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INTRODUCTION

Most current experiments in High Energy Physics aim at measuring
some matrix element of the S-matrix. Symmetry laws are of great help in ana-
lysing such quantities in simpler terms. Among them, a symmetry group which
has so far withstood all fluctuations of theoretical understanding and experi-
mental checking,is the inhomogeneous, proper, orthochronous Lorentz group. Space
and time reflections,on the other hand,seem to be only approximately good sym-
metries, for some classes of phenomena. We shall primarily discuss here conse-
quences of relativistic invariance, following a line of reasoning dvue to E.P.
Wigner, which 1s, without any doubt 6 the most penetrating and leads in a ccmple-
tely rational fashion to all known results concerning the phenomenological an-
gular analysis of particle collisions« It has the further advantage that it is

applicable to any symmetry group, as we shall see on some particular examples.

We shall assume here that the reader is reasonably familiar with non
relativistic angular momentum theory,as i1t is expounded in many text books as
well as wilth basic facts concerning the inhomogeneous Lorentz group. Relevant
results and pertaining references will however either be quoted in the body of

the text or collected in appendices for the reader's convenience,

In Chapter O, we shall set the general framework in which we are wor-
king,namely, a) the formulation of symmetry laws in quantum mechanics and the
basic theorem of Wigner,

b) its implication on S matrix.

In Chapter I, we shall describe "particles' of arbitrary "masses” and
"gping", following Wigner's analysis. Assemblies of identical particles subject
to Fermi or Bose statistics will then be described in terms of the correspon-
ding fields. Close contact will be made with the perhaps known descriptions
of spin O (Klein Gordon), spin %- (Dirac), spin 1 (Maxwell, Proca), particles.

In Chapter II, we shall analyse "two particle'" states, in terms of

the so—called {-s , multipole, helicity couplings,6 and write down the corres-



pending analysis of a reaction involving two incoming, two outgoing particles.
Contact will be made with reactions involving particles of low spins and a

collection of, may be familiar looking, formulae will be found in an appendix.

Unitarity of the S matrix will be seen to allow the definition of
phase shifts under special conditions whereas analyticity assumptions will be
shown to yleld threshold behaviours of familiar looking types. Such assump-
tions are of course either subject to controversy, or consequences of some-

what sophisticated models, and go far beyond the exactness of a symmetry law.

In Chapter 111, we examine three particle states for which relati-
vistic effects are slightly more subtle than for two particle states. £-8 or
helicity couplings in cascade are compared to a symmetric coupling which one

might pictorially call Casimir-Dalitz coupling.

Among technical appendices, one is devoted to "reduction formulae™
pertaining to a field theory of the L S Z type,in order to make a bridge
with a still current description of reactlons between particles with spins.

The content of these notes is a reexposition of material which has
sa far been presented to assemblies of theorists or mathematiclans. It is ho-
ped that it will not sound too abstract to experimentalists. The line of ar-
gument is of a highly theoretical nature, and is due to Wigner and coworkers
or followers. The outcome, though, 1s impressively close to phenomenology : no
reference is ever made to configuration space in any doubtful way - at least
at this level where the particle wave duality is not yet expressed in terms
of space time localized fields, the necessity of which is of a highly contro-
versial nature — § only such things as energy momenta are ever mentioned,
namely only quantities which are actually measured in experiments*} Thus, the

reader will judge whether it is worth paying the price of an abstract approach.

— e B s TSI

One might however like to be able and describe what actually happens in a
finite reglon of space and time. It turns out that such a description requires
quite a bit more than mere kinematics.



CHAPTER O

a) Eigner's formulation of symmetry laws in quantum mechanicse.

Quantum mechanical states of a physical system are described in a
Hilbert space # Yy rays, namely, two normalized vectors ]\I’> ; eia[‘if}
(any o real) of a Hilbert space represent the same state. This is so because
observed quantities are of the type <W[AI‘F> where A 1s a hermitian opera-

tor (e.g. A = |2) (8| » (¥|a]¥) = [(2]¥)|? . i.e. the transition probabili-
ty between state |[®) and state |¥) ),

We shall say that a symmetry law ¢  holds,if, given any ray
i d.
[v) = {e “|¥) O<a<2m } , there exists a ray |"¥) (¥ transformed by ¢ )
such that

2 o8y 2
[elD® = Ke"D)l ;
(i.e. the transformation [E} -> IJ‘2> preserves transition probabilities) and
[ﬁo'_@!i) spans all # when lg) does.
Then,one has the fundamental

[1]

Wigner's theorem

To every symetry 1aw ¢ ¢ D)~ [B) ¢ [ = gD,
there corresponds an additive operator U(#) ,namely, such that
uld) (&) + [T = u(d)|&) + () |¥) for all [&) and {¥) in & , which
igs either unitary or antiunitary, namely, v’ :U+U = ’ﬂ » where U+ is defi-
ned by <§[U+[‘F> :(U@[‘l’} in the unitary case and <@[U+[‘EJ> = <U@I‘If>* in
the antiunitary case, and such that U(#) ]@) belongs to the ray [J§> when—
ever |2®) belongs to the ray |2) -

The operator U(d) 1s uniquely defined up to a multiplicative phase

factor.



Let now G be a symmetry group, namely a set containing a unit

element e ,endowned with a (non necessarily commutative) product

gl ? g2 € G i g1°gz € G y
such that 1) g = Ege€ =— &
2) gl.(gz.gs) = (gl.gz),g3

3) for all g € G there is an inverse g d such that

-1 -
g8 — g g = e 1

each element of which defines a symmetry operation [E} - lgg> which is tran-—

sition probability preserving and "onto".

First of all U(e) = w1 ,where ® 1is a phase factor,because of

the uniqueness of U(e) up to a phase and the fact that 41 1is a solution.

We shall choose w — 1 .
We next prove that there is a system of phase factors w(gl, gz) such that
U(gl) U(gz) = m(g1 r 8,) U(g1 g2) (0,a,1) -

Let |8 ¢ [
g.8
Then U(glgz) ]@) € I i %g>

u(g,) Ug,) 8y = U(g,) <U(g2) [@))

g1

g g
Ugdle) €« [P, tmus: ug) UGy [2) < | 12%)

Thus, one may write

U(gl) U(gz) 8y = (g, , gy, @ ) U(glgz) [2



where w(gl,gz,é) 1s a phase factor j; but, using additivity :
) /
U(gl) U(gz) 8% + Iw>/ —w gl,gz,f®>-+IW> U(glgz) \[®>-+]W>
— @
__o><g1,g2,!_%> U(g1g2)|®>
+ W <g1,g2,}W>) U(glgz)lw> .
If ® and V¥ are taken linearly independent, one obtains

w(gl,gz, 3+v) = w(gl,gz,é) = w(gl,gz,llf) -
Thus m(gl,gz,@) does not depend on & , and we shall write 1t w(gl,gz) 5

The operators U(g) fulfilling eq. {0,a,1) are said to form a re-
presentation of G up to a phase.
Two representations U(g), U'(g) , where both U(g) and U'(g) are either uni-

tary or antiunitary, with factor systems w(g

Y 5 wl(e ) , such that

—e(g, ) g
w(g,,g,) = w'(g ,g) 6(g.g)) [6(g))] [S(g )] .

1yg2 11g2

where ©6(g) 1s a phase factor , are said to belong to the same type ; here,

e(g) =+ 1 if U(g) 4is unitary, e(g) =-1 4f U(g) is antiunitary. For
—1

instance, U(g) and 6 “(g) U(g) belong to the same type.

The classification of physical systems under a symmetry group G

depends, thus, on
- e(g)
~ a type of factor system w(gl,gz)
- given e(g) , w(gl,g2) , a class of representation up

to unitary equivalence.

Remarks,

I - if G 1is a connected Lie group £(g) —+ 1 for all g because



the product of two unitary operators is unitary,whereas the product of a uni-

tary and an antiunitary operator is antiunitary.

IT - if G contains an element p whose square is the identity e

and U(p) is antiunitary

U(p) U(p) = wlp,p) U(e) = w(p,p)1 for a possible choice of U(e)
U(p) Ulp) Ulp) = Ulp) wlp,d)1 = w'(p,p) U(p)
= w(p,p) UCe) U(p) = wlp,p) U(pP) .
thus wz(p,p) =t > efp,p) = £1 -

b) Collision theory ¢ the S matrix

We now have a description of a physical system in a Hilbert space #

in which there is given a representation up toa factor of the symmetry group G.

A collision theory is set up if # can be spanned by a collection
of states la in> representing possible incoming beams and targets, as well as
states ’B out> representing states possibly produced in a collision experil-
ment*. The reasonable assumption that every incoming state can be produced as
the product of a collision experiment and that,given two orthogonal incoming
states,collision prepares two orthogonal states,implies that there are in #

two basis la in) , ‘a out) which can be put in co¥ncidence by action of a

unitary operator S @

{ax out] = {a in| 8
sst =sts =1

% ;
7 and (B represent collections of quantum numbers characterizing the pos -

sible prepared or produced states, e.g. momentum, spin, etc...



The transition amplitude for an incoming state [a in> to yield an outgoing
state IB out) is

{8 Outla in) = {8 in}s’a fiy = £ out[SIa out’)

which we shall call in short the transition amplitude from initial state ]a}
to final state [B) ,

Assume now that the transition probabilities are invariant under G 3

[<glslad® = [(58s]%)|?

we

one gets

Blsla)y = <%8]s[%) wlg,a,B)
or (%g|s|%)* w(g.a,B) y

where ® 1is a phase factor (this argument starts as the proof of Wigner's

theorem, cf. ref.[0] Chap. XV , I , 2, Th II and III).

Using the linearity of S one easlily finds that !

1) w(g,x,B) 1is independent of « , B within any subspace of &
where linear superposition of vectors makes any physical sense (e.g. in parti-
cular not a mixture of states with different spin types, i.e. integer versus

half integer, or different charges) which we shall call coherent subspace.

2) the first alternative holds if U(g) is unitary, the second one
when U(g) is antiunitary”™. The symmetry group G is indeed compatible with
collision processes if there i1s no transition between subspaces labelled by
different eigenvalues of observables invariant under G , if some such exist.

I,11
Each such observable is said to be associated with a super selection rule( »11)

* In practical cases U(g) ig usuglly unitary ; however some transformations
are such that [{8|s|a)| = [{(°x|S|®8)] where U(g) is antiunitary (e.g. time

reversal). Then <B[S‘“> - <ga[s'gﬁ> w(g)



and one of its eigenvalues to label a superselection sector. The intersections
of all superselection sectors corresponding to all possible commuting super-—

selection observables™ are just the coherent subspaces mentioned aboves

Next, one proves that w(g) 1s a representation of G 1in the sense

that
& 8(g2)

w (g.8,) = w (gl) w(g,) .

If G 4is connected, then, w(g) is a true one dimensional unitary represen-—

tation.

At any rate, within a coherent subspace, one has
=1
U (g) su(g) = wig)s "

If w(g) 4is the trivial representation w(g) — 1 3 if such is the case,

U(g) commutes with S . This is enforced**’by some other property of the S
matrix, derivable for instance from axiomatic field theories, known as "clus-
ter decomposition property’ which states that if two experiments are carried
out far apart, the overall S matrix element factorizes into the product of

the two matrix elemernts, which implies wz(g) — w(g) i.e. wlg) =1 <

If the one dimensional representations of G consist of the identity
representation exclusively (which is the case for relativistic invariance), then

commutation of U(g) with S is automatically insured.

*If all superselection observables are associated with the symmetry group,

they commute ; if they do not commute, one is in troublel

**¥mhig argument was first given to us by M. Froissart.



CHAPTER I
ONE PARTICLE STATES.[Z]

. )
a) The inhomogeneous proper orthochronous Lorentz group 5’+ and its cove-

ring group .7"_'_

Unless otherwise specified, G will be 5’1 , the inhomogeneous pro-—

per orthochronous Lorentz group , i.e. the group of transformations {a,A}

where a 1is a four vector a — (a°, a = {al,az,aB}) and A a four by four

matrix, pseudo-orthogonal for the metric G = {é‘w =0 , p;ﬁv - goo: = g11 o
2 33

—gz ==g :1}2ATGA:G , with determinant + 1 , Ag>0 -

This is the group of changes of Lorentz frames, preserving the direction of
time flow and the orientation in three dimensional space like planes. Let x

be the coordinates of a four-vector in frame ¥ , x™  1ts coordinates 1in

frame &' , then
<t = a% +A“v x”
-y =x -9’ = k=P ax-y= -y -F-N .
The group law is fa,Al fa' A%} = {a + Dat, AA'}

IT
In this case,Wigner's analysis shows ) that unitary representations
1 =7
of f’+ up to a phase are true revresentations of a group .‘P+ constructed as

follows (its universal covering group) :

Let



_10._

be the set of Pauli matrices.

With each four vector a , associate the hermitian 2 x 2 matrix

1

_ p— L
g—a o = [ a& = B tr a G@ 1l =

I

Let SL(2,C) be the group of 2 x 2 complex matrices of determi-
nant 1 «

With each vector a and matrix A € SL(2,C) , associate the vector

A.a defined by

A.a = AgA }
NS
2
one finds det A.a — deta — a — a.a
~/ e
{®)
+
.aiézz_)_ — trAA SO
da
A.(a+b) = A.a + A.b s

A.a is thus obtained from a by an orthochronous Lorentz transformation which
can furthermore be proved to be proper (det — + 1). Two elements + A and -A

correspond to the same Lorentz transformation.

51 is thus the set of elements {5,A§ with the group law

{g,A] {a',A%) = {g +A.’ , ma'}
S
We shall see shortly that this distinction between ?1 and ?1 is
precisely what allows for the existence of half integer spins.

We now proceed to look for inequivalent unitary representations of
! II
?+ « It can be shown ) that any 'continuous" unitary representation can be
decomposed into a sum = or rather an integral - of irreducible ones. (i.e.

schematically any Hilbert space of representation can be ordered so that



Ul(g) 0 werenes os O
Ulg) = 0 Uz(g) ....... 0 , each constituant not being decompo-
0 (o S U
n(g)

sable in this fashion)a.

We shall now construct in a heuristic way those irreducible represen-

tations which we shall need for physical applications.

T
b) The Lie Algebra of P+ and the physical representations

i Jpv

= W
eiP.a e2 Ly

Let U(a,A) = be the exponential form
of the representation. P is the hermitian generator of translations, inter-
preted as the energy momentum operator, - gt ::J“v is the hermitian gene-—
rator of the Lorentz transformation in the (u,y) two-plane (six such),

wpv being the angle (either circular if u,v #50 , or hyperbolic if

wory =0 ).

The group law implies

-iPa' iPa iPa’ iPa
e e e _ e

Cigt MY Lo g

iw' J i J ; =4
e MY eiPa o UV . elP.A (wf)a (1,b,1)

1 \3

4w MY 1s Jpv 10" &Y g AMe=w') A Y(-0') @ ¢ 4
o WV 5 LY o MV - . u v u'y

whose infinitesimal versions are (a' and ' small)
P ,P =
[ W v] 0
12 = 4 - P (I,b,2)
[ T vk] [gkupv Syu K]

]

[T = J 4 Jd = J J
i W'JPOJ t [gup vo " Euotup T Bustvp T Bvpue



The last two commutation relations just say that PH " J@v behave respecti-

vely as a vector and a tensor operator under Lorentz transformations.

As usual we shall look for a maximal set of commuting observables.

The four P's commute j let p be an "eigenvalme''y Let us now

look for Lorentz transformations A which leave p invariant, and write

A =e H ™

where are the four by four matrices which generate the

uy transformations in p space 1

9N
k VA A vk
™y = -1 (" - O ’
The invariance of p d4implies w“v pv = © which is solved according to
- p o
wuv = epva's p where Spva' is the totally antisymmetric tensor
80123 =+1 Epvpc'::i 1 according as uypo 1s an even/bdd permutation

of (0123) ,and s a four vector whose component along p is irrelevant.

Thus the U(A(p))'s representing Lorentz transformations which leave p

invariant are 1

i
5 € Juvsppd
UA(p)) = &° HVPT 5
Let then |p> be a vector of representation space such that P|p> = |p>
i vV 0 O
. 5 Lypo Ju' S p
uleNip) = e [p)
T— Wes
2
=5 lp> '
where W =— -ls VP p9 .
H 2 pvpo

* . . . A : :
Wherever "eigenvalue" is written, it is implied that continuous spectrum
may lead to the consideration of improper eigenvectors.



One easily finds from (I,b,2)

\ ——
[VM,PV] = 0 )
w,w]l = -1¢ P o
v uypo ’
(I,b,3)
J LW == =
[ - ] 1 (gm\wv gl "

(The latter indicating that W behaves as a four vector under Lorentz trans-—

formations).
One furthermore notes the identity W.P =0 (1,b,4)
which stems from the antisymmetry of ¢ (this was indeed contained

uvpo
in the construction of W(p) as generating Lorentz transformations leaving

p unchanged).

