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Abstract. Transfer and inelastic scattering reactions using light-ion beams and stable or long-lived
targets have traditionally provided detailed information on the structure of nuclei near the line
of beta stability. Such studies can now be extended to nuclei away from the line of β-stability
as radioactive beams are becoming available at a number of facilities around the world, including
the CARIBU facility at Argonne. These measurements must, however, be carried out in inverse
kinematics, resulting in a loss of the effective experimental resolution when conventional detection
schemes are employed. The HELIOS spectrometer is based on a new concept, that is especially well
suited for such studies by reducing the resolution problem, providing simple particle identification,
and giving high detection efficiency with moderate Si detector area. In this talk, the HELIOS concept
and results from the first series of experiments will be presented.

1 Introduction

The Nuclear Shell Model by Mayer and Jensen [1] has
provided impetus for the study of single-particle or-
bits in excited nuclei throughout the nuclear chart.
Much experimental work at laboratories and univer-
sities throughout the world resulted in detailed in-
formation on the single-particle structure, strength,
and spin-parity assignments of excited states in both
spherical nuclei at or near the closed shells and the
deformed nuclei that fall in-between them. A rapid
development of experimental facilities and techniques
took place over the same period at many research cen-
ters. Precision beams of light particles became avail-
able from Van de Graaff Tandem accelerators of ever
increasing terminal voltage, and the development and
implementation of high-resolution magnetic (Bruekner,
Enge Split-Pole, Elbek, Multigap, and Q3D) spectrom-
eters were the tools needed to carry out experiments
with the high energy resolution that is required to
measure the excitations in nuclei across the periodic
table. In addition, the discovery of direct nuclear reac-
tions by Butler [2], its elaboration in terms of the Dis-
torted Wave Born Approximation [3,4], and the signif-
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icance of spectroscopic overlaps by French and Mac-
farlane [5] established elegant connections between the
theoretical concepts and the experimental observables.
The extension of the understanding of single-particle
structure to deformed nuclei by S.G. Nilsson [6] gave
a more complete picture of all accessible nuclei.

The literature contains information on virtually all
nuclei that can be reached with light charged parti-
cle reactions on stable or long-lived targets, but the
record is not always complete and/or the data anal-
ysis method for a series of isotopes in a region may
not have been sufficiently uniform to study system-
atic trends. However, recent systematic measurements
of the single-particle strength distribution have been
carried out in the Sn region [7] and in N=82 nuclei [8].

2 Using radioactive beams

In recent years, radioactive heavy-ion beams, away
from the line of β-stability, have become available for
studies of nuclear structure. High-energy beams pro-
duced by projectile fragmentation can be used in nu-
cleon knock-out reactions to obtain information about
particle orbits below the Fermi surface. In order to
conduct detailed studies of single particle states above
the Fermi surface, beams at energies comparable to
the Coulomb barrier are needed. Such beams can be
provided as secondary beams produced in flight [9]
or as re-accelerated radioactive ions. Radioactive-ion
production methods include ions extracted from a pri-
mary 252Cf fission source at the CARIBU facility at
Argonne [10] or from targets bombarded with high-
intensity primary beams at HIE-ISOLDE at CERN [11],
the HRIBF facility at Oak Ridge National Labora-
tory [12], at TRIUMF [13], and several other institu-
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tions. In the near future, relatively intense, re-accelerated
precision beams of this type will be provided at sev-
eral new facilities, namely Spiral-2 at Ganil and FRIB
at Michigan State University.

These new beams of radioactive nuclei will in many
cases have sufficient intensity to allow studies of their
single-particle structure via transfer reactions with light
targets. The scientific thrust into these areas is driven
by the need to validate the predictive power of present
nuclear structure models, search for changes in the
single particle structure far away from the line of β-
stability where the Fermi levels for protons and neu-
trons are severely unbalanced. These studies are also
important for Nuclear Astrophysics. The rapid neutron-
capture r-process is, for example, strongly affected by
the structure of neutron-rich nuclei near the N=82
shell.
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Fig. 1. This figure shows the intensities of re-accelerated
beams that can be expected with 400 kW 200 MeV/u pri-
mary beams such as those at the planned FRIB facility.
The map also indicates the expected location of the astro-
physical rp and r-processes.

