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Abstract Roy P. Kerr has discovered his celebrated metric 45 years ago, yet the
problem to find a generalization of the Schwarzschild metric for a rotating mass
was faced much earlier. Lense and Thirring, Bach, Andress, Akeley, Lewis, van
Stockum and others have tried to solve it or to find an approximative solution at
least. In particular Achilles Papapetrou, from 1952 to 1961 in Berlin, was inter-
ested in an exact solution. He directed the author in the late autumn of 1959 to
work on the problem. Why did these pre-Kerr attempts fail? Comments based on
personal reminiscences and old notes.
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1 Introduction

The old Prussian Academy of Sciences in Berlin was certainly a good place af-
ter the Second World War to continue the research of its most prominent former
member, Albert Einstein. Here Einstein had worked 19 years and created his beau-
tiful theory of gravitation. Here several attempts had been undertaken to test the
theory: Einstein’s young coworker, the astronomer Erwin Finley Freundlich, had
tried to see (with little success) gravitational redshift effects in astronomical ob-
jects like the Sun. Freundlich was also active in several campaigns to observe
Solar eclipses with the aim to verify the predicted displacement of stars seen near
the Sun. And here Karl Schwarzschild, the director of the Astrophysical Observa-
tory at Potsdam, a town at the outskirts of Berlin, had published in 1916 the first
exact solution of Einstein’s field equations, describing the exterior gravitational
field of a nonrotating spherical mass [44]]. In view of the extreme nonlinearity of
the equations it appeared almost as a miracle that exact solutions exist at all.
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The administrative buildings of the Academy (in the summer of 1946 reopened
as “German Academy of Sciences”) and of the Berlin university happened to
be situated in the Eastern part of the divided city of Berlin, thus the Academy
worked under the influence of the Soviet Military Administration and later the East
German government. Other scientific institutions such as institutes of the former
Kaiser—Wilhelm society in Berlin-Dahlem and the 1948 founded Free University,
also there, did belong to West Berlin, the sphere of influence of the Western Al-
lies. The borders between the two parts of Berlin were open until 1961, allowing
at least some personal contact between scientists of both sides. The director of the
Academy since November 1946 was Josef Naas, a mathematician and member of
the communist party, who was sent to a concentration camp in the time of the Nazi
regime. He and other officials of the Academy were interested in a continuation of
research on Einstein’s path at this traditional place. In 1952 Achilles Papapetrou,
a Greek scientist at the Physics Department of the University of Manchester, was
invited as Senior Researcher to the Academy’s Research Institute for Mathemat-
ics, headed by Naas. Papapetrou had started his academic career in solid state
theory in the German town Stuttgart (thus he had a fluent knowledge of German),
but he was known in the scientific community for his excellent work in relativity
as well. The astrophysicists of the Academy planned further tests of Einstein’s
theory by astronomical means. Walter Grotrian, who now headed the Academy’s
Astrophysical Observatory at Potsdam, organized in collaboration with Finley—
Freundlich (at St Andrews, Scotland) and with Papapetrou’s and even Einstein’sﬂ
advice a campaign to observe the total Solar eclipse on 30 June 1954 from the
Svedish island Oland. As for many earlier expeditions, cloudy sky prevented any
observation.

Apparently, these efforts stimulated Papapetrou’s research interests. Already
his latest papers in Manchester were concerned with the derivation of equations
of motion for spinning test particles from the conservation law 35 Y =0 [13t37].
Removing the restriction to test bodies leads to the question how the gravitational
field of a single spinning mass would look. For the nonrotating spherical point
mass Schwarzschild had given the answer, but the spinning counterpart was still
an open question, at least as far as an exact solution was concerned. Solving this
problem was of principle interest for tests of General Relativity in the Solar system
with the rotating Sun and planets, no matter how small the effects of rotation
would turn out finally.

Problems of this type had already attracted several theoreticians. As early as
1918 Lense and Thirring [35] in Vienna had calculated the exterior gravitational
field of a rotating sphere, describing the influence of rotation as linear perturbation
to the Schwarzschild metric. Bach [3]] continued the Lense—Thirring calculation
by adding terms which are quadratic in the rotation velocity. In 1924 Lanczos [33]]
published a simple exact solution of the matter field equations for uniformly rotat-
ing dust. The matter density in his model has a minimum on the rotation axis and
increases exponentially with the coordinate distance from the axis, thus compen-
sating the increasing centrifugal forces by an increased gravitational attraction.

