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Abstract. Elastic cloud computing applications, i.e. applications that automatically scale 
according to computing needs, work on the ideal assumption of infinite resources. While large 
public cloud infrastructures may be a reasonable approximation of this condition, scientific 
computing centres like WLCG Grid sites usually work in a saturated regime, in which 
applications compete for scarce resources through queues, priorities and scheduling policies, 
and keeping a fraction of the computing cores idle to allow for headroom is usually not an 
option. In our particular environment one of the applications (a WLCG Tier-2 Grid site) is 
much larger than all the others and cannot autoscale easily. Nevertheless, other smaller 
applications can benefit of automatic elasticity; the implementation of this property in our 
infrastructure, based on the OpenNebula cloud stack, will be described and the very first 
operational experiences with a small number of strategies for timely allocation and release of 
resources will be discussed. 

1.  Introduction 
Applying Cloud Computing technologies to scientific computing has been investigated ever since the 
public availability of Amazon’s EC2 service in 2006, and even earlier following the availability of 
virtualization technologies for resource optimization. Research on the topic still follows two paths:  

• porting scientific High Throughput or even High Performance computing workloads to 
commercial public clouds; 

• building private clouds specifically tailored for scientific computing applications.  
In this work we will focus on the latter. 

 
Both activities, in the High Energy Physics community at least, can be seen as stemming from the 

Grid Computing era, in which the concepts of pooling and sharing resources did not arrive as far as 
actually providing on-demand computing power in such a simple and transparent way as the “power 
grid” metaphor [1] promised. The WLCG [2], for example, has been highly successful in providing 
efficient computational and storage resources to the LHC experiments and the HEP community at 
large, but is not much more than a very large, sophisticated, highly distributed batch system that spans 
several administrative domains and serves multiple Virtual Organizations. For a number of reasons 
[3], the Grid Computing paradigm was never widely adopted outside an enclave in the scientific 
computing community; the Cloud Computing concept, which (simplifying somehow) adds 
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virtualization technologies to the Grid concept, arguably helped develop a computing-as-a-service 
model that proved to be attractive also for commercial providers. 

1.1.  Cloud computing for science   
As far as the user is concerned, resources in commercial public cloud computing infrastructures are 
virtually infinite: provided she’s prepared to pay for them, according to some pricing policy, any 
number of machines she instantiates run almost immediately. This is made possible by a number of 
factors. First, many applications do not require high throughput but scalability and resiliency of a 
number of interacting services that can scale out (think for example of an e-commerce application, 
with web servers, DB instances, backoffice applications,…) so resources can often be effectively 
overcommitted. Second, most public cloud infrastructures are very large compared to any single 
application running on them; this, coupled to the fact that most commercial applications use relatively 
small virtual machines, makes optimisations easier. Last, the business model itself is based on 
providing large infrastructures that have to be used efficiently but can grow physically with demand 
(see, for example, the discussion in [4]). 

At the opposite end, most scientific computing infrastructures such as Grid sites almost always run 
in a saturated regime: resources are limited, or in any case finite, while computational needs are 
potentially infinite. Given sufficient time to develop their applications, researchers can find unsolved 
problems to saturate any amount of resources. Furthermore, many scientific applications scale more 
optimally up than out, so virtual machines used for such use cases tend to be rather large: a smaller 
number of large machines may be more efficient, from the purely computational point of view, of 
several small ones. 

On top of this, the model used by many funding agencies is still to have the experiment 
collaboration evaluate their needs for the next period, expressing them in some units like the widely 
used HEPSpec06 benchmark results [6], give them to a college of referees to evaluate and then pay for 
a given amount of, for example, CPUs that will be bought and used. Even though in the Grid model 
the resources are in principle first pooled then shared, they are still seen as proprietary. As a 
consequence, economical scheduling implying (virtual) billing of consumed resources has never been 
widely adopted (for an introductory discussion of such principles, see again, for example, [3]); in other 
words, resource allocation is made in HEPSpec06 units instead of HepSpec06×hour. This translates 
into an issue in deploying real elastic applications where the amount of used resources is calculated 
(and billed) a posteriori and not just audited. 

