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Abstract We show that the chiral algebras of .4#" = (0,2) sigma models with no
left-moving fermions are totally trivialized by worldsheet instantons for flag mani-
fold target spaces. Consequently, supersymmetry is spontaneously broken in these
models. Our results affirm Stolz’s idea (Stolz in Math Ann 304(4):785-800, 1996)
that there are no harmonic spinors on the loop spaces of flag manifolds. Moreover,
they also imply that the kernels of certain twisted Dirac operators on these target
spaces will be empty under a quantum deformation of their geometries.

Keywords topological field theories,, chiralalgebras.

Mathematics Subject Classification (2000) 81T45, 81R10.

1 Introduction

Twisted .4 = (0,2) models possess a nilpotent global fermionic symmetry Q.
This leads to the construction of two kinds of Q-cohomology groups, namely,
the cohomology of operators and the cohomology of states. Let us focus on the
cohomology of local operators. This is an infinite-dimensional space graded by the
right-moving R charge, and is equipped with a natural ring structure defined by the
OPE. Unlike the 4" = (2,2) case, twisted (0,2) models are not topological due to
the absence of the left-moving fermionic symmetry. Rather, the cohomology class
of an observable varies holomorphically in the insertion point (i.e., d; 0 is Q-exact
if & is Q-closed). Such Q-cohomology of local operators will be called the chiral
algebra of a (0,2) model, which we will denote by <.

In this paper, we will consider twisted (0,2) sigma models with no left-moving
fermions (2). At the perturbative level, the chiral algebras of these models were
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studied by Witten (3). One of the main results of (3) is that the chiral algebras
can be reconstructed, to all orders in perturbation theory, by gluing free By CFTs
over the target space. More precisely, the perturbative chiral algebra can be for-
mulated as the cohomology of the sheaf of chiral differential operators, which was
developed previously by Malikov et al. (4). From this point of view, the moduli
of the models arise as different ways to glue free theories globally over the tar-
get space, while the obstruction to doing so consistently is encoded in the sigma
model anomalies (3)). The description of chiral algebras by free CFTs naturally
extends to include left-moving fermions (6).

Nonperturbatively, worldsheet instantons can change the picture radically (7}
8). A particularly striking example is the model with the target space being the
complete flag manifold G/T of a compact semisimple Lie group G, where T is
the maximal torus. This includes the manifold SU(3)/U(1) x U(1), which was
recently proposed by Tomasiello (9) to be a novel flux vacuum of string theory.
The perturbative chiral algebra in this case possesses a structure of a g-module at
the critical level k = —h"Y (@;[10; [11). As we will see, however, the chiral algebra
becomes trivial (i.e. identically zero) in the presence of instantons. The mech-
anism of this trivialization is somewhat analogous to the lifting of perturbative
ground states in the Witten complex (12) of supersymmetric quantum mechanics.
A similar result, albeit derived via a different approach, has also been obtained by
Frenkel et al. (13).

In the following we will explain how this phenomenon actually takes place.
But before going into the details, let us point out some of its implications. From
the fact that the chiral algebra is trivial, it follows that the O-cohomology of states
is also trivial. Supersymmetric states, which are harmonic states of Q, therefore
do not exist; in other word, supersymmetry is spontaneously broken. On the other
hand, the cohomology of states can also be considered as the cohomology of the
Dirac operator on LX, whose index computes the Witten genus of X (14; [15).
Our result thus indicates that the kernel of the Dirac operator on LX is empty
for X = G/T. This is consistent with Stolz’s idea (I)) that if X has positive Ricci
curvature — such is the case for flag manifolds — then the scalar curvature of LX is
positive and hence there are no harmonic spinors.

2 Generalities

To begin, let us briefly review the relevant features of the models that will be
studied. We refer the reader to (3;7) for more details.

2.1 THE MODEL
Let X be a Riemann surface and X a Kéhler manifold. Our (0,2) model with

worldsheet X and target space X then has a bosonic field ¢: £ — X, and right-
moving fermionic fields

pel(Ko¢'TX), acl(¢"TX), (1)
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where K is the anticanonical line bundle of X. The dynamics of the model is
governed by the action
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Here, Do = d,a7 + az¢irj_§}a7< is the covariant derivative and @ = ig;;d¢’ A d¢7
is the Kéhler form of X.

