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1 Introduction

The cosmological constant problem remains an unsolved mystery, for reviews see e.g. [1–4].
One of the cornerstones of this problem is a fine-tuning or (un)naturalness of the value of
the observed acceleration of our expanding universe. However, any discussion of naturalness,
fine-tuning, and especially related anthropic reasoning [5] at least implicitly assumes an
ensemble of theories or solutions where the cosmological constant or vacuum energy can take
different values. One of the setups where such an ensemble is realized by different solutions
is the so-called unimodular gravity which was first proposed by Einstein almost a century ago
in [6].1 In unimodular gravity the dynamics of spacetime is given by the trace-free part of
the standard Einstein field equations. If one assumes that matter energy-momentum tensor
is conserved, the value of the cosmological constant is given by an integration constant, for
recent discussion see e.g. [7, 8]. This integration constant is not related to the Planck and
electroweak scales or any other parameters and coupling constants of the Standard Model.
This property does not solve the cosmological constant problem, but puts it in a rather
different perspective. There are already quite a few different action principles reproducing
the dynamics of the unimodular gravity, see e.g. [9–14]. The most relevant for this work is
the theory by Henneaux and Teitelboim (HT) [10]. The main advantage of this formulation
is that it is manifestly generally covariant and has a slightly simpler formulation than in [13].
To ensure the general covariance the HT action contains a vector field.

On the other hand, recently another construction leading to the trace-free equations of
motion for the metric was proposed by Chamseddine and Mukhanov in [15] under the name
Mimetic Gravity. This construction is dynamically equivalent to irrotational dust minimally
coupled to standard General Relativity [15–17], Hence it is more interesting for modeling
dark matter. Similarly to HT theory the energy density of this mimetic irrotational dark
matter is a Lagrange multiplier. One of the main features of this mimetic construction is
that the theory is Weyl-invariant. This Weyl-invariance with respect to hµν = Ω2 (x)h′µν
originates from the ansatz of the composite metric

gµν = hµν · hαβ∂αφ∂βφ , (1.1)

1For more recent discussions see [1].
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into the Einstein-Hilbert action. Here it is assumed that the scalar field φ is Weyl-invariant.
Different mimetic constructions with vector fields were considered in [17–20]. All of these
theories use Weyl-invariant vector fields and no one of these constructions corresponds to the
unimodular gravity. Motivated by the HT vector-field formulation of the unimodular gravity
we search for a novel nontrivial Weyl-invariant generalization of the mimetic ansatz for the
composite metric (1.1) containing a vector field V µ.

2 Mimetic vector field of conformal weight four

In this paper we propose a new extension of the mimetic construction [15] to a vector field,
V α, namely we propose to use the ansatz

gµν = hµν ·
(

∇h)
α V

α
)1/2

, (2.1)

where the covariant derivative, ∇h)
α , is the Levi-Civita connection compatible with the aux-

iliary metric hµν

∇h)
α hµν = 0 . (2.2)

We will call the metric gµν the physical metric. In contrast to [20] the vector field V µ is not
a gauge potential / connection. However, similarly to [20], with this particular form of the
conformal factor in front of hµν the resulting theory becomes Weyl-invariant. Indeed, the
Weyl transformation of the auxiliary metric hµν

hµν = Ω2 (x)h′µν , (2.3)

performed along with the corresponding transformation of the vector field

V µ = Ω−4 (x)V ′µ , (2.4)

keeps the metric gµν invariant. This is easy to check using

∇h)
α V

α =
1√
−h

∂α

(√
−hV α

)

=
1

Ω4

1√
−h′

∂α

(√
−h′V ′α

)

= Ω−4∇h′)
α V ′α . (2.5)

Unlike the constructions in [17–20] the vector field V µ has conformal weight four under the
Weyl transformations. Another crucial difference from these works and from the original
mimetic construction [15] is that the map (2.1) from hµν to gµν is not algebraic, but contains
derivatives2 of the auxiliary metric hµν as

gµν =
hµν

(−h)1/4
·
(

∂α
√
−hV α

)1/2
. (2.6)

Substituting the ansatz (2.1) into any action functional S [g,Φm] (with some matter
fields Φm) induces a novel Weyl-invariant theory with the action functional

S [h, V,Φm] = S [g (h, V ) ,Φm] . (2.7)

2This does not allow to use the inverse function theorem. The complications due to appearance of hµν,α

are mentioned in [21].

