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Sumary Use of a groupo(Cz) which double covers Lf, and of the spamming property of the spinor light
cone, leads to a rapid derivation of the properties of Wigner's 3j-symbols. No obscure camputations,
choicesof phase, or the like, are needed. The reality of the 3j-symbols follows fram their invariance

1\
under the antilinear space reversaleot (CZ) . Some (possibly) new recursion relations are established.
It is noted that classical invariant theory made use of the spinor light cone a century ago, and that

the classical 3j-symbol takes integer values.

1. Introduction For same years now the adthor has been engaged in writing a unified coordinate-free
account of what may be described briefly as "the mathematics of Minkowski space",cr in a little more
detail as "the linear, multilinear ard antilinear algebra of Minkowski space M, the Lorentz group£ ’
and of associated spaces and groups". Hopefully, in the near future, the complete work will be
published in book form. The present talk will describe a rather small subset of this work, namely
that dealing with the 3j~symbols for the DJ representations of x, .

Traditional accountsl’ 2

of the Wigner 3j-symbols ard Clebsch-Gordan coefficients for the
3~-dimensional rotation group can be criticized in that they make many of the important properties of
the coefficients appear in a far from clear light. This lack of clarity is produced chiefly by

(1) weakly-motivated choices of phase (ii) proofs involving computations of a somewhat ccmplicated
and murky nature (iii) treating the less symmetrical CG~coefficients before the more symmetrical 3j-—
symbols (iv) dealing with components of an object rather then the cobject itself. To correct these
defects, the present account deals first with a certain trilinear invariant, then with its components
(the 3j-symbols); next the trilinear invariant is used to introduce certain linear maps, and only
then do we deal with the matrices of these maps (the CG-coefficients).

Important, but rather less traditional, accounts of the subject have been given by Schwmger3,
using certain operator methods, and by Bargmann4, using function space methods. In contrast with
these contributions the present account is mathematically simpler to the extent that it uses nothing
more than the linear (and antilinear) algebra of finite-dimensional vector spaces. (However, at
certain points, the present account would appear to be quite close to that of Bargmann.)

An essential ingredient of the present account is to treat the 3j=-synmbols as belonging to the
representation theory of SL(CZ) - which we view in its metrical guise of Sp(CZ) ~ rather than that of
)
to form a group if(cz) = AL[Sp(Cz) which (see Eqg. (2.7)) double covers the orthochronous Lorencz groupf?

SU(CZ); moreover we use as well the antisymplectic transformations ALSp (C2) swhich adjoin to Sp(C

Each choice of time-axis in Minkowski space defines a space inversion operatorp & ALSp (Cz) , and picks

out a correspording SUy(Cz) subgroup of Sp(CQ) , with inner product ( , ). defined, as in Eq.(2.12),by
(¥ B {5 ¥,] . Yec, . (1.1)

Starting fram the one frame-independent bilinear form[ ’ ] on C,, we are of course at liberty at any

stage to specialize our consideraticns to any one of thehost of frame-dependent hermitian forms ( , )

)p -
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Traditional accounts, which start out fram SU(2), proceed in the opposite direction. They make the
belated discovery of an antilinear operator}) cammuting with SU(2)-transformations, and so can
introduce a bilinear form byIEl,fz] = (P_lfl, §,). However, having started out fram a particular
hermitian form ( , ), they tend to ‘concentrate upon it and to play down the role of the bilinear
fom[, ] But in fact it is the latter which is of paramount importance — even if in the end we
specialize to SU(2) — since it is required in the definition of the fundanent';i‘;;x;;riant (in Section
4.1).

As a lead-in to the treatment of 3j-symbols in Section 4, several useful theorems concerning

the space v oof (2j+l)-camponent. spinors will be stated (Theorems 3.2 - 3.6). The last of these

is particularly noteworthy, in that it demonstrates that the crucial structure inherited bv v

fram C2 is not (in general) the metrical stxructure but is the spinor light cone structure NJ,

defined in Section 3.1.

Most of the methods employed in this account are in essence far froam modern, and many go back
more than a century ago! In particular we do not scorn the use of classical bases, and draw the

reader's attention to the fact that the classical 3j-symbols take integer values! Possibly more use

could be made of this = campare, for example, the simplicity of the classical recursion relation
(4.18) to its standard from (4.19).

Next, a brief word concerning notation. We use the logograms L, AL to dencte maps which are,
respectively, linear,antilinear; their combination ALL is used to denote "all" such maps, i.e.
linear and antilinear ones.