From these commutation rules one observes that Pe ::Pz

t

2 t \
W.W = W~ commute with all P" s ana "7 s ; their "eigenvalues' label the

?

representation (one can indeed show that no other function of P , J commutes

with all P's , J's).

Then, P being taken diagonal with eigenvalue p such that p2::m2,
m2 fixed, since W commutes with P , Wip> ls still an eigenvector of P
with eigenvalue p § we shall call W(p) the "restriction" of the operator V¥
to the eigenspace of P corresponding to the eigenvalue p . We have of cour-
se W(p)ap — O so that W(p) can be expanded along a basis of independent
vectors orthogonal to p . At this point, we have to make distinctions accor-

" . 2
ding as p 1is time-like (p~ > 0), light-like (p2 = 0) , space-like (p2 < 0),

or identlcally zero.
2 o o
©® p >0 p >0 or P <O

One can attach to each p three space-like vectors ni(p) 1

*

In physics, one shall always have to deal with representations with po > 0,
gome formal manipulations however use those with po < 0.



ni(p).nj(p) = = 613 1,5 = 1848
— — +
p.ni(p) = 0 det (p,nl(p) nz(p) ns(p)) = %1
according as po z0 (T,b,4),
3
and expand : W(p) = Zg: Wi(p) ni(p) (1.b,5)
1=1
where Wi(p) = W(p).ni(p) »

From (I,b,3), one finds for the commutation rules between

W, (p)
Si(p) = (1,b,6)
m
== S
[Si(p),sj(p)] 1ey e (1,b,7)
; o ; even
aijk = %1 according as ijk is an odd permutation of 1,2,3 .

Si(p) are generators of the SU(2) subgroup of ?+ which leaves p 1inva-

riant. Thus,

3

\ 2

Z/_JSi(p) = -5 has possible eigenvalues s(s + 1)
1

r

s 1nteger or half integer.
Together with each p one can diagonalize SS(p) whose eigenvalues

Sq range by Ilnteger steps from - s to +8 . In other words, we have now

defined basis vectors

61,5,

fulfilling P[lpl,s;)> = pllpl.s)

s, [pl, 5.0 = s4llp),8.) (I,b,8)



(s, 2 iSZ)(p)]fp] 33> = Vs(s+1) - 5,(8,%1) [[p] 5, 47 3

(1,b,8)

[p] reminds one that the corresponding state 1s defined relative to a set
P » ni(P) subject to (I,b,5). [p] will be understood as an element of

SL(2,C) corresponding to the Lorentz transformation which transforms

8 — (t mgoyoo) ? nl(g) — (0,1,00) ) 112(8) = (0,0,1,0) ? n3(8) = (0’010’1)

into P , nl(p) . nz(p) : n3(p) respectively.

The choice of [p] , which 1s arbitrary, first makes precise on whick
four vector ns(p) orthogonal to p the spin operator W/h is measured, and

how the phase of the corresponding state is chosen (choice of nl(p) * nz(p)
and sign of [p] in SL(2,C) ).

The commutation rules (I,b,1 and 2) show that 1

[[pl,s,) = ullp]y |[Bl,s, " (1,b,9)

(] 1
= -=¢ J are just the generators of the
One sees easily that Si(p) 2 Bagk Tk 3 g
SU(2) subgroup of SL(2,C) , which corresponds to space rotations.

For any operation u of SU(2) , one has the usual spin 8 repre-

sentation 2

vt [[8),8,) = [[8l.s2) 255 -0y .
3 3

Hence, according to (I,b,8) 1

F:Lrstly*

3t0m) = 1isl.ap) 985 (1817 231 B SRS

* |[p)'ysgy = u(lp]™) ][8],s3 = uph) vlpl™) ulpl ][8],53>
= wcleD) 081,53 985, (o™ o))

t
8353



_.16—

which shows how a spin state changes when the frame {ni(p)f is changed

(note that [p] *[p]' take B to p, p back to B and is thus an SU 2

operation) }

Secondly
U(a,A) '[p],53> = U(a) U) |[P],53>

= U(a) U<[A.p]> U<[Ap]'1A[pi>Wg] s,/
_ N rer i ofe “1.r.1)
= U(a) U<ﬁA.pj/ l[p],33> @séss <[Ap] lA[p]/

N\
= U(a) l[A.p],sé> @: <[Ap]”1A[p]) (I,b,11)

t
3S

3
= FOPLle) o, (o1a0s1)

which yields the transformation of a state under inhomogeneous Lorentz trans—
formation, This transformaticn law is intuitive if one is willing to represent
a state by a four vector p (its momentum) and a four vector n3(p) together
with a number Sy $ its spin Sq along na(p) + This state seen in a different
frame obtained from the latter by a "Lorentz transformation" A , will have
momentum Asp and spin s along A.ns(p) which is a priori different from

3
ns(A.p) since for each value p the attached frame was arbitrarily chosen.

ns(p)

n, (p) n,(p) v ¥ ng(A.p)

|2 Y]
A.nz(p) nz(A.p) A&ns(p)



The Wigner rotation is just the one which expresses

RCERNS)

A
&
o

IA[p],SB> = |[A.p],s§> F)

according to (I,b,10) .

It now remains to ensure the unitarity of U(a,A) for a scalar pro-
duct which expresses the orthogonality of states with different momenta which

we write in a Lorentz invariant way*’:

._}
<[P’],S'3f[p],ss> = 28 5(p - B') b o (I,b,12)
373
o = V732 4 a?
P

Any state |W> of representation space can be expanded in the basis [[p],53>
according to

f d3p Ytj
&) = J -Zm—p ./4‘@83 ([ph l[p],ss> (1,b,13)
®3
o ([ = (Ipl,s,[2) . (1,b,14)
3
The sealar product belng
T %
¥le) = /- £ ZZJ v  ([p1) o_ ([pD) . (I,b,15)
2W 53 83
D s,
(a,A) .
Calling 9 ([pl) = <[p],s3lU(a,A)l@> (I1,b,16)

3
the wave function of a transformed state, one finds }

<[p]_1A[A'1p]> 9 <[A_1p]> . (I,b,17)

3

ip.
(a’A)@s ([p]) = & P** D s
3 3 3

The Lorentz invariance can be checked by /;(p)e+(8) 5(p2_ mz) d4p —

,
/ d3p

-
J EOJ— f(wpn p)
P



Note that for l@) in the Hilbert space, normalized to 1

?

[ dsp N 2
3le) = 1 = [ — (Lel) .
(o) 52 e, (oDl
S
3
States |[q].0§ with wave functions
(Iplisgllalio) = 20 8(a - s o

are thus not in the Hilbert space, as is usual for plane wave gtates.

Two cases ! elther the spin quantum number W2 is different from
zero,but in this case the representation does not correspond to an object seen

in physics,

2 2
Now,if p =0 W(p)” =oO p.¥(p) = O one has necessarily W(p) = A(p)p
(this is simply geometry).

Let us again attach to p , two only, in this case,space-like vectors @

— = — >
ni(p) 1i=1,2 i p.ni(p) =0 nl(p).nz(p) =0 det(t,nl(p) nz(p),p) Zo
(according to p 2 0) ,

Let p = (*1,0,0,1) n1(8) = (0,1,0,0)

o)
,(P) = (0,0,1,0) and let [p]
be the Lorentz transformation which takes n

n
(o] (o]
5, (@) 4 n(P) into p , n (p)

nz(p) a



o)
The Lorentz transformations which leave p invariant have the form

13 *

where & 1is the rotation parameter, x , y (Z —x + iy) the translation
parameter of a two dimensional euclidian group (a degenerate form of the pre-

vious retation group).
2

Indeed W(p)ap = O implies W(p) = A(p) p + Zwi(p) n (p)
1 (1,b,18)
with the commutation rules

[w, (), wz(p)] =0

), W ()] = w,(p) (1,b,19)

[A(p) , wz(p)] = - w (P

wz()—wz()+w2()—o — )y =
p) = w,(p o(P) = = Wl(P)_Wz(p_O .

i.e. one represents the translation of thls euclidean group by 4 (gsuge inva-
riance). The rotation & 1sg thus represented by eiK@ A integer of half in-
teger (again because of the two fold covering coming from SL(2,C) versus

Lorentz).

*
>
I
o o
A
.

4
|
—

O w
oo
[
O
¥
7 N
op
oo

TR
ﬁsrw
'
£ O,
o, Py
By %
A
[
N
o=
°o

yields the result.
(similarly in the 8 = (1,000) case, A <
A € sU(2) ).

(@R
=¥
(S
+
I
AT TN



We thus have basis vectors |[p],x> defined by

Ap) [[plany = » [[pI ),

(1,b,20)
w, (e [[p],2) = o -

A , integer or half integer,is the helicity of the massless particle. The
second equation expresses gauge invariance t if [p] and [p]' are two

frames corresponding to the same momentum, one has

n;(p) = nl(p) cos ¢ - nz(p) sin ¢ + ap
né(p) = nl(p) sin ¢ + nz(p) cos ¢ + a P
and I[p1*, ) = [[pl,n) o™°
Ix] =] *
= ||[pds%} D [p] “[pl" : (1,b,21)

which shows that |[p],\) 1is independent of « a, and , as before

1 ?
*

Uak) [[p],A) = oXAP2® T7asp] 23 @7]\;] <[A~p]_1A[p]> (1,h,22)
with the scalar product

elallel,n) = 20 5(p - p") (1,b,23)
and the expansion

3
I®> = /%wg (P([p:l,x) l[p],7\> - (1,b,24)
p

-

* ;
At this point we need know that 9D(A) 4s defined for A
2
%i;l(A) = (a) A or (d)zk according as A z 0 (see footnote,previous page,

and Appendix one).

arbitrary and
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Remarks

i) We shall not describe here the representations corresponding to
2
P < O ,which are as unphysical as those corresponding to pz =0 Wz #:o ,
although they may be of formal use, as well as those for which p — O , except

for the trivial one U(a,A) [0) = |0) , which is called the vacuum repre-
sentation.

1i) As far as massless particles are concerned, the presence of a
single helicity state is familiar in the neutrino case for which parity is not
an operation of the symmetiry group § in the photon case however, the presence
of both helicities is due to the fact that parity is included in the symmetry

group, as we shall see later.

We shall now open a parenthesis which takes us back to every day’s
theoretical life or text-book treatments,but we insist that from the physical

point of view this parenthesis is completely redundant and may be harmlessly

c) Theoretical Constructions

They are mainly based on the observation that the quantities
-]
@BUJ(u) , usually defined for u € SU(2) (u ul = 1) and fulfilling

_‘\

%zcﬁ(u) 2§4T(u') — %:T(u u®) (group law)
- a8 a8
@Ob"' (u) = @O"O'(u-r) — %O"O'(u-r‘ ’

are still defined for any two by two complex matrix and fulfill the same iden-—
tities.

We shall occasionally need properties of the matrix C — io
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1
CAC AT = detA
T * 2 __ s
c - -¢ =c¢° , CcC = ~1 ¢t 9(c) will still be called C when no
confusion may arise.

~ Spinor amplitudes.

2 2
1) p = m >0.

From Pq ([p]") = %S
3 3

o (11700 oD

one observes that

9, = 9 _ (UplH o p]" = 2, +UpD o ([pD) (T,e,1)
3 3 3 3
is independent of [p] , 1l.e. only depends on the four vector p
_ . N1 _
Similarly, using the unitarity of [p)' i[p] = <[p]' 1[p]> - [p];f[pﬁ 1

Pal . ,‘f- '—1 '3 —_— T —1
@A(p) = $A s <[p] > @SB([p] ) = %A s; <[P] > ¢s;([p])
(1,¢,2)
enjoys the same property (note that [p]+—1 7é[p] since [p] is not unitary).

These are called the spinor amplitudes associated with state [§> -
They transform simply aceording to

(a’A)(p(p) — @(A) (P(A—lqp) eip.a (1’0’3)

(a,A)$(p) — ot ™ <P(A—1~p) olpea (1,¢,4)

g ~ 3
(wv,2y = [ L@ > T ) 9, = /-g—w-a ) ¥y 8, (1,e,5)
P 5
A A
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— P .
(v,%) = —z—w— ZWA(p) 2 ,<m> GPA(p)
A,AT
(1,0,5)
AA‘

E
- %

where we have used

o -»> >
[pllp]T = [p] 1) = [p] B [p]f = R - B *pC
N (1,c,6)
t-1p -1 t-1 ~t _ %=1y B -1 _ p _ p°- P.o
[p]" “[p] = [p]' "4 [p] = [ ] — [»] *—%—_- —
and the "Dirac equations™ 1t
o) = 9(2) 4w 360 = 9(E) o (Lo,

ii) pz =0 .

son o (1) = oM () o (011)

we have” g;(p) _ 17\[ <[p]'1-—~1> <P<[p]"'7‘>: @|X|< ]'f' 1> q><[p],?»> ,

for A < O, where we used

o3 [pJ*"ltp])

@i&l<[p]ﬁ”1> 2NN <[p]"‘1[p]> _ 9)&[<[p]*+“1 1--2

= oPl(3 ) = oMt r)

- AA
@J 1+U3 5 d
We need the following results @ m'\ "5 ) = g,m Jg,m* an




gimilarly, for A > O

?,(p) = @27\ (fp’]) <P<[p]’,7x> = @27\ <[p]> o <[p] ,)\> .

where we used
1 +O’3

ol —5= D" = (o]

2

et = 2.

Exercise.

Construct @F(p) ’ $+(p) .

Remarks.

In this case,spinor amplitudes have but one independent component,

ise. they are subject to constraint equations (see ref. 4).

The uncapped (resp. capped) ones still transform according to 2(4),
oty

In the scalar product one just has to replace -é%. <f£%> of the

massive case by -g— ’ —g— -

d) Examples
2
1) m >O,s:0,po>oo

One has wave functions o¢(p) defined on the positive hyperboloid,
with the scalar product

dsp -> -
(3,¥) = /055— o*(p) Y(p) -
p

-

Given ¢(p) sufficiently regular, one can construct the distribution
-> (o] 2 2 ar ~r

¢(p) 6(p") 8(p"-m”) = ¢(p) whose Fourier transform 2(x) = 7;ipx ®(p) d4p



is a positive frequency solution of the Klein Gordon equationa

The scalar product then reads

(2,¥) = ———1~—§ / (x) B° v(ix) x .
[e]

1(27) x =t

and the transformation law is

(a’A)Q(x) = o¢(ix +a) N

One could argue similarly for the negative energy solutions j both

2 o
of them span representation spaces with characteristics m > 0 g8 =0 p g O .

One can set a one to one correspondence between negative energy

solutions and positive energy ones by
- +
v (X)* = ¢ (X) P

Then from the point of view of relativity, solutions of the Klein
Gordon equation can be interpreted as describing two kinds of particles with

the same mass and zero spin.

We write the Dirac equations

o(p) = R F(p ) = = o(p) ,
m
let . < o(p) >
‘ﬁ(p) = i »
) $(p)

Then one has (F - m) &(p) = O
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(o] Q —_ >
p/ = ¥ P - Y.P ’
4 o)
Yy = ° Yi = Gi
— = *
1 o <., 0
i
with the transformation law
ipa -
{a’A§@(p) — g P+ S(A) ¥(a I,p)
where DAY 0
s(a) =
0 (A 1ir)
e s 13 o
i%ﬁﬁ%? %eikL nf 4+ ot i
if A= e S(h) = &2 13k 2 2
MV
- W —
— a2 uy 2
hy w - € nk e
where 13— “13k ®o1 — V4
v 1 v
O'p. jovesy ‘é;' {"{H’,Y } -
The scalar product is given by
3 3
d —
(8,¥) = /@*(p) ¥’ ¥p) =R = /. B(p) vep) LR ,
2y J 20,

= * o
where &(p) = % (p) ¥ . This scalar product stays positive as long as p_ > Os

We may as well write

_ 3
(&,¥) = /@(p) ° ¥y &P ,

]



which is sometimes used and is positive for both po 20 .

Further Dirac matrices are defined as

‘o, o
1
p =y , d=y=("1 = -a,
o o
5 o 1 2 3 1
Y =y vy ¥y =1 .
-1
PO

The spin operator is W —~—¢ — S
pin op L2 Tuvpo 2 m }

it allows one to define a basis for solutions of the Dirac equation through

W(p).ns(p) U([p],ss) = s, U([p],ss)
W(p).(n1 + inz)(p) U(['p],ss) = % (:,12- + 1)—53(83 D! u([p],s3 1)
Won, (p) = = y° #, (p)
‘ni p _— Y i p 4
which ylelds
92 _ ([pD
*73
U.([p],s ) oy '“‘1"-
3 /2 2 ([pIT™h
o8
3
with the normalization E»([p],s;) u ([p],sB) = 6sssé .