I An exchange of letters between Naas and Einstein from November 1951 deals with the
scientific chances of such a campaign [11/05/1951 Naas to Einstein (11-194.00), 11/26/1951
Einstein to Naas (11-195.00). Courtesy of the Albert Einstein Archives Jewish National and
University Library Jerusalem].
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Later papers by Andress [3]] and Akeley [1; 2] were mainly concerned with ap-
proximation methods for axisymmetric stationary fields. The first exact solutions
of the vacuum field equations within this class of fields were found by Lewis [36]]
and published in an important paper in 1932. A few years later Van Stockum [46]
rederived Lanczos’ solution for an infinite rotating cylinder of dust particles and
used one of the Lewis solutions to fit this interior field to an exterior vacuum field.
A different class of exact vacuum solution of the Lewis equations was given by
Papapetrou [38]] soon after he arrived in Berlin. Exact solutions including time-
independent gravitational fields were also systematically studied by Jordan’s [26]]
research group at Hamburg university, mainly by Ehlers et al. [16].

However, no exact solution discovered so far could be considered as the grav-
itational field of a rotating nearly spherical mass. All of them had either singulari-
ties on the axis interpreted as violation of the vacuum equations and presence of a
line distribution of rotating matter or, as in Papapetrou’s 1953 solutions [38]], had
angular momentum but zero total mass, as measured by the corresponding terms
in an asymptotic expansion of the metric.

From a geometrical point of view, these vacuum solutions did belong to a class
of metrics, which were later shown by Papapetrou [40] as invariantly characterized
by the existence of two commuting Killing fields P (timelike) and n? (spacelike
with closed orbits), which admit 2-spaces orthogonal to the group orbits. Usually
this class of (vacuum) solutions is called the Lewis—Papapetrou class—also the
Kerr metric belongs to this class.

The author, who had a background in astrophysics from Schwarzschild’s Pots-
dam Observatory, entered Papapetrou’s small research group in the mathematics
institute in May 1959. I enjoyed the stimulating atmosphere with regular guests
from East German universities and international visitors like Marie-Antoinette
Tonnelat from Paris and Felix Pirani from London. My first duty was to solve
a problem in Einstein’s field theory with the asymmetric metric tensor. Having
stood this test [14], not without help by Papapetrou, he considered me as being
able to treat a more complicated problem. “Find the gravitational field of a rotat-
ing point mass as a suitable generalization of the Schwarzschild metric” was his
suggestion in the late autumn of 1959. Unfortunately for the project, Papapetrou
was invited to visit the Institute Henri Poincaré in Paris for 1 year. He left Berlin
early in 1960, thus his valuable advice and encouragement was missed. After all,
communication in that time without electronic mail was mainly confined to send-
ing yellow post letters occasionally.

In the next sections this old attempt to tackle the problem is described. In the
final section I return to the further history of the Kerr field.

2 Lewis equations and their generalization

The immense literature on stationary axisymmetric gravitational fields known to-
day [45] did not exist in 1959, apart from the three basic papers by Lewis, van
Stockum and Papapetrou. To these papers one should have added Jiirgen Ehlers’
1957 thesis on exact solutions [[17], but I was only later aware of this work. At
some time I had access to the useful Jordan report [26]], which summarized the
research of the Hamburg group and included a chapter on stationary gravitational
fields. Apart from these papers, the whole field was unexplored territory.
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The most influential paper was that of Lewis [36]. He wrote the line element
without further explanation essentially as (the notation is taken from Papapetrou

(3801)
ds? = M (dx? +dx3) + 1d 9 4+ 2md pdt — fdr?, (1)

where all functions ,/,m and f depend only on the two coordinates x,x;. As
shown by Lewis, with his metric the vacuum field equations R, = 0 have a clear
structure and admit a straightforward integration procedure: one obtains a set of
three coupled nonlinear partial differential equations in two dimensions involving
only the three functions f, [, m. Further equations allow to determine the remaining
function u by simple integration, provided a solution f,l,m is given.

Lewis and Papapetrou had found special classes of solutions, but not yet one
which was singular only along a single worldline and had a specific asymptotic
behavior, tending to Minkowski space—time at spatial infinity.

I began to treat the problem in a systematic way. As it turned out, this was
not the best method. The first question was: Is the form of the metric tensor as-
sumed by Lewis already general enough to describe that axisymmetric vacuum
field, which we wanted to find? Actually Lewis served well, but this could not be
known beforehand.