Finally we point out that, due to lack of space, several proofs, including that of Theorem
3.6, have had to be amitted.

2. The multiantilinear algebra of the Lorentz group .

Only an abbreviated account of this topic will be given, tailored to the needs of the intended
applications.

2.1 The space C2 of Iorentz 2-component spinors. Let C2 denote a camplex 2-dimensional vector space

which is equipped with symplectic geametry by means of a (non-degenerate) skew-symmetric bilinear
form [ ’ ]:
[?l,‘fz] = —[?2,\51] € ¢, 3 e c, (2.1)

Let J:(Cz) = Sp(Cz) and It(CZ) =-ALSp(Cy) dencte the sets of iscmetries and anti-iscmetries of C2.
Together they form a subgroup 0[7\(
the latter group consisting of all the linear and antilinear autcmorphisms of C2, while the mappings
belonging to the subgroup satisfy in addition the invariance property

[a L eah] =[5 5%, ae f(cz). (2.2)
Here )a, for A e ¢, denotes M or .X acoording asvg is a linear or antilinear map.
2.2. The space Vj'j|of (j,3')-spinors . Let Vj denote the 2j th symmetrized tensorial power vzjc of

2
Cz, and let D7 {(a), for a € (I\LL(Cz), denote the restriction to V:I of@zja. Define also the spaces

T . .y
vird' ama corresponding corepresentations p3 of @xLL(CZ) , by

V' =gy, 0V @ =@ e o) @, acaucy), 2.3

CZ)E ALLSp(C)) = Sp(Cz) ] AISp(Cz) of the group GALL(CZ)EGL(C?_ )VGAL(CZ)
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where V denotes the antispace of V. In the case j = 3' we write ®'J for the real vector space
consisting of those elements of V2’7 which are real under the natiwal conjugation q>1® ¢2'—)¢2 @?l,
¢i [ VJ, and note that D]'](a) can be thought of as a real operator upon R,

In particular we mention (i) the space C, of Lorentz camplex 3~vectors (ii) real 4-dimensional

3

Minkowski space M (iii) its complexification Mc (iv) the space of Weyl (5-component) spinors (v) the

(real) space of trace-free Ricci tensors, given respectively by

(1) €3 =V' =Gy €, TSK(C,C,) T L (G0,

(i) M= 9% 2 A1sk(c,,cy)>,

s C_ k5 = o~ 5

(i) M- = v*'* = C, & C, 5 AL(C,,C,)7, (2.4)

v V =~ 25 (c,,0) T (CyvC,). & space of binary quartics®’’
2 T %3t 3Vl TP s

1,1 ~ ~
v rRl= ALS(C,4,C3) = S, (4,1 = (MVM);’D.

< 3t
2.3 Induced scalar products and iscmetries, Thé space 3" inherits a ron—-degenerate scalar product

[ ] fram that on ¢, In particular that on V) is defined to be the restriction ton?C, of the
usual induced scalar product upon ®2jcz; thus if ¢ = E'lv?z\, ...z;fzj ady = iy e 9 2§
are two (j,0)-spinors, their scalar product involves the permanent ofL(2j+1) X (2j+1)-matrix whose
ik-element is the scalar product [ ii,pk]:
(23)! [¢,v] = permanent ([;i,m). (2.5)

The scalar product upon Vj clearly satisfies

[4:v]= (—)2j[\y,¢], ¢, yvev; (2.5a)
in particular the geometry on C3 = V1 is complex orthogonal. Thatlo on M= R%’!i is real orthogonal,
with signature (+ - - -) —as can be checked using the basis (2.10) below— so that M is indeed a
Minkowski space.

T . 3 -
1f aef(C,), then D’ (a) is clearly an iscwetry, or antiisometry, of LIS particular
2

. . e ca L
[Py ('Dj(aw] =[4% , aefic). (2.6)
However in general the group hamwmorphism D3 has image only same "small" subgroup of the iscmetry
oy
group of V2’7 . As will be noted below, in Section 3.1 and footnote 16, the cases (3,3') = (%, %),

X,k -
or = (1,0), are exceptional in that the hemomorphisms D*'* : ap—>a®a, and o a —»a . a, give

rise to group isomorphisms + +
f(cz)/z2 =L aa ¢/, ¥ Ao, cy). (2.7

2.4 Product bases. Each symplectic basis{ f,yi for C,, satisfying that is [5, 7] =1, gives rise
to an associated product basis for Vj’j'. In particular the associated standard basis for Vj is
{eﬂl; m==j,...,+ 3}, where ) is defined by .