Studies based on interactions with nuclei in a thin
target, such as Coulomb excitation and transfer reac-
tion, require beam intensities around 103 to 104 ions/s
to be feasible. As shown in Fig. 1 the region of the nu-
clear chart where beam intensities of sufficient magni-
tude are projected for a facility such as FRIB [15], is
very substantial. The beam intensity at existing [13,
12,9] facilities as well as those that will start opera-
tion before FRIB [16,11] will already allow for studies
of less exotic nuclei as exemplified in a recent mea-
surement of the single-neutron strength outside the
doubly magic 132Sn by Jones et al. [18].

3 Challenges with inverse kinematics

The many new exotic nuclei that are becoming avail-
able as re-accelerated beams require, however, that
reactions are done in inverse kinematics, i.e. where
the radioactive, heavy beam is incident onto a light
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Fig. 2. Panel a: Illustration of “inverse” and “normal”
kinematics reactions involving a simple neutron transfer.
Panel b: Kinematic curves are shown for both “normal”
and “inverse” kinematics for the 28Si(d,p) reaction with a
beam energy of 8 MeV/u in both cases.

target (Fig. 2a). This requirement changes the exper-
imental situation dramatically, because of the large
center-of-mass velocity of the scattering system, which
is similar to that of the beam. An example of the
kinematic curves is given in Fig. 2b for the reaction
d(28Si,p)29Si as compared with the “normal” kine-
matics for 28Si(d,p)29Si. In normal kinematics, the
energy of the outgoing proton corresponding to the
ground state and the three lowest excited states in
29Si, varies little as a function of laboratory angle. In
contrast, inverse kinematics leads to a strong variation
with angle, exceeding a factor of ten, which places se-
vere demands on the detection. For the angles corre-
sponding to forward scattering in the center-of-mass
system, θc.m. < 30◦, that are of interest for angular
momentum transfer determination, protons have only
very low energies in the laboratory sytem, and the
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Table 1. Cyclotron periods of light charged particles in a
magnetic field of strength B=2 Tesla.

Particle Tcyc (ns)

p 32.8

d,α 65.6

t 98.4
3He 49.2

standard ∆E-E technique of particle identification be-
comes very problematic. In addition, the energy inter-
val between the various excitations in the 29Si nucleus
is strongly reduced, by a factor ∼2.4 relative to that
observed in “normal” kinematics. The inverse kine-
matics situation therefore severely limits the number
of nuclei that can be studied. It has, however, been
demonstrated that systems with widely spaced excited
states, including many light systems and nuclei near
shell closures, can be explored with normal detector
systems [17,18]. Nevertheless, it is clear that higher
Q-value resolution is needed for nuclei in most of the
new territory that is being made available with ra-
dioactive beam facilities, and that new techniques are
required. This has led to the development at Argonne
of a new type of spectrometer, the HELIical Orbit
Spectrometer (HELIOS), that circumvents the main
difficulties with inverse kinematics, as outlined above.
In the following section I’ll describe the principle of
the HELIOS concept and discuss its implementation.

4 Principle and implementation

The HELIOS spectrometer is based on the fact that
charged particles follow helical trajectories in a homo-
geneous magnetic field. If the magnetic field is aligned
with the beam axis, see Fig. 3, the particles will re-
turn to the beam axis, which coincides with the mag-
netic axis of the spectrometer, provided that the mag-
netic field is strong enough to avoid collisions with
the vacuum envelope of the magnet. The flight-time
until it returns to the axis is the cyclotron period,
Tcyc = 2πm/qeB, where m/q is the charge to mass ra-
tio of the particle and B is the magnetic field strength.
Note that the flight-time scales with m/q of the par-
ticle so one obtains automatic particle identification
for a range of light charged particles, such as pro-
tons, tritons, and 3He, by measuring this quantity.
Deuterons and α-particles have the same flight-time,
but in many cases their flight-paths will not overlap.
Cyclotron periods corresponding to a typical magnetic
field strength of 2 Tesla are long enough that particle
identification can be achieved rather comfortably with
reasonable time resolution, see Table 1.

