rj < 1.

The asym ptote of the leading R egge tra jectory  is  now, £ = - p. This is  the 
generalization  o f a resu lt fo r  potential scattering with a potential given b y :

r"°e ‘ vyr 
V (r) = /  ^  dy cr(y).

T here  is  one d if fe r e n c e ; our method in potential scattering fa ils  when 
n s  + 1 /2 , that is , when the potential is  m ore  singular than r ' 2at the origin . 
In the re la tiv is t ic  theory  a ll rj > 0 a re  a llow ed. In re la tiv istic  theory, th ere
fo re , the asym ptote may m ove as fa r  to the right as £ = 0 in the lim it rj _► 0. 
This would be the ca se  fo r  the Xcp4.theory, in the sum of the diagram s shown 
in F ig . 5.
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H ere the b a sic  bubble exchange has a m ass spectra l function which tends 
to a constant at infinity.

W e see that the asym ptotes o f the tra je cto r ie s  are extrem ely dependent 
on the details o f the short range fo r c e . It is  this that m akes me pessim istic  
about the p ossib ility  o f doing calcu lations of tra je cto r ie s  in a rea listic  m odel 
using present day techniques. One surely must include, in addition to e x 
change o f p ions, nucleon exchanges, hyperon exchanges and exchanges of 
everything e lse  if one sets out to calcu late the asym ptotic parts of the tra 
je c to r ie s  (which would be usefu l in interpreting high-energy scattering at 
la rge  m om entum  tra n s fe rs ). Is there, n evertheless, a reason  why the long 
range term s alone should dom inate the tra je c to r ie s  near a = 0 (the diffraction 
reg ion )? Probably there is  not. Note that what I am d iscussing here is  not

Fig. 6

p erip h era lism . In the h igh -energy diagram  shown in F ig . 6, it is  not a 
question o f  what the m a sses  o f the horizontal lines should be (the peripheral 
question). It is  rather a question o f whether the im m ensely m assive in ter
m ediate state, (m i, m 2 ..........m n), should con sist o f many particles of low
m ass o r  o f som ewhat few er p a rtic les , som e of which are quite m assive.
The f ir s t  poss ib ility  corresp on d s to considering only the long range fo rce  in 
the c ro sse d  (ladder) channel; the second to including shorter range effects 
as w ell.