& M) .
(Here and below we use the abbreviation §j+m7j—m to denote the symmetrized product ;v }v o v? v?v"v7
of 3 +m factors§ and j - m factors 7 .) The associated metric tensor in the space Vj is the

standard lj—smlll:
(m)z[eed ] = 7™, 2.9)
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(The relevant permanent — see Eq (2.5) — contains a (j+m) x (j+m) block of +1's and a(j-m)x(j-m)
block of -1's).
The associated product basisff@f, 987, 5® 7—, 7@{} in the space M® is a mal tetrad basis,

from which we construct an associated (real} orthornommal basis'® {z,y,z,t} for M:
f2x=§g +98, foy=-iU67 -75), 22 =57 -p7,26 =5¥ +;7, (2.10)

whose metric tensor is diag( - - - +}, in confirmation of the signature of M.

It is not difficult to find a set of cancnical forms for_t (C ), as well as forI (C }. One
can then use the group 1somorphlsnsl2 (2.7) to deduce a set of canonical forms forat and ALO (C3) , as
well as for i_'_and o] +(C3) . We content ourselves here with just two simple instances. Given the
basis{f,ﬁ , the simplest .,ﬁ(cz)—transfomlation is the conjugen:i.on8 defined by 5§ 2] . It
follows from Eq.(2.10) that at the M-level this transformation is gpace reversal with respect to

the y-axis: x> %, y+>-y, 2+—>2, t+—> t. At the Vj—level, this space reversal is the antilj.nearg

na;ies:mply by e —aej for eachm = -j, ...,J.

Another simple I _(Cy)-transformation is that (antll:mear ) map defined by its effect f e N iad
on the basis {7, 7} . At the M~level it is gpace inversion {x,y,z,t}—-)f—x,—y,—z,t-f. Noting that
the basis{—y, E} is left dual to the basisif ,7}, observe that at the Vj—level space inversion P is

the antilinear® map given by15perjn = er;, where {en.lg is left dual to{erj‘g—i.e. e? is defined by

[ ", ] =8m, @211

or equivalently by replacj.ng{? ,7} by {—7,}} in the definition of e in Fg.(2.8). We can use? to
define a hermitian form ( , )p on Vj by .

Ud o= [Py 4, ¢V, (2.12)
w.r.t. which ex; is an orthoermal basis (in the strict sense). Thus each choice of space inversion
and hence of frame (time-axis), in Minkowski space M results in a choice of positive definite unitary

geametry for Vj via the inner product ( , )},

2.5 Classical bases and components , While standard bases for V2 possess simple normalization properties,

for many purposes — as was realized a century ago (bearing in mind Theorem 3.2 below) — it is better to

avoid irrationalities and use instead classical bases of the typei i A=0,1,... ,Zj} where
2 - % .
(J)§23 N=0,1,..0025 - (2.13)
The camponents of a general element ¢ € VJ relative to the two types of basis will be denoted (.) )
and @): ] 2 '
. N <
¢ = 2 9" = 2 el (2.14)
=3 m oy A

The relation between the two sets of buses and components is thus
2j i 23 .
E: = /()]) er%, 4m = K)J) , where M = j-m. (2.15)
3. The space VJ = szCZ of (j,0) - spinors .

3.1 The spinor light cone N°. An element ¢e v) which is of the highly special form ¢ = fzj, for some
17.18

non-zero }'6 C2, will be temmed a nil sginorls. The spinor light cone NJ of VJ is defined to
consist of all the nil spinors of v, (These definitions can be generalized16 in an obwvious fashion

to (,3,)-spinors.
(\31132) spinors.)
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Clearly the image T = D]‘(a) of a "Lorentz transformation" a evff(cz) has the property of
preserving the cone N, since T § i 72], where % = a¥. Conversely, if Te GALL(V)) preserves N7
j 'y
then Theorem 3.6 below implies that T is a scalar multiple of Dj(a) for some a E‘L(CZ) . Consequently

the crucial structural carried by the space Vj is the spinor light cone N’, and not (at least when

j > 1 <~see footnote 16) the metrical structure r.1.
3.2 Theorem Each choice of basis {?,7} for C2 gives rise to an isomorphism of Vj with the space of
binary 2j-ics (i.e. the space of polyncmials over € of homogeneous degree 2j in two indeterminates f,7).
3.3 Binomial theorem : ( §+ zy)Z3 =22 2E, (zee, I,y ecy.
3.4,"Pem?ose'x-;l9 theoren" (=20 Fundamental theorem of algebra). Every element ¢ € Vj is decanposable;
that is there exist 51,52,...,§2jec2 such that

¢ = E1¥2 ;zj (= fl\,f wererw 23)'

Moreover, if ¢ # O, the factors }' "fzj are subject to permutations and to rescalings of the type

1
fi._;)iii, with )1)2 "')‘Zj = 1, but are otherwise uniquely determined byy‘ .