– 2 –



J
C
A
P
0
4
(
2
0
1
9
)
0
0
4

There is also an obvious ancillary gauge invariance with respect to

Vµ = V ′
µ + ∂µθ , where �θ = 0 , (2.8)

which is similar to residual gauge redundancy in the Lorenz gauge.
Now we can plug in the ansatz (2.1) into the Einstein-Hilbert action to obtain an action

for a higher-derivative vector-tensor theory3

Sg [h, V ] = −1

2

∫

d4x
√
−h







(

∇h)
α V

α
)1/2

R (h) +
3

8
·

(

∇h)
µ ∇h)

α V α
)2

(

∇h)
σ V σ

)3/2






. (2.9)

This is clearly a novel scalar-vector theory going beyond Horndeski and other more recent
constructions. For details see [22, 23]. The gravitational part of the whole theory can be
more conveniently written as

Sg [h, V ] = −1

2

∫

d4x
√
−h

[√
DR (h) +

3

8
· h

αβD,αD,β

D3/2

]

, (2.10)

where we introduce the notation for the four-divergence

D = ∇h)
α V

α . (2.11)

Under the Weyl transformations this scalar quantity has conformal weight four

D = Ω−4D′ . (2.12)

It should be stressed that as a result of this procedure all matter fields acquire a universal
coupling to the vector field V α due to the substitution (2.7). The total action is S [h, V,Φm] =
Sg [h, V ] + Sm [h, V,Φm].

3 Equations of motion

Let us derive equations of motion for our novel vector-tensor theory.

δS =
1

2

∫

d4x
√−g (Tµν −Gµν) δgµν + Boundary terms , (3.1)

where Gµν is the Einstein tensor for gµν and the energy momentum tensor of matter is defined
as usual through

Tµν =
2√−g · δSm

δgµν
. (3.2)

The variation of the contravariant metric yields

δgµν =
δhµν√
D

− 1

2
gµν

δD

D
, (3.3)

where the variation of the divergence (2.11) can be expressed as

δD = ∇h)
α δV

α − 1

2
hαβ V

λ∇h)
λ δh

αβ . (3.4)

3We use: the standard notation
√
−h ≡

√

−dethµν , the signature convention (+,−,−,−), and the units

c = ~ = 1, MPl = (8πGN)
−1/2 = 1.
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Integrating by parts, neglecting the boundary terms and using
√−g = D

√
−h we obtain

equation of motion for the vector field

1√
−h

· δS
δV µ

=
1

4
∂µ (T −G) = 0 , (3.5)

along with the equation of motion for the auxiliary metric

1√
−h

· δS

δhαβ
=

√
D

2

[

Tαβ −Gαβ − 1

4
gαβ

(

T −G− 1

D
V λ∂λ (T −G)

)]

= 0 , (3.6)

where T = Tαβg
αβ and G = Gαβg

αβ . Using the equation of motion (3.5) for the vector V α,
the equation of motion for the metric hµν transforms to the trace-free part of the Einstein
equations

Gαβ − Tαβ − 1

4
gαβ (G− T ) = 0 . (3.7)

Crucially, both equations of motion (3.5) and (3.6) are manifestly invariant with respect
to the Weyl transformations of hµν and V α, as V λ/D = inv and all other quantities are
expressed through manifestly gauge invariant objects gµν and matter fields Φm.

For the later it is convenient to consider the Weyl-invariant vector

Wµ =
V µ

∇h)
α V α

. (3.8)

Considered as an equation on original variables, the equation of motion for the vector (3.5)
has fourth derivatives of {hµν , V α} while the trace-free part of the g−Einstein equations (3.7)
has up to third derivatives of these original variables. However, one can write both equations
of motion (3.5) and (3.7) in the gauge where gµν = hµν so that the dependence on auxiliary
vector field V µ completely disappears from (3.5) and (3.7) so that the latter becomes the
standard trace-free part of the Einstein equations on standard variables.

