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Summary Usa of a gropp~@(C2 ) which double covers~ @ , and of the spanning property of the spinor light 

cone, leads to a rapid derivation of the properties of Wigner's 3j-symbols. No obscure cc~putations, 

choice~of pha~e, or the like, are needed. The reality of the 3j-symbols follows frmm their invariance 

under the antilinear space reversal6~:(C2). Sc~e (possibly) new rec%Irs,~on relations are established. 

It is noted that classical invariant theory made use of the spinor light cone a century ago, and that 

the classical 3j-slanbol takes int~j~r ~alues. 

i. Introduction For some years now the a~thor has been engaged in writing a unified coordinate-free 

aceouslt of what may be described briefly as "the n~athematics of Minkowski space",cr in a little more 

detail as "the linear, multilinear and antilinear algebra of Minkowski space M, the Lorentz group~, 

and o{ associated spaces and groups". Hopefully, in the near future, the complete work will be 

published in book form. The present talk will describe a rather small subset of this work, namely 

that dealing with the 3j-symbols for the ~ representations of ~ . 

Traditional accoLants I'2 of the Wigner 3j-symbols and Clebsch-Gordan coefficients for the 

3-dJ/rensional rotation groL~p can be criticized in that they make many of the inloortant properties of 

the coefficients appear in a far frcm clear light. This lack of clarity is produced chiefly by 

(i) weakly-motivated choices of phase (ii) proofs involving computations of a somewhat ccaplicated 

and murky nature (iii) treating the less symmetrical CG-coefficients before the more symmetrical 3j- 

symbols (iv) dealing with c(xnponents of an object rather then the object itself. To correct these 

defects, the present account deals first with a certain trilinear invariant, then with its cca~2onents 

(the 3j-symbols); next the trilinear invariant is used to introduce certain linear maps, and only 

then do we deal with the matrices of these maps (the CG-coefficients). 

Important, but rather less traditional, accounts of the subject have been given by Schwinger 3, 

using certain operator methods, end by Bargmann 4, using function space methods. In contrast with 

these contributions the present account is mathematica|ly sir~pler to the extent that it uses nothing 

more than the linear (and antilJnear) algebra of finite-dimensional vector spaces. (However, at 

certain points, the present account would appear to be quite close to that of Bargmann.) 

An essential ingredient of the present account is to treat the 3j-slm~ols as belonging to the 

representation theory of SL(C 2) - .which we view in its metrical guise of Sp(C 2) - raffler than that of 

SU(C2) ; moreover we use as well the mntisynplectic transforn~tions AISp(C2) ,which adjoin to Sp(C 2) 

to form a group ~r(c2 ) = ALISp(C2) which (see 9~7. (2.7)) double covers the orthochror~)us Loren~z group~'. 

Each d~oice of time-axis in Minkowski space defines a space inversion operator~6 ALSp(C2) , and picks 

out a corresponding SU~(C2) subgroup of Sp(C 2) , with inner product ( )~ defined, as in Eq. (2.12) ,by 

c2  ll) 

Starting from the one fr~n.e-independent bi]inear form r , ] on c 2, we are of co[~rse at libexty at any 

stage to specia]ize our considerations to any one of th~host of fr;xne-dependent hermitian forms ( , )_. 
Y 
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Traditional accounts, which start out frc~n SU(2) , proce~ in the opposite direction. They make the 

belated discovery of an antilinear oi~_rator~ cc~rmuting with SU(2)-tr~sformations, and so can 

introduce a bilinear form by ; ~l' ~2~ = (~-i~i' ~2 )" However, having started out frGm a particular 

hermltian form ( , ), they tend to concentrate upon it and to play down the role of the bilinear 

form L, 7. But in fact it is the latter which is of par~aount importo~nce- even if in the end we 

specialize to SU(2) --since it is required in the definition of the fand~auental~inveriant (in Section 

4.1). 

As a lead-in to the treatment of 3j-symbols in Section 4, several useful theorems concerning 

the space V 3 of (2j+l)-cfmi0onent spinors will be stated (Theorems 3.2 - 3.6). The last of these 

is particularly noteworthy, in that it demonstrates that the crucial structure inherited by 

from C 2 is not (in general) the metrical structure but is the spinor light cone structure N 3 , 

defined in Section 3. i. 

Most of the methods employed in this account are in essence far from modern, e~nd many go back 

more than a century ago' In particular we do not scorn the use of classical bases, and draw the 

readers attention to the fact that the classical 3j-symbols take intexser values' Possibly more use 

could be made of this -- cc~pare, for example, the si~olicity of the classical recursion relation 

(4.18) to its standard from (4.19). 

Next, a brief word concerning notation. We use the logograms L, AL to denote maps which ere, 

respectively, linear~antilinear; their cfmlbJ~nation ALL is used to denote "all" such maps, i.e. 

linear and antilinear ones. 