3.5 Theorem. The spinor light cone Nj spans Vj.

3.6 Theorem, If Te GALL(Vj), then T preserves the spinor light cone Nj if and only if T =Dj (a) for
some a€ GALL(CZ) .

3.7 Ramarks (a) Of the above five theorems, the odd one out is Theorem 3.4 is that it is peculiar to
the dimension 2 of the base space Cy- The other four theorems generalize to dimension n>» 2 (n-ary
quantics, multinomial theorem, etc.); Theorem 3.2 can be paraphrased in the statement "symmetric
algebra = coordinate-free polyncmial algebra".

(b) Theorems 3.5 and 3.6 readily generalize to thecaseof (jl,jz).—spj_nors.

Bl Bj
(c) On account of Theorem 3.5, a multilinear mapping M : V 1x v2x v...—>»W is determined by its

2]2
2
be reconstituted by means of polarization, upon using Theorem 3.3. Of course, these are the methods

values M(f § ,...) on nil spinors. The values M(4 ,¢2, ...} on general spinors can then
familiar from Classical Invariant Theory (see Ch.8A of Ref.21). Before applying such methods to Wigner's
3j-symbols, let us give a very simple illustration of them.
3.8 Illustration: the bilinear invariant [ , ]: vx v’ — €

A bilinear map [ , ]: Vx vi e is determined by its values upon the nil spinors. The set of
values defined by . . .

2)  x2i] . 2j

[¥ .52]~[§l,?2] B Y (3.1
is a possible one; for the degrees on either side tally, thereby guaranteeing the existence of the
requisite polarized version of our specialized starting point. (We are supposing, for the sake of this
illustration, that we do not already know this completely polarized version~ namely that given in Eq. (2.5))

Upon choosing a syrmplectic basis {?,7} for C., and writing fi =3 + z,9 (zie ¢}, so that

2
‘SJ, 22] = oZ, 74, use of the binomial theorem in Eq. (3.1) yields the value of the classical lj-symbol

SUNCREY

in (z, -z )2j. Thus

[) >] . Gj)gxluz 23 " -3

- M X
to be the coefficient of I
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We thus obtain the well-known bilinear invariant i
3N sy 2> M
[s,41-3 & (D)8
N=0

of two binary 2j-ics. (The invariance property (2.6) follows from Eqg. (3.1) by virtue of the

-

corresponding otT(Cz)—invariance property (2.2).)
In particular when j = 2, a general element ¢ =) 5"132) of V? is identified (under the
isamorphism of Theorem 3.2) with the binary quartic
¢ =295 4 aleY « 822 + ag%,? 4 3Y0,
and we obtain the familiar quadratic invariant 3 of the binary quartic:
5 -u[en] =% - @+
4. Trilinear invariants and the Wigner 3\’j.xsymto}s

J J J
4.1 Trilinear invariant [ . ] A 1y v Zx v 3——)@ .

The definition of this wpon nil spinors by

23 23 23 k. k. k
[570, 572,803 < xlr, ] [50) 2 [5,5] 2,

(3.4)

(3.5)

(3.6)

(4.1)

where K is a normalization constant, will succeed provided only that the "degrees tally": more

precisely, non-negative intgergn kl'kz'k3 must exist such that
2jl = k2 + k3, 2]2 = k3 + kl' 233 = kl + k2
These equations can be solved, the solution being given uniguely by:
ky=dp 33 k=33 d) Iy kg =3+ 3y 7 3y
=J—231 =J—2]2 =J-2]3

where J = j1 + j2 + j3 = kl + k2 + k3, provided only that jl'jz’j3 fram a triangle of integer

perimeter:
3 + i< j,, Iprd, g Jgr 33 + 3, J37 J = integer.

(4.2}

(4.3)

(4.4)

Except for the arbritariness in the choice of K, no other trilinear invariant exists (see

balow

Theorem 2.6A ,or 6.1A, of reference 21 — or see Eq. (5.6)}\) For a reason given later, we choose

K = K(3},35,35) to be

RGyeipdy = flatd/fe) @+ ft

where we have used the abbreviation I'pl] = pl!p2!p3! .