In fact, these equations of motion are those of the so-called unimodular gravity. The
only difference from the standard GR is that the cosmological constant is an integration
constant. Indeed, integrating the equation of motion (3.5) for the vector V α one obtains

G− T = 4Λ = const . (3.9)

Substituting this solution into the trace-free part of the Einstein equations one derives the
standard Einstein equations with the cosmological constant Λ

Gαβ = Λgαβ + Tαβ . (3.10)

Hence one can say that our construction provides Mimetic Dark Energy or Mimetic Cosmo-
logical Constant.

We could guess that our mimetic theory describes unimodular gravity by observing that
in the coordinate frame4 where

V µ (x)
.
=

1

4

xµ√
−h

, (3.11)

4If equality holds only in a particular frame we use “
.
=

′′

instead of “ =′′.
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the determinant of the physical metric is unity, see (2.6) and all quantities depend on hµν
through

gµν
.
=

hµν

(−h)1/4
. (3.12)

Another notable option is a less symmetric frame with the timelike vector

V µ (x)
.
= t

δµt√
−h

, (3.13)

where t is a time coordinate. For a nice discussion on how one can construct other unimodular
coordinates where

√−g = 1 see [9].

4 Gauge invariant variables and scalar-vector-tensor formulation

Now we can follow a similar procedure as in [24] and upgrade D to an independent dynamical
variable in order to eliminate the second derivatives from the action, so that

S [h,D, V, λ] = −1

2

∫

d4x
√
−h

[√
DR (h) +

3

8
· h

αβD,αD,β

D3/2
+ λ

(

D −∇h)
α V

α
)

]

. (4.1)

Hence, we introduced a constraint with the corresponding Lagrange multiplier and pro-
moted theory (2.9) to a vector-tensor-scalar theory in this way. This theory should be
Weyl-invariant, as it was the case with the original action (2.9). This requirement forces
the Lagrange multiplier, λ, to be invariant under the Weyl transformations. In this way all
matter fields acquire a universal coupling to the scalar field D.

One can further canonically normalize the kinetic term by defining a new scalar field of
conformal weight one

D =

(

ϕ2

6

)2

, (4.2)

so that the action (4.1) takes the form

S [h, ϕ, V, λ] =

∫

d4x
√
−h

[

−1

2
(∂ϕ)2 − 1

12
ϕ2R (h) − λ

72
ϕ4 +

λ

2
· ∇h)

α V
α

]

. (4.3)

The first three terms correspond to the Dirac’s theory of the Weyl-invariant gravity [25], see
also [26]. These terms are also the starting point for the so-called Conformal Inflation [27]. In
our sign convention the scalar field ϕ has a ghost-like kinetic term. Importantly, in contrast
to [25] the would be coupling constant λ is a Lagrange multiplier field. All other matter
fields are coupled to the physical metric

gµν =
ϕ2

6
· hµν . (4.4)

The form of the action is closely related, but not identical to those studied in [28]. The
main difference is the full diffeomorphism invariance of our action (4.3) whereas the theories
studied in [28] were only invariant with respect to transverse diffeomorphisms preserving the
value of

√
−h. It seems that the vector field V µ (absent in [28]) in our construction works5 as

5In another [13] generally-covariant formulation of unimodular gravity by Kuchař instead of the vector
V µ there are four compensator scalar fields XA representing general unimodular coordinates. Formula (3.11)
represents one possible set of them and can be useful to show canonical equivalence between our and Kuchař
formulations.
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a Stückelberg, Freiherr von Breidenbach zu Breidenstein und Melsbach field (also colloquially
known as a compensator field) restoring the full diffeomorphism invariance. However, the
form of the action suggests that the Weyl symmetry is in a sense empty (or as sometimes
called fake) in our construction and corresponds to the Noether current which is identically
vanishing, see [29, 30]. We leave the clarification of this issue for a future work.

The dynamical variables {hµν , V µ, λ,D, } transform as

hµν = Ω2 (x)h′µν , (4.5)

D = Ω−4 (x)D′ ,

V µ = Ω−4 (x)V ′µ ,

λ = λ′ .