F~lally we point out that, due to lack of space, several proofs, including that of Theorem 

3.6, have had to be omitted. 

2. The multiantilinear al~ebra of the Lorentz group . 

Only an abbreviated account of this topic will be given, tailored to the needs of the intended 

applications. 

2.1 The space C 2 of Lorentz 2-cc~ponent spinors. Let C 2 denote a cc~olex 2-dimensional vector space 

which is equipped with s!mpleotic geometry by means of a (non-degenerate) skew-symmetric bilinear 

form[, ]: 

Let ~:(C2) ~ Sp(C 2 ) and I~_(C2 ) ~-ALSp(C2) denote the sets of isometries and anti-isometries of C 2. 

Together they form a subgroup i~(c2 ) -= ALLSp(C2)~ Sp(C2) ~ ALSp(C2) of the group GALL(C2)~(C 2 )~GAL(C2) 

the latter group consisting of all the linear and antilinear automorphi~ns of C 2, while the mappings 

belonging to the subgroup satisfy in addition the invariance propriety 

~a~l' a~2] =[§i' ~a, a& ~(C2). (2.2) 

Here ~a, for A& C, denotes A or ~ according as a is a linear or antilinear map. 

2.2. The space V j ' j 'of (j, j ' ) -spinors • Let V j denote the 2j th sym~etrized te~sorial power v 2jC2of 

C2, and let DJ(a), for a e (I~LL(C2), denote the restriction to V j of~2Ja. Define also the spaces 

V j'j' , and corresi~onding c~represo_ntations D j'j' of GALL(C2), by 

~'J' = vJ~ ' , D j'j' (a) = ~(a) ~ DJ'(a), a E GALL(C2) ~ (2.3) 
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where V denotes the antispace of V. In the case j = j' we write R j'j for the real vector space 

oonsisting of those elements of V j'j which are real under the natL~al oonjugation ~i ~ ~2~9~2 ~i' 

#i ~ vj' and note tk~t ~'J(a) can be thought of as a real operator upon R j'j. 

In particular we mention (i) the space C 3 of Lorentz ccmplex 3-vectors (ii) real 4-dimensional 

Minkowski space M (iii) its cmmplexification M 6 (i~) the space of Weyl (5-oomponent) spinors (v) the 

(real) space of trace-free Ricci tensors, gives respectively by 

(i) C 3 = ~ = C2v C 2 =~ Sk(C2,C 2) ~ Lo(C2,C2), 

(ii) M = R ½'½ ~ ALSk(C2,C2 )5, 

~ii) M c = v %'½ = c2~ ~2 --" ~(c2'c2 )5' (2.4) 

(iv) ~ = v4C 2 ~ So(C3,C 3) =~ (C3vC3) o ,~ space of binary quartics 6'7, 

(v) R I'I ~ ALS(C3,C 3) =~ So(M,M) ~ (M~M) 7~12. 

2.3 Induced scalar products and ismmetries. The space V j'j' inherits a non-degenerate scalar product 

[ , ] from that on C 2. In particular that on V j is defined to be th .... triction to~2Jc 2 of the 

usual induced scalar product upon ~2Jc2; thus if ~ = ~i~ ~2 .... ~,~2j and ~ = 7 i~22 ~ ... ~ ~ 

are t~o (j,O)-spinors, their scalar product involves the permanent of~(2j+l) x (2j+l)-matrix whose 

ik-element is the scalar product E~i,9~ : 

(2j)' ~#, ~] = permanent (E[i,~k] ~ . (2.5) 

The scalar product upon V j clearly satisfies 

E¢,~ ] = (_)2j/~,~] , ~,~ ~ ~; (2.5a) 

in particular the gecmetry on C 3 = ~ is cmmplex orthogonal. That IO on M = R ½'½ is real orthogonal, 

with signature (+ - - -) --as can be checked using the basis (2.10) below--so that M is indeed a 

Minkowski space. 

If a ~If(C2 ) , then ~'J' (a) is clearly an isc~etry .... t~ry, of V j'j'. In particular 

~ (a)~, ~ (a)~] =~6~,~3 a, a &~(C2) . (2.6) 

Ho%~ver in general the group hcrcomorphism D j'j' has J/rage only some "small" subgroulo of the iscmetry 

group of V j'j' . As will be noted below, in Section 3.1 and footnote 16, the cases (j,j') = (½,½), 

or = (i,O), are exceptional in that the hcmomorphisms D ½'½ : a~-->a ~ a, and ~: a ~-~a v a, give 

rise to group isomorphisms ~ (C2)/Z 2 ~ f, and ~{(C2)/Z 2 ~ ALLO+ (C3). (2.7) 