4.2 Properties.Egs (2.5a), (4.12, {2.2) and jnmediatgly yield the invariance property
[Djl(a)¢l, b2(a) 4, DJ3(a)¢3] =34 4]" L ae Ly,

and also the permutational symmetry property

. 3.
[4o 0t oty = 0 [#.0,4], ¢ev'.

Since K(0,3,3) = (25+1) 7%, we also have
[Lev] = [d¥)/f2i®, gwev.
4.3 Standard and classical 3j-symbols. These are defined respectively by
iy 3, 3 ] ] 3 bl i, 3 _ b j B
(ml : m3 =[eml ’ em2 ‘ ema] and [\l )2 X3}=K1[Exl B2 E 3].
1 T T 1 2 3 1 "2 M3 1 LR

By Egs(2.15), (4.5) they determine each other by means of

53, 33]={.[k;](a4’r1)!} (31 ip 33)
N Ay Oy [x:10%1 mom, my ?

(4.5)

(4.6)

(4.7)

(4.8)

(4.9(a), (b)

(4.10)
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where )i=j -—mi,Ki:j. +m

i i 1"

4.4 properties of 3j-symbols . Various well known properties of the 3j-symbols follow immediately from

I3 7
the general invariance property (4.6). In particular, upon setting 4"1 = eml and choosing a t:‘_f(cz) to

21 1 .
be a suitable (a) screw (b) T —rotation {c) space reversal q(d) space inversion — namely such that p (a)

3 3 12303 J o i :
maps e on to (a)ex ™ e () 17er (o) e () € — we obtain the results:

3, 3, 3
(a) (l 2 3)=O ifz:ni#o,'

w m
b P PO | J; 3, 3
wm (1 22 3>= I 32 3);
™ Wy My I, Ty Ty

(c} the 3j-symhols are real;

(d} the fully covariant and fully oontravariar\tzz forms of the 3j-synbol are equal:

3, 35 3 m m, m o,
R A A B (z{e’fi'e‘;‘z 'ejBD .
™oy Ty 32 33 o 3
Similarly the permutational properties of the 3j-symbols follow from Eq. (4.7) ,while (4.8) yieldsll
03 Y- g+ n7E(3)
= (2§ + 1) .
(0 n n) (m n
Orthogonality properties are considered in Section 5.
4.5 Computation Setting fi‘: 3+ zi*) in Eg. (4.1} and using the bincmial theorem (as in Section 3.8),
X
immediately yields the value of the classical 3j-symbol to be the coefficient of zll 232 223 in

k. k. k
(23 - zz) 1 (zl - z3) 2 (z2 - zll 3, fhus the classical 3j~symbol takes integer values:

(3, 3, 3 Qg (k) (ko) (K
[ 5 B]p s ()
1 "2 RAE-ARC
Using Eq. (4.10) we deduce "Racah's fon'nula23“:

(2 % 5. feliedpap ) g

ol SO 4.12)
= 3+ ¢ X e ’ {
o CERHS S-S E e
where the summation is over all non-negative integers pi,qi satisfy:‘.ng24
P + Y by + qz P3 + CI3 kl k2 k3
- M,
Patay myta pptray )= NN X (4.13)
K X .
P3¥d P tqh Rt q 1 % %

(The summation in fact reduces to a single sumation, the number of terms being Min(ki,')i,'(i) + l)
4.6 Illustration Consider the particular case jl =3 2= j3 = 2; upon adopting the abbreviation
[) 1)‘2)\3] for the corresponding classical 3j-symbol, we have from Section 4.5:
Drgh] = oot of 21222 in (5,292 (252 2Hagmz) . (4.14)
172 17273 273 34 T “2
Thus [024] = 1, [123] = 2,[033] =[a11] = -2, [222] = -6, and of coursef)l)2)3]= 0 ifZ)i # 6.
Thus the expression of the trilinear invariant [4)1’@ ,4)3], ‘Pie v2, in terms of classical camponents
involves (vexy low—lying) integers, and should be contrasted with the irrationalities of the standard
expression. In particular, on setting fy =4, =¢, = ¢, we derive the well-known expression® for

the cubinvariantjof the binary quartic ¢¢€ V2 of Eq.(3.5):
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j =[¢,4,¢]/3K - %Z[:l iz 53] 1?1 ﬁ)zﬁh

=828 4 2%%% - %@ % - ¢H% - @5 (4.15)

