
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Managing competing elastic Grid and Cloud
scientific computing applications using
OpenNebula
To cite this article: S Bagnasco et al 2015 J. Phys.: Conf. Ser. 664 022004

View the article online for updates and enhancements.

Related content
A batch system for HEP applications on a
distributed IaaS cloud
I Gable, A Agarwal, M Anderson et al.

-

A validation system for data preservation
in HEP
Yves Kemp, Marco Strutz and Hermann
Hessling

-

CernVM Online and Cloud Gateway: a
uniform interface for CernVM
contextualization and deployment
G Lestaris, I Charalampidis, D Berzano et
al.

-

This content was downloaded from IP address 131.169.5.251 on 10/12/2018 at 22:53

https://doi.org/10.1088/1742-6596/664/2/022004
http://iopscience.iop.org/article/10.1088/1742-6596/331/6/062010
http://iopscience.iop.org/article/10.1088/1742-6596/331/6/062010
http://iopscience.iop.org/article/10.1088/1742-6596/368/1/012027
http://iopscience.iop.org/article/10.1088/1742-6596/368/1/012027
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032055
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032055
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032055
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/391051796/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?

Managing competing elastic Grid and Cloud scientific
computing applications using OpenNebula

S Bagnasco1, D Berzano2, S Lusso1, M Masera1, 3, S Vallero1, 3
1 Istituto Nazionale di Fisica Nucleare, Via Pietro Giuria 1, 10125 Torino, IT
2 CERN - European Organization for Nuclear Research, CH-1211 Geneva 23, CH
3 Dipartimento di Fisica, Università degli Studi di Torino, Via Pietro Giuria 1, 10125
Torino, IT

E-mail: stefano.bagnasco@to.infn.it

Abstract. Elastic cloud computing applications, i.e. applications that automatically scale
according to computing needs, work on the ideal assumption of infinite resources. While large
public cloud infrastructures may be a reasonable approximation of this condition, scientific
computing centres like WLCG Grid sites usually work in a saturated regime, in which
applications compete for scarce resources through queues, priorities and scheduling policies,
and keeping a fraction of the computing cores idle to allow for headroom is usually not an
option. In our particular environment one of the applications (a WLCG Tier-2 Grid site) is
much larger than all the others and cannot autoscale easily. Nevertheless, other smaller
applications can benefit of automatic elasticity; the implementation of this property in our
infrastructure, based on the OpenNebula cloud stack, will be described and the very first
operational experiences with a small number of strategies for timely allocation and release of
resources will be discussed.

1. Introduction
Applying Cloud Computing technologies to scientific computing has been investigated ever since the
public availability of Amazon’s EC2 service in 2006, and even earlier following the availability of
virtualization technologies for resource optimization. Research on the topic still follows two paths:

• porting scientific High Throughput or even High Performance computing workloads to
commercial public clouds;

• building private clouds specifically tailored for scientific computing applications.
In this work we will focus on the latter.

Both activities, in the High Energy Physics community at least, can be seen as stemming from the

Grid Computing era, in which the concepts of pooling and sharing resources did not arrive as far as
actually providing on-demand computing power in such a simple and transparent way as the “power
grid” metaphor [1] promised. The WLCG [2], for example, has been highly successful in providing
efficient computational and storage resources to the LHC experiments and the HEP community at
large, but is not much more than a very large, sophisticated, highly distributed batch system that spans
several administrative domains and serves multiple Virtual Organizations. For a number of reasons
[3], the Grid Computing paradigm was never widely adopted outside an enclave in the scientific
computing community; the Cloud Computing concept, which (simplifying somehow) adds

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022004 doi:10.1088/1742-6596/664/2/022004

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

virtualization technologies to the Grid concept, arguably helped develop a computing-as-a-service
model that proved to be attractive also for commercial providers.