The fermionic symmetry Q acts on operators via the supercommutator,
0A = {Q,A}, with transformation laws given by

S(I)i =0, 5¢i = aia

o s )
op;=—0:¢', da'=0.

The cohomological nature of the theory arises from the fact that the action can
be written as a Q-exact term [y d*z{Q, —g;;pi0.¢7} plus a topological invariant.
Under the right-moving R symmetry, ¢ has charge 1 and p has charge —1. Note
that Q has charge 1 and is a worldsheet scalar. We will denote the O-cohomology
group of charge g by 279. The chiral algebra is then &/ = @g.27/9.

2.2 CONFORMAL INVARIANCE

Classically, the theory is conformally invariant and the stress—energy tensor com-
mutes with Q. Indeed, by coupling the action with the worldsheet metric 4, and
taking a variation 8A,y, one finds Tz = Tz, = 0 and

T, = gijaz¢iaz¢jv Iz = {Q,gijpziai‘Pj} . “)

Being Q-exact T3 is manifestly Q-closed, while 7., commutes with Q upon using
the equation of motion D,a’ = 0. Thus, the classical chiral algebra is invariant
under conformal transformations. Moreover, it is nontrivial only for the subspace
of local operators in which L, = §dzz""!T:- are zero for all n. In particular, a
Q-closed operator with nonzero antiholomorphic scaling dimension Ly = & is
Q-exact. From this follows the holomorphy of the chiral algebra. Also, since op-
erators of negative R charge must contain at least one p field, they have /# > 0 and
do not contribute to the chiral algebra.

Quantum mechanically, conformal invariance is in general broken. Still, one
can show that T and 7z commute with Q; in fact, they are both O-exact. However,
T, may no longer be Q-closed. In such a case, the quantum chiral algebra lacks the
invariance under holomorphic reparametrizations. When ¢;(X) # 0, there exists
(7) a perturbative cohomology class 8 € 7! which satisfies

[Qa TZZ] = aze (5)
Explicitly, 0 is given at the lowest order in perturbation theory by
8 = Ri;0,0 o’ (6)

Thus, perturbatively T, is lifted out of the chiral algebra by quantum corrections,
and is “connected” to d,0. This is a reflection of the one-loop beta function which
is proportional to the Ricci curvature of X (16} 17). Notice that perturbative cor-
rections can only connect a pair of local operators of the same scaling dimensions.
Instanton corrections, however, need not do so.
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2.3 INSTANTONS

The Q-cohomology is invariant under a smooth deformation of the target metric.
We can in particular take a large volume limit, in which the path integral for cor-
relation function localizes to the Q-invariant bosonic field configurations, called
instantons. In the present case, instantons ¢ satisfy

9.0y =0, (7)

so they are holomorphic maps from X to X. We will label the space of instantons
by their degree, defined by the Kéhler form @ of X normalized so that

/2¢5w=kt (8)

for integers k > 0. The k-instanton moduli space .#} is then the space of instantons
of degree k (or k-instantons). Zero-instantons are constant maps, and their moduli
space can be identified with the target space: .#y =2 X. The correlation function
now decomposes into different instanton sectors and takes the form

oo

(=Y e (). )

k=0

The k-instanton correlation function (...); involves an integration over .#;. In
particular, the perturbative correlation function (...)o contains an integration over
X.

Corresponding to the expansion (9) of the correlation function, one can also
expand an operator A in the instanton weight:

o

A=Y e XA (10)
k=0

This can be justified by considering the matrix elements between arbitrary states.
To obtain the matrix element (a|A|b), one quantizes the theory on a cylinder of
infinitesimal length and compute the corresponding path integral with the initial
state |b) and the final state |a). If the theory is conformally invariant, one can
rescale the cylinder to make it infinitely long, and then compactify to a sphere by
adding points at infinity. The matrix element then reduces to a three-point function
with vertex operators inserted at z = 0 and oo:

(alA]b) = (Va(e0)A7(0)). (11)

Together with (9), this makes it clear that one can expand A to obtain as
an operator relation. The form of the expansion (I0) remains unchanged even
when conformal invariance is broken by quantum corrections as in the case for
¢1(X) # 0. This is because at the lowest order in the perturbation theory around
instantons, the theory can be treated as conformally invariant; the explicit compu-
tations of correlation functions will be carried out with respect to a free field action
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that is quadratic in the fluctuating ﬁeldsE] Then, the matrix elements can still be
computed from three-point functions. However, A; will now receive perturbative
corrections.