In terms of standard 3j~symbols and components: 26,27

§ Ut y(z 22 ye""™ .19

4.7 Recursion relations, To derive recursion relations for fixed values of jl'j2’ Jj 40 use the
infinitesimal version of Eq.(4.6). For varying jl'jz'ja' adopt factorizations of the kind
kl k B kl"
[5,,5] =% ,f;l [52,§3] in Eq.(4.1), set ¥; = ¥+ 2,9 and use the binomial theorem
32

again to obtain the relations
3j 3 J j' jl j!' ”ju jn 3
[an]2. [is HEEE] e
\i+)i=i 1 2 13 142 A3

where j:!L + j; = ji. These are known inone or two specialcasesat any rate when expressed in terms of

standard symbols. For example, on setting 31 =0, 32 = J = % we obtain

i; 3, 3 3y 3% dgk I P T P
[ 1 >2 >3]=[>l A2 3 J_[ 1 72 33 ] (4.18)
A A 2 12 5t SR I

which in temms of standard symbols reads

5 5
(Jl i, 33) _5(32+m2) <33—m3>} (Jl ik 33—%)_{(31—-112) (33+m3)} hoaE e\ .
@y (3-23)) _ (J+1) (3-23,) _ .
momy my i my myh modh 1 momyts ok
3

in agreement with Eq.3.7.12 of reference 28. Pe.rhapsathe general relations (4.17) are new?

%3
i1 3,
We content ourselves here with a brief sketch, a.nd will omit certain detalls29.

3 J
First of all an invariant elarent3o he v l@ v ® v 3 is defined by
[#1:920¢3] =[1e4)@¢,045] (5.1)

and so depends upon the choice of constant K in Eq.(4.1). If K is chosen +to be real, then h is

5. The maps 2 % and Clebsch-Gordan coefficients.

invariant under the natural action of if as well as Ii, consequently [h, h] is real and positive:
[h,h] =[9h,h] = (h,h)j, > 0, since ( , )}.’ is positive definite. We may therefore fix K -~ and hence
C, . ] and h —— by denanding K > 0 and[h,h] = 1. The actual value of K then turns out (after
an apparently unavoidable computation) to be that given previocusly in Eq. (4.5).
Next a linear map f : V]3~> V]]'@ ij
A @dy, 5] = [#. 05, 5.2)

where A = A(jler’jB) is a normalization constant. The invariance properties of [: , ] and[ v, I

is defined by

yield the intertwining property

b 3j
[Pl@@p2@] e £ ~te0@, a e,,L'(C (5.3)
3 J
Schur's lemma now tells us that f is injective. Let us denote Inf by Vj3j [ and V @V ;i by
172
restricting the target space of f we thus obtain a linear iscmorphism
¢ b 3 3
f = .
0-2 3 } visv,d o (5.4)
3 3, I
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One next shw529 that £ ° is necessarily a scalar multiple of an isametry; oconsequently

we will fix f,,or equivalently the constant A, up to a sign by demanding that fO equal an

I3 N, 2 3y J2 b,
isametry. To compute + A, note that upon identifying L(V >,V '@ V %) with V'@ V @V is the
2j
obvious way, we have Af = (-) 3h. Hence
= [nn]/ 5] = 1/er () = (23, + L,

- 33 35
(since ff = identity operator V =V ~). Hence

A =€ (213 + D)7Y, where €= £(j), 357y is a sign ambiguity. (5.5)

29

Next (using the mequlvalance of DY with DJ for j # j') one shows™” that the (non-singular}

I3
subspaces V.,

55 of V 8 V are mutually orthogonal, and one arrives at the decamposition
172

J
- 863 ,4..5 3, 5.6
v @ v .LJ.3 (31+35033) V3132 B (5.6)

after checking that the dimensions tally. Here S(jl,jz,j3) is defined to equal 1 if the triangle
Yded

condltmnslare satisfied, and to egual O otherwise. (Of course the fact the multiplicity Siso

or 1 oon.flrms our prevmus assertions concerning the existence and uniqueness of a trilinear

J

2

J
invariantv X Vo v ——)€)Uponmtroducmgthemap

* 3
A = @G .3 5.7
{31 32} @33 {31 32} ? &7
we obtain the intertwining property

[0 @6 b 2] {31 7{ g e [@ D (a)] (5.8)

it being understood that the summation over 33 is restricted by the coxﬂltlonS(Jl,jz.j3) = 1.