1.1. Cloud computing for science
As far as the user is concerned, resources in commercial public cloud computing infrastructures are
virtually infinite: provided she’s prepared to pay for them, according to some pricing policy, any
number of machines she instantiates run almost immediately. This is made possible by a number of
factors. First, many applications do not require high throughput but scalability and resiliency of a
number of interacting services that can scale out (think for example of an e-commerce application,
with web servers, DB instances, backoffice applications,…) so resources can often be effectively
overcommitted. Second, most public cloud infrastructures are very large compared to any single
application running on them; this, coupled to the fact that most commercial applications use relatively
small virtual machines, makes optimisations easier. Last, the business model itself is based on
providing large infrastructures that have to be used efficiently but can grow physically with demand
(see, for example, the discussion in [4]).

At the opposite end, most scientific computing infrastructures such as Grid sites almost always run
in a saturated regime: resources are limited, or in any case finite, while computational needs are
potentially infinite. Given sufficient time to develop their applications, researchers can find unsolved
problems to saturate any amount of resources. Furthermore, many scientific applications scale more
optimally up than out, so virtual machines used for such use cases tend to be rather large: a smaller
number of large machines may be more efficient, from the purely computational point of view, of
several small ones.

On top of this, the model used by many funding agencies is still to have the experiment
collaboration evaluate their needs for the next period, expressing them in some units like the widely
used HEPSpec06 benchmark results [6], give them to a college of referees to evaluate and then pay for
a given amount of, for example, CPUs that will be bought and used. Even though in the Grid model
the resources are in principle first pooled then shared, they are still seen as proprietary. As a
consequence, economical scheduling implying (virtual) billing of consumed resources has never been
widely adopted (for an introductory discussion of such principles, see again, for example, [3]); in other
words, resource allocation is made in HEPSpec06 units instead of HepSpec06×hour. This translates
into an issue in deploying real elastic applications where the amount of used resources is calculated
(and billed) a posteriori and not just audited.

2. Cloud computing at INFN-Torino
The Computer Centre at INFN-Torino is a medium-size infrastructure providing computing and
storage resources to a number of scientific computing applications, the largest ones being a WLCG
Tier-2 site for the ALICE experiment at the CERN LHC, a PROOF-based Analysis Facility for the
same experiment [8] and a separate Grid Tier-2 centre for the BES-III Experiment at IHEP, Beijing
[9]. Moreover, it provides computing resources to some smaller communities such as, for example, a
local theoretical physics group or a collaboration developing on-demand medical imaging tools.
The site hosts about 1.6 PB of disk storage and approximately 1300 computing cores; the Cloud
infrastructure, managed with version 4.8 of the OpenNebula stack [10], is constantly growing and
currently comprises more than 70 hypervisors and hosts about 250-300 virtual machines.

Historically, the decision to adopt a Cloud infrastructure to provision resources was taken to allow
the centre to dynamically reallocate resources between the two ALICE applications, one a traditional
Grid batch farm, the other a Parallel Interactive facility that provided rapid turn-around computing
power to small use cases for which the Grid presented too large an overhead to be practical. This was
furthered by gradually moving all services needed to run the WLCG Grid site onto the IaaS platform,
and subsequently by adding more tenants to our infrastructure (for a complete description, see [11]).

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022004 doi:10.1088/1742-6596/664/2/022004

2

The obvious next step was to provide some of the applications with automatic elasticity, i.e. the
capability to automatically (autonomously or by means of a dedicated service) start or stop their
Virtual Machines according to their need.

This needs two aspects to be taken care of: the tools to monitor the application’s needs and start or
stop VMs accordingly, and a way to enforce policies and priorities.

3. Two paths to elasticity
Many real-world applications in our environment are not intrinsically elastic. Missing a billing system,
users have no incentive to release their resources even if they are unused, and once a VM is
instantiated by a given tenant, it needs a fair amount of persuasion to have it undeployed. This is an
instance of sorts of the “tragedy of the Commons” famously described by G. Hardin in 1968 [12]: a
free common resource tends to be depleted to waste by independent users that act rationally and
autonomously, like sheep belonging to different herds grazing on the same public patch of grassland.
Since the grass is free, if the shepherds act independently of each other the most rational strategy for
each of them appears to be to increment the number of sheep, until the resource is thrashed. So, quite
obviously, some incentive mechanism (e.g. billing, a fairshare mechanism, dynamic quotas…) needs
to be in place for the system to work at all. For a description of ongoing work on the topic in our
group, see [13].