A subtlety in the above argument is that the twisted model which we have been
discussing so far is anomalous on the sphere if ¢ (X) # 0. However, note that on
the cylinder or the sphere with two points removed, the canonical line bundle is
trivial. Consequently, the twisting by K'/2 does nothing upon choosing the trivial
spin structure, and the physical and twisted models are equivalent. As such, one
may as well work with the physical model, which is free of the above anomaly
anyway.

2.4 PATH INTEGRAL MEASURE AND ANOMALIES

To actually perform the path integral computation in the k-instanton sector, one
must define the fermionic path integral measure in the neighborhood of the in-
stanton moduli space .# = | J, .#; in the field space. To this end, let us introduce

unitary eigenmodes of the laplacians Ay = h“D,D- and A} = h%D:D,:

AF((D)uO,r(Z,Z;(D) =0, AF(‘P)“n(Z,Z‘P) = Aﬂ(¢)un<zyz;¢)v (12)
A;(¢)V0,S<Z’Z;¢) =0, A;(¢)Vn(z7z;¢

) = 2(9)va(2,2:9),
One can then expand the fermions as
P(2,2:0) =Y bovos(2,2:90)+ Y b"a(z.2:9),

13
a(z,5:0) =) cpiior(z,2:0)+ Y in(z,2:9), (1

where b)), ¢, b", ¢ are grassmannian coefficients. The fermionic path integral
measure is then defined by the formal product

[ [ dbhdchdbde”. (14)

rs,n

Of course, this expression is defined assuming that the eigenmodes (12)) vary
smoothly over a specific local patch in the field space. For each local patch one
can define a measure of the above form, and they must glue consistently over
the entire field space. This is only possible if the sigma model anomalies are ab-
sent (5), which in our case are the familiar p;(X)/2 anomaly and the additional
¢1(X)c1(X) anomaly introduced by twisting (3).

Let us make several observations that will be important when we consider
the trivialization of the chiral algebra. First, we see from (I4) that the fermionic
measure has R charge violation equal to the difference in the numbers of & zero

1 Actually, the path integral measure may transform nontrivially under a conformal trans-
formation, in which case conformal invariance is broken even at the lowest order. However,
in proving a relation such as (I0), one can redefine the k-instanton measure by multiplying a
quantity Cy that cancels the conformal anomaly. The theory with the modified measure is now
conformally invariant. To be consistent, one then has to multiply the operator by C; . This just
changes each matrix element by some factor, and will not alter the general form @D
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modes and the p zero modes. On a compact Riemann surface X of genus g, this is
given by the index theorem as

(lfg)~dim@X+/Z¢*C1(X). (15)

The first term is absent in the untwisted (or physical) models, where the fermions
are worldsheet spinors. Second, the scaling dimension is in general also violated,
since scale transformations may act nontrivially on the measure. However, this
is only relevant when one considers relations involving two or more instanton
sectors with different scaling properties, since an overall factor can be dropped
by taking normalized correlation functions. Finally, notice that the eigenmodes
(12) in terms of which the fermions are expanded are themselves functions of
fluctuating quantum fields. In particular, even the zero mode part of the fermionic
fields can produce short-distance singularities.

3 The Mechanism of Trivialization

Let us now discuss a general mechanism that renders the chiral algebra trivial. The
starting point is the following observation: The chiral algebra is trivial if and only
if there exists a local operator ® which satisfies

{00} =1. (16)

This is true, for if & is a O-closed operator, then & = {Q,0}; conversely,
if the Q-cohomology is trivial, then the constant operator 1 must be Q-exact
since it is Q-closed. A trivial chiral algebra characterized by (16) implies that the
QO-cohomology of states is also trivial: a Q-closed state |¥) can be written as
|¥) = Q(O|¥)). Clearly, it suffices for our purpose to find an operator V which
gives

{o.vi=w, (17)

where W is an invertible local operator — by the nilpotency of the supersymmetry
transformation, W must be Q-closed, and thus {Q, W'V} = 1.