2.4 Product bases. Each ~lectic basis{ [,~ for C 2, satisfying that is [~, ~] = I, gives rise 

to an associated product basis for V j 'J'. In particular the associated standard basis for V j is 

{i; m = -j ..... + JI' ~]ere e jm is defined by 

=(Fm j] 
(Here and below we use the abbreviation ~ J~7 j-m to denote the syrm~trized product ~v ~-. ~ ~ ~'~7 

of j + m factors ~ a~d j - m factors 2 ") The associated ,~tric te/is~r in the space V j is the 

standard lj-s~mbolll: 

• j J (m]m,)m[ej era, ] : _j-m ( ) ~m,-m' " (2.9) 
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(The relevant permanent !see Eq (2.5) -- contains a (j+m) x (j+m) block of +1's and a(j-m)x(j-m) 

block of -i' s). 

The associated product basis~{~9~, ~@~, 9(Dr, 7®~ in the space M C is a null tetrad basis, 

from which we construct an associated (real) orthornormal basis IO {z,y,z,t~ for M: 

whose metric tensor is diag( - - - +), in confixmation of the signature of M. 

It is not difficult to find a set of canonical forms for ~ (C.), as well as for ~ (C~). One 
- z 4~ ~ z 

can then use the group isc~orphimasl2 (2. 7) to deduce a set of canonical forms for~_and ALO+(C3), as 

well as for ~ and O+ (C 3) . We content ourselves here with just t~o simple instan ces. Given the 
# 

basis { ~, ~}, the siraplest i_(C2)-transforfsation is t/is conjugation 8 defined by ~e-~ ~, ~ ~ ~ . It 

follows from Eq. (2.10) that at the M-level this transformation is space reversal with respect to 

the y-axis: x ~ x, y ~->-y, z ~ z, t ~---2 t. At the VJ-level, this space reversal is the antilinear ~ 

9 ~'" j J 
map~simply by em~->em, for each m = -j ..... j. 

Another sinlole ~_(C2)-transformation is that (antilinear 8) map defined by its effectl5~-~-2~ 9~ 

on the basis {~, ~ . At the M-level it is space inversion [x,y,z,t~-~-x,-y,-z,t~. Noting that 

the basis [-2, ~ } is left dual to the basis { ~, ~}, observe that at the VJ-level space inversion P 15 

• ~ 15 D e j _ m the antilinear 8 map given oy ~ m - ej, where { e 31 is left dual to ~ eJl--i, e. e 3 is defined by 

e3 , ~,] =~mm,, (2.11) 

or equivalently by replacing{ ~ ,7] by {-~ ,~] in the definition of e j in Eq. (2.8). We can ase~ to 
m 

define a hermitian form ( , )p on V j by 

(~i'42)~ -- [~l" ~2],~i ~ vJ' (2.12) 

w.r.t, which e~ is an orthc~al basis (in the strict sense). Thus each choice of space inversion 

and hence of frame (time-axis), in Minkowski space M results in a choice of positive definite unitary 

geometry for V j via the inner product ( , )2" 

2.5 Classical bases and cc~oonents . While standard bases for V j possess simple normalization properties, 

for many purposes -- as was realized a century ago (bearing in mind Theoran 3.2 below) -- it is better to 

avoid irrationalities and use instead classical bases of the type E]; A= 0,i, .... 2j where 

4 =(%0 2Jb  =01 ..... 2j (21 ) 
The components of a general element @ £ V j relative to the two types of basis will he denoted (9 TM) 

~d (~) : ] ~J 

• ;~ = 0  -g E .  (2.14) 

The relation between the two sets of bases and components is thus 

Ej <~2J~ej m /(2j) = m' ~ = ~ , where > = j-m. (2.15) 

3. The space V j = -~2Jc 2 of (j,O) - spJr~grs. 

3.1 The spinor light cone N j. An element #&V j whic/n is of thehighly special form @= ~2j, for seine 

non-zero ~ ( C2, will be termed a nil_ spinor 16. %~e spimor ]i@ht cone 17"18 N j of V j is defined to 

consist of all the nil spinors of V j. (These definitions can be generalized 16 in an obvious fashion 

to ( jl, j 2)-spinors. ) 



541 

~(a) Pt 
Clearly the ~mage T = of a "Lorentz transformation" a ~'(C 2) has the property of 

preserving the cone N j, since T ~2j =22j, where ~ = aT. Conversely, if T~ C4kt~(V j) preserves N j 

then Theorem 3.6 below implies that T is a scalar multiple of (a) for some a 6~'(C 2) . Consequently 

the crucial structural carried by the space V j is the spinor light cone N j, and not (at least when 

j > i ~-see footnote 16) the metrical structure [ , ]. 