We had always assumed the metric field to admit two commuting Killing vec-
tors £P (timelike) and 1P (spacelike, at least near the axis), thus E&n° —nfE° =
0. One should also have asked if this assumption of an Abelian isometry group
G, is perhaps a restriction for the problem. I do not remember our arguments
for adopting commutativity (apart from Ockham’s razor). Ten years later Brandon
Carter [11] proved that the commutativity assumption means no loss of generality:
axisymmetric stationary fields which become asymptotically flat have commuting
Killing fields. More recently Alan Barnes [6] noted that the Abelian character of
G, follows in a simple manner from the fact that the orbits of 11° should be topo-
logically circles. In any case, writing down normal forms for the metric in the case
of a non-Abelian G, would have convinced us that the running coordinate along
the orbits of P could not be a cyclic one.

Then, assuming an Abelian Gy, it was easy to see that one can introduce new
coordinates by requiring P = 8P, nP = 8¢, such that the metric depends only
on the coordinates x!,x?. This special coordinate form for the Killing fields is left
invariant by coordinate transformations of the type

)fl :)Zl <x17x2>, x2 :)EZ(XI’XZ)7 (2)

P=x+pi ), =2"4q0" ), (3)

0. 51 72

apart from linear transformations of x*,x; ', % are invertible and p, g arbitrary
functions of x!, x%.

The question was now: Is it possible to reduce the general axisymmetric sta-
tionary vacuum field to the Lewis form by means of these transformations? To my
surprise, the answer turned out to be no, not in general. I tried several ways to sim-
plify the metric. Successful was a sort of covariant reduction, where the field equa-
tions are written as three-dimensional and in a second step as two-dimensional co-

variant relations. Methods of this type are described in the Jordan report [26] and
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also in the Landau-Lifschitz volume “Field Theory” [34], which I just translated
at that time from Russian into German. In the first step the metric tensor gy, was
split into

goo=-V% gui=-%V gik="Tk—UnV’ 4)
(i,k =1,2,3). The three field equations Rf) = 0 then led to
(V& ) =0, 5)

where K = %(%}k — %.i), the stroke denotes the covariant derivative with re-
spect to the 3-metric ¥ and indices are moved using %. If (5) holds, the quan-
tity E;; k'°V3, constructed with the three-dimensional totally antisymmetric Levi—
Civita tensor Ej, must be a gradient ;. Solving for kj; resulted in

Kic = &Y " Yo/ (2V7). (6)
The condition that Kj; is a rotation, requires that y satisfies the field equation
Y —3Vey M /v =o. (N
The other field equations R) = 0 and R}'{ = 0 became
VIV 2w =0, 3
R~ é?’ilv,ku + %SIiw,zw,ma/"’ - %Vf,kll/,n/l =0. ©))

In a second step, the 3-metric Y was split into two-dimensional covariant
quantities (capital indices always take values 1, 2 in this article):

Y3 =W pa=eW? yp=ep+eacsW (10)

The 3-tensor equation (9) split into a scalar, vector and tensor equation in two
dimensions:

ENPW 5 g /W — W2k Pkpp — 2w e VA + WAV et /(VW) =0, (1)

(W) 5+ W KAV g /v =0, (12)
Rl(,gz)A — SACWBHC/W — 2W2kACkBC — SAC‘{BHC/V
+283 W ey pe™ [V =2y gy ce’ Vi =0. (13)
Here
1
kap = E((CJA,B —€pa) (14)

and the double stroke denotes the covariant derivative with respect to the Christof-
fel affinity formed with the 2-metric €4 (indices are moved using €45). Using the
coordinate transformations (2), I assumed that the 2-metric can be transformed
into a conformally flat metric:

€ap = Oapel'. (15)
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Equations now became explicitly
kap g+ 3kagWg/W +kapVp/V —kapitp =0. (16)
The integration gave

ket

k12 = W (17)

with k as integration constant. The relations and simplified the field
equations considerably. The two equations (7) and (8) became

V3
Ay [Inw"”} o, (18)
AV +[V,W]/W +2[y, y]/V> =0, (19)

where the differential operator A is the Laplacian in two dimensions, A = 3372 +
1

aa 5, and the Lewis bracket is defined as
JdA dB 0JA JB
ABI= o T o 20
Similarly, (TT) is a differential equation for W:
AW | VW] lyy]  2keH
whvw TP v T o
The remaining equations (I3) were
AW AV [y, ] 4k eH
R T @2)
2

V1+W1
1 |4 Vv W V4 v W w \%4 v’
(23)

Vo Wo Vi Wi Vi2 W12 11111//2
=2 Tt ) =2 2 . (4
u1( + )Ht, (v + ) + + (24)

Vo W w w Vv \%4
<2+2> 2'4’,1_2&_’_ i W Vi Vo

For the function R = VW one derives the simple relation
R3AR = 2k*V?e!. (25)