2.  Cloud computing at INFN-Torino 
The Computer Centre at INFN-Torino is a medium-size infrastructure providing computing and 
storage resources to a number of scientific computing applications, the largest ones being a WLCG 
Tier-2 site for the ALICE experiment at the CERN LHC, a PROOF-based Analysis Facility for the 
same experiment [8] and a separate Grid Tier-2 centre for the BES-III Experiment at IHEP, Beijing 
[9]. Moreover, it provides computing resources to some smaller communities such as, for example, a 
local theoretical physics group or a collaboration developing on-demand medical imaging tools. 
The site hosts about 1.6 PB of disk storage and approximately 1300 computing cores; the Cloud 
infrastructure, managed with version 4.8 of the OpenNebula stack [10], is constantly growing and 
currently comprises more than 70 hypervisors and hosts about 250-300 virtual machines. 

Historically, the decision to adopt a Cloud infrastructure to provision resources was taken to allow 
the centre to dynamically reallocate resources between the two ALICE applications, one a traditional 
Grid batch farm, the other a Parallel Interactive facility that provided rapid turn-around computing 
power to small use cases for which the Grid presented too large an overhead to be practical. This was 
furthered by gradually moving all services needed to run the WLCG Grid site onto the IaaS platform, 
and subsequently by adding more tenants to our infrastructure (for a complete description, see [11]). 
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The obvious next step was to provide some of the applications with automatic elasticity, i.e. the 
capability to automatically (autonomously or by means of a dedicated service) start or stop their 
Virtual Machines according to their need. 

This needs two aspects to be taken care of: the tools to monitor the application’s needs and start or 
stop VMs accordingly, and a way to enforce policies and priorities.  

3.  Two paths to elasticity 
Many real-world applications in our environment are not intrinsically elastic. Missing a billing system, 
users have no incentive to release their resources even if they are unused, and once a VM is 
instantiated by a given tenant, it needs a fair amount of persuasion to have it undeployed. This is an 
instance of sorts of the “tragedy of the Commons” famously described by G. Hardin in 1968 [12]: a 
free common resource tends to be depleted to waste by independent users that act rationally and 
autonomously, like sheep belonging to different herds grazing on the same public patch of grassland. 
Since the grass is free, if the shepherds act independently of each other the most rational strategy for 
each of them appears to be to increment the number of sheep, until the resource is thrashed. So, quite 
obviously, some incentive mechanism (e.g. billing, a fairshare mechanism, dynamic quotas…) needs 
to be in place for the system to work at all. For a description of ongoing work on the topic in our 
group, see [13]. 

 

 

Figure 1. Usage patterns for Grid nodes (top) and VAF nodes (bottom). 
 
We explored two different ways of providing automatic elasticity to our application. The first is 

completely generic, relying on an external tool; the second, that seemed promising but proved itself 
only partially effective without some further work, used the orchestration component of OpenNebula. 
The applications on which we experimented such ideas are the ones that had non-continuous usage 
patterns, i.e. the Virtual Analysis Facility (that being interactive exhibits clear daytime and weekday 
usage patterns), the BES-III Grid Tier-2 site (which is currently not always in full use) and our 
standard On-demand Virtual Farms, simple batch farms that are used by some tenants with simpler use 
cases.  

3.1.  elastiq 
elastiq [14] is a custom Python daemon originally developed for the Virtual Analysis Facility, but 
being independent of PROOF can be used by many other applications. It uses the EC2 interface of the 
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underlying Cloud controller (in our case OpenNebula) to monitor, deploy and stop virtual machines, 
monitoring a simple queue (the implemented plugin uses HTCondor [15]) to assess the application’s 
need. The user deploys by herself the single master Virtual Machine, specifying in the context the 
worker configurations. The application is then automatically scaled up and down by elastiq by starting 
more VMs when there are “jobs” in the queue, or when nodes are idle.  