Instead of these dynamical variables one can introduce a new set of independent dynamical
variables {gµν ,Wµ,Λ, D}, where the first three

gµν = D1/2 hµν , (4.6)

Wµ = D−1 V µ ,

Λ =
λ

2
,

are gauge invariant. This field-redefinitions resemble the Weyl transformations with Ω =
D1/4, except we do not transform D and consequently do not reduce the dimensionality of
the phase space. Hence this transformation is different from fixing the gauge where D = 1,
even though the variables Wµ and gµν are equal to the corresponding variables in this gauge.

In this way the divergence transforms

∇h)
α V

α =
D√−g∂α

(√−gWα
)

= D∇g)
µ W

µ . (4.7)

Performing this field redefinition in (4.1) one obtains

S [g,W,Λ,Φm] =

∫

d4x
√−g

[

−1

2
R (g) + Λ

(

∇g)
µ W

µ − 1
)

]

+ Sm [g,Φm] . (4.8)

This action functional does not depend anymore on the scalar field D, but only on gauge
invariant dynamical variables (4.6). In fact, as a result of this transformation we obtained
the Henneaux-Teitelboim representation [10] of the unimodular gravity. Indeed, the variation
of this action with respect to the vector field Wµ implies that Λ is a constant of integration
(global degree of freedom):

1√−g · δS

δWµ
= −∂µΛ = 0 , (4.9)

while the variation with respect to the metric gives the Einstein equations with the cosmo-
logical constant Λ

2√−g · δS

δgµν
= Tµν + Λgµν −Gµν = 0 . (4.10)

Finally there is a constraint

1√−g · δS
δΛ

= ∇g)
µ W

µ − 1 = 0 . (4.11)

– 6 –
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The constraint equation (4.11) per construction becomes identity in terms of original fields
{hµν , V α} and does not provide any new information regarding the dynamics. In electro-

dynamics one faces a similar situation with ∇g)
µ Fµν which is identically conserved per con-

struction.
The constraint equation (4.11) can be considered as a non-conservation of the current

Wµ. As it is discussed in [10] the constraint equation (4.11) only allows to find the evolution
of the corresponding charge

T (t) =

∫

Σ
d3y

√−gW t (t,y) , (4.12)

which is often called “cosmic time” or four-dimensional spacetime volume. To derive this
expression we first use the ADM 3+1 decomposition [31, 32] defining a foliation:

ds2 = N2dt2 − γik
(

dyi +N idt
)

(

dyk +Nkdt
)

. (4.13)

Here the 3d induced metric is given by

γik = −gµν
∂xµ

∂yi
∂xν

∂yk
, (4.14)

where yi are coordinates defined on the hypersurfaces of constant time t. Following, [32] the
unit normal one form to hypersurfaces of constant time is given by

nµ = N ∂µt = Nδtµ . (4.15)

Then, applying the 4d Gauss-Stokes theorem6 we can transform the integral over a
spacetime volume V between two hypersurfaces Σ1 and Σ2 of constant time t with t2 > t1 as

∫

V

d4x
√−g∇g)

µ W
µ =

∫

Σ2

d3y
√
γ nµW

µ +

∫

Σ1

d3y
√
γ nµW

µ , (4.16)

where for Σ2 the unit normal one form nµ (t2) is given by (4.15) while for Σ1 we have
nµ (t1) = −Nδtµ. Now using these expressions for the normal, the constraint (4.11) and the
standard ADM expression

√−g = N
√
γ we obtain

∫

V

d4x
√−g =

∫

Σ2

d3y
√−gW t −

∫

Σ1

d3y
√−gW t = T (t2) − T (t1) . (4.17)

Vice versa we could start from (4.12) guessing this expression by using the analogy with the
electric change, see e.g. page 275 [33],7 and only use 3d Stokes theorem to calculate

Ṫ (t) =

∫

d3y∂t
(√−gW t (t,y)

)

=

∫

d3y
(√−g − ∂i

(√−gW i
))

=

=

∫

d3y
√−g −

∮

B

dsi
√−gW i , (4.18)

6Under the usual assumption that the flow of Wµ vanishes at special (timelike) boundaries.
7It is important to stress that there is a substantial difference between the ADM spatial metric used here

γik = −gik which is just the induced metric on the hypersurface and the Landau-Lifshitz approach which
actually utilizes γLL

ik = γik + NiNk/
(

N2 −N iNi

)