The solutions of the Dirac equations for po > 0 can thus be ex-

panded according to

8(p) = L 2([pl, 5 utlpl,s) ,

83

and one finds the f£'s transform according to (I,b,17) and their scalar pro-—

duct is again given by (I,b,15) .
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o
For p < O similar results hold and lead to the complex conjugate

representationa

2
3) m“ >0, s=1, p >0.

@A(p) and $A(p) can be considered as complex vectors defined on
O
the upper sheet p > O of the hynerboloXd pz ::m2 « We may express them in

cartesian form $(p) , using

1/2  1/2 1> (_1)1/2-m‘

L G = (
- t —
m m -m* | A

V2

A

then, (I,c,3) and (I,c,4) can be written as® 1t
-> {a,A} -> _ -> > -1
. o) = A (o)A ,

the Dirac equation
p(p) = &7)<-§~> oCp)

6 = 9 (2
<p(p>—%<m> op)

then reads 1

°_3 3— > - A po—
P~ D (0e9) = (a0 "——35152
o - - o > - - o > ->\t
> - + +
(ugy 2P T _— P mpd(g‘.fp?): <3$* p+mpd> .

g e ot g g e S s i, i il S o o i g

This transformations law can be compared with the transformation under ro-
> > -> -> -+
tation group of o u , u real trivector, oWwRU = UR) 3;3 U (R) , and allows
us to consider A as a complex rotation (element of the complex orthogonal

groupa
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If we introduce antisymmetric tensors F and & by ¢
o1 1 14 1k Kk > > 4 uy
F  —E y F T e x, where E and H are real vectors defined by

-»> - > e - -
¢ —E + iH (similarly @ = &# -~ i¥ defines ¥ ). The Dirac equation then

v 1 _uvpo _ v _ 1 uvpo
pp <1"’}‘l + 5 € Fp0‘> = ';:s&‘L <§‘+L 5 € 57"pd

reads 1

i‘eq
@Y = o0, with &V — FVo @V, L WP (p L F ) an arbi-
Py * 2 po” po

trary complex antisymmetric tensor .

One can thus find A.ILl guch that

¢t = LSHVPG‘P A ’
2 p o

and the scalar product can be rewritten

(¢,6) = /dﬂ(p) §* )6, () -

m
P pg pv Y
=~/ 4Q ()& ®) By ~ 5~ ) A () ,
m

so that one can choose pu Au = 0 with the scalar product
(f,A) = —/dQ(p) «?Ep(p) Ap'(p)

This is the usual representation of spin 1 particles hy vector fields trans-

verse to the momentum. One can recover the Wigner amplitude by writing
3

A(p) = Z fi([p]) ni([p])

1

p,ni([p]) = 0 ni([p])¢ nd([p]) = - 515 .
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and from the transformation law
fa,A} ip.a v -1

A(p) — e AT A (A )

uP TR

recover the Wigner transformation far fi([p]) .

4) m2>0 s::—;-

One may transform the spinor amplitudes ¢ A(p) <$A(p)> .

- —2— < A< + 3 » Iinto totally symmetric spinor amplitudes o

2 a1a2a3
(al,az,aa = 1 1/2 ) , the relevant %AA’ matrices being replaced by
@a ol 92)oc al @a a! -
11 22 33

1 1

= = o0

2 2 - 5

® o« O fama, = )

1 2
Let

1 1

2 2 1 ¢ = o

L BN S M ,

a, o, M 123 3

whereby the 9's turn into %MM' Q)oc ' + Indices M and @  can be cap-

are

33 o >
ped separately by application of the relevant 9 < -E——t;l—)——q—‘> » If —S>

the spin 1 operators, the spin 3/2 condition



> -
reads = ~3S'O— s = o i.ee ¢ = ioxo

where M 1s turned into a vector index, « being considered as a spin '12-
index.
The simult ous consid ti >4 -
€ simultaneou sideration o (P/M\oc %t cpm and the correspon
ding Dirac equations allow to define V o where [ 18 a four vector index, «

a Dirac spinor index, the constraints being @

pa¥ = o0 (F-m¥ = o
— 1
L [z s, ™) WjJ
u
= 1¢”¢
TRY
hence y“‘lfu = O -

Note that if W!-l fulfills both the Dirac equation and the transversality con-
dition, & =— Y5 ,Yj.l WH is just its spin %component.

One can similarly switch from the Wigner description to one in terms of

a symmetric transverse, traceless tensor ! G v(p) t

Gw(p) e Gw(p)
o Gw,(p) = 0
C-i-{~l - C
H(P) ’

with the scalar product (F,G) = /dQ (p) .F-‘_uv(p) Gp'v(p) .
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One can expand Guv(p) = zg:fA([p]) Yﬁv([p]) where the Yﬁv([pw)'s are

A Y
constructed from ni(p) as YA(x) is constructed in terms of x

—
(YA(x) 1 solid harmonics of order 2 ) e.g.

P P
° 3.3 1 wov
- _ -1 - ® v .
uv([p] ) n,® <gp.v >

4 » 1=1,2,8

The transformation law

fa.A} _ 1A.p.s TARENRY)
Guv(P) = e AH AV Gu'v ‘p) )

induces on the fA’s the Wigner rotation.

The previous constructions have quite decent limits which one may
congtruct starting from the Wigner form j} the selection of one helicity value

requlires however the use of an extra projector ¢

1 '_:+*1— ©
) A -3
ﬁ'W = 0
1 1 o°
v = L= =t = ~
v 2 P ¥ 2 %o 2 P Y
1 v
—+ =
____2“{50‘“va
1 Y X, g
:iEYS MYy p))-g s
i
by use of the Dirac equation, we get
iy
v v=*% 5 v = + 1
woT- Tz R TehnYt
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hence the projector comndition (1 * 1 75) Y -0

i) A= +1

Let F be the antisymmetric tensor which describes a spin 1 particle,

. x _HY * 1
with 98 F = 0 where F = =g
MHoouy uv 2 uvpo
ponding to helicity + 1 is then found to be "self or antiself duality”™ 3

(2
Fp ; the projector condition corres-

HYy 234
In terms of the vector description, besides the transversality condition,one

finds that A“(p) is defined modulo p , i.es Au(p) . Au(p) +A(p) p

represent the same state (as indeed the scalar product is insensitive to a

gauge transformation). If nl(p) , n2(p) are such that

det ( nl(P),nz(p),p, n ) >0 where n 1is some positive time axis, then heli-
n tinm
city states N = %t 1 are described by —l-—-~g-(p) (which isotropic vec—

var)

tors are indeed independent of the choice of n1 ’ n2 e

[215]

@) Discrete Operations

If the symmetry group is enlarged so that it includes space and

time inversions 2

x—->§_:nx I = = G (I,e,1)

where G is the matrix of the metric tensor ¢

- ~1T
cLgt = v



-1 0

x » -x = Tx T = 1 1 (1,e,2)
o] 1
-1 (¢

x » -x =— ITx IT = -1 4 ’ (1,s,3)
0 -1

one hag, in order to construct representations up to a phase of the enlarged

o~
group, to specify the actions of these discrete operations on ?+ -

One has
e T = (o, A D
T(a,A) T+ = (-a , A (I,e,4)
OT(a,A) (AT T = (-a,A .

These welationships do not specify the extended "covering group” completely,
but hold, whatever the solution, and are sufficient for the construction of

representations.

Proof

Every Lorentz transformation A can be written A =L R where L

is a pure Lorentz transformation and R 1is a rotation. Correspondingly

AC(A) = HU where H 1is hermitean and U 4is unitary.



(There cannot be any arbitrary sign factor in front,because such a sign

sﬂ(A) should fulfill the group law sﬂ(A) 87\:(A’) = z—:’K(A.A') and has thus
to be unity)e

We now look for representations up to a phase of the "extended co-
vering group”. Upon restriction to the restricted group, they will yield re-
presentations of the latter. There will thus be in representation space,basis
of the type lrp],sa,n> R [rp],X,n> where 1 are degeneracy labels. We
shall furthermore restrict ourselves to representations where U(I) 1is uni-
tary, U(I T) , U(T),antiunitary, in order to deal with representations for
which the spectrum of the momentum operator contains only time like or light

like values.

Indeed, from the group law ;

wm Tt ay = o2 |
Hence
P. - ip.
um Pt i) [p) = o P2 |p)
1P.a - e -
e *%y 1(H) [pd = e 1Pe2 g Tan [0
€ =+1 if U(l) 1is unitary,
€ =~1 if UU) 1is antiunitary.
Thus U_l(n) |p) has momentum & p (p.a = pa.a)
ep € V+ if P € V. > &=+ 1 -

A similar argument implies that U(T) , Ul T) are antiunitary-

Since I°= T = @ T2 = identity, there exist phases « such

that 1 2
v =
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w2 = -

U(T)z o= (L)T .

From a previous argument (Chapter O, § a) Remark II) O = 1, wT —*+1

1) Representation of space inversions.

We shall only deal with massive particles leaving the case of mass—

less ones as an exercise.

U ula,A) UL [el,85,m> = v(a, '™ |[pl, s ,m)

-1T
= ai_a_ A ' p l [Aanp] ,sé,'r]> @3553 <[A—1Tp] -1 A+n1[pJ>

= & 22 o) etm) 9., <[A‘“p3*[AR]>
33

(7 Iy

where we have used for ‘the Wigner rotation 9(R) =— @(RTpl)

-1
t3 i:3 t 38 3

Ed

Hence

U(a,A) U (D) I[p],sam> @sata ([P] [2]>

_ a18. Ap ) 13 -1
gl o) 2,00 (Dap* 9] %, ()™ alel)

which means that

vlen [el,8,,m) 3, <[p]'r [_I?.])

33
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transforms as a vector Ip , 33>

(note that [p]+ [EJ is a Wigner rotation t

o -

1t (o) [0V 6] = (17229 [ = [T [l [l p] = 1.
Thus, one may write

@ (s = leheg) 9, (07 BT,

¢

where Hﬂ’ﬂ is a numerical matrix in the degeneracy parameters &%
T ~2 -1

1 I = g .

If one wants an irreducible representation, I fulfilling the above

-

on
requirements has to be one dimensional i@ Hn,n ot nH -

The final result is &

. -1 -1
o) [(5lag) =y Iledusy) 2, (127 00 )
(1,e,5)

= lthey) 9, (123t 1)

Exercise

Repeat the argument for massless particles. Show, as expected, that

couples of opposite helicities occur.

Remarks

If [p] is taken to be the pure Lorentz transformation transforming
the time axis (1,0,0,0) to p %



[p] _ m+po+;g

\/2111 (m + po)

[B]+ = [_p_] = [p] -1 , hence no Wigner rotation appears in the above formulaa.

1i) Representation of Space-time inversion.

U T) UCa,a) U (T T) I[p],ssm>
= U(~a,A) Hp],sam>
- e—ia.Ap ![Ap],sé,n) @s's <[Ap] -1 A[p]> -
33
Hence (watch the effect of antiunitarity of U T) )

U(a,A) U (T T) [[pl,s,,m) = o2 P yer pyt [[4p],85,m) D <[ApJ"1A[pJ>
33

. laJA - - B
= o T [edisgn) 3, @ By ([617aD]) 9, )
373 33 373
-1 _ . -17T _
(where we used CA C =~ = A , C=1 o, » and unitarity of the
Wigner rotation).
One deduces
-1 ~o
u ) [[plysemd = [Iplesim'> 2, (@)U T, .
3 3 s's n'n
33
Now we have
2
— — +
Uil T) = e = L1 .
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Hence O = -) or nt* .
(where we used C C¥= -1 ),
2s ~ . . . -
If O ()" = +1 I T, which is unitary, is orthogonal,

gsymmetric and can thus be diagonalized by a real orthogonal matrix, the irre-

ducible versgion of which is one dimensional. In this case, one has 1
28
O = (- = v 12
(1,e,6)

8 r

va@ ™) [[plisg) = ny [lpl,s)) 2. (©
33

namely, space—time inversion reverses spin.

We shall not deal here with the so-called abnormal type which
28
=)

arises when wHT( = - 1 3 each particle in this case has to have an inter-

nal degree of freedom which takes up two values in the case of an irreducible

representationd

Exercise

Same problem in the case of massless particles. One helicity is
enough.,

iii) Representation of Time inversions.
A similar calculation yields for the "mormal type" 1t

28 _ ym? (I,e,7)

1 +
oD [[5],5,) = ny [e)sp) 2, (02 (ele)

o -3
(1t [p] is the Wigner boost [p] — m+tp + p O

= time inversion reverses
Vem (m + p )
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both momentum and spin 1) .

Remark

Note the phase relationsghip

v vl ) =— Ny Ty n; (T

f) Representation of assemblies of identical particles ! Fock spacea.

1) Once the description of one particle states 1s accurately known,
the donstruction of many ldentical particle states fulfilling elther Bose or
Fermi statistics proceeds in a well known way by applying to a vacuum gtate
[O} products of creation operators labelled according to one particle states 2
here aT([p],SS) , which fulfill commutation or anticommutation relations with

their adjoints a(fp’],ss) according to the normalization condition 2

]:a([p],ss) , 8 ([p'],s;)] .= 5(p - ') 63385 . (I,£,1)

The vacuum state is further characterized by the property that it is annihi-

lated by all annihilation operators :
atlpl,s > [0) = o . (1,£,2)
In this formulation, one has 1t
[[pl,s5> = a*([p],ss) lo) . | (1,£,3)

The covariance property

][p],83> = ][p]',S:;) Dyt <[p']_1[p]> ,

3%3



implies that a+([p],53) is defined for all [p]*'s with the transformation

law

aT(lpl,s) = aT([p]",s)) 2., <[p‘3"1[p]> . (1,£,4)
33

If one wants to describe various kinds of non identical particles, one can

show[s] that they can be constructed from a unique vacuum by application of

QP

creation and annihilation operators ai ([p]) which can at will be chosen
to commute or anticommute for different i's , without any physical implica-

tione.

ii) Additive operators .

We recall a useful construction t let li> be a basis of a Hilbert

space of one particle states, ég the corresponding creation operators in

Fock gpace. To every operator ( in this Hilbert space, with matrix elements

{(3]@]1) , one can associate a field operator

Q = Z a‘; (slels) e, . (1,£,5)

i

Then, as a consequence of commutation or anticommutation relatioms
o, a,) , = (i3 . (I1,£,6)
i J =
Commutation relations [P,0] = R yield [P,Ql = R . (1,£,7)

Exercise

Given the momentum P, and angular momentum operators JHV for

one particle states, construct the corresponding field operators.
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Remark

The momentum of a state with many particles of definite momenta is

the sum of the individual momenta.

This is not true for the"spin” W , as we shall see soon t the spin

of a system of particles with definite sping includes an orbital part !

iii) Fields.

This paragraph 1s a digression from pure phenomenology. Assumptions
particular to local field theories yleld however sufficiently strong and use-

ful results to be worth mentioning.

a) One type of particles.

Let |0) be the vacuum state and a*(fp],ss) be the creation ope-

rators.

One may construct free fields &

3
o, (¥) = 13/2 /gp [%ff) ([ely alpl,s) o TiPex
(27) “p °3

(s (1,%,8)
@A:B ([plc 1) af([p],ss) eip.x::
7,0 = 925 @ of,o
3
1 d - -
T en? /ﬁi [@x; (el ™ a([p],s,) e % (1,£,9)

+ %;:; ([p]—r”1 <) é+([p],53) eip‘xi] ,

which transform respectively under Poincaré transformation according to

S



U(a,A) o, (x) U lta,a) = %fj? a1 9, ¢ (Aux + 2) (1,£,10)
Ua,A) §,(x) U '(a,8) = @xz (") g4 (aux + a) . (1,£,11)

where U(a,A) 1s the representation in Fock space deduced from the one par-—

ticle representation

Ua,A) aTc[p],SSJ U Na,0) = J([A.p],sp D . <[A.p1”lA[pJ> IAPea
3 3
U(a,A) [0> = |0> .

-~ The connection between spin and statistics.
If one assumes local commutativity in the form
[(3)(::) ,(:fp(X’ )_1 . = 0 for (x - x')2 <0
then one deduces that + or - sign (Fermi or Bose statistics) have to be used

according as s 1s half-integer or integer.

The same conclusion holds for the more complicated fields to be intro-
duced presently. These fields are free fields (they fulfill in particular the
Klein Gordon equation (EJX + mz) @A(x) = 0), and the Dirac equation

5,43 2\ .
(pA(X) ot %AA’ <T> q)A,(X)

5 -3 &
¢ (x) = @AA' <“_:*IE—_%> @A(x) ,

and can serve ag asymptotic fields in a theory of the L S Z type.
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b) Neutral multiplets .