Finally, Clebsch-Gordan coefficients <j1 j2 my mz, I3 m3> and (]3 m3l 3 j2 my m2> are

defined to be the matrix elements of the linear iscmorphism jIjzg and its j.nverseij],rjz} with
respect to standard bases in the relevant spaces. Thus
J J 3 j
3 - 12 _ 3 /s N
n, T DI mn12 <3132‘“1“‘2| Py . = Z fn <"3’“3I3132‘“1‘“2>' 5.9
mm, my Jgmg 3
343, i1 3, 33 { 331 3
where e = e e and f “=]5,3 } e
M, ml® ™, gy 12

Egivalently the CG-coefficients are given ):Jy3l
T I3
<3132‘“1’“2}33’“3>= 5.3, i ] <33’“3 3 AN 2> [ €y ] (5.10)

22
Setting ¢ = :1 , » $y=e¢’ inEq.(5.2) we obtain

J1 32

£03,3,33) <3132‘“1“}2|33’“3> R (_)2j3<“‘1 B j3>: o 3( 132 33)

2ig+ 1 33 3 my my Mg

(5.11)

Hence we may deduce properties of CG-coefficients from those in Section 4.4 of 3j-symbols. In particular
the CG-ooefficients are real; €onsequently upon using the (antilinear) space inversion map e%»-;e? and
m_ 2] j . A . _ /s - s
e.'—)( )“e) in Eq.5.10, we obtam(jljzmlmZ,ij:i) = <33m3’jljzmlm2 . In the case of orthogonality
relatlons, nowever, it seems best to deduce those for the 3j-symbols from those for the CG~coefficients;
for the latter ate s:mely the expreision of the fact that the matrix of the map 3132 is the inverse of
the matrix of the map { lj"i &132

The standard convention for fixing the sign 6(31,32],'3 ) is to demand wiat <3]_]2] (]3-31)! ]3j3>

be positive, which leads to 2 _ )33”1-31

£030d039) = ) (5.12)
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Footnotes and References.

1.

2.

3,4.

5.

10.

11.
12.

13.
14.

1s.

16. A spinor ¢e Vv

For some standard texts, see the bibliography to ref.2.

L.C. Biedenharn and H. van Dam (editors), The Quantum Thecry of Angular Momentum, Academic Press 1965
See the articles by Schwinger and by Bargmann reprinted in ref.2.

The linear isomorphism C2® (_32-—>AL(C2,C2) is given by 3’@7—»-.,» }7‘, where the latter denotes the
antilinear dyad with effect 55 wa_ﬂ—. The iscmorphism R;“%—> ALSk(CZ,Cz) follows upon noting
that the adjoint of the dyad ¥7 is —')§ .

See Theorem 3.2 .

The linear isamorphisns ~%C, — (C3y C3), and BH'Ls 1M can be defined - see Theorem 3.5, foot-
note 16, and Reamarks 3.7(b), {c) = by laying down that their effects upor’x‘ispimrs are respectively
¥ht%s? ana 1372 3T 05T

Even though DJ represents space inversion antilinearly, the group i (Cz) is still useful in the
construction of manifestly covariant corepresentations of the extended Poincare group P appropriate
to the physically relevant URA-decomposition P’fu PJ'; see Section 4.3 of Ref.9.

R. Shaw and J. Lever, Cammm. Math. Phys. 38, 279 (1974),

The action /\(a) =a® a upon R%'25

is, for asﬁr(cz) , iscmorphic to the action pr—» ae pe a—l upon
ALSK(C,,C,) used in Ref.9; (however for a €£Yc,)%, an extra minus sign has to be introduced in the
first action if it is to correspond to the seoond) The scalar product E?f, 7;] =[§,71m
upon R;i’!5 corresponds to the scalar product L_p,q] = - tr(p o g upon AISk(CZ,Cz) .

our 1j-symbol is the transpose of that employed by Wigner in Ref.2.

The vector space iscmorphisms (2.4) are also useful for solving campnical form problems. For
example one can find canonical forms for an object Te ALS(CJ,CB) i.e. for an antilinear map

T : C3->Cy which is self-adjoint : [qu; v1=[4, T¢l, ¢,peC;.  (One way to do this is to use the

"anti-Jordan" canonical forml3

for general antilinear operators.) Use of the isomorphism
AT.S(C3,C3) = (MM ° then enables one to deduce a set of canonical forms for a trace-free Ricci
tensor T, as given for example in Section 2 of Ref.l4.

Incidentally, since the square of an antilinear operatqr is a linear operator, T & AIS(C3,C3)
implies W = Tze S(C3,C3) . Upor?{f_racting the trace, we obtain the "Weyl square" woe SO(C3,C3) of
the Ricci tensor T. The antilinear algebra way of introducing the Weyl square was in fact how the
author first encountered it; for a possible use, see Section 5 of Ref.14.