. This difference appears, as the ADM spatial distances
between points labeled by different coordinates x are taken at the same moment of time (which therefore
cannot be measured) while Landau and Lifshitz as a physical distance use a half of the proper time a light
signal needs for a return travel between these points. Because of this difference, in ADM and here one uses
N = 1/

√
gtt instead of

√
gtt of Landau-Lifshitz. Despite of these differences the physically relevant expression

for the total charge like the one we use in (4.12) is the same in both approaches due to
√
−g.
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where the last integral is taken over the boundary surface B of the three-dimensional space.
As we have already assumed, there is no flux of W i through the boundary surface, so that
integrating the above expression we get

T (t2) − T (t1) =

∫ t2

t1

dt

∫

d3y
√−g . (4.19)

It is worth noting that one can write the “cosmic time” T (t) in terms of {hµν , V α}:

T (t) =

∫

d3y
√
−hV t (t,y) , (4.20)

as the tensor density
√
−hV µ is invariant under the Weyl transformations (4.5) and remains

invariant under the field redefinition (4.6). In the special coordinate system (3.13) the charge
expression takes a particularly simple form

T (t)
.
= t

∫

d3y . (4.21)

Clearly there is still a lot of gauge redundancy in the action (4.8), as it does not allow
to find all components of Wµ, but only the global mode T (t). To find the evolution of
the global mode one has to specify conditions for normal components of W i to the spatial
boundary surface B at all times and initial W t (t1,y) (or final W t (t2,y)) charge density. Of
course one can specify both, the initial W t (t1,y) and the final W t (t2,y), though in that
case the boundary conditions for W i should be chosen consistently so that the flux of the
current W i could compensate for the changes in the charge additional to the four-volume of
the spacetime between two Cauchy hypersurfaces:

T (t2) − T (t1) =

∫ t2

t1

dt

∫

d3y
√−g −

∫ t2

t1

dt

∮

B

dsi
√−gW i . (4.22)

Of course very different charge densities W t (t,y) can still correspond to the same global
charge T (t).

5 Scalar instead of vector?

It is worth commenting on the need of using a vector field Wµ and not a more minimalistic
scalar field in the HT construction. One can try to use a quite often employed decomposition
of the vector field Wµ into the longitudinal and transverse parts

Wµ = Wµ
L +Wµ

T , (5.1)

where
Wµ

L = ∇µσ , and ∇µW
µ
T = 0 , (5.2)

with some scalar field σ. In the HT action the transverse part obviously disappears, so that
it is tempting to employ σ as a dynamical variable. In that case this scalar field satisfies
equation

�gσ = ∇µW
µ = 1 . (5.3)

Clearly the decomposition (5.1) and (5.2) does not allow one to determine σ and Wµ
T uniquely,

as the d’Alembertian has zero modes — free solutions of the wave equation. It is easy to

– 8 –
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see that one cannot use just the scalar σ in HT construction. Indeed, let us substitute the
decomposition (5.1) and (5.2) directly into the action, so that omitting external matter one
obtains

Sother [g, σ,Λ] =

∫

d4x
√−g

[

−1

2
R (g) + Λ (�gσ − 1)

]

, (5.4)

resulting in the equation of motion for the former Lagrange multiplier

1√−g · δS
δσ

= �gΛ = 0 , (5.5)

which is drastically different from (4.9). The only way to reconcile the solutions of this
wave equation with the correct desired result, Λ = const, is to put extremely fine-tuned,
poorly motivated and nonstandard boundary and initial conditions. Moreover, now both
equations of motion for Λ and for σ are hyperbolic second order PDE. These equations are
only coupled through gravity and describe two independent local degrees of freedom: a ghost
α = (Λ + σ) /

√
2 and a normal scalar field β = (Λ − σ) /

√
2 . This is drastically different

from the original HT setup where both equations of motion are in form of the constraints —
first order PDE, and there are no local degrees of freedom except of the usual gravitons.

Last but not least, it is unclear how to introduce a scalar field instead of our vector
V µ in our mimetic construction from the section (2) and keep the desired Weyl-invariance.
Hence we conclude that one cannot reduce the number of variables in the action and just
use the scalar field σ instead of the vector Wµ, even so the transverse part of this vector
disappears from the action.