Apparently, Lewis was not general enough. The field equations (I8] [T9] 2TH23)
differ from the Lewis equations through the occurrence of an integration constant
k, complicating Lewis’ integration scheme (note, however, (1 and > as calcu-
lated from @ [QE]) still satisfy p 1, = po,; as well as in virtue of the other
equations, even if k # 0). The complication was not the only problem. I had also
carried out the reduction process inversely, splitting the metric first with regard to
N* and then to £#. This introduced a different set of equations with a new con-
stant k. But neither set could represent the full system of vacuum equations in the
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Abelian G, case, since both constants k,k are expected to occur. The reason why
the derivation given above missed k is an implicit assumption made in the cal-
culation of (7)—(9), that the potential y like all other functions does not depend
on x3, ie. £y = 0. Yet the condition .%; y = —2k # 0 is compatible with the
Killing symmetries for the metric and leads to the complete system of vacuum
field equations in the presence of two commuting Killing fields.

Today one recognizes that the constants k and k are essentially the twist scalars
associated with the two Killing vectors n#, EH:

2k = Eyvpo&tn¥nPe, 2/5=Euvpon“€vé”;“. (26)

We know that k and k are constants if the vacuum equations hold, more generally,
they are constants if and only if the conditions

EMYPOERR) (Evmp = EMYPON AR umvEy =0 27)

are satisfied [45};48]].

Little is known about the existence of solutions of the generalized Lewis equa-
tions. Apparently even today no vacuum solution is known (cf. [45], see, however,
[20]). Geroch [22} [23]] has shown that for k,l_c 2 0 his method of generating new
vacuum solutions from given ones breaks down in the sense that the presence of
Killing fields is not preserved.

I believe, Papapetrou was not happy with the extension of the Lewis equations.
Indeed, his intuition turned out to be correct. He showed in a remarkable paper 6
years later [41], that the twist scalars must vanish, restoring the Lewis equations
for our problem. The geometrical background of this result became clear in papers
by Kundt and Triimper [32] and by Carter [[LO]: while the orbits of the two Killing
vectors E# nH are always two-surface forming, the two-surface elements orthog-
onal to the group orbits do not fit to finite surfaces for non-vanishing twist scalars.
The Lewis block diagonal form of the metric is just equivalent to “orthogonal
transitivity”, to the existence of two-surfaces orthogonal to the group surfaces.

Papapetrou’s 1966 result could have been found already in 1960, had the
boundary conditions on the symmetry axis been analyzed: We had fairly precise
ideas for the behavior of the metric at spatial infinity, but did not consider the axis,
since here unknown singularities were expected. However, for a rotating localized
mass the metric on part of the axis outside the body must be regular. The exis-
tence of a (at least partly) regular axis means that the cyclic Killing vector n*
vanishes there (for a recent careful discussion of the axis conditions in axisym-
metric space—times see, e.g., [43]). Since our coordinates were restricted such that
nt = 6(# everywhere, they must be singular on the axis. A look at with the rhs
now written in regular coordinates shows immediately that on the axis (and, since
k,k are constants, everywhere) k = k = 0. If vacuum solutions with k, k # 0 exist,
they would carry singularities on the whole symmetry axis and could not represent
the exterior gravitational field of a compact body. But this was not recognized in
1960.

3 Lewis—Papapetrou class of vacuum fields

After wasting some time with a fruitless study of the extended equations, I re-
turned to Lewis. Letting k = 0 in gives AR = 0, thus R is a harmonic func-
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tion. Provided R is not a constant, this allowed to introduce canonical coordinates
P = R and eliminated W = p /V in all equations. The basic system consisted now
of only two coupled nonlinear partial differential equations for the two potentials
v(p,z) and V(p,z), depending on the two cylindrical coordinates x' = p, x> = z:

1dy 4

AVH—E% = V[VJI’L (28)
10V 2 1

AV+E% = —W[‘Ifﬂlf]*‘v[vvv}- (29)

One was faced with the problem to find exact solutions of this system with a
prescribed behavior at spatial infinity. Lewis and Papapetrou had derived equiva-
lent systems of equations for a different set of field quantities. No systematic inte-
gration theory was known for either system. The interesting mathematical proper-
ties of (28] 29) as a completely integrable system were unknown at that time. To
find solutions at all, Lewis and Papapetrou had to make special ad-hoc assump-
tions for their potentials.