The relation (I6) cannot be induced by perturbative effects. To see this, note
that ® must have charge —1 for to hold at the perturbative level, since the R
symmetry is not violated perturbatively. The local operator @ must thus have 4 >
0, but since the scaling dimension is not violated either and Q is dimensionless,
{Q,0} cannot be equal to 1. Hence, the trivialization of the chiral algebra can
only be a purely nonperturbative phenomenon, induced by worldsheet instantons.

Suppose that the trivialization occurs at the (/ + 1)-instanton level with [ > 0,
so that up to the /-instanton level, the chiral algebra is nontrivial. Then, there exist
operators V and W which satisfy

OVi=w=e "W+ (18)

where W is expanded in accordance with (T0). This equation implies that V is Q-
closed up to the [-instanton level. Let us see if V can be (Q-exact at the
m-instanton level for any m < [. If not, then V will represent a cohomology class
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up to the /-instanton level. If V were to be Q-exact at the m-instanton level, then
it would be written as V = {Q,U} +e~ "'V’ for some U and V'. Plugging this
into (I8)), one finds

(V=W =c "W, +... (19)

with W/, =W . Notice that W’ is invertible if and only if W/, is invertible, for
small higher order corrections cannot affect the invertibility. Now, we know that
W is invertible. Applying the same argument, we conclude that its lowest order
term W;y; = W/_, is also invertible, and hence so is W’. It then follows from
that the chiral algebra is trivialized at the (I — m)-instanton level. But since we
assumed that the chiral algebra was nontrivial up to the /-instanton level, this is a
contradiction. Hence, V must represent a cohomology class up to the /-instanton
level.

The above argument about the invertibility of W also shows that the chiral al-
gebra will remain trivial through all higher instanton levels if it is trivialized at the
(14 1)-instanton level. In this paper, we will present examples where this occurs
at [ =0, i.e., the operator V is a perturbative Q-cohomology class. Essentially, the
trivialization will be a consequence of the fact that the grading by the R charge
is anomalously broken to Z, in all these examples, in a specific way that will be
made clear later.

4 The CP! Model

The simplest model which exhibits the trivialization of the chiral algebra is
when the target space X = CP'. This is an important example — it serves as a
basis for the analysis of more interesting models that will be studied in the next
section.

The perturbative chiral algebra of the model with ¢;(X) # 0 lacks conformal
invariance due to the lifting of 7;,. From (5), we see a similarity between 6 and the
constant operator 1; namely, both of these operators have vanishing derivatives in
the Q-cohomology. In the case X = CP!, there is an even deeper connection be-
tween them. Reflecting the geometry of the target space CP' ~ SL, /B, the model

possesses sl currents in 27°. The level of the affine algebra is necessarily —2,
which is the critical level, for otherwise there will be a stress—energy tensor by
the Sugawara construction. The action of these currents by the OPE makes .o7”
and <! naturally an sl,-module. In fact, they are isomorphic sl,-modules, where
the isomorphism is given by & +— &0 (4). The perturbative chiral algebra of the
CP! model is therefore constructed by acting “creation operators” & € .«7° on the
“ground states” 1 € «7° and @ € .7'. This is analogous to the Ramond spectrum
of strings.

Being a cohomology class in the zero-instanton sector, 6 satisfies the require-
ment to be an operator responsible for the trivialization of the chiral algebra. Since
c1(CP') = 2x, where x is the generator of H>(CP',Z), the charge violation is 2 in
the one-instanton sector and the grading by R charge is broken to Z,. Hence, one
may expect that there will be a relation

{0,6} ~e™' (20)
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in the presence of one-instantons. If such a relation exists, it means that the inverse
map of & +— €0 is nothing other than the supercharge Q.

Although the counting of charge violation works out, there is still a some-
what mysterious property of we have to account for. Plugging into the
correlation function (9), we find

({Q,0}+); ~ (1-++)- 2D

The left-hand side of this equation involves an integration over .#. The right-
hand side, on the other hand, involves an integration over .#; = X. Therefore,
{0, 6} must somehow transform the measure of .# into that of .#). How can
this happen?