Assume that besides Lorentz invariance, one has an internal compact
symmetry group G , so that particles are labelled as basis vectors of a fi-

nite dimensional representation U of G @

we have creation operators a*([p],sg,p) behaving according to
+ ] ) -1 N +
ulg) a'([p 1Sg5) U (g) = a ([p],sa,u ) Up,H(g) (1,£,12)

for g € G , where U(g) 1is the Fock space version of U .

¥*
If the complex conjugate representation U 1is equivalent to U ,

namely, there exists S such that
* -1
U(g) = suU(g)s ’ (1,£,13)

one can construct fields behaving locally under G 1

ue) 9,  (x) v = o, RICRRNE

3
— 1 d ~ipex
?A,u(x) z;;;§7§' /.Eai @Ass(fp]) a([p],ss,u) e
(1,£,14)

As

-1 + * -ip.x
+ 9 3([p]c ) a ([p],SB,H ) SH'M e :}

(it is in particular so for G = SU(2) and for some representations of SU(3)).

Exercise.

~

@A’u(x)

Construct
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c¢) Charged multiplets.

If U and U° are not equivalent, it is impossible to construct
local fields in terms of creation operators transforming under G according

to U(G) . If however one introduces particles transforming according to
u*g) 1

U(g) b+([p],s3,u) v e = bT([p],ss,u') U:.u(g) (1,%,15)

and ldentically with the d+’s under (a.A) , one can construct !

3
— 1 d P ‘“ip.x
CPAy!-l(X) T a2 /2wp [%Ass([p]) a(lpl,sg.n) e
(1,£,16)
+ ‘DASB([p]C ) b ([p],s ) ]
which transform locally according to
_.1 ¥
Uu(g) U = (x) Uy (&) . (1,£,17)
g @A’H(X) (g) @A’Hg X “‘P rly

In order that local commutativity migzht hold, it is necessary to assume that
the a's and b's commute or anticommute according as the spin is integer

or half integer - which, from a previous remark has no physical consequence.

at( p ’53'“) and bT( p ,ss,p) are sald to create charge conjugate

particles.

The operation which interchanges them is charge conjugation 2
g a+([p],ss,u) gl = bT([p],syu)

€ a ([p]JES,p) el - p ([pl,sB,H)



The charge conjugate field @Z u(X) is obtained from N
’ 14

- 46 -~

change.
Example.
G = u(1) 1
Ula) éf([p],ss) U—l(a) — e:!.OCm
where eim“

(usually m =1 ).

Exercise,

Construct ¢

¢ and gc

and @c

S

¢ and ¢°

~ ~e
¢ ¢

~c

¢

transform

transform

transform

transform

according to
according to
according to

according to

df([p],ss)

)

ucaed

2

P

™

&by

L3

by thils inter-

’

is a one dimensional representation labelled by the integer m

The action of space and time inversions is easily deduced from the

gstudy of one particle states &

U 9, ) U = w5, (x)

U 5,0 U = it g, (x)
-1
U(T) ¢, (x) U (T) = n;
~ ~1 — % o
u(T) @A(x) UNT) = mp ¢ue(-x,x)

25

o>
@A,(—x 2 X) %A.A(C)

£,(C)

(1,£,18)
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U@ T ¢, x) U@ T = e 8y (X)) 2,4, (0)
(1,2,18)
T T 9,0 U@ T = i g, (-x) 2,00

and ldentical equations for the charge conjugate fields.

Remark .,

In deriving these transformation laws, do not forget that U(T)
and U(I T) are antiunitary !
— Connection between intrinsic parities of particles and antiparticles

The foregoing equations hold if and only if

2s
nn nﬁ' —_ (")
3 o
ﬂT - ﬂf
* — 28
ﬂHT nﬁ“T (")

where the s are the phase factors pertaining to antiparticles. This is a
mere consequence of locality. The first condition is often used t it says
that the relative intrinsgic parity of a fermion and an antifermion is odd
whereas the relative intrinsic parity of a boson and an antiboson 1is even

~ taking into account the connection between spin & statistics ! -

g) Application to 8 matrix theory - density matrices, projectorg, twansition

probabilities.

i) Irreducible systems.

Statistical mixtures of one particle states are, as is well known,

represented by density matrices which are positive definite self adjoint ope-
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rators with trace 1 . In the present case, they are represented by kernels

of the type pGU;([P],[P’]) (or pAA,(p,p’) in the spinor reoresentation),
with

Pw'([p],[p’]) = p*g,‘O_([p'],[P])

3
and —2%2 Zpov([p],[p]) = 1 .
P

They behave under Lorentz transformations just as f[p],c> <[p’],o’[ would do.
Projectors on sets of states are on the other hand similarly repre-—

sented by self adjoint positive deflnite, bounded operators represented by

kernels of the type P{[p],o [p'],0") which fulfill the reproducing praper-—

ty P2 = P 1

[€8 ) e (she Iole) (10 ol o)
o

=P <[p],o‘ [p']w*>

ii) Many particle systems.

Same as in 1) where [p],c‘ reoresents a collection

{[pIJ,crl, cee [pn],o'n}

ii1) Transition probabilities.

Let T be the transition operator defined in terms of the S matrix
hy S:]."':LT »

The density matrix of the final steste produced from initial state
Py is
Pe = Sp, st .



The average value of any observable & 1in this state 1s 1
F) = tr F .
# Ps
In particular, if ¥ is a hermitean mixture of projectors on a set of states,
which annihilates the subspace in which Py is non zero (?pi ::pi$ =0 ) ,

one obtains in this way the transition probability from the state pi t+oc the
states F 1

— + _ +
er’pi = trSp, STF = trT Py T F .

The density matrix restricted to states selected by ¥ is

Fp, 7 Fso, 5Ty Frp, THE
Ptff = W™ Fp, 7 T tréfsp, s1F  trFTp THI
the last equality holding when ¥ p, = p, § = 0O .
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CHAPTER II

ANALYSIS OF TWO PARTICLE STATES

The space of two particle states, a basis of which can be labelled as

[[p1] oy [p2] o, 7, where o, » O, are spin projections (or helicities, in
1
the massless case) on axis determined by the [pi] s 1s acted upon by a re—

presentation of the Poincaré group (or rather its covering) which is the ten—

sor product of the two one particle representations of masses m

2 2
1,2 (pi = mi)
and spins 5 2 (-8 20 +8 )t

ia.A. (p1+p2)

U(a,h) l[pl] o+ [py] o PER [[Aopl] o 1 [Ap,] o) )

(I1.1)
ts1) -1 (s2) -1
A
x 9, (lap, 17 alp 1) 257 ([ap,] " alp,]
171 272
(if one particle is massless and has helicity o, replace %010_ by @OU'*
without any summation).

Such a representation is not irreducible, It is the purpose of the

present chapter to reduce it, namely,to define in its Hilbert space basis vec-—
tors |[P], u j J,n) which behave irreducibly $

Uayd) [[Plou; 3,m) = % [[aplu® ; J,m) %g'u <[A.P]"1 A[P]> (11.2)

where :

2
P is the mass of this state, J its total spin, m a Poincaré invariant set

of degeneracy parameters fwe shall find indeed that the [Pz,J] component of

the overall representation occurs several times), and to compute the Clebsch-



Gordan coefficients

<[p1],0‘1 } [92]}0'2 HP]:H H Jﬂ’l>

which occur in the expression of the new basis vectors in terms of the former

onesg ¢
d3p 3p
IPLp s aym) = / =i 2 E: Ilp,lsoy 3 [pylacy?
1 2 0'130'2
(1I1.3)
x [p 140, 3 [pylso, [[PLn 3 a,m) .

The new basis will be so defined that the Clebsh Gordon coefficients

are matrix elements of a unitary matrix 3

) _ 2 [dp .
“:P]_L«O'l 3 [p21,0‘2> = /dp /Z(DPZ@) ;ﬂ [[PLH ; J;'ﬂ>

(I1.4)
<[P]:P HEO Y l[pll’o—l H [P2]r<72> .

The initial basis already makes the translation operator U(a) diago-

nal,i.e. state l[pl]oi [p2]o§> has total momentum P = p + p, .

2
One sees thus that the total mass P2 may range from (m1+ mz) up

to o o« P obviously lies in the future light cone,

For fixed P , we may parametrize P, s+ P such that Py + p, =P

2 2

through the "relative barycentric momentum' four vector &
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2 _ 2,
q ==4q = 2 p, = p, = i P
1,2 2,17 2 1~ P2 o2
e Gt AN
- Py 2 = P2 2
P P

which is so constructed that it lies in the 2-plane defined by

and is orthogonal to P &

9,2

Note for future reference q
. 2
a standard function of P

. 2 2 2
where X(z1 z ,z3) = oz + z,, + Zg 2(z

%2 1

P being fixed,

*

9

->

-’2

P= 0 .

1,2 ~

12

2 2
7\.(11'11 ’,mz ,P )

—

2

4 P2

Z+ 2,z 4+ Z

13

2

Z3) -

(I1.5)

p, and P,

1

(II.6)

depends thus on two polar angles, on the sphere

The inverse formulae are §

It

2 2 2
q2 _ X(m1 m, P )
> bond
2 2
1s 4P
2 2
P2 + m, - m
1 2
P + q1 5
2P ?
2
P ~m <+ m2
1 2 P ~ g
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It is intuitive that the spin (total intrinsic angular momentum) of
the compound system is made up with the angular momentum carried by the orbi-

tal motion, associated with 9 and the individual spins of the two particles.

2
Before one can quietly add up these together in the rest frame of
the compound system (barycentric frame : P,time axis), one has to be abble
and compare the "spins" of particles 1 and 2 which are not at rest in this
frame, The matter will then turn out to be reduced to a composition of an—

gular momenta which will be exact.

a) 4£-s coupling.

Let us indeed reexpress the transformation law of l[plj,oi[pz] Oé>

in terms of center of mass variables 3

[pi] = [p,»P] [P] (m, # 0) (II1.a.0)

where [P] defines a frame attached to P, [pi,P] is some Lorentz transfor~
mation taking the unit vector of P into the unit vector of Py +(The case
when Py is the momentum of a massless particle will be dealt with later,as
it is slightly more delicate to be interpreted in terms of addition of angular

momenta),
Let us now define the symbolic vector

= poni P e2al
Si,2 {qi 9 9 n, (P)} (Il.2.1)

I

where ni(P) [p] ni(;)

Q
where P = (1,0,0,0) , some laboratory time axis, We shall denote by g the
AAN

corresponding unit vector § = ;iézr .
o aa d
q
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- A, ql

i — A, -~ A,
ql,z ,2 (which results from P, P, s P, pz),

’&1,2 4 {_(Aoql’z) - ni(A-p)}

o, olP L] BT 0] |y B
? L
= {qj Rnlji (A,P)} »

where R(A,P) is the Wigner rotation [A.‘P]_1 A[P]

-

Let us thus define

|[p1. Ga 6162> = ][pll 61,[1)2]0‘2) (I1.2.2)

(a simpie change of variables).

UCa,t) [Py @y 0y00,) = o AP0 |[ap], RCALP) g o] 0f)

- - - -1
%rr (1421 Lar, 2T (e, 21021 ) 8y (D80T Tapg 2T Lo, P 1001 )

We see that if we choose [pi,P] = [pi <—-P](P » the product of the

pure Lorentz transformation in the 2-plane (pi,P), which takes ‘3 s to 'ﬁi s
followed (or preceded !) by a rotation of angle ¢ independent of pi,P s
around this two plane, the spin rotations indicated above reduce to Wigner

rotations R(A,P) because :

Alp, <—P](P = [ap, AP]@ A

We next analyze the q dependence into spherical waves
AN
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q
anad

2 2
|[p] gy oy00,) = an /2 5L @) |IP] 4 my oy o)
k4

itet (II.&.S)

- ZJ 20+1
[[P] 25 myors0,) = ] NNV ST VIR

Here 1 = [P]7 aq , < nye)) [P]

P e d

where Q(q1 +~n3(P)) is the pure "rotation” preserving [P] » transforming

2
Ed
na(P) into /al o followed by a rotation ¢ around the two plane P, 9 4
Py *
to which %ﬁ ° is of course insensitive,
*

2041 O L
e tho (Qq) = Ym (22 .

AN

We shall occasionally note

The transformation law then becomes i

UGa k) [[B] 2, my o0, = €A L] o, ml oty of)

8

x 9, <[Ap]"1 A[P]> @zli% <[Ap]"1 A[P]> %t <[Ap]“1 A[P]>

2
where we have used

gon

m,o

<[PT1 Q(ql*2 *-n3(P))[P]> =

Xy Q[p]‘l A [Aﬂ}[[m“nmq - ngen ] |

m,0
- {[AP]~1 o (aq +n,(AP)) A Qq <—n3(P))[P]}>

and the fact that the last expression between curly brackets is a rotation around
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£
the third axis and can thus be dropped, since we are computing %m o *
2

Sos by usual addition of angular momenta %

[[Ply us 33 25 8) = [[*] ¢,m o’10_2> < 0‘1 0'2

)

8 8 &
0’) < om

1 72

transforms irreducibly according to

UCaaA) [[Ply 1y 3 &, 8) = o1 (AP).2 |[aP] u's 3, £, 87
(II‘3.4)
ol <£Ap1“1 A[P]> .

One can further see that if one requires these states to behave ca-
nonically under space reflections the rotation angles ¢ which might accom~
pany [pi +—P} must be taken equal to zero or T~ , The intrinsic parity of

such a state is then

() @y

We collect now the final formula, including normalizations g

oy Jy0p 3 Ipyloon [[Ply s 5, 6,8 ,P%) =

‘e

2 A (s.) -
2\/{—‘/; 64(P—p1—p2) Z 9 ! <[p1] 1[p1 *~PJ[P]>

7\1/4(2 2 2) oo

Pym, om, o 4oLy 171
— : 4 : 4
c= 0+ o0,
m = U-o (I1.2.,5)
(52)
=1 s. s I=8 £ 8 ld A
x 9 [p.] "[p, «P][P 12 >< >Y£(q).
620';(2 2 [7] ol ojlo/\molp m
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b) Multipole coupling.

We have remarked that, when one, or both particles are massless , it
becomes impossible to transform them to rest in the barycentric frame, Also, we
know that a massless particle has only one ''spin’" (helicity) state. In order
to reduce the situation to one where the rotation group in the barycentrie frame
is involved, it is convenient to choose a frame attached to P, such that

ni(pl).P = O , which, with analogy with the photon case, we shall call a ra-—-
diation gauge

[p,1 = ﬂ[ql,z < n,(P)] [P +]q 1’2l n, (P) +—’§+n3(P)] [P] ,(II.b,1)

where ® is the massless particle barycentric energy, and

[wP + [ql 2[ nS(P) «~P 4+ nS(P)] is the pure Lorentz transformation,
*

- o’
acting in the 2-plane (P, n3(P)),and transforming P + na(P) (1ight-like) into

-
w P+lq1’zl na(P) s and Q[ql +-n3(P)]¢ is again a rotation taking

22
na(P) to al,z’ in the 2-plane (nS(P), ql’z) .