Could similar assumptions be tried for the system [29)? Some suggestions
came from an article by Harrison [24], just published in the December 1959 is-
sue of Physical Review. He presented many exact solutions of the vacuum field
equations, obtained with heuristic methods such as separation of variables. The
hope was that some of these techniques, perhaps in combination, would work also
here. To have greater flexibility, I first transformed the system into a more
general form, by substituting

y=y(Xx' X, v=v(X'x?), (30)

assuming the y,V are at least twice differentiable functions of X, with nonvan-
ishing functional determinant

y y

_ | ox!  9x2
D= %" | #0. (31)

ax!  o9x?

Then the inverse functions X4 = X4 (y,V) exist. Introducing (30) into ,
one obtains equations of the type (summation convention for repeated indices)

1 ox4
AXA+paap + A5 [XB xC] =0, (32)

where the six quantities Agc = A’C“B are functions of the new independent field
quantities X4. T observed that (32) is invariant with respect to substitutions

XA =x4(x3), (33)

provided the M;\c transform as an affine connection (considering the X# as inde-
pendent variables):

7 _oxt (X! ; 0xP oxE
BC ox! '

9XBIXC T DEGXB gxC (34
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Was there any hope to reduce to linear equations using a suitable
nonlinear transformation (33))? A necessary condition is the vanishing of the Ricci
tensor Zag = Ay o — z’gA,B +ASp AL — A5, ALs, formed with the A-connection in
the two-dimensional space of potentials (X!, X?). A short calculation had shown
that already %1, = —3/ V2 is nonzero, the nonlinearity could not be removed.

The simple potential space formalism allowed to answer also other questions.
The integration idea was to try heuristic methods for other potentials, if the orig-
inal set (V, y) failed. At least for Papapetrou’s basic assumption in [38] this hope
had to be given up. In my notation his condition is

Viya—Vaoy,1=0. (35)

This relation is invariant with respect to arbitrary coordinate transformations x4 =

xA(xB), but it is also invariant with respect to arbitrary substitutions of the
potentials. Thus choosing other potentials does not increase the chance to find
solutions beyond the special Papapetrou class. Another heuristic assumption, in-
troduced by Lewis for a pair of his variables, was X! = p(X?), a functional rela-
tionship between two potentials. It is seen that is satisfied in this case, hence
also this restriction leads only to solutions within the special Papapetrou class.
An important restriction for the solutions is the proper behavior at spatial in-

finity, assumed as (r = \/p2 +z2)
p2
f%l,lﬂpz,mﬂlﬁ (36)

for the Papapetrou functions f,I,m, where A is proportional to the angular mo-
mentum (“strong boundary condition”). For the potential y this transforms to
W — Az/(2r). The strong boundary condition ensures that the metric tends to
the Minkowski space—time at spatial infinity r — oo, it also provides finite values
for the total angular momentum [15]]. Unfortunately, metrics of the special Papa-
petrou class which satisfy the strong boundary condition have zero total mass or
energy, this follows immediately from an 1/r expansion of and (33).

4 Sample solutions

Vacuum metrics with VW = const did not allow canonical coordinates, but satisfy
simple equations. One obtains from (I8] [T9} 2TH25) with k = 0 the compatible set

Ay =0, Au=0, (V?);=2ey,, (V)= —2ey, (37)

(62 =1). y and pu are harmonic functions, their singularities had to be considered
as resulting from a singular matter distribution.

It seems obvious here to interpret x', x> as quasi-Cartesian coordinates in a
plane orthogonal to the x3-axis. The Killing vector n# then represents a transla-
tional symmetry along the x3-axis. The simplest solutions have a singularity at the
origin of x!,x? and were believed to describe the exterior gravitational field of an
infinite rotating cylinder along the x3-axis. But such fields had nothing to do with
the gravitational field of a rotating point mass. Later Hoffman [25] discussed this
class of stationary fields.
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Harrison’s separation technique as applied to was my main working tool.
Similar methods are still used today [21]]. In principle, this technique can be ap-
plied not only to transformed potentials but also in the case of transformed coor-
dinates. Thus I filled many sheets of paper with formulae of that type, too often
stopping the calculation once it became clear that the required strong boundary
conditions could not be satisfied.

For example, in the case of quasi-spherical coordinates p = rsin8, z=rcos 0
one has with f = V?