The usage patterns for a static application like the Grid site and the elastic Virtual Analysis Facility 
are shown in figure 1: the VAF shows spikes of activity only when it is used, while the peaks and 
troughs of the Grid usage is dominated by resource availability. Besides the Virtual Analysis Facility, 
we use elastiq to provide automatic scalability to some other on-demand elastic farms. 

3.2.  OneFlow 
We also tested the opportunity of using the OpenNebula orchestration component, OneFlow [16], 
which can be used to deploy clusters of Virtual Machines, expressing dependencies between them. 
This offers several advantages: there are no external tools to integrate and maintain, it is very simple to 
configure a full cluster as a single service, and it can autonomously scale up and down the 
applications. 

One possible use case was the BES-III Tier-2 grid site, given that at the moment the flow of jobs to 
be executed there is intermittent (as opposed, as we will see in the next section, to the WLCG Tier-2 
site). We tried deploying an instance through OneFlow, by describing a CREAM CE [17] as master 
node and a variable number of DIRAC [18] Grid WNs as slaves, with the usual problem that the 
LRMS is PBS, which is not cloud-aware. The Worker Nodes publish the number of queued and 
running jobs to OneGate, the OpenNebula component designed to gather custom metrics from VMs 
[19]. The system is thus able to scale up one VM at a time when there are queued jobs. 

Figure 2 shows the CPU load of three BES-III Worker Nodes under the control of OneFlow. Job 
submissions trigger the deployment of new machines, while only at the end of all jobs the machines 
can be turned off. This is the drawback of such approach: OneFlow is primarily designed for load-
balancing applications. In load-balancing applications, the nodes (web servers, for example) are 
stateless and more can be deployed to handle some of the queries should they become overloaded. 
Conversely, if the overall load allows it, it is possible to turn down any of the servers and release the 
resources, since the remaining nodes will go on processing queries. In our case, however, it is not the 
overall load that is important but the load on specific machines, and since with OneFlow it is not 
currently possible to choose which nodes to undeploy, the only available strategy (without further 
implementation work) is to scale down the full infrastructure when all the jobs are finished, which is 
clearly sub-optimal. 

 

 
 

 

Figure 2. CPU load for three Grid WNs controlled by OneFlow.  
Black arrows: job submission; green arrows: scale up; red arrows: scale down. 
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4.  The inelastic wall challenge 
It should now be noted that the largest application in our site, the Grid Tier-2, is in practice 

completely inelastic. The resources are almost always saturated (see figure 3), so in the assumption 
that other workloads may have a higher priority, a policy needs to be devised to stop the WNs to make 
room for other applications. In the following, we describe some problems that need to be addressed 
and a possible solution. 

 
 

 

Figure 3. One month of typical occupancy of the Grid Tier-2 queues, 
all VOs. Green: running jobs, blue: queued jobs. 

 
Usually, the way of representing competing applications in a scientific computing system is 

picturing it as a batch system of sorts, with different queues given appropriate priorities and a 
scheduler doing its job to enforce policies, for example fair share. However, in this kind of situation it 
may be better to picture the competing use cases as long-running applications that can elastically grow 
and shrink according to needs and the amount of available resources, which are always fully busy. 

In our particular environment, however, the inelastic Grid Tier-2 site is much larger an application 
than all the others. A possible strategy is thus to artificially lower its Young modulus, making it shrink 
and release resources when smaller, higher priority ones “push” and require them. Then the other 
elastic applications will compete for the available resources: each application will have a Young 
modulus assigned (the higher the priority the stiffer the application) and apply a pressure proportional 
to its needs. It should here be noted that the assumption that Grid jobs have a lower priorities than 
others is somewhat justified by the fact that there’s a virtually infinite supply of them (so in principle it 
can apply infinite pressure).  