R. Shaw (unpublished, 1969).

C. D. Collinson and R. Shaw, Intern. J. Theor. Phys., 6, 347 (1972}.

Using the isomorphism M & ALSk(C,,C,) again,? at the C,-level is given by P =f2t(= ¥5 497 , as
in Eq. (2.10)), and so at the Vj-level it is Dj (J2 t), thus exhibiting clearly the dependence of
? upon a partfict'llar time-axis.

3q+3 23y 23

12 is said to be nil if it is of the form ¢ =%§ 1@ 3 2 for some non-zero § € C.
3qe3

(the minus sign being needed only in the case jl = j2). The set of nil spinors of V 12
Jqye3

1772

2

forms the spinor light cone N
The term "nil" is used rather than "null", so as to reserve the latter to refer (as in

"null tetrad basis") to a non-zero spinor
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of zero length: fv ,VJ= 0. Clearly every nil spinor is null. The cases when (lejz) equals

(%,0), (0,%), (1,0}, (0,1) or (%,5) are exceptional in that evary null spinor is nil in these

cases (provided in the (%,%) case we restrict our attention to the real space M = R)s'!s). In

all the other cases there exist null spinors — for example the basic (j,0)-spinors ea, with
m_;‘ 0, m #+3j = which are null but not nil. Consequently in these ot:_ha'; cages the images
Djlljz(a) of Lorentz transformations, which clearly preserve the cone NJlljz, can not be
characterized entirely metrically.

17. I borrow this name from Dowker, J. S., ~ see Ref.18.

18. J. S. Dowker and M. Goldstone, Proc. Roy. Soc. A, 303, 381 (1968),

19. R. Penrose, Annals of Physics, 10, 171 (1960). 19a. Using Theorem 3.2,

20. In oxder that the requisite polarized version of the r.h. side should exist.

21. H. Weyl, The Classical Groups, Princeton University Press, 1946. 2la. As. in§2.4.

22. Caution : in dealing with mixed:D forms of the 3j-symbols, note, by Eqs. (2.5a), (2.11), that
the left dual of the basis {eg.\% is {(—)zjegg.

23. This can be traced back, via Van der Waerden (1932) and Weitzenbdck (1923) to Clebsch and Gordan
(1872) .

24. The notation is as in Bargmann's article (Rev.Mod. Phys 34, 829 (1962)), which is reprinted in
‘Ref.2. At this point one can spot the Regge symmetries.

25. See any classical text on invariant theory. Since the corresponding trilinear i_nvariantj( r e )
is determined by its values upon nil spinors byj (c<4, P4,X4) = % [(5,3_]2[)’,-(_]2 E(,‘;jz, the latter, in
the classical literature, is referred to as the "symbolic expression” of the cubinvariant
ja f(¢’,4’,¢), and &,(,¥ are said to be "equivalent symbols".

26. The expression agrees with that in Ref.27, after taking into account a factor ﬁ! due to a different
normalization.

27. 3. A. Roche and J. S. Dowker, J. Phys. Al, 527 (19€8).

28. A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press, 1960.

29. In particular we do not state certain useful general theorems ooncerning representations of
groups by means of the isometries of a complex vector space equipped with orthogonal or symplectic
gecmetry. For the most part these follow,by familiar methods, from Schur's Lemma.

30. The fully covariant standard 3j~symbols are the covariant components of h, i.e. with respect to the
basisz e:.?@ e;z ® e?ig ; the mixed forms of the 3j-symbols are defined to be the corresponding

mixed camponents of h. Consequentl_y22 take note of results such as

jp I, m 2, 3 ] m.
(ml 2 j3>= “ 3lem1 , o2, e}]'
v My I3 1 T I3
(] e S5 4 sons {5
31. Since jljz is an isametry, 3= i1 3, ej is left dual to fm =133, & -
32. Similarly, using factorizationsinto n factors, we obtain corresponding relations involving products
1
of n standard 3j-symbols, whose triples j{s)jz(s)j:gs) satisfy >s:]=31 ji(s) = ji. (E("Al,ull isannz3 in!fa-ce‘)
33. No! BAs witness to the success of the colloquium's poster sessions, I was informed by S. Strdm of
work by Bose and Patera - see Canad. J. Phys. 49, 947 (1971) - who in tum told me that my Eq(4.17)
can be found in Vilenkin's book on Special Functions and Group Representations (but with no

regognition of the integer-valued nature of the symbols).



