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ABSTRACT

The contribution to the anomalous magnetic
moment of the electron from the eighth~order
triple-bubble diagram is evaluated. The value
obtained is

o 32 151849
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 One of .the most critical tests of quantum elestrodynamics;' 1Is the
comparison between theory and experiment of the anomalous magnetic moment

of the electron. The current situation2 is as follows:

é:"p = (1159656.7 * 3.5) x 102 ' (1)
zhe”y (1159651.9 + 2.5) x 10~° (2)

The theoretical result was obtained using u_l = 137.03608 (26) and the Levine

and Wright result -3 With the likelihood of continued improvement”in the
éxperimental accuracy, as well as on the theoretica; side, the reduction in
numerical integration errors provided by the on-going brogram4 to analyt-
ically calculate previously numerically-determined sixth-order éontributions,
it is not unreasonable to suggest that, in the future, eighth-order calculations
will be necessary.

| Iﬁ the case of the muon, estimates of the eighth-order contributions have
been made.5’6 But for the 891 diagrams (this includes mirror graphs) whose
mass—independent contributions yield the eighth-order electron magnetic moment,
no calculations have been made. Presumably, there will be tremendous cancella-~
tion among many contributions yielding a value / of order G%ﬁA, but, of course,
no one really knows.

To show that eighth—order computations are not completely unreasonable and
to make-a small beginning at such a vast program, we outline here the analytic
calculation of the contribution to the electron magnetic moment from the triple-
bubble diégrém. Admittedly, this is not one of the more complicated contribu-
tions to be evaiuated; but, nevertheless, it represents a start,

We begin with the following parametric expression for the triple-bubble

contribution.8

agy = (%)4 dx(1 - x) {fé dyx;y (l =y /3) }3 (3)
X (1 -y ) + 4(1 - %)




The y-integral is easily done, leaving only the one-dimensional integral

over X.

aég) f'%7-(%9 IO dx(1-x) {- —-+ 4(1 x) (x-2) (x” + 2x - 2) In (1-—x)}3
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where
{1111’ T22> T3330 I1390 T1730 Tygps I333s I3 Tggzs Ipp3)
= f dx (1-x) {a3, b3, 3, azb, azc, ab2, ac2, bzc,’bcz; abe} (5)
with
T
a 3 "
b = 4(1-x) /x°
and ¢ = (x-—2)(x2 + 2x - 2)

1n (1-x) : (6)
x3 *

Although the sum of the terms in eq. (4) is, of course, finite, by split-

ting up ae( ) in this way, terms which diverge have been introduced. Specifi-

cally, terms occur for which

1im 1 ik
>0 f dx(1-x) a Tpde diverges.

By very carefully keeping track of these quantities, it will be shown that the
divergences cancel in the sum, and the finite quantity, aég) will be obtained.

This .approach was first checked out by evaluating the fourth-order single-

bubble and the sixth-order double-bubble contributions to a,. The divergences .

cancel and the well-known results are obtained.
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We now proceed to evaluate aég) using eqs. (4), (5), and (6). A table
of integrals used in the calculation is presented in the appendix. In what '%
follows, ;t is understood that Ié dxf (x) represents fi dxf (x) and the e»0 E%

limit will be taken for appropriate sums of terms as described below.

By making use of the lower-order calculatigns leading to eqs. (7) and
(8), or by a direct computation, it is easy to see that the combination

+ 31 + 3I + 3I + 3I + ) is finite. Either way, one

(I311 112 113 122 1 3%135 123
obtains ' .

Tygg + 31399 #3155 + 3T 5y + 31,4, + 61, = -1200(3) + 2gn + 2225 )

This means, of course, that the sum of the remaining terms (I +

222 * 1333
+ 31223 + 31233) must be finite. Evaluation of these terms, however, is much
more complicated, and so, in this case, some details of the computation are
given,

The four remaining terms are considered individually, in order of in-

creasing complexity. Iy, is easily evaluated.

1,,, = <64 . 64 =128 °128°-64 64 ‘
222 g+ 8L —;3;?*;‘5 - o

In order to evaluate I,73> We make use of integrals (Al) - (A8) of the appendix.