So a possible strategy would be to periodically drain a number of Worker Nodes (Grid jobs are 
seldom, if ever, checkpointable) and check whether there are other applications needing resources. 
Should this be the case, the system would kill the WN and start the application’s VMs, otherwise the 
WN can be restarted. In this schema, management of the WN can be done by several means, from 
simple schedulers like the ones included in Cloud controller stacks to pilot factories like vCycle [20]. 

 

  
Figure 4. Job duration distribution (in seconds) of Grid jobs (left), number of jobs 

terminating per minute (right). 
 
 

ALICE grid jobs 

Non-ALICE grid jobs 
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However, a number of problems arise. 
 
• The IaaS infrastructure has, by design, no knowledge of what’s happening inside the Grid 

Worker Nodes running on its hosts, and it would be complex for an external daemon to gather 
information about Grid jobs. For the same reason, it is very difficult to optimize job 
distribution across worker nodes (e.g. packing same-length jobs on the same WN to have them 
end at the same time). Furthermore, the job duration distribution shows no obvious pattern 
(see figure 4, left), so it provides no easy criteria for choosing which multicore WN to 
undeploy.  

• We use rather basic OS images that are contextualized at deploy time. The complex operations 
needed to fully configure a WLCG WN mean it can take up to 20 minutes from the 
deployment of the image on the hypervisor to the moment the node starts accepting jobs. 
Furthermore, the complex dependencies of Grid middleware mean that without special 
measures, WNs configured at different times may come out with different sets of packages, or 
not work at all. This can be mitigated by using special pre-configured images for WNs. 

• To reduce the overall number of virtual machines and the associated overhead, we run rather 
large (6 or 8 cores) virtual Worker Nodes. This means that to undeploy a WN, one needs to 
wait for 6 to 8 jobs to finish, which potentially means up to a few days in which the already 
idle CPUs are wasted. Single or dual-slot WNs are more effective; to get a qualitative idea of 
the latencies, one can look at the distribution of the number of jobs finishing in any given 
minute (see figure 4, right); the average value over one year of operation is 2.2, with a mode 
of about 1. However, there are drawbacks: more disk space on hypervisors, more CPU and 
memory needed for virtualization, more administrative overhead. 

• Many LRMSs used in Grid sites (e.g. the ones from the OpenPBS family, like Torque [21]) 
are not cloud-aware and cannot easily cope with worker nodes appearing and disappearing 
from their clusters. This was mitigated by means of custom scripts that take care of updating 
the nodes list and restarting the relevant daemons on the server when needed, but other 
systems (like the widely used HTCondor) are better suited to this condition. 
 

 We will implement such measures and test the ideas in the near future. In order to balance between 
having a reasonably small number of virtual machines and making small worker nodes that can be 
drained quickly, we plan to use an admixture of large (6-8 cores) and very small (1-2 cores) WN, the 
latter managed by a separate, dedicated CE running HTCondor that will be dynamically scaled either 
by elastiq or by an adapted version of OneFlow. It will then be possible to test more ideas: the tuning 
of virtual Worker Node parameters (number of cores and lifetime) to match the statistical distribution 
of job durations, or the balance between the amount of resources statically pinned to an application 
and the amount left available for competitive seizing by elastic applications. 

5.  Conclusions and outlook 
Bringing automatic elasticity to scientific computing Cloud infrastructures, always working with 
saturated resources, poses several problems. The opportunity of having a much larger applications 
allows us to experiment with the strategy of having it passively shrink to make room for others, even 
though having this tuned will need more work. 

One of the tasks of the recently started EU project INDIGO-Datacloud [22] is indeed the 
development of an advanced VM scheduling service to allow using of Cloud Computing 
infrastructures to provide computational power to several application competing for them in a 
saturated regime, as such is the case of most scientific computing use cases. Our group is involved in 
that activity, that we see as a natural application of some of the ideas presented in this paper. 
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