6 Conclusion and discussion

We proposed a new vector-tensor theory (2.9) with a vector field V µ of conformal weight
four:

Sg [h, V ] = −1

2

∫

d4x
√
−h







(

∇h)
α V

α
)1/2

R (h) +
3

8
·

(

∇h)
µ ∇h)

α V α
)2

(

∇h)
σ V σ

)3/2






. (6.1)

Notably the Weyl-symmetry is often considered to be a desirable and intriguing property in
not only in condensed matter physics, but also in gravity and in particle physics, for recent
discussions see e.g. [34, 35]. This higher-derivative Weyl-invariant theory is highly degenerate
and has only one global degree of freedom (4.20)

T (t) =

∫

d3x
√
−hV t (t,x) , (6.2)

whose canonical momentum is the cosmological constant Λ. This global degree of freedom is
Weyl-invariant. We obtained this theory by making a mimetic substitution

gµν = hµν ·
(

∇h)
α V

α
)1/2

, (6.3)

into the Einstein-Hilbert action.
Further we reformulated this theory as a Weyl-invariant scalar-vector-tensor grav-

ity (4.3), which closely resembles the Dirac’s theory of the Weyl-invariant gravity [25]. How-
ever, our formulation has an additional constraint and a vector field of different conformal
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weight. Then we introduced gauge-invariant local variables (4.6) and found that our theory
reduces to the generally covariant Henneaux-Teitelboim representation [10] of unimodular
gravity. In contrast to other formulations of unimodular gravity our action (2.9) has mani-
fest i) Weyl-invariance and ii) general covariance, while there are iii) no explicit constraints
imposed using Lagrange multipliers. The price for the combination of all these three proper-
ties is the presence of higher derivatives in the action. Despite of these higher derivatives the
theory does not suffer from the Ostrogradsky ghosts [36] in the standard sense. Indeed, as
it is in the standard Ostrogradsky prescription, the Henneaux-Teitelboim theory is linear in
the canonical momentum Λ, but for each solution the momentum stays constant in the whole
spacetime, see (4.9), on all solutions. Hence it is impossible to use this canonical momentum
to decrease the energy.

Vector-tensor theories are quite popular in the context of modeling dark energy and
dark matter phenomena, for recent reviews see e.g. [22, 23]. Clearly our vector field is not
a U(1) gauge potential. Our theory goes beyond Horndeski’s most general construction for
the U(1) vector fields with second order equations of motion [37]. Neither can one find our
theory in more general p-form constructions [38–40]. Moreover our construction goes beyond
popular generalized Proca vector-tensor theories [41, 42] and Einstein aether models [43]
where the U(1) invariance is broken, and goes even beyond further extended vector-tensor
theories [44, 45]. Also our construction is principally different from other mimetic vector
models [17–20]. A crucial difference is that our contravariant vector field has conformal
weight four contrary to the ordinary Weyl-invariant covariant vector fields of weight zero
used in the previous constructions. Another difference is that we have derivatives of the
metric inside of the mimetic transformation (6.3).

Another interesting feature of our formulation of the unimodular gravity, which is com-
mon with [10, 13], is a spontaneous breaking of the Lorentz symmetry. Indeed, in our con-
struction (6.3) vanishing V µ corresponds to a singularity. In Weyl-invariant or HT formula-
tion the persistent presence of Wµ is enforced by the constraint (4.11). Clearly this Lorentz-
symmetry breaking is not relevant as far as it does not propagate to the Standard Model fields.
Interestingly, one can reproduce the dynamics of the original Chamseddine-Mukhanov scalar
mimetic dark matter via Lorentz-symmetry breaking in a so-called pre-geometric setup [46],
where the spacetime manifold appears only via Lorentz-symmetry breaking. One can wonder
whether a different pre-geometric setup can provide our Mimetic Cosmological Constant or
maybe evolving Mimetic Dark Energy along with their initial data. One can also use this
spontaneous symmetry breaking for further extensions, as in [47].