Particles emitted in the backward hemisphere re-
turn to the axis upstream of the target whereas for-
ward emitted particles return downstream. Position-
sensitive Si detector arrays may be placed at either lo-

Fig. 3. Schematic illustration of the HELIOS concept.
Beam enters from the left through a hollow tube that is
supporting position sensitive Si detectors on the outside.
Particles emitted from the target follow helical trajectories
in the co-axial solenoidal magnetic field and return to the
beam axis, some of them being intercepted by the Si de-
tector array. Recoils may be detected in a detector located
at very forward angles.

cation to register the time-of-arrival, t, energy, E, and
longitudinal position, z, where the particle strikes the
detector. The upstream array must be hollow to allow
the beam to reach the target, whereas this requirement
does not necessarily apply for a downstream array.
However, in many cases it is advantageous to detect,
in coincidence, the heavy beam-like recoils in detec-
tors positioned at small angles, and in these cases a
hollow array is called for.

There is a simple relation between E, z, and the
center-of-mass energy of the particle, Ecm, namely

Ec.m. = E +
m

2
V 2

cm − VcmqeB

2π
z, (1)

where Vcm is the laboratory velocity of the center-of-
mass system, a quantity that is known for the reac-
tion, (see Ref.[19]). It is important to note that, un-
like the situation in a normal setup, the coefficient
in front of E is unity, which means that the measured
level spacing is the same as what would be observed in
the center-of-mass system. This feature effectively re-
moves the detrimental effects of the inverse kinematics
situation. The kinematic loci for different excitations
in the nucleus are therefore straight lines for which the
particle energy increases with z (positive downstream)
with a slope that scales with VcmqB as illustrated for
the d(28Si,p) reaction at 6 MeV/u in Fig. 4.

The fact that no kinematic compression occurs
when the particles are transported in a magnetic field
arises because particles corresponding to different states
emitted at the same laboratory angle returns to the
beam axis (or the detector array) at different distances
z from the target as shown in Fig. 4.

A spectrometer based on this concept has recently
been built at the ATLAS facility at Argonne National
Laboratory. The main component is a large bore su-
perconducting solenoid that was obtained from a de-
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Fig. 4. Illustration of the improved Q-value resolution of
the HELIOS concept exemplified by the d(28Si,p) reac-
tion populating the ground state and the first three ex-
cited states in 29Si. The 28Si beam energy is 6 MeV/u,
and the assumed combined effects of target thickness and
intrinsic energy resolution is ∆E = 75 keV FWHM, for
which the upper panels show simulated energy spectra for
the emitted protons if measured either at a fixed angle
θ=179◦ (panel a) or a fixed z-position, z=-65.6 cm (panel
b). Panels c and d, demonstrate that particles correspond-
ing to different excitations emitted at a particular angle
are intercepted by the Si detector at different z-positions
when transported in a 2T, co-axial, homogenous field (blue
points). By performing the energy measurement at a spe-
cific z-position instead (red points) the level spacing corre-
sponding to that in the center-of-mass system is restored.
The thin curve in panel d for the g.s. gives the “hook”
effect by intercepting the particles at a realistic radial dis-
tance of 1.4 cm.