Suppose that we wish to compute the matrix elements of {Q,0}. We will re-
strict here to the lowest order in the perturbation theory around instantons, so we
may freely exploit conformal field theory arguments. As discussed in the previ-
ous section, an arbitrary matrix element can then be obtained from a three-point
function on the sphere:

(al{Q.0}(z,2)|b) = (Va(=){Q, 0}(z,2)75(0)) - (22)

Let us use a Mdbius transformation on the worldsheet to rearrange the locations
of the operators, so that the three-point function (22)) becomes

({0,063 (1)7,(¢,8)7;(0)) (23)

for some |¢| < 1, where the prime indicates that the operators are expressed in this
new frame. We can expand the operators as %’ = f,'(&,&) using a complete set
of local operators, where the coefficients f,' depend on the choice of €. We then
have

fd 1’ (€,8) ({Q',0'}(1)(&,€)(0)). (24)
At this point, we use the OPE

i(&,8);(0) = Y cij(e, &)(0). (25)
k

The OPEs can of course produce short-distance singularities as € — 0. Thus if
we started with a finite matrix element, f,f,’(¢,&) in (Z4) must contain a factor
eMg" of appropriate powers m, n to cancel the most singular terms that appear
in the OPEs. These most singular terms will then be the only terms in the OPEs
that contribute to the matrix element in the limit € — 0. In particular, these terms
arise from the complete contraction of fermionic fields (and their derivatives) and
the complete contraction of the derivatives of the bosonic field. Therefore, the
computation ultimately boils down to two-point functions of the form

{({0,6}(1)7(0)), (26)

where ¥ is a function of the bosonic field.

We can now understand qualitatively how the transmutation of the instanton
measure occurs. We wish to compute the two-point function (26) in the one-
instanton sector. In the present case, a one-instanton ¢ is a biholomorphic map
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from the Riemann sphere to X = CP!, namely, a Mobius transformation. It can be
described by three parameters, which we will conveniently take to be the points
in X that the points z = 0, 1, and o on the worldsheet are mapped to. The one-
instanton computation thus involves integrations over ¢y(0), ¢o(1), and @o(eo).
Schematically, the ¢p(e0) integration will give a constant, the ¢o(1) integration
will give an integration of {Q,0} which will again be a constant. Finally, the
¢0(0) integration will become an integration of the function ¥ over the target
space. But this is just the one-point function (#'(0)) in the zero-instanton sector.
Consequently, we will have a relation

{Q,0}(1)7(0)), ~ (7(0))q, 27

which is equivalent to (2T}

In the rest of this section, we will make the above argument more precise
and explicit. Let us first find the number of fermionic zero modes. Recall from
the discussion in the previous section that here we are dealing with the physical
model, so the fermions are spinors. The & and p zero modes obey

d,0' = d,p; =0. (28)

Hence, after taking the complex conjugate, they are respectively holomorphic sec-
tions of &(—1)®@ ¢;TX and &(—1) ® ¢;T*X, where &(—1) is the spinor bundle.
For one-instantons, §;TX = €(2) and §;T*X = 0(—2). Since hi°(0'(1)) =2 and
h°(0(—3)) = 0, we have two & zero modes, and no p zero modes. We see that
{0, 6} indeed contains just the right number of « fields to soak up the fermionic
zero modes

In computing {Q, 0}, one must look for antiholomorphic single poles in the
OPE of J(Z) - 6(w, W), where J = g;;0:¢'@’ is the supercurrent and Q = § Jdz.
This OPE contains two « fields. Notice that the Taylor expansion of a(Z)a(w)
around w starts with the first order in Z — w, since the zeroth order vanishes by
the grassmannian nature of ¢. Thus, in order to get a single pole in the overall
computation, we must look for double poles in the contractions of the rest of the
fields in J and 6. In view of the expression 6 = Rijaz(piaj, it is not at all obvious
how such poles arise.

At this point, one must recall that the fermionic fields carry within themselves
fluctuating bosonic field. We must therefore examine more carefully their depen-
dence on the bosonic field. The field configuration space ¢ = Map(X,X) inherits
the complex structure of X via the identification

[ (¢*TX) = T,%. (29)

Let {{"} be holomorphic coordinates of .#, and {£"} be (real) coordinates which
parametrize the directions away from .# so that &” = 0 on .#. Then, a point ¢
in the neighborhood of . is described by coordinates {”, £, E"}. We will write
the full dependence of the bosonic field as ¢(z,Z; ¢, &, ). By construction, the

2 If there exists more fermionic zero modes, we must bring down a term proportional to the
Riemann curvature from the action. This contains one o and one p zero mode, and contributes
to the lowest order in the large volume limit.
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dependence of an instanton is ¢ (z; {). Since ¢ at ¢ € € is an odd vector in Ty,
it can be expanded as

o' =00 4+ +"0,0" (30)

with grassmanian coefficients ¢”, ¢", and ¢". On ., one has d,¢" = 0 and d-¢" =
it r, where ug , are the zero modes of the laplacian Ag. Then, one can choose {&"}
for which the expansion (30) coincides with (T3).