Writing

- 16f dx {- __+ 3 43, 21,30 18

I +
2RSS

223 Body e (11)
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and substituting in the values of the intégrals we obtain
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For 1233, we have

I =4f%'{1_ %._ 11,32 8 112 148 _ 80

233 x5 %6 % T

Using eqs. (A9) - (Al7), we find

T,yy = 4 {-42(3) - 18712 + 14543 - 494

-1027 - 12 + 248 - 16 + 16}
315 450 45

Ine 5 €2 93 o4 5¢5

The most complicated term is I,,,, which involves integrals (A18) - (A27).
It may be written as

18 30 96 252 24 600 720 352
I35 = f dx {—=x + 1+ -=-= +-—;Z =% + 5 -=F

+ é%} 1n3(l—x)
x

After a good deal of algebraic manipulation, it is found that

1333 = -108Z(4) + 1272Z(3) - 36972 - 558163 + 488 lne + 2284 + 8 - 304
7

35 4200 15 15¢ € 3¢3

+ 64 - 64
.EE S5ed

where C(4) = 2 C2(2) = Eﬁ

5 90
From eqs. (10), (12), (14), énd (16) we find

= — _ 2
1222 + 1333 + 31223 + 31233 = ~108z(4) + _9_;_6_ z(3) Zgw + 3.gg7

All of the divergences have indeed cancelled out, and, as well, a curious
tremendously-large cancellation among the finite parts has occured.

The final result is now obtained from egqs. (4), (9), and (18)
23 - @ " {-4g(4) + 32 £(3) + 151849

m 63 40824 |

= 8r2 14078 . 496 1nc , 96 , 88 1072 . 64 64 (12)
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Interestingly, the term proportional to z(2) (or ﬂz) has cancelled out in

the final result. The numerical value9

(8) _ ah
ae3 = ,000876866 (ﬂ) (20)

is of the order of magnitude expected on the basis of the estimate method

described in ref. 6 (classes I and J).
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. APPENDIX

We present here a table of integrals used in the calculation. The meaning

of the divergent integrals 1s as described in the .text.

Ié dx In(l - x) = ~1 (A1)
1 dx _ :EE
fo—-;-ln(l -X) = 3 (A2)
fl dx In(l - x) = 1ne - 1 o (A3)
0 12 -
1 dx _lme 1.1 : |
fo;-B- In(l - x) = > - + 3 » ’(A4)
1dx _1lne 1 1 7 :
o g rl-® = -om - +1 (45)
1 dx _ 1ne 1 1 1 19
s -® = -3 77 "% is (46)
\

1 dx _lme 11 1 1,113
foge 1m0 =% = 5 -~ = o3 "G e T 300 (A7)
1 dx lne 1 1 1 1 .1 127 ’
fo 71l - % = S - 5 - o~ 93 T B2 5 360 (48)
1 2 -
fo dx(1l - x) In"(1 - x) = 4 (A9)
rgEmla -0 = 223 | (a10)
P ST (A11)
0 ;2 3

E 2
ldx , 2 _ .3 .
I 3 In"(1 - x) = =lne + g—+ 3 (A12)
1dx ., 2 1,725
IO;—Eln (1—x)=—lns+z+-§--f-'g (A13)
1dx 30200 _hy o 1L 1,1, 12 59
fo 5 In“(1 - x) 12 1lne + ;;—2-+ -+ 15t I (A14)
1dx . 2 __5 1 1,11 n2 11
7o 6 In®(1 - x) = - % Ine + 23 + 5.2 +Is t 15t 5 (A15)



Mol LR

=
|8

o

iR

)
N2

1n%(1 - x)

1n2 (1 - %)

1n3(1

131

1n3 1

1n3 (1

4 133a

—_— 1n3 (1

3

-= 1n3 (1

4 1234

dx(1 - x) 1n3(L

o

x)

x)

X)

x)

x)

x)

x)

x)

‘ 2
137 1,1 11 .5 1 37
"0 et Y33t 2 e T8 3600 (A16)
7 1 1 11 5 137 12 71
- = 1lne + —¢ + + s + o7 - an (AL7)
10 505 | 4k 363 192 | 180 T 21 T 600
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