2 V.06 Vo . fr 2 fe
‘I/,rr‘i'rl//,r“‘ 2 +cotf ) _2f V/,r+r2 f Ve, (33)
2 1, 1 fo 1fe 4, 4
rr T —Jr— ZJrT 5 0% —5— =—-— r o, . 3
f +rﬁ fﬁ +r2_ﬁ99+cot R fv{ r2fw’9 (39)

Separation assumptions led to a number of subcases. In the case where both
and f depend only on the radial coordinate r, gives Y, =cf 2/r?, ¢ = const.
Introducing this into leads to an equation for f alone:

1
f

The solutions are (Gothic letters denote hyperbolic functions)

2 5 c? 3
f,rr+;f,r— f;r+4ﬁf =0. (40)

2 o
~ Cos(y+B/r)’

The three integration constants @, 3,y (¢ = B/(2a)) are not independent, requir-
ing lim ggp — —1 for r — oo gives a = Cos7y.

Also the equations for u can be integrated, the further non-vanishing compo-
nents of the metric are

—g0=V v= —%Tuu(}/—kﬁ/r). 41)

g = Cos(y B /r)e B, (42)
200 = &, 43)
B B%cot’> 6 9 ..
8¢9 = <¢05(}/+[3/r)/06 —arzeios(ﬁ/r—&-}/) r°sin” 0, (44)
BcosO

$ = 2Cos(y+ B/ “

Expansion of goo in reciprocal powers of r shows that 2M = 3 Tany is the
coefficient of the 1/r-term. Several arguments suggest that M is the total energy
of the field. In 1960 I used pseudotensors derived from the Lagrange density of
the gravitational field according to Noether’s procedure [[15]], but one obtains the
same result with the ADM mass formula [4]. Again, however, this was clearly not
the solution we had looked for, since the boundary conditions at spatial infinity are
not satisfied for the nondiagonal term, y does not vanish but tends to the constant
—aZany/2 for r — . Thus the total angular momentum [13] diverges. Since
v,V depend on r only, a short look shows that (33)) is satisfied, thus the solution



Race for the Kerr field 11

belongs to the special Papapetrou class. The metric has nonzero total energy only
because the strong boundary conditions are violated.

It was time consuming and unsatisfactory to search for solutions with the
rather simple trial-and-error methods at hand. According to my 1960 notebook,
I was impressed by Buchdahl’s procedure to obtain new stationary solutions from
a given static or stationary vacuum field. Later many successful recipes were de-
veloped to realize this idea of solution generation [27545]], starting from the pio-
neering papers by Buchdahl [8; 9] and by Ehlers [[18]. This has finally opened the
door to the solution space.

5 Any chance in 1960?

But still I did not give up. On March 6, 1960, I sent Papapetrou a letter with a short
summary of results obtained so far (translated from German, signature of metric
changed):

[...] After two weeks of skiing with best snow conditions I'm back to
Berlin. The state of my work is roughly as follows.

(1) It was guessed that forming a normal form for g, already before the
field equations are reduced is preferable, since more transformation free-
dom is available. However, Petrov’s choice (g11 = 1,212 = g13 = g10 =0)
offers no advantage to my previous approach for a concrete solution of the
field equations. It stands for a certain choice of coordinates in the x;—x;-
space, but the field equations which must be solved next are not simplified.
(2) The reverse reduction method (first x3 then xg) gives very compli-
cated equations as in the previous case, if k # 0. (k = 0 now means go; =
813803/ ¢33; for the original reduction sequence the analogous condition
k=0 was g31 = g0rg03/800)- But if we assume k = 0 and require Minkowskian
boundary conditions, the equations reduce to those of Lewis.

(3) A class of solutions (k = 0), which are presumably uninteresting phys-
ically, obviously describe the gravitational field of a rotating cylinder with
a multipole matter source. These fields are independent of z, but they lost
rotational symmetry, depending on the polar coordinates in a plane orthog-
onal to the cylinder axis. A closer inspection seems not to be worthwhile.
(4) My earlier solution

> o 2 Cos(B/r+7Y) _grante/a) ;2 202

ds® = Cos(ﬁ/rer)dt + p e (dr-+r°d6”)
n Cos(B/r+7v) B%cot’> 6

o artCos(B/r+7)

BcosO
Teos(B/rin

has some interesting properties which might render it acceptable in spite
of the missing boundary condition for gg3:

(a) The total energy (according to Mgller) is finite and depends as in the
Schwarzschild case on the 1/r term in the expansion of goo.

) r*sin” 0d¢?
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(b) The total momentum vanishes.

(c) For o — o0 and neglecting the terms with 1/r? the solution tends asymp-
totically to the Schwarzschild solution.

(d) For r — oo the space becomes homogeneous, but is no longer isotropic.
Since there exists a distinguished direction, this appears to be reasonable.
Mr. Treder and I agree that this type of solution (the given one is only the
simplest) should be considered as physically reasonable. I would like to
ask you for your opinion.