3.2 Theorem Each choice of basis {~,~} for C 2 gives rise to an isc/norphisrn of V j with the space of 

binary 2j-ics (i.e. the space of polynomia]~ over C of hcmogeneous degree 2j in two indeterminates ~,~). 
. 

3.3 Binomial theorem : (~+z2)2J = z~E], (z~e, 1,7c-C2). 

3.4 "Penrose's 19 theorem" (__20 ~d=ental theorem of algebra). Every elempnnt ~ ~- V j is d~sable; 

that is thel~e exist ~i,~2 ..... ~2jEC2 such that 

Moreover, if ~ M O, the factors ~i' "'" ' ~2j are subject to permutations and to rescalings of the type 

~i~i~i, with ~i~ "" "~2j = l, but are otherwise uniquely determined by~ . 

3.5 Theorem. The spinor light cone N j spans V j. 

3.6 Theorem. If T~ C-JILL(VJ), then T preserves the spinor light cone N j if and only if T =P j (a) for 

a ~ (~ALL (C2). 

3.7 Remarks (a) Of the above five theorems, the odd one out is Theorem 3.4 is that it is peculiar to 

the dimension 2 of the base space C 2. The other four theorems generalize to dimension n ~ 2 (n-ary 

qua/~tic5, multinemial theorem, etc.); Theorem 3.2 can be paraphrased in the Statement "symmetric 

algebra = ccordinate-free polynfmdal algebra". 

(b) Theorems 3-5 and 3.6 readily generalize to thecaseof !jl,J2!-spinors. 

31 32 
(c) On account of Theorem 3.5, a rm/itilinear mapping M : V x v x .... --~W is determined by its 

M(~I 2j2 2J2 .... ) on nil spinors. The values M(#I,#2 .... ) on general spinors can then values ' ~ 2 

be reconstituted by means of polarization, ti0on using Theorem 3.3. Of oourse, these are the methods 

familiar from Classical Invariant Theory (see Ch.8A of Ref.21) . Before applying such methods to Wigner's 

3j-symbols, let us give a very simple illustration of ~. 

3.8 Illustration: the bilinear invariant [ , ]: vJx V j ----) ~. 

A bilinear map [ , ] : VJx V j -->e is determined by its values upon the nil spinors. The set of 

valuesdo ined  

is a possible one; for the degrees on eithex side tally, thereby guaranteeing the existence of the 

requisite polarized version of our specialized starting point. (We are supposing, for the sake of this 

illustration, that we do not already know this completely polarized version--namely that given in Eq. (2.5)) 

Upon choosing a s!mplectic basis {1,7} for C 2, and writing ~i = ~ + zi9 ' (zie e), so that 

LT]' ~2] = zi - zi' use of the bincrnial theorem in Eq. (3.1) yields the value of the classical l~-s~bol 

to be the coefficient of ztl z2 A2 in (z 2 - Zl)2j. T h U S  



542 

We thus obtain the well-known bilinear invariant 

=fJ C2¢)  (3.4) 
A=O 

of two binary 2j-ics. (The invariance property (2.6) follows from Eq. (3.1) by virtue of the 

corresponding ~T(C2)-invariance property (2.2).) 

In particular when j = 2, a general element ~ =Z~E2 of ~ is identified (under the 

isomorphism of ~leore~a 3.2) with the binary quartic 

# =i~o~4 + 4~i~3 + 6@2~2 + 4~313 +~44, (3.5) 

end we obtain the f~niliar quadratic invariant ~ of the binary quartic: 

4. T r i l i n e a r  i n v a r i a n t s  and the  Wigner ~j-~ymSols 

4.1 Trilinear invariant [ , , ~ : V 31x V32X V33--->~ . 

The definition of this upon nil spinors by 

 23,3 3 -1 ' , = ~L~2,r3J U3,%] [gi,Z2] , (4.1) 

where K is a normalization constant, will succeed provided only that the "degrees tally": more 

integersm~kl,k2,k3 must exist such that precisely, non-negative 

2Jl = k 2 + k3, 2J2 = k 3 + kl, 293 = k I + ~. (4.2) 

These equations can be solved, the solution being given uniquely by: 

kl = J2 + J3 - Jl' k2 = J3 + Jl - J2 " k3 = Jl + J2 - J3' (¢.3) 
= J - 2Jl = J - 2J2 = J - 2J3 

where J = Jl + J2 + J3 = kl + k2 + k3' ~rovided only that jl,J2,J3 from a triangle of integer 

perimeter: 

33~ J|~ J~÷ Jl ~< J2' Jl + J2~ J3; J = integer. (4.4) 

Except for the arbritariness in the choice of K, no other trilinear invariant exists (see 
5elo~ 

Theorem 2.6A ~or 6.1A, of reference 21 -- or see Eq. (5.6)~) For a reason given later, we choose 

K = K(Jl,J2,j 3) to be 
K(Jl,J2,J3) = [[2j.']/%n:] (J+ 1)'} % , (4.5) 

where we have used the abbreviation [p.'] _= pl.'p2'P3: . 