In the case of a massive particle, the frame which plays a similar
role is the helicity frame

[pl]h = [p, +H Q(ql,2 < n,(P)) [P] (II.b.2)

whose third axis ¢

= <~ = II.b.3
n,(p,) [p, <Pl 9 2 ( )
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is the so called helicity axis in the barycentric frame (orthogonal to p1 ¥

of course, in the two plane (P, p ) ).
1

In the following, [pl] will be taken as [pl]r or [pl]h according
as mi = 0, m? > 0, and in the case of a massless particle no spin index sum—
mation will be allowed,

S

Let us then compute 9 % [ap ]—1 Alp. ] .
0101 1 1

From the commutability of A across pure Lorentz transformations or

rotations, the argument reduces, in both cases to

~1

-1
o = [apP] Q <Aq1’2 +~n3(AP)> A Q <q1,2 +—n3(P)> [p]

o
which, not only is a rotation, but leaves nS(P) invariant, so that %04 (o)
is diagonal j; hence the formal identity between calculations with a 11

massless particle in the radiation gauge and a massive particle described in

terms of helicity,

Assuming that [pz] = [pz +P] [P] , we thus get 2

U(a,A) l[p],&xlo:?) = (APl |[aP], R(A.P) 3.,:)‘1‘%}

(s.)
1 -1
o (8170 thay , ng oD 0 Gay , < ny@) (7]

x @(Sz) <[AP]_1 A[P]> .

h 4
G393

Now remark that :

/ 2k+1 k -1 _ /2k+1 k
an Cmy <[P] Q(ql,z‘“na(p))[P]>“ B Y

o
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form, for fixed Xl y k—x integer, varying, just as good a complete set of

functions of q on the un1t sphere, as did % (q). We may thus write :

ANA

[p1, ay hpo,> = o /=L g ([p]7g (a; , < (p))[p])[[p],k,m,x ')
- e 1\
i.e. (II.b.4)

¢ k
[P1k, mr o) = j anq, / B2 %, <[P] aq, , «n <p>>[P]>LfP],q,x o)

The transformation law then becomes ¢

U(a,A)l[P],k,m,Xl,cé> = ei(AP)'a l[AP],k,m',K1,0§>
2, (17 ap]) 92 ([apTt alp]
m!m b o__éo_z

where we have used

S
kox -1 1 I T P |
9)m1)\1 <[P3 Q(ql,2 « n3(P))[PJ> @X1>‘1 <LAP] Q (Aq, ,2 « n3(AP))A Qq « ns(p)) [p]>

1,2

= k; <[P] Q(q1 5 T g (P))[P][P1 Q (q1 o < Dy (P)) A~ Q(Aq1 +-n3(AP))[AP]>

22
- %11;; <[P]—l A"‘l {AP] [AP]-I Q(Aql o <+ ns(A.P))[AP:D

) *
= 9$,<[P]—1 At [AP]> @:57\1 <[APT1 Uaq, , "'n3(AP>)[Ap]>

= @ﬁfxi ([AP]"l Qaq, , +-n3<AP)>[AP}‘1> 2%, <[Ap]’1 A [p]> .
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One achieves the reduction with the construction of

7 .
I[PLP H JokyA) = I[P] k:m,7\162> Qk Sg 1Y > (II.b.5)
m o, | &

which transforms according to

ei(AP).a I

U(a,A) “:P]:P H j3657\1> = [AP]:“'Ij7k¢51> @izp /[AP]_l A[P]> . (II,b.6)

Such a state will be called a multipole state, with total angular

momentum of particle 1 equal to k, helicity of particle 1 equal to Xl .

The corresponding Clebsch Gordan coefficient is

, 2\ _ 2 2k+1 4,
AP mm, )
r2
Sl s
& -1 2 -1
>e_, <[p1] (7)) P <£p21 [pZ«ﬂm)
11 r 22
%
m=p-—oy,
'k s J kx /r_q—1
2 Do, &[p] Uaq, , < nz@N[P]] , (II.b.7)
' »
o |u 1
2
where h means helicity (m? Z 0)
r " radiation (mf = 0), in which case o, = Xl -

Note the useful formula, for k integer

1

q)
V&A1) oo, (N noe=

20+1 ko g(q)‘-[@fﬂ. 2o M|
47 %m,elkl (ng = Yk (
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where 8(q) :'gl(q)+ i 8'32(q)

e (@) = Qq(l,o,o)
with Q = [p]_l Q(q, o +—n3(P))[P]
4 = 0.0,0,1) - ’
- 1
@q = 1 swx \%

L

which takes us back to familiar formulae for the photon multipoles,

c) Helicity coupling.

For both particles, 1 and 2 , one chooses either the radiation gauge
or the helicity frame,but following Jacob and Wick [17] » we shall reverse for
2
particle 2, the vectors n3(p2) and nl(pz) (m2 Z 0) or the vector

nl(pz) (m2 = 0)¢ this can be done by writing @

B

[p,]

[p, «P] Q(ql’2 n ®N[P]  for m #0

11

[p, ] [p, «P] Qq, , <2, ®N[P]Y for m, #0

H

H
(o]

[p,]

(‘2((11*2 +~n3(P)) waP+lq1’2ln3(P) « P+ na(P%][P] for m

r 1

<"113(1’)) ®2P+lq1’21n3(P) « P4 n3(PE][P] Y for m,

]

2°r

I

Q(q

1
o

[p 1,2
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Y is a rotation through an angle (+7%) about the Y axis, We shall use

S+m
s (~1)

2° 4, (Y) =6 . s and 1
mm m,—m
]
J# [rp11a ¢ 1 -1.~1
%““1‘kz K[P] Q(q1’2+-n3\P))[P]> @X1x1<[AP1 Q (Aq1’2+n3(AP))AQ(qh2+-na(p))[p]>

S

9.2 YTt 0ty
7\27»2 1,

X

0 +~n3(AP)) A Q(ql’z +—n3(P))[P]Y>

- x> -1 -1-1 -1
= @le_xz <[P] Ua, , = @NIPIP]T0 @ , 0z (P)A Q(Aql’ze—na(Ap))[Ap]>
= o (1o17 £ ar]) 90, [ap]0(aq , « n_(AP))

put ) e Xl-Kz 1,2 3

Je -

11
9

~1—1 J -1
b eh Ay <[AP] Q(Aql,z +—n3(AP))[Ap]> @H'P <[AP] A[P]) .

We find now that the state

Jo* s - A

s - 2j:1 (rp77? 1y 2 2
I[P],M,J,K1K2> = dflg. e %pxl~x2 \[P] Q(q1,2+-n3(P))[P]> (~1)

[[Plya, 1ah,0  (I1.el1)

Transforms accoyrding to

i oo -
U(a,4) [[PIusg M 2,0 = AP [lapT,u's5,0 0,0 9,  [ap] ' A[P]> «(II.c.2)

BoH

\

Remark 3

For both particles we have used the same rotation
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s.=-\
2 2 in (II.c.1)

is necessary if one wants to get good parity transformation properties, as

pointed out by Jacob and Wick.

Q(ql,z “ng(P)) . The additional phase factor (~1)

The Clebsch Gordan coefficient is 3

W b

. 2y _ 2j+1 4 .
<[p1]01[P2]Obl[P]:P: J:%1$2:P > = 5 (P‘Pl Pz)

1/4, 2 2 2 47
8 _~A Sl s E ]
2 ‘g -1 2 -1 J
-1 2 Zg <[p][p]>@ ([pj[ﬂ)@ @) .
o—lx 1 1 1 111' 0‘2)»2 2 2°h p)»l 7\2 q

d) Relationship between various coupling schemes,

The states l[P},p;j,n> defined in preceding sections according to

the various coupling schemes, are always normalized to

{[Plu;d,m|Ptl,utsdtsn'y = 8(P-PY) By Byur Oy s

UMM
Thus,they form an orthonormal basis, Furthermore, they are complete .
i d
Bss’ for £s coupling, 6kk’6x 2\t for multipole coupling an
for helicity coupling, It is useful to write down, the unita-

§ , means &
™m

5 S

28t

: t
Klkl 7\2)\2
ry transformation which relates two different coupling schemes corresponding
to basis l[P],p;j,n} and l[P],p;j,¢> . Using Clebsh—Gordan coefficients

formulae, one gets

5 , s’ 1

] LIS ) o — Dt
(P Lutsat [P luize) = 8@-PY 6550 6 o S

the calculation of S%@ in the various cases offers no difficulty although

it is rather lengthy. One gets 3
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Sj ~ YR < s, Sg s:> < 2 s t 3 >
(M Ag1258) 23+1 O N bt o |
s _ 2kt 1 < Sp | I >
T, - ' .
<1<,x1 ,x1x2> AN 23+1 Ay |
3 / £ s1 k [
S = (26+1)(2s+1) | > W(s_ s_ 2,3j|s,k)
<k,7\i,€,5> \/ \ o SRS 1°2

W is the Racah coefficient (see for example reference O, Appendix c¢), asso-

ciated with the following diagram

Remark :

All theses Sﬂ@ are real ., This is of course due to the conventions
used here (one can easily see that they are taken such that 1,9 are time

reversal invariant : then the S%@’s have to be real).

e) Angular analysis of reactions involving two incoming and two outgoing particles.

Consider a reaction



1 2 3 4
masses m1 m2 m3 m4
spins s s s s

1 2 3 4 (II.e.1)
momenta p1 p2 p3 p4
spin projections Oi 02 Oé 04 .
Let S8 - 1 - iT be the transition operator.
We recall that relativistic invariance imposes

-1 4
U(a,A) S U "(a,A) = S ., (I1.e.2)

This allows us to use fruitfully an intermediate state expansion in terms
of states which reduce products of representations occuring in the initial as

well as in the final state

(Ipgloy s [p,do, | T | [p,]oy,[p,]0,0

2
. . i3 3 3
nd d M d M esansen
j 34 12 2@54 2w12
(m,_+m )2 (m_+m_) 84712
3" 4 172 ST
H3grtyg

% Invariance under reflections reads :

i svim=s . umsuvim=s , v suvtap =st

where phases have been put equal to one by virtue of the cluster decomposition

property quoted in chapter O,Q b.
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2
v e <{b3],0'33[p4])0‘4 [[P34]p’34’ J34’ ﬂ34’ M34>

2 2
(TPlgys Hag 3 Jagr Mgy Mgy 7] [Pligs g 3 Jypr Mype M12> (II.e.3)
(PL s by 5 9 s M, Mo, I, 1 oy [p,] 0,0
12* Y12 7 Y12* 12? Ti2 1 1¥ T2 Y2
Poincaré invariance (Wigner[IV])Eckart theorem) shows that @
2

2
<[P]a«;’ Hayg i J34’“34’M34 ]T[ [lez’ Hig J12’ Nia? M12>

has the form

J

4 12 2
§*(p. - P.) & 8 T ®2) (II.e.4)
34 127 Ji50d5,  Higibgy TggeMy, 12
2 2 3 o — J12 2
= oM, -~ M ) 2 8" (p,, =P ) & T P, )
34 12 34 34 12 J12,J34 Bigrtlay  TMgatTyg 12
J 2 . .
where T (P7) is a reduced matrix elements.
N340 Mg

We further define partially reduced Clebsch Gordan coefficients

through(*)
<[p]03[pt]0J l[P]’H ] J,n,P2> - 64(P~p-p') %zé ([p]—l)
s' r1~1 1,1 2
%GAT’ ([p ] ) << b, Dp,T I [P]:“ } dy My P >> (II.e.5)

(%)

In other words we express the components of

. " 3 1) .
P»H?J;ﬂ> on a spinor Dbasis,
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with the result 3

<[p3] ogslp,lioy, |T] [p, ] oi,[p21,05>

S S
4 'S -1 4 -1
= & (p,+p,~p.~P,) %) ([p,] ) 2 (p, 1) x
172 3 T4 j%‘ AN 3 Ty 4
ﬂlz’n34 (Ilﬁebe)
L pystayp,st, [[Platty 3y 1y, POOY T2 ®?)
3'°3'4' "4 e T sy Mgyt Mg
2 51 t-1 2 t-1

where P = p1+p2 = p3+p4 + (where, of course spin index summations have to

be omitted when massless particles are involved),

T
If the [pi] 8 are chosen adapted to the kind of coupling in which
particle 1 is involved | e.g. [pi]€ = [pi < P][P] in the case of an & ,s
coupling s the expansioni has a form which has a complete non relativistic

looking aPpearance,
For example

2 .4
8P° & (p1+p2 Py p4)

NERICAR RN [pli 01[p21605> =

17422 2, .1/4 22 2
(P’ 1, )7\' ( ’3 4)
B3 84 | B34 %34 8534 |7 34 J bia *
v @y o, @ v o@y
o, o, |o n G T34 34’ 12 P
s’“e 3 % 194 34 “34 5347512
12712
S34%34
J I S s s s
12 12
< > < 1211 2 > . (I1I.e.7)
S mlz 0'12 0'12 Ul 0'2
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Such sums over [ will be evaluated in appendix II in familiar
operator form in the case where the spins involved are low, Consequences
of space and time reflections (connecting time reversed reactions) are easily

derived,

One may wonder at this point why we indulged into such a luxury of
details concerning the specification of spin basis. The reasons for such
care will become apparent in the study of three particle systems, a corner-

stone of which is the precise construction of two particle states.

Alsoy when one studies reactions occurring in cascade, it is conve—
nient to be able to shift reference frames, convenient frames not being ne-

cessarily identical for two successive reactions.

We end up with a last important example 3 the expansion in terms of
helicity amplitudes 3

2 4
8p° 9§ (p1+p2~-p3 p4)

A (P'ml 9m2) A r ,ms,m4)

T 2341 i J J 2
=== 9 () T ;00 (II.e.8)

with cos 6 = -§ . 4

where the summation over U :ZE: %i 2 (Q )

) 9
" sThgt 93 40 M, T

is easily performed provided all helicity frames (i.e., the Q *s) are so

. ¢ - wpo; ; .
d d th - € t
efine at nz(pi) plvp2pp30" which is orthogonal to all p;'s .

-1
since tnen 0 Q leaves n_(P) = € pvpppO~ invariant,.
33,4 3}:2 2 pyoo T17273
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. *
Exercise.

Express unitarity of the S matrix, below three particle pro-—

duction threshold, in terms of the reduced matrix TJ (PZ), using
Tl 42T
347 12
- d.p d,p .
A 371 372
1= > > lp, 1oy [p, 150, 7 <[p,1 o, [p, o, |
2w 2w 1 172 2 1 17272
2 particle 1 2 O, ,0
1772
states

- .3
2 d P 2 2
= /dP j-—g(;;- > eLe s amp®) (plu 5 a,m,p?

JyM, 4

£) Convergence of angular expansions as a consequence of analyticity assumptions.

"It is customary (cf, appendix III) to define spinor amplitudes accor—
ding to

- -1
{Ipglsogslp, 1so, |7l [p, 130,400, s0,0 = 6% (p 40,0500 3, ([pg 179, ([p,17)

33 Ay

t-1
M -+ (p,p,p.P,) 9P (p, ] 5 92 ([p
aA A A "P3PaP1P2’ TR o 1 Ao, P2

™1,

(II.£.1)

= 6(4)(p1+p -p

e RN (pgI™ 9, s, I™H

4 4

-1 -1
My aaa (ogppp) 9, _ (€7[pD 92, (¢ [pD.

3741 % 191 22

Exercise ¢

Find the relationship between M



. [7] .
A current assumption is that MA AAA (plpzp3 4 is holo~

3 12
morphic in a (complex) Lorentz invariant 4 domain of the mass

shell p1+p2 = p3+p4 ¥ pi = 2 , where it is furthermore covariant under

the complex Lorentz group 3

8 8

3 4
M (Lep s Lop_y Lep,, L.p ) =9 Al (A(L)) 9 t A(L))
A3A4A1A2 1 2 3 4 A A4A4
(A(L)) % t (A(L)) M t t T F} (p 2P, 3P, P ) . (II.f.Z)
4
AiA A2A A3 A4 Al AZ 1772773774

Covariance implies a decomposition 1

u o o) = (’33 54 I‘°‘34><‘q’1 8 S12><834 Is1:axz>x
AAA A, T3 Py Py Py Ay A, Ay, A, A, A, A A, A
x MZ (p, p, P, P,) (1I.£.3)
A 172 73 Y4 :

hence it follows 3§

Z _ z z '
MA (L.pl,L.pz,L‘pS,L.p‘l) - @AA* (A(L>) MA’ (p1¢p2yp3;p4) . (II.fo‘l)

This decomposition is easily inverted.

Note that from covariance also, putting A(L) = ~‘ﬂ s one obtains the

result that =s +82+S +s4 » and consequently Z , must be integers.,

One can show [7’8] that under some technical restrictions Mz can be

decomposed according to

5 .
M =
N (p1 P, Py p4) ZiJ A (s12 13 14) YZ (pl P, Py p4) (I1.£.5)

K
+ _.



Z t
where the AK 8 are holomorphic functions of
+

4

8., = (p +p )2 s,. = (p,-p )2 s, = (p,~p )2 S, +s 48 = > m
12 172 y 13 173 ¥ "i4 174 127713 " 14 i

in the image on the space of invariants slj 12 < J< 4, of the original
holomorphy domain, and
. Z(,K+ ;- Ky ImK 5T Y(K+)( , Y(E—K+)( ,
A “P1PPaPy’ = () v, a) Tu “P1iP’ Yy P, 1Py
(1I1.£.6)

T4k K_ (Z~1-k_)
- K-, B=-1-k_,5~1 -

Y, (p,P,P5P,) = <p } . > Y, (p,sp,) Y, (p,sPg) »

[111][8]

Here, the relativistic spherical harmonics
Y; (a,b) are defined as follows t

consider the "complex semi-bi-vector" associated to a,b

|
o
o'l
!
o
w
+
Ho
o
X
ol

e (a,b)
and write

\{& (a,b) = Yz\La @ (a,b))

the right hand side being the solid spherical harmonic (homogeneous harmonic

polynomial of degree L) of argument gb(a,b).

Remarks.