(5) Presently I am trying to transform the field equations with k = 0 using
suitable coordinate conditions in the x;—x;-space to give them a convenient
structure. I hope that within one of these coordinate systems the solution
which we are looking for takes a fairly simple form, and can therefore be
found relatively easily. But one must be lucky!

In spite of the small success so far I still believe that one can find a station-
ary solution which satisfies all requirements.

It would have been interesting to know Papapetrou’s reaction, but I do not
remember having obtained a response.

Needless to say, I had no luck with the recipe proposed under item (5). But the
recipe itself—looking for suitable coordinates in the x!—x?-space—was indeed a
route to the Holy Grail, the rotating Schwarzschild field: transforming the cylin-
drical coordinates p,z into some kind of radial and angular coordinates r, 6 by
means of

p=+r2+a>—2rMsin®, z=(r—M)cos9, (46)

as done by Ernst [19] after Kerr’s discovery, leads to the Kerr solution with the
potentials

2rM aM cos 6

Vi aMeost
r2+ad2cos?@’ v r2+a2cos? 6

(47)
This looks simple indeed. But how could one have figured out the coordinate trans-
formation {@6)) in 1960? There exist other coordinates in which the Kerr functions
appear fairly simple, e.g. spheroidal prolate coordinates [7]. To find them by trial-
and-error would not have been easy, but it was not impossible, given sufficient
diligence and persistence.

In 1968 Ernst [19] also found that the complex combination & = V? + 2iy
satisfies an elegant differential equation, easily derivable from 29), which
has dominated the research on stationary axisymmetric gravitational fields since
that time. The Kerr solution of the complex Ernst equation has the simple form
& =1-2M/(r—iacos ) in the coordinates r,  given by (46). The related func-
tion & = (1+&)/(1 — &) (essentially a potential transformation as discussed
above) satisfies a similar differential equation. Kerr is then represented by & =
r/M —iacos0/1 — 1. Evidently, this is now even an almost trivial solution of the
differential equation for . A solution could hardly be simpler.

It is satisfying that both concepts, coordinate transformation in x'—x-space
and potential transformation, were finally so successful, thanks to the efforts by
F.J. Ernst.

1
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6 The winner is Kerr

The slow progress as well as Papapetrou’s absence from Berlin rapidly dimin-
ished the amount of time I spent in 1960 for the rotating Schwarzschild problem.
During the year I became interested in many other questions of gravitation. Not
being guided by my boss, I worked on boundary conditions, surface layers, shock
waves and other problems of gravitational radiation. In particular, the character-
istic initial value problem for the Einstein field equations was a very interesting
topic, since here one could handle the two intrinsic degrees of freedom of the
gravitational field rather directly. When Papapetrou returned from Paris in the be-
ginning of 1961, I confronted him with new ideas about these perhaps more actual
problems. There was a rumor that Bondi and his group in London were working on
similar questions. The problem of stationary fields was forgotten for the present,
at least for me.

In the meantime the political situation had changed for the worse. There was
the danger that Papapetrou’s position as prominent scientist in a communist coun-
try could lead to problems for his relatives in Greece. The Cold War was present
everywhere, particularly in the divided city of Berlin, whose borders were still
open. A steadily increasing number of East Germans escaped to the West. Sud-
denly, on 13 August 1961, the borders were closed by the communist authorities.
Quite unexpectedly, the Berlin Wall was built, cutting off the free Western part of
Berlin from the surrounding East German territory. For Papapetrou and his wife
the year in Paris was so pleasing compared with the difficult situation in East
Berlin, that they decided—weeks before the borders were closed—to stay perma-
nently in Paris. Not being citizens of the East German state, they were allowed to
go.

This was unpleasant news. I had to finish my PhD thesis on wave solutions
and the characteristic initial value problem sufficiently early in 1961 that Papa-
petrou could act as adviser, before he finally left East Berlin at the end of the year.
Apparently, no time was left to discuss rotating metrics in depth.

While I did not seriously return to the spinning body, Papapetrou never forgot
the problem. In at least two papers [39; 40] he further explored the properties of
axisymmetric metrics and found a new subclass of solutions. However, also these
metrics did not satisfy the required boundary conditions at infinity.

Also other groups had no luck. In their well-known survey on exact solutions
published in the legendary Written volume in 1962, Ehlers and Kundt [16] had to
admit that “the old problem of constructing rigorously the field of a finite rotating
body is as yet unsolved, even as to its exterior part”.