4.2 Properties.Eqs (2.5a), (4.1), (2.2) and LRinediately yield the invariance property 

• J2 
ED31(a)~l , D (a)~, D33(a)~3]=[~I,~2,~3] a , a~T(C2)~ (4.6) 

and also the permutational syr~netry property 

[~(1~.(2),%(~ = (~°~'f~1,%,~3] ~l ~ (4~) 
Since K(O,j,j) = (2j+l) -½, we also have 

[~,,,~] = [ ~ , ~ ] / 2 j + l ) ~ ,  ~ , ~ 0  v~ (4.~) 

4.3 Standard and classical 3j-symbols. These are defined respectively by 

' ' L-:  
=[e]l e32 eJ37 ~ ~2 x3 t ~ ~2 x3 ml m2 m3 i ml ' m2' m3J i ' ' " 

Fqs(2.15), (4.5) they determine eadl other by means of 

= ~E~:][~;] j , (41o) 
~2 %3 ~'ml m2 m3 

(4.9(a),(b) 
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where h i = Jl - mi' ~i = Ji + mi" 

4.4 properties of 3j-sy~ql_ss . Various well h~wn properties of tl~ 3j~symbols follow immediately frcm 

Ji ? 
the general invariance property (4.8>. In particular, upo n setting ~i =em and choosing a &~(C 2) to 

be a suitable (a) screw (b)fr-rotation (c) space reversal (d) space inversion'--namely such that D 3 (a) 

maps eJ m on to (a)~ 2m eJm (b) i2Je j_m (c) e jm (d) e 3 -- we obtain the res~tlts: 
i 

J2 

(5 
(C) the 3j-symbols are real; 

(d) the fully eavariant and fully contrav.ariant 22 forms of the 3j-slm~ol are equal: 

(3~ m, i:)=<jm: m2 ' 

J2 J3/V 'l  
Similarly the pe~nutational properties of the 3j-symbols follc~ frca~ Eq. (4.7) ,while (4.8) yields II 

Orthogonality properties are considered in Section 5. 

4.5 Cc~outationn Settihg ~i = ~ + zi? in Eq. (4.1) and using the binc~itial theorsn (as in Section 3.8), 

ir~m~liately yields the value of the classical 3j-s~bol to be the ooefficient of ZAl I z~22 z3 ~3 in 
k I k 2 k 3 

(z 3 - z 2) (z I - z 3) (z 2 - z I) . Thus the classical 3j-slm~ol takes integer values: 

[Jll ~2J2 ~. (4.11) 

Using Bq. (4.10) we deduce " R a c a h ' s  fo rmula23" :  

½ I~ + x): ) p,< fp:ifq:] ~ (4.n) 

where the s~tion is over all non-negative integers pi,qi satisfying 24 

P2 + q3 P3 + ql Pl + q2 ~- ,h '~2 N3 (4.13) 

P3 + q2 Pl + q3 P2 + ql K ~2 ;(3 

(~%e stm~atlon in fac~c reduces to a single summation, the nt~/~er of terms being Min(ki,'~i,Ki) + I) 

4.6 Illustration Consider the particular case 31 = J2 = J3 = 2: upon adopting the abbreviation 

[%1~] for the corresponding classical 3j-symbol, we have from Section 4.5: 

kl ~2 ~3 [~,1x2',~] = o~ i  of Z i Z~_ ~3 in (z2-z3)2(z3-zl)2(z~-z2)2" (4.14) 

Thus CO24] = i ,  b23] = 2,/033] =[~i~] = -2, [~2~I = -6, and of Ooarset~iW2%]= O i fZ~ i ~ 6. 

Thus the expression of the trilLnear invariant [~1,@2,#3], @i C V 2, in terms of classical components 

involves(very low-lying)integers, and should be contrasted with the irrationalities of the standard 

expression. In particular, on setting ~I = #2 = #3 = ~' we derive the well-~ expression 25 for 

the ctlbinvariant~of the binary quartic ~6 ~ of Eq. (3.5): 
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1 2 

#o e 2,/4 29,1~ 21~3 _ ~O(~3) 2 (}i) 2~4 (~2) 3. = = + - - 

components 26,27 In terms of standard 3j-symbols and 

J 2 2 2 ~ml~m2~m3 
= (105) ½36 ~ (~ ~ m3) 

4.7 Recursion relations. TO derive recursion relations for fixed values of jl,J2,J3, use the 

infinitesimal version of Eq. (4.6). 