Figure 1. Usage patterns for Grid nodes (top) and VAF nodes (bottom).

We explored two different ways of providing automatic elasticity to our application. The first is

completely generic, relying on an external tool; the second, that seemed promising but proved itself
only partially effective without some further work, used the orchestration component of OpenNebula.
The applications on which we experimented such ideas are the ones that had non-continuous usage
patterns, i.e. the Virtual Analysis Facility (that being interactive exhibits clear daytime and weekday
usage patterns), the BES-III Grid Tier-2 site (which is currently not always in full use) and our
standard On-demand Virtual Farms, simple batch farms that are used by some tenants with simpler use
cases.

3.1. elastiq
elastiq [14] is a custom Python daemon originally developed for the Virtual Analysis Facility, but
being independent of PROOF can be used by many other applications. It uses the EC2 interface of the

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022004 doi:10.1088/1742-6596/664/2/022004

3

underlying Cloud controller (in our case OpenNebula) to monitor, deploy and stop virtual machines,
monitoring a simple queue (the implemented plugin uses HTCondor [15]) to assess the application’s
need. The user deploys by herself the single master Virtual Machine, specifying in the context the
worker configurations. The application is then automatically scaled up and down by elastiq by starting
more VMs when there are “jobs” in the queue, or when nodes are idle.

The usage patterns for a static application like the Grid site and the elastic Virtual Analysis Facility
are shown in figure 1: the VAF shows spikes of activity only when it is used, while the peaks and
troughs of the Grid usage is dominated by resource availability. Besides the Virtual Analysis Facility,
we use elastiq to provide automatic scalability to some other on-demand elastic farms.

3.2. OneFlow
We also tested the opportunity of using the OpenNebula orchestration component, OneFlow [16],
which can be used to deploy clusters of Virtual Machines, expressing dependencies between them.
This offers several advantages: there are no external tools to integrate and maintain, it is very simple to
configure a full cluster as a single service, and it can autonomously scale up and down the
applications.

One possible use case was the BES-III Tier-2 grid site, given that at the moment the flow of jobs to
be executed there is intermittent (as opposed, as we will see in the next section, to the WLCG Tier-2
site). We tried deploying an instance through OneFlow, by describing a CREAM CE [17] as master
node and a variable number of DIRAC [18] Grid WNs as slaves, with the usual problem that the
LRMS is PBS, which is not cloud-aware. The Worker Nodes publish the number of queued and
running jobs to OneGate, the OpenNebula component designed to gather custom metrics from VMs
[19]. The system is thus able to scale up one VM at a time when there are queued jobs.

Figure 2 shows the CPU load of three BES-III Worker Nodes under the control of OneFlow. Job
submissions trigger the deployment of new machines, while only at the end of all jobs the machines
can be turned off. This is the drawback of such approach: OneFlow is primarily designed for load-
balancing applications. In load-balancing applications, the nodes (web servers, for example) are
stateless and more can be deployed to handle some of the queries should they become overloaded.
Conversely, if the overall load allows it, it is possible to turn down any of the servers and release the
resources, since the remaining nodes will go on processing queries. In our case, however, it is not the
overall load that is important but the load on specific machines, and since with OneFlow it is not
currently possible to choose which nodes to undeploy, the only available strategy (without further
implementation work) is to scale down the full infrastructure when all the jobs are finished, which is
clearly sub-optimal.