Given § € .#, a one-instanton ¢y maps a point on the worldsheet X = CP' to
a point in the target space X = CP! in a one-to-one manner. The bosonic field can
thus be expressed as

$(2,2:8,8,6) =9 (90(2:8),90(z:): €. L. E). (31)
From the above and 9:¢” = d:¢] (9 ¢/ @), we see that

05 ) s 00
5470+ 08 = 00+ g (32)

09" =

Plugging (30) and (32) into (6), we find that 6 in the one-instanton sector contains
an operator 6, where

,z¢

6’ = t](¢0,¢0)a¢ 8¢
Y0

(33)

Here, o is the zero mode part of o evaluated at ¢. The operator 6’ contains
d;¢" that can contract with d;¢' in J to produce an antiholomorphic double pole.
Performing the contour integration, this yields

9.9
aZ ¢o

{Q79 } Rz] ¢0a¢0) = 0; a()aOa (34)

up to irrelevant terms that are of higher orders in the perturbation theory around
instantons. The other terms in 6 contribute to {Q, 0} obviously as Q-exact terms.
Hence, they can be ignored.

To complete the computation, we need the explicit forms of the fermionic
zero modes. Since a one-instanton ¢y is a biholomorphic map from £ = CP! to
X = CP!, it is given by a Mobius transformation

do(z) = Zi;; ad —be = 1. (35)
Then, ¢ can be expanded as
0 = cgio,1 + CGito 2, (36)
where i 1, i1g > are (18)
_ 1 o 1
io1(2) = v 2 (2) = fErdr (37)
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After the fermionic zero mode integration, {Q, 6’} becomes the pullback of the
Kihler form:

[debdci (0.6} = Ry.000:9. (38)

This must be plugged into the two-point function (26)), and then integrated over the
one-instanton sector. In the region d # 0, one can set d = 1 by an overall rescaling.
The conformally invariant measure on .#) is, up to an overall constant, given by
19)

d.#\ = |ad — be|"*d*ad*bd>c. (39)
Recalling that ¥ is a function, the two-point function (26) can be evaluated as
0 - [ -
/W/d XiRyg (X3, %1) [ %07 (X0, o). (40)

Here, Xo = ¢0(0) = b, X1 = ¢o(1) = (a+b)/(c+1), Y =a—bc. The first diver-
gent integral in Y reflects the noncompactness of the Mdbius group. The second
integral comes from {Q, 8}, and is the integration of ¢ (X). And the third integral
is an integration of ¥ over the target space, which will give the zero-instanton
one-point function (¥(0))o.

More precisely, let d .7y = 2 (Xo)d2X0 be the volume form of the zero-instanton
sector. The nowhere vanishing function Q2 defines an invertible operator in the
zero-instanton sector through its matrix elements Q(Xp) (expressed in the basis
where states are localized in the target space). The computation above demon-
strates that we have the operator relation

{0,0} ~e '@ (41)

We have found a relation of the form (I8)), which via implies that we have the
relation {Q, @} = 1. Therefore, the chiral algebra is trivialized in the CP! model.

5 Flag Manifold Models

The key property of the CP! model that was crucial for the trivialization of its
chiral algebra is that there are precisely two & zero modes and no p zero modes
in the one-instanton sector. In this case a perturbative cohomology class 6 ex-
ists (since ¢; (CP') # 0), and {Q, 8} contains the right number of fermionic zero
modes. Hence, any one-instanton correlation function with {Q, 6} inside reduces
to a zero-instanton one, and this establishes the relation (41)). Let us see if {Q, 0}
leads to a similar relation in the case of other nonanomalous target spaces that
have p;(x) = 0 but nonvanishing c¢; (X).