2
- The above construction works if P, » m Z O is replaced by any pi
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2 2
such that p, = m, Z O .
i i

~ If a= (1, 0, O, O) Yﬁ (a,b)

v @) .

i

~e

- Yﬁ(aa + Bb , b) = aL Y;(a,b) Y; (b,a) = (—)L Y; (asb) o

- For each Y there are I+1 + 2 = 2% + 1

amplitudes Ai s hence, a total of (281+1)(282+1)(283+1)(284+1) .

Example 2 ,
The Ai s fulfill the Mandelstam representation.
+

Theorem 9 3

The natural domain of convergence of multipole expansions, for

2
fixed epergy P = s =

12 534 s+ in terms of the variable
z =cosb, 347 79 o - Ugy
is the largest ellipse, with foci * 1 in which the AZ (s cosb )
? - K 12? 12,34

+
are holomorphic, The rate of convergence is governed by the large semli axis

of ellipse.

- Sketch of the proof: One first proves that Tkp(s »z) has the form

12
g M
2 2
(1-z) (1+2) T (8,,42)
where TXH (slz,z) has for fixed 312 the same 2z -~ analyticity properties

as the Ai ' 8 . One furthermore notices that 3
+
l‘l;.?\'. H"*'_?\_ 1/2

2 2
J - (iz== 1tz (Gl (G-t Hmhy A
dMJ-(e) = ( P ) ( 2 ) [ (j*l-)\)! (J"’?k)l :\ PJ"‘H’ (Z) b 3




-\
where, for fixed A,u, the PH_ ’H+x(z) are orthogonal polynomials on the

J—H —
interval (=1,+1), for the measure (’155)P A (1553“*X dz

-

Thus 3

L= HAA
_ l-z 2 14z, 2 J IEYNRTEYY
= = GGHEEH s T @,
3

T. (

Al o12 2 2

[10]

of convergence stated in the theorem. J

and, by a classical theorem s the expansion ng «ss has just the domain

If one assumes analyticity in a cut plane in =z , as stems from the

[11] [11]

from postulates of local field theories, one sees that the ellipse of conver—

Mandelstam representation,; or in the Lehmann ellipse which emerges
gence collapses on the interval (-1, +1) at high energy ; hence, as energy in-

creases, the convergence becomes worse and worse,

The convergence of other multipole expansions is of course a conse-
quence of that of the helicity expansion as is seen from the way they are

connected,

[12]

g) Threshold behaviour of reduced amplitudes .

We shall be concerned here with threshold behaviours of reduced matrix

elements Tz P (s) which are also consequences of analyticity in the momen-
834512 tum transfer variables,
34 12

Since we shall be concerned with a neighbourhood of 3
_ 2 2
8 = max {(m1+m2) » (my+m, ) i £ 0

we can use an expansion of the spinor amplitudes in terms of
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0o

S,k . o I K (-« - )
t = Ry s ITKy .. * + 1
YA (Pl 3P, P :P4) = \._H y 1 LA 1 Yp. (P:rql *2) Yv (P*qS ’4)

thus introducing possibly in the coefficients Ai (

\ s12,513,314) poles at
= 0. .
51,2
We then compute the angular integral which yields Tz 2 (8) and
[13] s34’812
represent it in terms of a graph H 34*"12




J J
1 3
which has the following meaning : each vertex is meant
for a Clebsch Gordan coefficient jl J2 j3
and a link between two vertices ml m2 mB jz

indicates a summation over the corresponding magnetic index; a necessary
orientation at each vertex which should indicate in what order the Clebsch

Gordan coefficient has to be written has been omitted as it is of no use

for our purpose ; each circle ——iﬂj—Ja- is meant for a matrix element
! R 53

2 , (B, «P) .
Oici i

z
The angular momentum X comes from assuming that AK {slz,z) has

a spectral representation of the type ¥
Z ' '
5 oo Py (slz,z ) dz 1
A" (8 _,z) = £
o1 z'-z la,, | lag,]
- z (s__) 12 34

as one can deduce from e.g. the Mandelstam representation, and the use of

f = Z (2A+1) P)\(z) Q)L(z‘)

PART A
A

together with the addition theorem

- N A%
P)\(z) = Zm: Ym ('9»12) Ym g334) .

. e}
Vertices (612, K, o A (634, ¥ K, L A) come from integrations

over d{ s afl » rEspectively,provided_the angular dependences of the
P 34

@0_04 (pi + P) are neglected, (the regularity of these matrices around
i71i

threshold makes this possible) ; there emerge, thus, factors

Ki -k -

lay |
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from; the solid harmonics in terms of which spinor amplitudes are constructed,
Such a graph is finally accompanied by a factor Qx(z') weighted by the

corresponding weight functions.

. . = fo) - s o] T
Now, to a singularity 513 813 or 814 14 ? there co
responds, at energy s a singularity in =z of the type

12

% <Slz%/qq1,z| Iq3,4[

[¢]
where Y is slowly varying around threshold, Furthermore, at threshold

the argument of QX goes to infinity like Z;//]ql zllqa 4I s so that ¢
¥ ?

[ J7\+1 [ tkﬁl
q q
1,2 3,4
0,z fla, yllay 1 -~k A4
A 1,2'1%3,4 el
|z |
o pls, ,,2")dz’
So, provided that the integrals ]. ’K+1 converge, the
t
threshold behaviour is given by 3 Z z
K
t+x Z—K+ - L + A
[ql,zl lq3’4l -

where the exponents have to be minimized according to the triangular inequa—-

lities imposed by the non vanishing of Clebsch Gordan coefficients.

a) Elastic scattering xlq1 2[ = 1 IQI .
3

q3,4] =

0
the power to be minimized is ¥ - 1 + 2X . Now :

K +A>¢% LK = .
2 %2 Y + 1+7\.2€34
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Hence, in general, the threshold behaviour

)
J

T ~ q|
612 634

12+%34
12 ®34
(unless the coefficient vanishes accidentally).

b) Inelastic scattering .

o
if m, + m, < my + m, the power to be minimized is E—K+— 1 + A > 534 3

—_—

hence, in general the threshold behaviour 3

J 634

T !q {
1o Yoy 34

S12 534

(with similar restrictions).

Remark,

This argument is a substitute for classical arguments in potential

scattering theory,-singularities in momentum transfers essentially

®13* S14
play the roles of ranges of direct and exchange potentials — .



CHAPTER III

ANALYSIS OF THREE PARTICLE STATES

a) Couplings in cascade.

Assume we have a representation of the Poincaré group acting on a

space with basis [[pl],oi 1 [pZ]’oé ; [p3],05> . We may first transform

it into : [[plz],ulz 10 J [p3],05> where 1 is a set

127 " 12

of degeneracy parameters which labels the coupling of particles 1 and 2 .
Since the frame [p12] is arbitrary,it can be chosen appropriately to couple

the system (12) with system (8), with a coupling specified by degeneracy pa-—

14
»

rameters nlz 3
¥

]rO'

123 '

JEIP J127 127 12,37 n12,3> .

. . t . .
It is at this point that the expression of the state [[p12]’“12’ J12’n12
for an arbitrary frame [plz] is really useful. Let us for instance write

down the Clebsch Gordan coefficient for nlz, nl ,sets of #~a3 coupling

2,3
degeneracy parameters 3

2 2 _

ETRPCPIE I P AN PN I PP P1275129%127912°P1237%12,3%12,3 12,3 ?
' ?2 /2 ZV/F:;s V2 4 2

M/ 2 2 2y T 174 2 2 67(p, 5g™P;"Py"P5) 6(p o~ (P#P,)7) x ...,
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X aese S1 -1
AEEER RIS LIPS )
4 \] 1
01 93 T3
— t 3
Ulz— O_1+C72
Hig™ 930
— : 4
Oy93~ H12%93

s -1
3

e <£p31

s ) =
2 /-
@céoé K[pz][p2+'plzl[plze'plzaj[p123]> ?

51 %2 |®12 Y2 12 | Jiz 12
o o lo m o X 2 (gi 2)
1 % |%12 12 %12 | Y12 Do >
s S
Jig %3 | ®123 12,3 %123 J123 2.0 a
Y " (g )
Lo %3 | 123 By5,3 %123 #1203 123 ~12,8
2 2
93,2 — 2 ‘P17 Py 2 Pia
P12
P, = P, +0D,
' = “~ s ql . =
912 B IP PY L N (note : qj, « Py = 0)
2 _ .2
= % (- _ Tz )
92,37 2 ‘Pz T P3 2 Pio3
P23
a = f—=a . ni(p123)§ .
The occurence of ¢!  comes from the fact that i-.
L2 9 -~ 4

[psé'plzsl[p123]>

(I11,a.1)

12.ni(plz)
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occurredin the first coupling, Since [plz] had to be chosen as

[p126'p123}[p123] in order that one might perform the second £ - s coupling

1

conveniently, 12

— . < . = - .
999 4 ge [Py Pypgl 0 (o) a 0, (P gg) o

3

This is a relativistic effect as well as the cascade of Lorentz

transformations which occur in the spin matrices,

Such reductions may be of some use in the study of isobar productions,
When isobars corresponding to different couplings ([(12)3][(13)2] say) are
simultaneously produced, it is interesting to know the recoupling coefficients,
The solution to this problem will be postponed till later since the symmetri-

cal coupling to be described now makes it essentially trivial.

[15]

b). The symmetric coupling .

We consider states i[pl]ci [p2]0é [p3]05> whose total momentum, as

we know,is p1+p +p3 = p123 s let [p123] be an arbitrary frame attached to

2
and let p2 2 2 (2+2+2 = 2+2+2+2)b
Pi23 Pig 'Pa3+ Pyg # Pyg * Pyg * Pog = My + By + Oy + Doz’ b2
] . , ' 2 2 .
set of values of invariants formed with the pis (pij = (pi+pj) ) . p:,L s
belonging to such a set of invariants are parametrized for a given p123 by
a rotation R which takes each pi to a standard position p? such
2 s s.2
that Pyy = (p] + pj) .
o
(Invariants are fixed by the time p123
s
components p, - P » and directions ps
i 123 s s 1
by the triangle with vertices : p Py /1
pS . B |
s _ s i "123 o QS < S
q; = Py = Piog DI ¢ 3 ' 4
Pio3 |
s
s
= q
Py = [Py ] B by . 5
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One may then use spin basis [pi] rigidly attached to the configu—
ration of the p;s 3

(5,1 = [p,,5) Rlp,"]

and define states

p )H j — 123

47 WA

Tp,1 ®@y550Rs & 5 [By] (B o00R)s Ny 3 [py] (0y,00R) A0 (IILLDL1)

where the xi s are spin projections on the above frames, which transforms ac-

cording to

2 2 2

i A.p. .a
123
12 Po3 P13 €

UCayh) (o, pu I 5 3 pg0 Modyadgshgy P

3 (111b.2)

2 2 2 123 -1
t,

[%ote [16] : [Api] = [Aplzs] ([Ap123]—1 A[p123]) R [pis] s, sSo that the

Wigner rotations computed with the above frames reduce to * 1,

tHe latter
gign being due to the necessity of using SU(2) j123 is thus restricted

to be integer or half integer according as s, + s, + 8

2 3 is integer or
half integer m} .

The quantum number A can be interpreted as the projection of the

total spin on

o
{plzs]R ns(plza), an axis rigidly attached to the three mo—

menta pi .
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The Clebsch Gordan coefficient is

. 2 2 2
{lp, 1o, [p,lo, [pgloy [P pqJot 3 3ypgeMayahgsdy BT, Py Pog

2
2p 2 2
123 64(p123—p1-p2-p3) 6(p?2— (p1+p2)2) 6(p13 - (p1+p3) )
Vi
(s.) (s.) (s.)
1 -1 2 -1 3 -1
2 ¥ (Ip.1 [p1>@ <[p1[p}>@ <[p1[p1>
%M< 1 1-°r %% 2 2°r %% 3 3°r
/23 o +1 Ji03*
BT @M (R (pl, Py s p3)) (I1LDb.3)

where the [pil? are some frames rigidly tied to the system of 3 momenta
as described above. A convenient choice is for instance that where na(pi)
are the helicity axis in the overall center of mass !

[p; <Pl 9y

n (p,) =
3 i >

and n2(pi) - (plA pzA p3) (the normal to the plane of the three momenta),

This coupling scheme is appropriate to characterize the decay into
three particles of a system of spin j123 in terms of the 'Dalitz plot

variables" and, at each point of the Dalitz plot,of the angles of the

2
normal to the production plane and of the azimuthal angle within this plane,

which fixes the orientation of the triangle made up by the three momenta,

One can of course similarly symmetrically couple any number of one



particle states.

Remark.

The conditions of convergence of angular expansions of transition
amplitudes to final states involving three or more particles is very badly
known at the moment because of the lack of information on analyticity pro—

perties of such amplitudes,

c¢) Recoupling coefficient between a state labelled by the symmetric coupling
and a state labelled by helicities 3

let ¢
2 1 t st v T t ,2 12 ¢2
<[plza]’“ b J1a3 Pig dig M Mo Mg X3[[p123],u P Jjo3 M Mg Mg AP, Pog p13>
(III.c.1)
2
- ot
= 8(pyo5= Prapg) 8.t Oy S W, (B, I A MMM e
123 J123
123
i3

‘9,2 ,2
*e+ |P1g Po3 Pyg

1 ¥ :
Xl Xz XS S I
All helicity frames are taken to have (p1 Ap2 Ap3) as axis number 2 ,
This allows us to make a 2 dimensional drawling of directions of the various vec—

tors involved and read off circular and hyperbolic angles.
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h
3

The circle represents a curve at infinity on the light cone-time
like vectors are represented inside, space like vectors, outside-§ Two or-
thogonal vectors are represented by conjugate points,

hi meansthelicity axis of particle i in frame of time axis pJ .

One gets factors

12

12) (obvious)

2
8 -
(p12 p

6K3X’ (since particle 3 is described in terms of the same
3

helicity frame in both couplings)
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Ba

2 .123
K'(‘ﬁz .ﬁz ) describing the change of helicity basis from the sym—
metric to the unsymmetric coupling
g1 12 ,123
7\7»’( -8 ﬁ ) X
djlz (4 ﬁ123) where is the relative momentum of particles 1,2
ApM Ay 91 ,2*"12 9,2 ve mom ot P *
in their barycentric frame (not q !)
J123 ~
dx Y (—q12 3.n) where n 1s the spin axis rigidly %ied up with the
12 3 *

triangle of momenta, e.g. q{ o *
¥

1

ig *

All scalar products are evaluated in terms of the invariants p

The kinematical factors occurring in each Clebsch Gordan coefficient stay

unchanged. Thus we obtain ¢

W G2 5 n o a o A 2252 arar

2 12 J12 M1 "o Mg "31P1g Pog Piz Ny g Mg

Pi23?d1a3

(III.c.2)
4/ p vfﬁé(p p )
12 12 3,41 -A.+8_ =\
12 Sp g tEg Ty
= 47 (=) 5x A
M/A2 2 2y ,1/a02 2 2 33
MyalysPy o Pyg4M34P 03
s J

*12 123 1 A123 ~ ~123.
""M( >°‘w<“1 > “H-k( 'h>

Ji23 >
x
dxlz—xax < 12,3°

The computation of an arbitrary recoupling coefficient [17*18]

involves
essentially twice as many rotation matries,as one can see by inserting a com—-
plete set of states labelled by the symmetric coupling. Racach coefficients for

the rotation group will eventually appear when £~s couplings are considered,
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APPENDIX I

BASIC FACTS ABOUT THE LORENTZ GROUP

a) The four sheets of the Lorentz group

2 3
Let =xz= (x°, x1 X x ) be a vector in Minkowski's spaece.

Transformation matrices L 3

x - x'=z- Lx

such that LT GL=G,

I
3
©
i

. x'Gx?

form a group t the homogeneous Lorentz group. This group has four connected

components 3

The last three

identity).

One has

det

det

det

det

H

LV
+
L'

L

I

1

L = +1 L°, > O (a subgroup)
L = 41 L° < O
o]
L = -1 I° > 0
o
L:""l LO <O‘

-1 x I,¢
+
¢ x 1t
+
-G x I.$
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L: is not simply connected. Its universal covering group (the smallest Lie

group which has the same Lie algebra and is simply connected) is SL(2C),
the group of 2x2 complex matrices of determinant one (special linear
complex group in two dimensions - or group of 2x2 unimodular complex

matrices).,

The correspondence is 1 =2 ¢
L- ¥aw

where A(L) 1is defined up to a sign by @

X' - L x — g’ = Ax AT

- — ->
(§ = x° + x,0 where ¢ is the set of Pauli matrices) indeed det X =

|

= x°2 —422 = det x (since det A = det AT = 1),

b) Subgroups

The little group Lﬁ(x) of a vector x 1is the subgroup of Lorentz

transformations leaving x invariant.