Figure 2. CPU load for three Grid WNs controlled by OneFlow.
Black arrows: job submission; green arrows: scale up; red arrows: scale down.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022004 doi:10.1088/1742-6596/664/2/022004

4

4. The inelastic wall challenge
It should now be noted that the largest application in our site, the Grid Tier-2, is in practice

completely inelastic. The resources are almost always saturated (see figure 3), so in the assumption
that other workloads may have a higher priority, a policy needs to be devised to stop the WNs to make
room for other applications. In the following, we describe some problems that need to be addressed
and a possible solution.

Figure 3. One month of typical occupancy of the Grid Tier-2 queues,
all VOs. Green: running jobs, blue: queued jobs.

Usually, the way of representing competing applications in a scientific computing system is

picturing it as a batch system of sorts, with different queues given appropriate priorities and a
scheduler doing its job to enforce policies, for example fair share. However, in this kind of situation it
may be better to picture the competing use cases as long-running applications that can elastically grow
and shrink according to needs and the amount of available resources, which are always fully busy.

In our particular environment, however, the inelastic Grid Tier-2 site is much larger an application
than all the others. A possible strategy is thus to artificially lower its Young modulus, making it shrink
and release resources when smaller, higher priority ones “push” and require them. Then the other
elastic applications will compete for the available resources: each application will have a Young
modulus assigned (the higher the priority the stiffer the application) and apply a pressure proportional
to its needs. It should here be noted that the assumption that Grid jobs have a lower priorities than
others is somewhat justified by the fact that there’s a virtually infinite supply of them (so in principle it
can apply infinite pressure).

So a possible strategy would be to periodically drain a number of Worker Nodes (Grid jobs are
seldom, if ever, checkpointable) and check whether there are other applications needing resources.
Should this be the case, the system would kill the WN and start the application’s VMs, otherwise the
WN can be restarted. In this schema, management of the WN can be done by several means, from
simple schedulers like the ones included in Cloud controller stacks to pilot factories like vCycle [20].

Figure 4. Job duration distribution (in seconds) of Grid jobs (left), number of jobs

terminating per minute (right).

ALICE grid jobs

Non-ALICE grid jobs

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022004 doi:10.1088/1742-6596/664/2/022004

5

However, a number of problems arise.

• The IaaS infrastructure has, by design, no knowledge of what’s happening inside the Grid

Worker Nodes running on its hosts, and it would be complex for an external daemon to gather
information about Grid jobs. For the same reason, it is very difficult to optimize job
distribution across worker nodes (e.g. packing same-length jobs on the same WN to have them
end at the same time). Furthermore, the job duration distribution shows no obvious pattern
(see figure 4, left), so it provides no easy criteria for choosing which multicore WN to
undeploy.

• We use rather basic OS images that are contextualized at deploy time. The complex operations
needed to fully configure a WLCG WN mean it can take up to 20 minutes from the
deployment of the image on the hypervisor to the moment the node starts accepting jobs.
Furthermore, the complex dependencies of Grid middleware mean that without special
measures, WNs configured at different times may come out with different sets of packages, or
not work at all. This can be mitigated by using special pre-configured images for WNs.

• To reduce the overall number of virtual machines and the associated overhead, we run rather
large (6 or 8 cores) virtual Worker Nodes. This means that to undeploy a WN, one needs to
wait for 6 to 8 jobs to finish, which potentially means up to a few days in which the already
idle CPUs are wasted. Single or dual-slot WNs are more effective; to get a qualitative idea of
the latencies, one can look at the distribution of the number of jobs finishing in any given
minute (see figure 4, right); the average value over one year of operation is 2.2, with a mode
of about 1. However, there are drawbacks: more disk space on hypervisors, more CPU and
memory needed for virtualization, more administrative overhead.

• Many LRMSs used in Grid sites (e.g. the ones from the OpenPBS family, like Torque [21])
are not cloud-aware and cannot easily cope with worker nodes appearing and disappearing
from their clusters. This was mitigated by means of custom scripts that take care of updating
the nodes list and restarting the relevant daemons on the server when needed, but other
systems (like the widely used HTCondor) are better suited to this condition.