The solution of the long-standing problem came 1963 from the New Zealan-
der Roy P. Kerr in a different way. Kerr received his PhD 1959 from Cambridge
University (MA), worked later at Syracuse University and with the US Air Force
relativity group under Joshua Goldberg at Wright-Patterson Field in Ohio, before
he came to the University of Texas at Austin in the academic year 1962/1963.
Here, in a newly founded Center of Relativity, organized by Alfred Schild, a cir-
cle of relativists had gathered, including besides Schild and Kerr temporarily also
Roger Penrose, Ray Sachs, Engelbert Schiicking and other excellent scientists. In
a recent article Kerr gave a detailed description of his discovery in this stimulat-
ing environment [30]. He used a kind of null tetrad formalism, assuming from
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the beginning an algebraically special space—time. Both the Schwarzschild metric
as well as the Kerr metric are of Petrov type D, thus this restriction was crucial.
In rather complicated calculations (more complicated than I ever tried) he further
restricted the fields to satisfy stationary and then axisymmetric symmetries, so he
finally found the famous solution bearing his name. His two-page paper “Gravita-
tional Field of a Spinning Mass as an Example of Algebraically Special Metrics”
was published in the 1 September 1963 issue of Physical Review Letters.

Kerr presented his solution at the First Texas Symposium on Relativistic As-
trophysics held in Dallas in December 1963 [28]]. Papapetrou was possibly not
aware of Kerr’s article when he came to the Texas symposium, since the note [40]
was presented by Louis de Broglie on December 4 (Sé€ance du 4 décembre), ap-
parently before his departure to the States: therein is no reference to Kerr’s paper.
Kip Thorne has given a vivid description of the Texas meeting in his book [47]:

To foster dialogue between the relativists and the astronomers and astro-
physicists, and to catalyze progress in the study of quasars, a conference
of three hundred scientists was held on 16—-18 December 1963, in Dallas,
Texas [...] Lectures went on almost continuously from 8:30 in the morn-
ing until 6 in the evening with an hour out for lunch, plus 6 P.M. until typ-
ically 2 A.M. for informal discussions and arguments. Slipped in among
the lectures was a short, 10-min presentation by a young New Zealander
mathematician, Roy Kerr, who was unknown to the other participants. Kerr
had just discovered his solution of the Einstein field equation—the solution
which, one decade later, would turn out to describe all properties of spin-
ning black holes, including their storage and release of rotational energy
[...]; the solution which [...] would ultimately become a foundation for
explaining the quasars’ energy. However, in 1963 Kerr’s solution seemed
to most scientists only a mathematical curiosity; nobody even knew it de-
scribed a black hole—though Kerr speculated it might somehow give in-
sight into the implosion of rotating stars.

The astronomers and astrophysicists had come to Dallas to discuss quasars;
they were not at all interested in Kerr’s esoteric mathematical topic. So, as
Kerr got up to speak, many slipped out of the lecture hall and into the foyer
to argue with each other about their favorite theories of quasars. Others,
less polite, remained seated in the hall and argued in whispers. Many of the
rest catnapped in a fruitless effort to remedy their sleep deficits from the
late-night science. Only a handful of relativists listened, with rapt attention.
This was more than Achilles Papapetrou, one of the world’s leading rela-
tivists, could stand. As Kerr finished, Papapetrou demanded the floor, stood
up, and with deep feeling explained the importance of Kerr’s feat. He, Pa-
papetrou, had been trying for 30 years to find such a solution of Einstein’s
equation, and had failed, as had many other relativists. The astronomers
and astrophysicists nodded politely, and then, as the next speaker began to
hold forth on a theory of quasars, they refocused their attention, and the
meeting picked up pace.

Kerr’s paper of 1963 is a masterpiece of clarity and conciseness and, as Chan-
drasekhar noted, is “surprisingly complete in enumerating the essential features
of the solution” [[12]. It has only one deficiency, it gives few hints how the solu-
tion was derived. When Wolfgang Kundt came to East Berlin in the spring of 1964
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for a visit, we discussed Kerr’s metric, but found it hard to verify that it is indeed a
solution of the vacuum equations. Many of our colleagues had the same problem.
A derivation was published by Kerr and Schild in 1965 [29], and a more easily
accessible exposition of this derivation can be found in [42].

Summarizing, one can shortly answer why the pre-Kerr approaches failed: we
had the adequate differential equations, essentially identical to the Ernst equation
split into real and imaginary parts. Yet the group-theoretical properties of the so-
lutions were not recognized, and thus no proper key to the unexpectedly large
solution space was found.

Kerr’s new way circumvented the problem by a restriction to algebraically spe-
cial metrics from the beginning, a condition which could not easily be expressed
in the formalism we had used. In spite of more complicated equations he finally
brilliantly succeeded, not least because of his persistence.
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