Fig. 5. Computer aided design rendering of the HELIOS
spectrometer identifying the beam entrance, the Si detec-
tor array that is mounted onto an alignment ring, the tar-
get “fan” as well as of the recoil Si detector telescope.

commissioned Magnetic Resonance Imaging scanner.
This solenoid is able to generate a homogeneous mag-
netic field region over a cylindrical volume of diameter
90 cm and 100 cm in length. The strength of the mag-
netic field can be set up to 2.85 Tesla. The solenoid
is mounted such that the magnetic field axis is coax-
ial with the beam. Fortunately, the end flanges, which
were designed to support various RF and field gradient
coils used for the MRI scanning, were such that they
could be fitted with large vacuum covers that allowed
the whole inside bore of the magnet to be evacuated by
pumping through the 20 cm diam. beam-pipe. Support
structures inside the magnet allow for the mounting of
the hollow Si detector array at backward angles and a
target “fan”, both of which can slide longitudinally to
allow for optimal coverage of the interesting region of
particle emission (see Fig. 5). The design also allows
for mounting of various detectors to register the coin-
cident heavy recoils, shown in Fig. 5 as a Si detector
telescope. Another recoil detector system consisting of
an x-y position sensitive PPAC backed by a co-axial
Bragg curve spectrometer has been built, but this sys-
tem has yet to be commissioned.

5 Initial physics experiments

The HELIOS spectrometer was successfully commis-
sioned using the 28Si(d,p) reaction in August 2008 [20]
and subsequently a number of physics experiments
have been carried out using both stable and radioac-
tive beams produced by the in-flight technique at AT-
LAS.

5.1 12B(d,p)

The first example is a study of the 12B(d,p) reaction
populating excited states in 13B in an attempt to sepa-
rate two positive-parity states at Eexc = 3.48 and 3.68
MeV, which it had not been possible to separate in an
earlier attempt with normal detectors [21]. In this ex-
periment [22], the radioactive 12B beam was produced
via a (d,p) reaction of the 81 MeV primary 11B beam
with an intensity of 50 pnA in a cryogenic deuterium
gas cell which resulted in a secondary 12B beam of
approximately 105 ions/s at 75 MeV. The 12B ions
were focused and separated from the primary beam
using various beam-line elements [9] and brought into
the HELIOS spectrometer to react with a 73 µg/cm2-
thick CD2 target. A Si detector telescope covering the
forward angular range θlab=0.5◦-2.8◦ consisting of 80
µm thick ∆E and 500 µm thick E detectors was used
to measure 13B recoils in coincidence with the pro-
tons from the (d,p) reaction that were detected in the
Si detector array positioned upstream of the target.
The primary 11B beam was also used, at a reduced
intensity, to measure the 11B(d,p) reaction to excited
states in 12B at Eexc=2.62 and 3.39 MeV, which cor-
respond to proton energies close to those for the 13B
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Fig. 6. The angular distributions for the 11B(d,p)12B re-
action to the two states at Eexc= 2.62 and 3.39 MeV popu-
lated via L=0 and L=2 transfer are shown in the left panel.
The known L=2 transition to the Eexc= 3.39 MeV state
was used for normalization of the angular dependence of
the detection efficiency. The red points are the HELIOS
data for the L=2 transition to the 3.39-MeV state and the
blue points are for the L=0, 2.62-MeV state. The solid
and dashed curves are DWBA calculations with two dif-
ferent sets of parameters. On the right, the data for the
12B(d,p)13B doublet at 3.48 and 3.68 MeV are shown with
the same normalization. The conventions on the symbols
and curves are the same as on the left-hand side.

doublet over the entire angular range. This measure-
ment provided reference angular distributions used to
normalize those measured for the 13B doublet and al-
lowed us to determine the angular momentum transfer
and spectroscopic factor for the two members of the
Eexc=3.48 and 3.68 MeV doublet (see Fig. 6).

From these measurements it is clear that the 3.48
MeV member of the 13B doublet is populated by L=0
transfer since it is very similar in shape to that of the
2.62 MeV 12B state, while the much weaker 3.68 MeV
member appears to be reached by L=2 transfer. From
these results and an analysis of the relative spectro-
scopic factors of the two states it appears that the
Eexc= 3.48 MeV and 3.68 MeV states in 13B corre-
spond to the expected 1/2+ and 5/2+ states in this
nucleus, respectively. However, with this assignment,
the spectroscopic factor for the 5/2+ state is signifi-
cantly weaker than predicted by theory.