Let X be a Kéhler manifold of complex dimension d, and ¢y a one-instanton
wrapping a rational curve L C X. We can decompose the tangent bundle as TX =
TL® NL, where NL is the normal bundle of L in X. The pullback bundle ¢;TL =
0(2) for one-instantons, and @jNL further splits into the direct sum of line bun-
dles. If [y ¢;c1(X) =k, then we can write

WTX=ZOQR)DO(p1) D ®O(pa-1), (42)
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where p; + -+ pgs—1 = k —2. The number of & or p zero modes can be found
from the splitting type (@2)). According to the formula

ho(ﬁ(n)): {1(1)+1 forn > 0; 43)

forn <0,

each ¢'(n) with n > 0 in (@2)) contributes n of @ zero modes. We also know from
the index theorem that there are kK more & zero modes than p zero modes. In order
to have exactly two o and no p zero modes, it must be that k = 2 and the splitting

type is
02)®0(0)®--0(0). (44)

Notice then that the two o zero modes should come solely from 7'L. This means
that only the field components tangent to L contribute to {Q, 0 }. Consequently, our
computation will be the same as that in the CP! case, and the fermionic zero mode
integration turns {Q, 6} into the pullback of the Kahler form (38), but this time
restricted to L. The integration over the parameters of the instanton then becomes
an integration over L.

However, this is not quite the end of the story, since L is not a rigid instanton if
(#@4) is true. An infinitesimal deformation of L is given by a holomorphic section
of ¢fNL. In the case of the splitting type (#4)), we have d — 1 independent defor-
mations, one for each normal direction. Intuitively, we therefore expect that the
instanton can be infinitesimally translated in every possible direction in the target
space. This generates a family of instantons with d — 1 complex parameters, over
which we still have to integrate after the integration over L is done. If the instanton
sweeps the whole target space, then we will obtain an integration over the target
space.

This can happen for homogeneous spaces G/H equipped with a G-invariant
Kihler structure. Assuming that the model with target space G/H has a number of
topologically distinct one-instantons, pick one and call it ¢y. Then, the transitive
G-action can map ¢y to another instanton located anywhere else in G/H. This
means that there is at least one deformation in every normal direction, i.e., all the
pis in the splitting type (@2)) must be nonnegative. If any of the p;s is positive, then
the instanton has charge violation greater than 2, and hence, does not contribute to
{Q, 6}. Thus, in order for the chiral algebra to be trivialized, it suffices that there
exists at least a single one-instanton such that the tangent bundle has splitting type
#4).

This is indeed the case for flag manifolds G/T of compact semisimple Lie
groups G! It is well-known (20) that ¢;(G/T) = 2(x; + - -- + x,), where r is the
rank of G. Furthermore, there are r rational curves that are dual to the x;s. Each of
the rational curves (i.e. instantons) has the splitting type by the above argu-
ment. Therefore, we conclude that the chiral algebras for complete flag manifolds
are zero nonperturbatively.
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6 Supersymmetry Breaking and Loop Space Geometry

We have seen that the chiral algebra is trivial nonperturbatively in the models
with flag manifold target spaces, hence so is the cohomology of states. On the
other hand, note that supersymmetric states must be annihilated by Q and QF,
i.e., they are harmonic states of Q. Since the harmonic space is isomorphic to the
cohomology, supersymmetry is spontaneously broken in these models. Although
in the present case this phenomenon is a consequence of the trivialization of the
chiral algebra, the physics of supersymmetry breaking is interesting in its own
right. As we now explain, it is intimately related to the geometry of loop space.
To unravel the connection between supersymmetry and loop space geometry,
let us consider the model with target space X and the worldsheet being the cylinder
S! x R with coordinates (6,7), ¢ ~ ¢ +27x. This may be viewed as supersym-
metric quantum mechanics on the loop space LX = Map(S',X), which we can
canonically quantize. The fermionic fields then obey the anticommutation relation

{pa(0,7),0" (", 7)} = 828(c — o) (45)

expressed in a given local unitary frame {e, } on 7X. This is the loop-space analog
of the Clifford algebra. On the other hand, the supercharge is identified as

- D _ .
— ! —Jo-:(Y" J
0= [ do (a Do~ is% 200 ) , (46)

where D/D¢’ is the covariant functional derivative on LX. Notice that the first
term is just (a half of) the Dirac operator Qp on LX. In fact, Q is related to Qg via
a conjugation by a Bott—-Morse—Novikov function on LX. Given a loop v € LX, let
Yu: [0,1] — LX be a homotopy connecting a reference loop  and y; = ¥. Such
a homotopy defines a map § from the annulus A = [0, 1] x S! to X. If we define a
function i by h(y) = [, ¥ @ and Qs = e"Qoe " for s € R, then (21)

D o
Qs = /SldG <(X’D¢l_ — isgi; o 8G¢/> 47)

and Q = Q;. The cohomology remains unchanged under such a similarity trans-
formation. Therefore, the Q-cohomology of states is also the spinor cohomology
on LX.