= 1 2, g l" 
again to obtain the relations ~ 

~2 

For varying jl,J2,J3, adopt factorizations of the kind 

in Eq. (4. i), set ~i = ~ + zi~ and use the binomial theorem 

~+~;.'=>'i 

(4.15) 

(4.16) 

(4.17) 

where j~. + j~.' --_ Ji" These are known inone or two specialcesesat any rate when expressed in terms of 

standard s~is. For example, on setting j[ = O, j~ = j~ = ½ we obtain 

Jl 92 ][ Jl J2 -½ J3-½~ J3-½~ (418) 
J3j=L~ 1 >,2_ 1 X3 J 

which in te/mls of standard symbols reads 

(Jl  J2 J3~ ~(J2+m2)(J3-m3)~. % CJl J2 -½ J3-½1 .~(Jl-m2)(J3+m3)'~ ½ ( J l  J2 -½ J3-½~ (4.19) 
ml ~ m3/=L (J+l)(J-2Ji) 3 ml m2_½ m3+~/- L (J+l)(J-2jl) J ml m2+½ m3_½ / 

~3 
in agreement with Eq.3.7.12 of reference 28. Perhaps the general relations (4.17) are new?. 

and Clebsch-C~rdan coefficients. 5. The maps Jl 32 

We content ourselves here with a brief sketch, and will cmit certain details 29. 

First of all an invariant element 30 hE ¢% ¢2~ J3 is defined by 

[~'~2'+3] =[h'*l~ ~2~3]' (5.1) 
and sodepends upon the choice of constant K in Eq. (4.1). If Kis chosen to be real, thenhis 

invariant under the natural action of ~ . as ~11 as~÷; consequently fh, hi is real and positive: 

[h,h] =£~h,h] = (h,h~ > O, since ( , )~ is positive definite. We may therefore fix K --- and hence 

[ , , ] and h -- by d~nanding K ~ 0 and [h,h~ = i. The actual value of K then turns out (after 

an apparently unavoidable cc~koutation) to be that given previously in Eq. (4.5). 

Next a linear map f : J3_> V31~ V32 is defined by 

A['~1~%, f~] = [%,*2, % ] ,  ~.2) 

where A = A(JI,J2,J3) is a normalization constant. The invariance properties of f , ] and ~ , , ] 

yield the intertwining property 

[D31(a)~ D32(a)J o f =fo D33(a), a e ~(C2) ' (5.3) 

J3 v~l~v J2 ; by Schur's lemma now tells us that f is injective. Let us denote ~,f by VjlJ2C 

restricting t/~e target space of f we t/lus obtain a linear isomorphism 

- J3 
fo=lj I j21: J3 J3 v ~ vjl 2z (5.4) 
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One next shows 29 that fo is necessarily a scalar multip] e of an isometry; consequently 

%~ will fix fo~Or equivalently the constant A, up to a sign by demanding that f o equal an 
33 91 " 31 J9 J~ 

~try. To cc~pute + A, note that upon identifying L(V ,V ~ V 32) with V ~ V ~V in t~e 

obvious way, we have Af = (-)2J3h. Hence 

A 2 = [h,h]/Lf,f] = i/tr([f) = (293 + I) -I, 
93 Jq 

(since if = identity operator V ~ V ~). Hence 

A =£ (2j 3 + 1) -%, where ~ = 6(Ji,92,J 3) is a sign ambiguity. (5.5) 

Next (using the inequivalence of ~ with D j' for j ~ j') one shows 29 that the (non-singular) 

93 ~ . subspaces Vjl 92 of VJI~ V 32 are mutually orthogonsl, and one arrives at the decomposition 
• . 93 , 

V31~ V 32 =~_~ ~(91,92,J3) VjlJ2 (5.6) 

after checking that the dimensions tally. Here ~(ji,J2,J3) is defined to equal 1 if the triangle 
£t.~) 

conditionslare satisfied, and to equal O otherwise. <of course the fact the rm/itiplicity ~ is O 

or 1 confirms our previous assertions concerning the existence and uniqueness of a trilinear 

Jl J2X V j3--~ e.) Upon introducing the map invariant V )6 

Jl J2 3 91 J2 

we obtain the intertwining property 

[DJI(a)~ DJ2(a)J o ~jl*j~ = ~jl*J2~ o ~ %3D33(a)~, (5.8) 

it being understood that the ~tion over J3 is restricted by the condition ~(ji,J2,93) = i. 