Different formulations of the same classical theory can correspond to distinct quantum
theories due to anomalies. As our formulation is Weyl-invariant, potentially, the so-called
conformal or Weyl anomaly may play a crucial role. However, this important issue goes
beyond the scope of this paper where we study only classical properties. For unimodular
gravity a relevant discussion on this point can be found in e.g. [14, 48–55]. These differences
can be important for quantum vacuum energy and for the UV structure of the theory. More-
over, formulations of the same theory in terms of different dynamical variables are relevant
for potential modifications and extensions. In particular, these modifications are interesting
in any attempt to dynamically compensate the cosmological constant. On the other hand,
extensions can model deviations from an exact cosmological constant to novel forms of evolv-
ing vacuum energy. Hence suggesting another formulation of the unimodular gravity can be
useful also in this regard.
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Finally we would like to mention further ways of generalizing our setup. Scalar field
mimetic models can be extended by plugging in the mimetic ansatz into actions already
containing different scalar-field operators. In particular, this procedure yields phenomeno-
logically interesting theories for the operators V (φ) (see e.g. [56, 57]) and γ (φ) (�φ)2, see
e.g. [56, 58–61]. The latter operators are rather constrained phenomenologically [61–63] espe-
cially as they can introduce mild ghost instabilities, see [63] and [64–68]. Different extensions
are also interesting, as they can point out directions to embed or UV complete the theory.
To extend our vector-tensor theory, one can start from any progenitor theory with dynamical
variables {gµν ,Wµ} and some matter fields Φm and perform simultaneous transformation of
metric (6.3) and of the vector field (3.8):

Wµ =
V µ

∇h)
α V α

. (6.4)

After substituting these transformed composite objects into the progenitor tensor (or vector-
tensor or even scalar-vector-tensor) theory we obtain a new vector-tensor theory with the
action

S [h, V,Φm] = S [g (h, V ) ,W (h, V ) ,Φm] . (6.5)

This induced novel vector-tensor theory (with some external matter fields Φm) is Weyl-
invariant per construction. After transition back to the Weyl-invariant variables (4.6) one

just adds a constraint term (4.11), Λ
(

∇g)
µ Wµ − 1

)

, to the original action S [g,W,Φm]. For

example, extending our model by adding the standard kinetic term −1
4FµνF

µν with the usual
field tensor Fµν = ∂µWν − ∂νWµ to the progenitor Einstein-Hilbert action and making the
combined mimetic ansatz (6.3), (6.4) generates a new Weyl-invariant gauge theory preserving
even the residual gauge symmetry (2.8). One can also use a different (e.g. with curvature
corrections) progenitor or seed gravitational Lagrangian instead of the standard Einstein-
Hilbert one.

Interestingly, one can consider the HT action as an example of theories with two mea-
sures [69]. In this way the cosmological constant enforces the equality between these two
measures

√−g and ∂µ (
√−gWµ). The latter measure can be written in terms of the original

variables as ∂µ
(√

−hV µ
)

which is Weyl-invariant. Modifying, measure for different matter
degrees of freedom using the Weyl-invariant measure ∂µ

(√
−hV µ

)

instead of
√
−h may give

further interesting extensions of our setup.
One can further expand the story by using various tensor fields of other conformal

weights. For each progenitor field Ψ which we want to transform to a field of conformal

weight k one should make a substitution of a composite field with Ψ = ψ
(

∇h)
α V α

)−k/4
.

Also the unusual vector field V µ can be a composite object [70].
Another interesting generalization is an extension of the conformal mimetic ansatz (6.3)

to more general disformal transformations [71] where instead of the usual ∂µφ one exploits
the vector field V µ, see e.g. [72] and [19, 73, 74]. For instance the transformation

gµν = hµν ·
(

∇h)
α V

α
)1/2

+
(

∇h)
α V

α
)−1

Vµ Vν , (6.6)

still generates new Weyl-invariant theories. Whether the induced theories can describe in-
teresting physics, similarly to the setup presented in the paper, remains to be seen and is an
interesting open question.
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[46] T. Z lośnik, F. Urban, L. Marzola and T. Koivisto, Spacetime and dark matter from
spontaneous breaking of Lorentz symmetry, Class. Quant. Grav. 35 (2018) 235003
[arXiv:1807.01100] [INSPIRE].

[47] A.O. Barvinsky and A. Yu. Kamenshchik, Darkness without dark matter and energy —
generalized unimodular gravity, Phys. Lett. B 774 (2017) 59 [arXiv:1705.09470] [INSPIRE].
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