If x is timeelike : x2 > 0 Li(x) is isomorphic with a rotation
o
group SO0(3) in three dimensional space § if x = (1,0,0,0) L+(x) is just
S0(3) in the variables Xy 1< i < 3 o

The SL(2,C) representative is SU(2) the group of unitary complex
2x2 matrices of determinant 1 (A1 A = 1),

If x is light-like 3 x2 -0 ﬁi(x) is isomorphic with a eucli-

dean group E(2) in two dimensional space (again a three parameter group) i

2 2 2
Rq+0 . Qq+Q
1+9%2 - ~—1722
I£ x° = (1,0,0,~1) 1+ —— alcos©+a251n@ alsin@+azcos@ 3
Q
L(x°) . oy
zﬁu cos® —-sin¢ e
2
g2 sing cosQ - -%-2-
2
2
w2 % cosP+a,, si -, si cos 1—-(11-”a
_lgg_ ay P+a,sing a, singp+a, ¢ >
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id
2 Z
The SL(2C) representative is the subgroup _io
0 e 2

Mo

/2 0
= o 0]~
. 2 4 C .

If x 4is space-like : x < O , L+(x) is isomorphic with a

three dimensional Lorentz group S0(2,1). The SL(2C) representative is
‘ [o]

isomorphic with SL(2,R) (unimodular real matrices : take x = {0,0,1,0)
-1 -1T

and use A o, A = o, and o, Ao, =4 , 2 general identity) or

SU(1,1) the pseudo unitary group in two dimensions which fulfills

10 ) Af _ (10 )

A(O--l 0o-1

(pseudo because of the signl!).

Every Lorentz transformation can be written as the product of a par—
ticular transformation sending any four vector on a vector of equal length
(and same sign of the time component if the vector is time-like) by an ape-—

ration of the little group of this vector.

Thus for instance every Lorentz transformation can be decomposed into

a rotation and a pure Lorentz transformation

AA is hermitean positive definite, and has therefore a positive
square root H which represents the pure Lorentz transformation

—)
H = ho%+ h.éﬂ N h real h°2~.32 =1

which represents a Lorentz transformation of velocity in the direction A
2| hiho

with magnitude v =
2 2
ho+iﬁn

+ - -
Then AA = HHT - (H 1A)(H lA)T =1 &A=~ HU where U € SU(2) .

c) Representations of SL(2,C)

Let g be a complex two dimensional vector (a "spinor"), trans—



forming according to t

4
alé) -[¢8) - ag + bn
M n* gl cd 7 cé + dn

|
.
™
[V
o
™

[
.

The 2j+1 —dimensional vector

(&)1 () I
J(G+m)1 (-m)!

ij(f’n) =

transforms according to

2l 1 Vo Gem SV = 9] () Vo (em)

I

ij (aé + bn, c& + dn) .

Hence 3

J+m-p .p Jj-m—-q .q
@J . (A) = :z: VCG4m*) 1 (G=m*) t (G+m) ! (~m) ! 2 b_c d
min . .
p+q (j+m-p)! p! (j-m—-q)! qi
=j-m'
05p§j+m
qusj-m

This representation is labelled (j,0).

Similarly %J(A 1) is labelled (0,j) ; it is not equivalent to
23(a).

This formula defines @J(A) for A arbitrary 1

One can easily see that
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29 , % = 2%, W
mm mm
J T - J
@’j 1 (7\-@) = 6 szj -
mm mm

If A € 8SU(2) then (0,3j) and (j,0) Dbecome identical (U = UTGI).

d) Products of representations IV-19 Clebsch Gordan coefficients.

Let (51,n1) . (52,n2) be two spinors, From the identity

T
= A fi nl - &l = - :
AcéA oy det A , one finds that §1n2 §2n1 (§1n2 §2n1) det A);in

particular 3

_ 23
(flﬂz fznl)

_ _yJm
oo = vjm(glnl) (- Vj_m(§2n2>

is multiplied by (det A)2?J under the action of A .

The invariant formed with three spinors

= [gm.-¢ 1323[5 ce B ]jlzvﬁ 543, 41
3150393733, 23 7 3" 311761y §1Mg™EpMy 12+323%93, %Y

. L Jig*daatdss
is thus multiplied by (det A) . It is homogeneous of degree

23; = Jip + Jdpg IR LM 205 S 05, 4 Jpy 10 (G0,
Lo s . . N
233 Jig + gy in (fS,nB, and can thus be expanded as

J, d, d
1 2 3
m, m_, um Vj m (él’nl) Vj

(&,5m,) V.,
27 2 J
m1 m2 m3 1 2 3 11

22 373 LY
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Clebsch Gordan coefficients are defined by

dy 3| 33 Jip dgp I3 j.+m
_ . 3%
m, m m,J 2‘33"'1 m. - m =)
1 Mo | T3 e -

they wvanish unless m, +m,, = m, 3 131—32[<33 < 31+32 s Jl+j2+33 integer .

The invariance of I, 35 then reads
J12923931

J.+3 -3 s Y P J J, 3,13 J J
(det A) Pee m1 m? m3 @mam' a) = Z: m% mf m? @mlm’(A)%m?m’ (4.
1 MM/ 3% T 1 Y2("s 1™ 22
m +m,=m,

Normalizations have been fixed so that the Clebsch Gordan coefficients

fulfill the orthogonality and completemessrdlations appropriate when A € SU(2)

:E: J; Jz|33 Jz|d1 Ia = 8 . b,
1 2
33¥m3 m1 m.2 m3 m.3 m1 m2 171 2 2
. . « 1
Jg Jl I, 3y 3alda - aj 5 5m mg
1
ml,.m2 m3 m1 m2 m1 m2 m3 3“3 3

so that one also has § i.e.

J, Jo1d J. Jold
J.+3 -3, 3 1 v2|“3 1 Y2{v3 ) j J
(det A) > 2 333 ()= :E: R %mlm,(A) %mzm, (A) .
MaMg o0 ] e 1™ oMo

e) SU(2) versus SL(2,R)

Finite dimensional representations of SL(2,C) obviously restrict to
finite dimensional representations both of SU(2) and SL(2,R). The restrictions
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to SU(2) yield the well known unitary representations of SU(2). It is not

so any more for SL(2,R) because SL(2,R) is not a compact group. Unitary
representations of SL(2R) have been classified by V. Bargmann [20] .

We shall just say, for the purpose of orientation that a convenient basis of
representation space can be labelled by integer or half integer eigenvalues

of the generator of rotations (corresponding to the subgroup Zzi i - ziz z >)
which vary by steps of unity over an infinite range either from

- tO0 +w, for some types of representations,or from (-~ to =-k) or from
(+k to +4w) where k 1is a number which characterizes some other types of

representations.

£) Pourier analysis.

Whether it be for SU(2) or SL(2,R) one has the following property @
2
let f(g) Dbe a square integrable function over the group 3 lf(g)[ dg where

dg 1is the so-called Haar measure on the group ( d cos 6 dp dy for SU(2) ,
d cosh © d¢p dy for SL(2,R), then there are sufficiently many unitary repre—

sentations %J(g) with matrix elements @im,(g) such that :

£(g) = Z cgm, @j,m(g)

m

J
/}f(g)[zdg = 2{: lcim,lz

: '
J, m, m

where the sum may eventually turn into an integral, In the case of S8U(2)
J Just ranges over integers and half integers and the %J(g) are just the

representations we have previously described,

In the case of SL(2,R) the sum over j becomes an integral plus an

infinite discrete sum.

From this,one can deduce the existence of complete sets of functions

1"
on "homogeneous spaces’ of these groups. For instance, let us rewrite in the
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case of SU(2) :
£0,0,0 = > ¢, 9. (o,8,0)
Py0, ¥ = om' n'm Py05y).
J

Consider now functions of ¢,0 alone (which label points of the
unit sphere, Any function g(¢,9) can be lifted to a function of (9,8,V)
in
through £ (¢ 8 V) = g(¢9,8) e v -
Thus, for such functions, there only survive in the above sum terms

where m= A , j > |X( <@;,m(@,6,qb = @;,m(@,G,O) elm¢> . Hence the various

complete sets of functions on the sphere @;k(@,e,o) for fixed A , as mentioned

in Chapter II § b.

A similar result of course holds in the case of SL{(2,R),which has
been used in attemptsto understand the group theoretical origin of Regge's

[14]

analysis .

g) Elements of Minkowski geometry

2
As one knows , the Lorentz group preserves the light cone x = 0 ,

It is convenient to associate tg*each four vector its direction labelled for
=_ .

xd.;
transformation, 1its direction ¢ 1is transformed under a projective trans-

instance by the 3-vector 2’: when x 1is transformed under a Lorentz

—
- 2 " " -
formation ¢ — &' = —Eé-o which preserves the sphere (1t 52 = 1 .
(LS

Time-like, light-like, space-like, vectors are represented by points
inside, on,and outside Q1 . These three regions are preserved globally under

any transformation of the group.

Invariant distance between two points:
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c
_ AC BC
is a projective invariant,
real if A and B are time-like O

pure imaginary if A and B are

space-like (C and D are then complex conjugate of each other).

In particular if the above "anharmonic ratio® is -1 (A and B

conjugate with respect to (1) the corresponding four vectors are orthogonal.

One can similarly define the angle between two two—~dimensional planes
which intersect,as the logarithm of the anharmonic ratio between their traces
on 2' space and the tangents to (1 through their intersection in the plane

they determine

Invariant volume elements?

if ¢ = ¥ 1 are traces of (Q on a straight line the line element is ~2§§

1
. 2 2
if él + 52 = 1 is the trace of (1 on a two plane, the surface element is
d§1 d§2
2 2.2
(1 P 52)
d§1 d52 d§3
finally the three dimensional volume element is .

(- &3
As a result the sum of the angles of a triangle is ¢
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smaller than 7 (it is called the defect of the triangle), and is proportional
to the surface of the triangle.

This geometry, a hyperbolic analogue of the geometry on the sphere is

useful in evaluating recoupling coefficients.
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APPENDIX 1II
ANGULAR EXPANSIONS FOR TWO BODY REACTIONS INVOLVING LOW SPIN PARTICLES.

It was found in Chapter II that angular expansions of transition
amplitudes could be expressed in terms of "‘reduced Clebsch Gordan coefficients"
involving spin matrices of a purely relativistic origin ( %(pie P) ) multi-
plying expressions involving SU(2) Clebsch Gordan coefficients and angular
functions of three dimensional (symbolic) vectors a, - It is the purpose of
this appendix to give compact expressions of these "non relativistic™ parts
in casges where the spins of particles involved are sufficiently low so that

the Clebsch Gordanry can be treated easily.

The methods used here allow one to write down fast typical angular
distributions or spin correlations. They have a defect, though, that normaliza-
tion factorsywhich often are not useful, have to be computed by a separate cal-
culation . So, reduced matrix elements defined here and denoted by small let-

ters will differ from those defined in the body of the notes and denoted b
capital letters, within kinematical factors (due to phase space) and / 24-P1

factors due to conventional normalization of Clebsch Gordan coefficients.

We consider transition smplitudes ! <Gf U; de ]Tzci 01 q ) where
L
only spin variables and angular variables (directions of the barycentric mo-

menta EE in initial and final states) are indicated. The spins of

PR
f
AAAL
particles are si 5 si s sf N s} and the product of relative intrinsic pari-

ties of all particles involved is % 1 &« The corresponding reaction is denoted
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&
1) 0+0 — 0+0

lrlay = ) Glewd Cowlnim) Cald)
AN la a7
£4ym
£t ym"
where l£m> are eigenstates of the total angular momentum operator. From ro-
tation invariance

<’,’,m’ [T{l,m> = 8 6 t t -

22’ “rnm' 8
b 4
From parity conservation (—)t = + (~)l , S0 that only even relative intrinsic

parity is allowed. Using

~ * ¢h — 2r+1 noA
EE:th(qf) Ylm(qi) = o Pl (qf‘qi) (Legendre polynomial),

m

we ohtailn :

il = ) 5, e @8

Arans

L
he: t i function of |q,| (or |q.}) alone
where t, is a !M&[ IM£‘ .
+ 1 + 1
2) 0+ 5 0 + 5
1 1
<S\£ !o—fIT‘ﬁ& ,o-i> = z <afllYm'> <l!m‘; Eo‘fle" E QJ’}M’>
I3
e':' 1 ' 1
™ (e, 53 I .M T|e, > 3 M)
Jmt

1
<lr %';JrM]e m E 1> <£’m[ai>
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where we have used a slightly more explicit notation for C.G. coefficients.

Prom rotation and parity invariance

(e 5 ,J' Mt]T]z, 5 39 My = 6“, 8 5t 8g? tJ,e .
parity angular momentum
+
For each ({ , J can take up two values , ! ‘_*:é- § we call t = t,
LE= L
2 k]

1 1
Z IZ,E;J,M> <Z;§;J$Ml = ?J,l s

M

is the projection operator on the manifold of states [o‘,l> .

Rule

Let A be a hermitean operator with eigenvalues a the projector

i
on the subspace lai> is

?i]ai> - lai>, ?i]aj> =0 , £ = 8yy ; Z?i -1 .

1 =52 -
Take A — J (? + = o‘) where ! 1s the orbital sngular momentum opera-—
-
tcr, and —;—c‘ y the spin %operator.
_ 1 3 _ 1 1
Then K a = L+ (L+>=) , a = (t-=) (e+=)
t+1 g 2 2 Ly, 2 2
27 2"’
hence
— il — -
? _ l + 1 + l‘O' i‘) . Z - ﬂ.o"
Z+l£— 20 + 1 z~lz_ 2t +1
21? 2



and

L1 . . o~ £+1+?.?
(&ym*, Y ;O'flf L Ii,m, 5 ’di> - <O‘f[ /qu Yim‘(q)

54_5_,5 20 +1
x v, (@) [0‘i>
and a similar formula for P L -
l_—z—yl
Thus,
£+1+? -
20 +1 AA a9 2p+1
T - -
CPLALICRLVEICA th _/dﬂq ax Teldpe® 20 + 1 an
7 +
t-1 o
- .O‘
AN 20 +1 ~ A q 21 +1 A A
P - + %t A .
* Pylayg =) L /qu o P o T P |7y
Using the & function on the unit sphere !
2L +1 ~ A
5(d,a") :Z — P,@qH)
1/
such that /5(3,'&') £Cq*) 0, = £7(q)
24 +1 A A 2L +1 A A
k that K 2t +1 n
and remarking tha an Pl(qf q) can be replaced by ZE: - Pl(qf q)
A

hecause terms which have been added in cancel out through integration over a

in view of the orthogonality of spherical harmonics, we get ¢

=2 l+1+t .o t—?qf.?;
{a, o‘f]T]q o0 = oyl Z [tl NI SN, t, ——— ]
v =0 + 20 + 1 7 2L + 1
28 +1 A A
o Pplag-ay) oy *
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Note that ¢

A N
q,+4
- 1 - - ~ A £ 74
e Y = P
ta 1 % % Vg, 3 Pylapeay) ! (l?’ﬂ?ﬂ ’
£ b of £ i
TR T
since 7 o q ’
9 qu' £
! — 1 ~ A r N
9 Pylageq,) = § dp ¥ d; Py (apeqy)

2 ) o+%:—> o +

Operating as in the previous case, one has to evaluate "projectors™

of the type

1 1, 1 1
Z [£+1,§;J:£+§;M>(£,E;J:u-—é-,MI
M

which can be converted into projectors by the use of (Kramer's trick) :

.Y
(g\,o‘]l+1 ,—12-_', J:L+-§-,M>: (g,o*fo‘-a[l J:£+%,M>

1.
:Ey
— D
(0.q being a scalar under rotation leaves J invariant, but, being a pseu-
doscalar under space reflections, shifts the parity from (—')l+1 to (—)l Yo
The evaluation of e.g
L+1+1 o
q

20 +3 N, 22 +1 ~ A
2272 p R . P (ge
(o‘fl /qu e £+1(€f Q) o.q T = Paa) I0‘1>

proceeds as before by replacing gﬁ;?g-Pt +1(8}.Q) by 6(31.6) which is

—
liable since the presence of cza and the projection operator insures that

the remainder behaves as a Y£_+1(a) -
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One finally gets

-~ ->

l+1+l,qf.<r L — L,

-> - -
Geogltlay o) = (gl oy ) %, —— v 4y

20 +1

Pz('éf.ai) |o‘i>

+
+ 1 1
3) o + P - 0 +0

‘Tﬁ A A A it
{m,€

-a

+ <qf[Z,m> Jl <£’m!ai> <0[01'U;>

here we have first coupled the two spin into either a triplet state la-

1
- 2
belled by the polarization vector € |, or into the singlet state <0[ 1

-
Elo, o) = (l€10,0le) ,  (Oloyo}y = (oflioled
and then used vector and scalar spherical harmonics 1

.1

s

—
<Ltmlai’?> = Y*m(ai) parity -—(—)l if € 1is a true vector

94
magnetic VI(2+1) ¢

i
e Y?mﬁai) parity (_)ﬂ (the 1 factor is use-

electric VEI(L+1)

ful for time reversal arguments)

—— .y £
¢ mla ) = g, ¥,@) parity (=)
longitudinal
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*
(¢ mlqi,f ) = €, Y, (ai) parity - (—)£ if € _ is a pseudoscalars
Bcalar ° -
Thus 2

A
N ~ _ a4 20 +1 A
<qf{T[°1 G; qi> = <01liﬁé % <#£ *;E;T:;; + Jé) an Plcathi) I°i>
¢

Similarly :

3~)
O\qi X? 9
- L +1
{q IT]o‘ > (o"]io‘ Z [18’ + £ ouﬁ] —
£ JICe 1) ¢ i an
X Pl(af‘ai) [O’i>
Exercise

1 +0 - O +0

(replace < ]ic‘ g’]o‘) by the polarization vectors of the spin
1 particle).