Finally, Clebsch-Gordan coefficients ¢i j2 ml m21 J3m3> and ~3 m31 jl j2 ml m~ are 

defined to be the matrix elements of the linear isomorphis~ ~jlJ21 and its in .... ~J]J2~ with 

respect to standard bases in the relevant spaces. Thus 

J3 . . . . .  
fm 3 = ml~ e3132 <JlJ~im2[ J~3>' e3132 m3 mlm2 mlm2 = J~3 f33 <J~31JlJ2mlm2>' (5.9) 

9192 ' . where emlm2-_-e31~ e 32 and fJ3_:lj~321 eJ3 . 
m I ~ m 2 m 3 m 3 

Eqivalently the CG-coefficients are given by31 

mlm2 ~ ~3/Jlm~im2> m3 =FejlJ2, f 33 ~ =Efj3 , e 3132 <J lJ 2mlm21 J ~3 > m3 J , mlm2 J , (5. iO) 

Setting ~i = ej~l, ~2 = ej~2 , ~3 = e3m~ in Eq. (5.2) we obtain 2z 

~(JlJ2g3 ) ~ JlJ2mlm21J3m3> - :  ~( ~93(mi m2 ~J3 ( )J3-m3(Jl 32 J3 l 

Hence we may deduce propert ies o f  CG-coeff iciants from those in  Section 4.4 o f  3j-symbols. In  part icula~ 

the CG-coeff icients are real ;  @ensequently upon using the (ant i l inear)  space inversion map e 3 ~-~e m and 
m 3 

e3~- ) 2JeJ in Eq. 5.10, we obtain~jlJ~im21J~3> = <Jr3 lJlJ2mlm2>" In the case of orthogonality 
relations, however, it see~s best to deduce those for the ~j-symbols frcm those for the CG-coefficie/%ts; 

£I for the latter a~e simply the expression of the fact that the rL~atrix of the map lj 2 is the inverse of 
{ i *ll the matrix of the map 31.32 : lj 2 . 

The standard convention for fLxing the s~gn ~(91,J2,J3 ) is to den~nd u~t ~J19291(J9-91)I j3J3> 
be positive, which leads to ........ k2 J3+Jl-J~ 

~31,32,33 ) = (-) = [-) . (5.12) 
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Footnotes and References 

i. For .93me standard texts, see the bibliography to ref.2. 

2. L.C. Biedenharn and H. van Dam (editors), The Quantum Theory of An~dar M3mentum, Academic Press 1965 

3,4,See the articles by Scb~inger and by ~ reprinted in ref.2. 

5. The linear iscmorphism C2~¢ C2-->AL(C2,C2) is given by fc@~-~, where the latter denotes the 

antil~/~ear dyad with effect ~ ~ ~TJ~i- The is~70rphima R2'½-gALSk(C2,C 2) follows upon noting 

that the adjoint of the dyed ~ ~ is --7 ~ • 

6. See Theorem 3.2 

7. The linear isc~orphimlls v4C2 -~(C3vC3) ° and RI'~ (MvM) ° can be defined -- see Theorem 3.5, foot- 

note 16, and Rcmmrks 3.7(b), (c)- by laying down that their effects uponlspinors are respectively 

~ 4 ~ 2 ~ 2  and ~ 2  _~ ~T~"~- 

8. Even though ~ represents space inversion antilinearly, the group ~ (C2) is still useful in the 

construction of manifestly covariant corepresentations of the extended Poincare group P appropriate 

to the physically relevant UA-decomposition P#w P$; see Section 4.3 of Ref.9. 

R. Shaw and J. Lever, Ccrsmm. Math. Phys. 3_8, 279 (1974). 

The action A(a) = a~ a upon R ½'½ is, for a~T(C2), isomorphic to the action p~-> ao poa -I upon 

ALSK(C2,C2) used in Ref.9; <however for a ~(C2)9, an extra minus sign has to be introduced in the 

first action if it is to co .... pond to the second). The scalar product [~; ~3 --f~,~L~ ~ 

upon R ½'½ corresponds to the scalar product Lp,q~ = - tr(p o q) upon ALSk(C2,C2). 

ii. Our lj-symbol is the transpose of that employed by Wigner in Ref. 2. 

12. The vector space isc~orphismzs (2.4) are also useful for solving canonical folTa problems. For 

example one can find canonical forms for an object Te AL~C/C 3) i.e. for an antilinear map 

T : C3-*C 3 which is self-adjoint : [T#,~] =[~, T~], ~eC 3. (One way to do this is to use the 

"anti-Jordan" canonical form 13 for general antilinear operators.) Use of the isomorphiam 

AIS(C3,C3) ~" (MvM) ° then enables one to deduce a set of canonical forms for a trace-free Ricci 

tensor T, as given for example in Section 2 of Ref.14. 

Incidentally, Since the square of an antilinear operator is a linear operator, T e AIS(C3,C3) 
e~ 

implies W -- T2e S(C3,C3). Upon~acting the trace, we obtain the "Weyl square" Woe So(C3,C3) of 

the Ricci tensor T. The antilinear algehra way of introducing the Weyl square was in fact how the 

author first encountered it; for a possible use, see Section 5 of Ref,14. 