Now, the crucial observation is that the laplacian {Qy, 07} contains a term

2 2
2 [ dollazo* @)

Thus, harmonic states of Oy must localize in the limit s — oo around constant maps
given by ds¢ = 0 (or linear combinations thereof). Intuitively, this can also be
understood as follows. From (47), we see that Q; is the supercharge of the theory
defined on the cylinder with metric d(rs2 +dt?, where 0, = 0 /s. The circumference
of the cylinder is 27 /s. As s gets larger and larger, the cylinder becomes narrower
and narrower. It then takes an increasing amount of energy to “stretch” the loop to
make a large circle in the target space.

Since tiny loops cannot “feel” the curvature of the target space, in the large s
limit the harmonic space may be approximated by the Fock space of free closed
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strings. One can then systematically construct the harmonic space order by or-
der in 1/s. Looking back at the expression (@7)), we notice that the parameter s
appears in Q; only in the combination sg;;. Thus, as far as the determination of
the supersymmetric spectrum is concerned, the large s limit is equivalent to the
large volume limit — the widths of localized supersymmetric states are controlled
by 1/s, and by increasing s we are effectively inflating the target space. It is now
clear that a supersymmetric state is a linear combination of states of the form

SV ey gy ey W), (49)
where |y) is a spinor ground state, and ¢, c_,; are left-moving bosonic cre-
ation operators. The right-moving excitations are suppressed since supersymmet-
ric states must have {Q, Q*} = H — P =0. The state can be viewed as a section
of the spinor bundle twisted by tensor products of 7X and T*X. More precisely, it
is a section of S® R, ® R, where m =mj +---+my, n=n;+---+n;, and

Z Ry = ®@Syml(qk -T*X). (50)
k=0

k=0 1=0

The supercharge Q, when acting on these states, reduces (7)) to the Dirac operator
on X twisted by the relevant bundle given by (50).

So far, we have considered supersymmetric states localized around the space
of constant loops X C LX. We can actually go further: By conjugating Q, with a
Morse function f on X, supersymmetric states can be localized around the critical
points of f. This will lead us to holomorphic Morse theory (22) on loop space
(23), in which the lifting of approximate supersymmetric states by instantons can
be captured by the Witten complex (12). For example, in the CP' model (7) one
can localize states of charge O at the south pole S and those of charge 1 at the
north pole N, so that one has two isomorphic Fock spaces at S and N. Instantons
going from S to N are worldline instantons, which propagate essentially as par-
ticles. These capture the classical geometry of the target space, connecting states
which do not enter the harmonic spaces of the aforementioned twisted Dirac oper-
ators. On the other hand, instantons going from N to S are worldsheet instantons.
They sweep a nontrivial two-cycle representing the fundamental class of CP!, and
are responsible for the lifting of the rest of the states in the Fock spaces. In this
sense, they capture the “quantum” geometry of the CP' model. In principle, one
should observe the same phenomena in any model which exhibits supersymmetry
breaking, although a direct analysis may not always be tractable.

When combined with the results from the previous section, what we have
seen above points to the following. From the loop space viewpoint, the spinor
cohomology on LX is zero for X = G/T, i.e., complete flag manifolds of com-
pact semisimple Lie groups. Equivalently, this means that the kernel of the Dirac
operator on LX is empty. This is consistent with Stolz’s idea (1)) that if X has
positive Ricci curvature, then LX has positive scalar curvature with no harmonic
spinors — flag manifolds indeed admit positive Ricci curvature (24). From the tar-
get space viewpoint, the kernels of the Dirac operators twisted by (50) become
empty nonperturbatively. This can be interpreted as an effect arising from a “quan-
tum” deformation of the target space geometry by worldsheet instantons.
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