Notet: if the spin 1 particle is a real photomyuse gauge invariance to elimi-
Pal

nate the scalar and longitudinal parts 1 fo =0 s.ﬁi =0

-*

+
+ .l 1
5) 1 + 5 ™ 0+3

Using all previous ingredients, one obtains !
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- - 3 oA
L+1+ qu‘c' €4qq X zqi

(. 4 |tlo 5. &) = (o] Z[@ B i
g el T19y,9 AT L NPT UREE

. 1 [ ————
b 2L + 1 vi(e + 1)

t+1+2 o &I
+1+0 3
qfcr .lqi

- A
Ly e 20 + 1 Vi(e+1)

el - -
l"' -
B . ALY
«q —
L 2f + 1 LCL+1)
— —
e+1+£q -0 N
+ £ €+q
t+ 2 + 1 i
t-1 .
= «0
q -
+ ££ £ ?.qi
- 2 + 1
LY —d
g+1+zqf*¢
+ J, _— €
g 2 + 1 °
- Y
l"‘ lq «J l 1
f ] 24 + A A
s d € == p (4..9y) |0y
£_ o) + 1 o 47 A G i

{Q‘H} = {50,:’7 represents the polarization four vector of the spin 1 particle.

—
The transversality condition €,k =0 : e.ﬁi - €, w; =0 allows one to eli-

minate the scalar amplitudes
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If the spin 1 particle is a real photon, gauge invariance allows
—
one to choose € =0 , E.ai =0 , which eliminates the longitudinal ampli-
tude. If the spin 1 particle is a virtual photon the scalar part can be eli-

minated by current conservation (invariance under £ - € + Ak) .

) 1
5 ) 1-+2 —_— 0+2

MuXtiply the whole bracket by o d,

l+

6 )

SR

1 1
e =+
M) 2

2o [

a) For each total angular momentum J , the allowed orbital momenta
are J+1 , J , J=1 &« One therefore needs a generalization of Kramer’s trick,

namely, an operator QJ such that
(o,507,A]Q; 3T +1,1) = {oy,07,alommrs-1,1)

QJ is the so—ealled tensor operator. One finds (see e.g. ref [21] )

2d + 1 <4>A

—_— -’ 1
Q, = o.q aolq + > '
J 2VI@ + 1) 2J +1
similarly
-1 23 + 1 - A A 1
Gl ma (3 - i)
J 2VI(r + 1) 25 +1

b) One may couple spins in the initial state and in the final state

ag in 3) and match pmrities of various multipoles in the initial and final sta-
tes.
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| R
ll
Do [+
+
(VR

a) One needs to express now [J,M;J,1> in terms of [J,M;J + 1,1>

by action of a pseudoscalar operator.

b) Matching parities as simple as in 6"

Exercises

+ &

Nt 1 1
7)) 1+2—> 1—:-2

T 2
8 ) 1 4+1 = l—+~£ N 1 +1 > 0 +1 [22]

2 2
1 [23]

1 3
— e — o
g ) 0-3-2 o+2—>0+0+

Inversion formulae.

We have so far obtained amplitudes in the form

(elT]id) = 2: t%,a <flﬁé’ali>

J,a,B

where J 1is the total angular momentum , B,x, degeneracy parameters labelling final
J
Bsa

and initial chanpels respectively, and the P s', operators enjoying the ortho-

gonality properties t

t1— J
ﬁ‘ga wg,a, I R T
Jt '
Tor Tt € Bp o Bga o
Tr - < N
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Hence, the inversion formula, which may be of some use in studies starting

from dispersion relations @

[ ot o celnlay I e

e fdi’ ai <f17"é’a]i> <i[5°‘é+alf>

Example.

photon + O —» O + O

@lr] 28 = g =) £ @K, kD
- Z t 28 +1 ?'Zq P (/\ ﬁ)
- £ 4x AR A
2 \/‘6(3-*'1)
= D, @lr ) ,
£

[dﬂa an, ?;z Gkle,| @) eq « R 2R, [

Z
/ I R R AR SR EN %
eLlK

EAS
[og oy B HDE_ nanaxr @z, kD
_ 4 NATESY)

@y @ g orad o am
_ 2% i * a@.R E _ (Q'g)z] P (q.®) f£(q.%, €[> ’
fe(e+1) :

where we have used 22 = 4(€ + 1) .
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APPENDIX III

REDUCTION FORMULAE

In this appendix we lay down the L S Z [24] formalism for a quantum

field theory for particles with spin and derive familiar looking expressions
for matrix elements of the S matrix which will justify the introduction of

spinor amplitudes and of their properties stated in Ch.II § e .

We will throughout assume that all particles fo be described are

(%)

massive .
Then the L S Z postulates go as follows 1t

1) The theory is described in a Hilbert space # in which a unitary,

continuous, up to a phase representation of the Poincaré group acts.

There are in # two Fock basis the so-called lin> and ]out)
basis constructed from the same vacuum [O> by action of two sets of creationmn
operators labelled by the same quantum numbers (masses, spins, momenta, spin
projections, internal quantum numbers) aI ([p],c}p) , which describe

observed particles. ol

The vacuum state is the only Lorentz invariant state.

(%)

"This restriction has to do with the rather poor understanding
one has at present of the meaning of the asymptotic condition stated down
below (A.III.13), in the case where there exist massless particles which

mediate long range interactions.
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The in and out basis are obtained from each other by means

of a unitary operator S i

t ot
aout ([p],O}H) = S 240 ([p],G}H) S

hence a_ . ([p],o0w) = s’ a; ([plioy) 8 (A.III.1)
out - T in

and Pa,u (x) = 8 @A,p (x) s

where N PCX) is any of the local fields constructed from the creation
?

and anmthilation aperators as in Chapter I.§.f.iii),

The vacuum and one particle states are stable

<Oinl = <o out[ =<0, | s

in
(A.III,.2)
{[plo,u,in| = {[plo,p,out| = {[plo,u,in]| s
= {[plop,in| T .
$34 ()
2) The asymptotic local fields ¢ (x) can be interpolated

A,u

by a local field N “(x) in a sense to be shortly made precise (A,II1I.13)
£y

(%)

The question whether one interpolating field has to be associated
with each kind of observed particle or whether only a set of interpolating
fields is necessary, polynomials in which create asymptotically "composite"

particles will not be discussed here, We shall stick to the simplifying as—
sumption made in the text,
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and with the following properties :

2
[(PA:P(X) , cpA,H,(x')]i = 0 (x=x")“< 0 (A.II1.3)

where the commutator or the anticommutator is taken according as the spin

indices A are integer or half integer,

The interpolating fields have the same transformation law as the

asymptotic fieldsy under Poincaré transformation.

This latter property requires a comment. As longas space reflections
are not involved, their is no difficulty. But, recall the transformation law

under space reflections:

%ﬂt -1 * ~%&t
[UCI RN (x) ud) " = T P (x)

I

I 53¢
8o = 99 @ .

b 3
i @AA'< —im Pyt

This transformation law expressed in terms of ¢ alone cannot be
retained for the interpolating field if the latter does not fulfill the
Klein Gordon equation, which is explicitely not assumed, (as, we shall see

this would yield a trivial S matrix).

The set of transformations

354 -1 » o0t
u(l ®y (x) udDn = Mg 9, (x)

in in
udl) %XUt (x) U(H)—l = nn* @Zét (x)

is however perfectly admissible when expressed in terms of the Dirac fileld

33
in o, (x)
yout = 4 A.III.4'
%ot e« 2 ‘giﬁt(x) ( ‘
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for which one may therefore assume the existence of an interpolating

fields which transforms locally under space reflection 3

-1 _ *
Ul \Ya’H(x) uan "=ty ‘ya’p(g (A.I1I1.5)

where O ﬂ>

\~1 0

We recall the expressions of various asymptotic fields

d3.

- -i
@z?u(x) = 2n)3/2 j. 2w§ [%AOKEP]) a®%([plo,u) e “PX

(A.II1.6)

~ — —
22 (x) = ——P—— i1 22 (plow &I
A,p (Zﬂj

ra,_ (el o T plow eipx] .

The charge-conjugate fields are obtained by the interchange of

a*s and b's .,

3
as _ 1 d"p as ~-ipx
We set : wa,p(X) = @33 j‘ 2 Ua,c'([p]> a” ([plo,w) e

+ vV, - (pD bT([p],cr,u) o1P¥ (AIII.7)

with a = ( é >
A



3
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2, ([pD) 2 _([p]ct
1 Ao Ac
U ([p]) = —— 1 v ( = A III.8
@9'[pJ 2 <%Aoﬁ[p] )> %0 e J2 ( %Ac'([p]f_%ﬁ ( ‘
with the transformation Law
LICW VIR NC U a,4) = sm,(A‘l) ¥, Gex o+ ) (A.II1.9)
with  S(A) = <§D(A) o1 > . (A.II1.10)
DA )
We note (UT) (IpD) ¥° U, ([pD) = &
ou «p  Bot P = Vgt
R (oD vo, V.. (oD = =% s
ow ‘P YaB Bo* p - oot

and thus define U = U*yo + V= VTy”

>

We can thus solve for the asymptotic creation and annihilation

operators.

- " . >
aas([p]sO}P) = Ua([p],00 -——2575 j d3x e P* 3 v (x)

(270) o Ayl
tas _ i 3 -ip.x & s c
a  ([plioyw) = = —-——-——-(27{)3/2 /d x e 5 ch,u (x) Ua([p],cr)

where UC([p},G7

11

-1
- (2 7) .
g v([pl,o) €= < 2(C) > (AlIII.11)

s
bas([plic'ep) = Ua([p]:U) '—":"‘3"7'5 fdsx eipx (-a-> ‘1’8 (x)
(27m)

tas 3 -ipx € _as c
b , e —————
([pl,oow) (zn)3/2 /'d X e ! WQ:P (x) Ua([P],O?
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h fg) "fa —(-—@-crf) "
where o & ~ x° B ax g -

The integration over X is so arranged that, from each field it
only keeps the positive or negative frequency part according to the presence

- ipx

of the plane wave function e s and that the integral is independent

of x° .,
One may define for the interpolating fields similar expressions e.g. }

- 'y * =
a(f,u,t) = j =k fc.([p]) Ua([P]tUO

2uwp
(A III.12)
1 3 ipx &
X By37Z ]‘ d'x e ao Ya,p(X)
x°=t x

which now depend on t and are assoclated with one particle asymptotic states

-—3
labelled by the wave function £ and internal label u .

The asymptotic condition now states

- ont

t ‘*im

(£,W), (A III.13)

. t T
(and similar conditions on b, a , b ), where the W-(eak) 1limit sign means
that the equation holds true for all matrix elements of both sides between

sufficiently many normalizable states in & .

Remark,

If we had not had to worry about space reflections, we would have
constructed a similar formalism in terms of fields ¢ and ¢¢ and the first

set of components of the U and V spinors.
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-~ Reduction formulae,

We are now ready to express a matrix element

. out B _ 3 out

tTin

a “([p;lhopon) I pin

(=

([pgliogs ) lo?

(=0

— — (A.III.14)
(t, £ ISI i, 1 >

1

where bars distinguish antiparticles,

From (A.III.ll, 12, 13y) SFI can be expressed as a certain limit of

the expectation value of a product of interpolating fields.

C c
w_=<o] 1 v (x0T ¥ (x) DY (x) I ¥ (x)]|0) (A.I1I,15)
FI T Mgty T by TTo1 el g apdp 3

-—)
(provided some wave packets f are added in, which we shall not bother to do).

Given the set of indices (FI), it is convenient to introduce "t run—

cated" products Wi according to the recursive definitiomn

Wor = zi:(_)o(x) wi cene wi (A.11I,16)
1 p
where the sum is taken over all partitions of the set of indices (FI) into
subsets kl PR Xp Oy ...k}Kp = (FI)) ; inside each subset points have to
- appear in the natural order where they appear in (FI) ; o(A) is the signature
of the permutation of fermion operators appearing in Kl ces Kp with respect

“ to that appearing in FI ,
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Accordingly, connected S-matrix elements are defined by %

- o) € c
Sgp = Z =) s)\1 s)\p . (ALIII.17)

One then uses repeatedly the formula of integration by parts 3

3 o i ©
f gp ;:"(;)) [ d3x eip x 3 p(x) - ] dax eip 3 @(x)
2w o o
P X% +oo X~
= [d*% oz (O +0®) e (A.III.18)
= % 3 . . /
s >
where £(x) = / %}E g(f))) eP* ,  which holds true if £(p) decreases
P

fast at infinity in T , together with the following identity

S Y (T ® (xo o o . xo
Let T Gr) e AG) = ) TG0y = xgy) wee 0,G50 G )
P(1...n)

%))+ ) Fp )’ # ALTI1.19)

be the chronological product of n local field operators,

1

- t>0 - .
[9+(t) = 5 i0 ! P = permutation on (1 ... n)

P(i) = transformed of i by P:]

o(P)= signature of fermion fields permutation. Then one writes .e.g.

£ B o) TCA (x)eee A (x))

X%+ oo

[ (A.111.20)

—
o~

<
£(x) ao T (cp(x)) Al(xl) ase An(xn))
X°=4 oo
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since, in view of the 6+ functions only terms occuring in the left hand

side survive.

Hence
< f - ) x 103, o T (x) eer A_(x))
X%+ o x°=-

(A.III.21)

H

/d4x £(x) (Dx+ m2) T(p(x) Ai(xl) An(xn)) .

These elementary steps, together with a recursion argument which

uses definition (A.III.17), lead to the result.

c i -
SFI - I} 3/2 Ua ([p]f ¢ pf) Ma Amll, G <pf’ Pgr Py sz
T £ ettty
i (A I1I.22)
H EmZ Uy, (lp ]i oy Hy)
- o i T 7
1
where
M (P, P=—P, Py) = H elPi¥5 ([.+ n2) ax
0. 0— a, o £ PF Py Py J J J
£78 1T iIrT
Hp Uy By BT (AL III.23)

C T
<01TH (¥, _ (xp H v (xp) H ¥ o (x) H v (xp) o)
£ £ : uf i T
U5 Hf By Hi
and the truncated chronological product vacuum expectation value is defined
from truncated vacuum expectation values of products in the same way as the

untruncated chronological product was defined from untruncated vacuum expec—
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tation values of products.

Remark,

There is one touchy point here, namely the multiplication of field
operators which are in general distributions, by € functions, which are
discontinuous ; this defect which may lead to an unproper handling of the
high energy behaviour of the theory has been partly got rid of in a recent

past, as well as the possible lack of covariance of chronological products.

The definition of the M amplitudes is the starting point-of dis—
persion theory, in this framework, since the locality condition (A.II1I.3)
allows to show 26 that M can be obtained as the boundary value of a
function of the pj's holomorphic in a domain,all of which has not been so

far determined,
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CONCLUSION

We hope to have conveyed the impression that a detailed analysis of
elementary systems according to quantum numbers provided by relativistic inva-
riance (momentum, spin) is worthwhile in so far as it makes perfectly precise
the understanding of many particle states and observables structure. If, at
times, computations are lengthy, it is hoped that they do not obscure the gene-
ral idea. The main reason why we have indulged into so much algebra is preci-
gely to show that they are in minciple not so dreadfug although numerical

work can become fairly abundant.

From a more lofty point of view, 1t also is apparent that if some
day Lorentz invariance is lost at the beneflt of another invariance, the frame
is all set to deal with the new law, provided representation theory is advan-

ced enough for the new group.

We have to apologize for the arbitrary choice of topics, redundancy
as well as omission of some items, and Just hope enough of the basic techni-

ques have been exhibited to allow further applications.
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