13. R. Shaw (unpubliShed, 1969). 

14. C. D. Collinson and R. Shaw, Intern. J. Theer. Phys., 6, 347 (1972). 

15. Using the isc~orphis~ M ~ AISk(C2,C 2) again,9 at the C2-1evel is given by P =~2t(= ~[ +~ , as 

in Eq. (2.10)), and so at the VJ-level it is ~ (~ t), thus exhibiting clearly the dependence of 

upon a particular time-axis. 

16. A spinor ~e V jl'j2 ~2JI~ fJ2 is said to be nil if it is of the form ~ =~ for some non-zero. . ~ E C 2 

(tJ~e minus sign being needed only. . in the case Jl = J2 )" The set of nil spinors of V 31'32 

forms the spinor light cone N 31'32. 

The term "nil" is used rather than "null", so as to reserve the latter to refer (as in 

"null tetrad basis") to a non-zero spinor 

9. 

iO. 
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of zero length: E~ ,w~= O. Clearly every nil spinor is null. The cases when (jl,J2) equals 

(½,0) e (O~½), (I,O), (O,I) or (½,½) are exceptional in that every__null spinor is nil in these 

cases (provided in the (½,½) case ~e restrict our attention to the real space M = R ½'½) . In 

all the other cases there exist null spinors -- for example the basic (j ,O) -spinors e j with m' 

m ~ O, m ~ j -- whirl] are null but not nil. Consequently in these other cases the images 

• jl,j 2 D31'32(a) of Lorentz transformationsj~;c~ clearly preserve the cone N , can n_~ he 

characterized entirely metrically. 

17. I borrow this name frcrn Dowker, J. S., - sea Ref.18. 

18. J. S. Dowker and M. Coldstone, Proc. Roy. Soc. A, 303, 381 (1968). 

19. R. penrose, Annals of Physics, iO, 171 (1960). 19~. Using Theor~n 3.2. 

20. In order that the requisite polarized version of the r°h. side should exist. 

21. H. Weyl, The Classical Groups, Princeton University Press, 1946. 21a. As. in92.4. 

22. Caution : in dealing with mixed 30 forms of the 3j-symbols, note, by Eq$. (2.5a), (2.11), that 

the left dual of the basis {e31 is {(-) 2J~}. 

23. This can be traced back, via Van der Waerden (1932) and Weitz~k (1923) to Clebsch and Gordan 

(1872). 

24. The notation is as in Bargmann's article (Rev.Mod. Phys 34, 829 (1962)), which is reprinted in 

Ref. 2. At this point one can spot the Regge s3mmetries. 

25. See any classical text on invariant theory. Since the corresponding trilinear invariant~( , , ) 

is determined by its values upon nil spinors byJ(~4, ~4,~ 4) = --6 E~'~32~'~ ]2' the latter, in 

the classical literature, is referred to as the "symbolic expression" of the cubinvariant 

J~ ~(#,#,#), and ~<,~,~ are said to be "equivalent symbols". 

26. The exlnression agrees with that in Ref.27, after taking into account a factor ~ due to a different 

normalization. 

27. J. A. Roche and J. S. Dowker, J. Phys. A__l, 527 (1968). 

28. A. R. Edronds, Angular Momentt~a in QuantLTn Mechanics, Princeton University Press, 1960. 

29. In particular we do not state certain useful general theorems concerning representations of 

groups by means of the isometries of a oc~plex vector space equipped with orthogonal or symplectic 

gec~etry. For the most part these follow~by familiar methods, from Schur's Le~ma. 

30. The fully eovariant standard 3j-symbols are the covariant oc~iconents of h, i.e. with respect to the 

basis I ejn~l ® ej~ 2 ® e333 1 ; the mixed fonts of the 3j-symbols are defined to be the corresponding 

mixed cc~ponents of h. Consequently 22 take note of results such as 

~J~ J2 m3 , , e3331 " , j3) = (-)2J3 fe3m: e~ 

{ J 1 m I J' I J ~ J ~ ej is an isometry, fj -= 31 32 e TM is left dual to f~l = JlJ2 m 31. Since jlJ2 3 

32. Similarly, using factorizationSinto n factors, we obtain corresponding relations involving products 

of n standard 3j-symbols, whose triples 31(s)'32(s)33(s) satisfy s~=l= -i j (s) = Ji" ~%~'I ; ..... 3 i~,tQ,¢~!~ 
33. No.' As witness to the success of the colloquium's poster sessiorus, I was informed by S. StrUm of 

work by Bose and Pate-re - see Caned. J. Phys. 49~, 947 (1971) - who in turn told me that r~] Eq(4.17) 

can be found in Vilenkin's book on Special Functions a~ Group Representations (but with no 

~gqognition of the integer-valued nature of the symbols). 