 We will implement such measures and test the ideas in the near future. In order to balance between
having a reasonably small number of virtual machines and making small worker nodes that can be
drained quickly, we plan to use an admixture of large (6-8 cores) and very small (1-2 cores) WN, the
latter managed by a separate, dedicated CE running HTCondor that will be dynamically scaled either
by elastiq or by an adapted version of OneFlow. It will then be possible to test more ideas: the tuning
of virtual Worker Node parameters (number of cores and lifetime) to match the statistical distribution
of job durations, or the balance between the amount of resources statically pinned to an application
and the amount left available for competitive seizing by elastic applications.

5. Conclusions and outlook
Bringing automatic elasticity to scientific computing Cloud infrastructures, always working with
saturated resources, poses several problems. The opportunity of having a much larger applications
allows us to experiment with the strategy of having it passively shrink to make room for others, even
though having this tuned will need more work.

One of the tasks of the recently started EU project INDIGO-Datacloud [22] is indeed the
development of an advanced VM scheduling service to allow using of Cloud Computing
infrastructures to provide computational power to several application competing for them in a
saturated regime, as such is the case of most scientific computing use cases. Our group is involved in
that activity, that we see as a natural application of some of the ideas presented in this paper.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022004 doi:10.1088/1742-6596/664/2/022004

6

Acknowledgements
The present work is supported by the Istituto Nazionale di Fisica Nucleare (INFN) of Italy and is
partially funded under contract 20108T4XTM of Programmi di Ricerca Scientifica di Rilevante
Interesse Nazionale (PRIN, Italy).

References
[1] Foster I and Kesselman C 1998 The grid: blueprint for a new computing infrastructure (San

Francisco, CA: Morgan Kaufmann)
[2] http://wlcg.web.cern.ch/
[3] Sandholm T and Lee D 2014 arXiv:1504.07325v1
[4] Erl T, Zaigham M and Puttini R 2013 Cloud Computing – Concepts, Technology & Architecture

(Upper Saddle River, NJ: Prentice Hall)
[5] http://www.gridpp.ac.uk/vcycle/
[6] http://w3.hepix.org/benchmarks
[7] Aamodt K et al. (The ALICE Collaboration) 2008 JINST 3 S08002
[8] Berzano D, Bagnasco S, Brunetti R and Lusso S 2012 J. Phys.: Conf. Ser. 368 012019

Berzano D, Blomer J, Buncic P, Charalampidis I, Ganis G, Lestaris G and Meusel R 2014 J.
Phys.: Conf. Ser. 513 032007

[9] Ablikim M et al. 2010 Nucl. Instr. Meth. A 614 345–399
[10] Moreno-Vozmediano R, Montero R S and Llorente I M 2012 IEEE Computer 45 65-72
[11] Bagnasco S, Berzano D, Brunetti R, Lusso S and Vallero S 2014 J. Phys.: Conf. Ser. 513

032100
[12] Hardin G 1968 Science 162(3859) 1243–1248
[13] Bagnasco S, Berzano D, Guarise A, Lusso S, Masera M and Vallero S 2015 Integrated

Monitoring-as-a-service for Scientific Computing Cloud applications using the
ElasticSearch ecosystem, in these proceedings

[14] https://github.com/dberzano/elastiq
[15] Thain D, Tannenbaum T, and Livny M 2005 Concurrency and Computation: Practice and

Experience, Vol. 17(2-4) 323–356
[16] http://docs.opennebula.org/4.8/advanced_administration/application_flow_and_auto-scaling
[17] Andreetto P et al. 2011 J. Phys.: Conf. Ser. 331 062024
[18] Fifield T, Carmona A, Casajùs A, Graciani R and Sevior M 2011 J. Phys.: Conf. Ser. 331

062009
[19] http://archives.opennebula.org/documentation:rel4.4:onegate_usage
[20] http://www.gridpp.ac.uk/vcycle/
[21] http://www.adaptivecomputing.com/products/open-source/torque/
[22] http://www.indigo-datacloud.eu

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022004 doi:10.1088/1742-6596/664/2/022004

7