5.2 15C(d,p)

Recent results on electromagnetic transition rates be-
tween states in 16C have led to the speculation that
this nucleus has an exotic structure. A measurement of
the B(E2) value for the 2+

1 → 0+ transition [24] using
the Coulomb-nuclear interference method in 208Pb+16C

scattering thus obtained a B(E2) of 0.28±0.06 W.U.
leading to the suggestion that the 2+

1 state is a pure
valence neutron excitation. In addition, a direct life-
time measurement of the 2+

1 → 0+ transition using
a recoil-shadow technique [25] obtained a result that
corresponds to a B(E2)-value of 0.26 W.U. in agree-
ment with the scattering result. In contrast with these
results, a more recent measurement of the lifetime of
the 2+ state using a fusion reaction to populate states
in the 16C system obtains a result which corresponds
to B(E2)-value of 1.73±0.30 W.U. [26], consistent with
theoretical expectations for even-even closed shell sys-
tems in this area and which does not require an “ex-
otic” interpretation of the structure of the 2+

1 state in
16C. With this background, it was felt that it might
be advantageous to use a different experimental tech-
nique to explore the structure of the 16C system.

Using an intense, 100 pnA 14C beam of energy
133 MeV, a secondary 15C beam was generated via
the (d,p) reaction in a cryogenic gas cell in the AT-
LAS in-flight radioactive beam setup [9]. With this
method we obtained a 123 MeV 15C-beam with inten-
sity of 1-2×106 ions/s. This beam was transported to
the HELIOS spectrometer impinging on a 110µg/cm2

CD2 target. The detection of protons and coincident
16C recoils was carried out in a manner similar to the
12B(d,p) experiment described above (see Ref. [23] for
details).

Fig. 7. The angular distributions for the 15C(d,p)16C re-
action to the 0+ ground state (panel a), the first excited
2+ state (panel b), the second excited 0+ state (panel c),
and the unresolved 2+/3+ doublet (panel d) are shown
along with DWBA calculations using four different Opti-
cal model potentials. The errors on the cross sections are
statistical only and do not include contributions from sys-
tematic uncertainties (see Ref. [23] for details).
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The resulting angular distributions for scattering
into the lowest excitations in 16C are displayed in
Fig. 7 along with DWBA calculations using four differ-
ent Optical Model potentials. These comparisons lend
strong support to the previously tentative assignment
of 0+ to the third excited state at Eexc=3.017 MeV,
since it is seen to be populated via an L=0 transfer,
as is the ground state. From the relative spectroscopic
factors for the lowest-lying states one finds excellent
agreement with shell-model calculations [27], which
also correctly account for the latest measurement of
the B(E2;2+

1 → 0+) transition matrix element [26].
Our 15C(d,p) results thus lend strong support to a
standard Shell model description of this nucleus and
appears to be at variance with an “exotic” picture of
its structure.

6 Summary

Light-ion transfer-reaction studies on nuclei close to
the line of β-stability, where such studies can be car-
ried out with stable or long-lived targets in normal
kinematics, have provided much of the existing nu-
clear structure information in these systems. However,
such studies must be carried out in inverse kinemat-
ics to obtain similar information for the wide range of
nuclear species that has or will become available at ra-
dioactive beam facilities. Using normal detection tech-
niques leads to severe limitations in terms of Q-value
resolution in this situation. In this talk I have shown
that the HELIOS concept, in which light charged par-
ticles are transported in a homogenous magnetic field
to a hollow Si detector array located on the beam axis,
resolves this particular problem and also allows for
both high detection efficiency and easy particle identi-
fication. The Argonne HELIOS spectrometer was com-
missioned in August 2008 and the advantages of this
technique were successfully demonstrated in a num-
ber of experiments. We have performed several stud-
ies of (d,p) reactions in inverse kinematics, includ-
ing measurements of the d(28Si,p)29Si commissioning
experiment as well as two published studies involv-
ing radioactive beams produced in-flight at the AT-
LAS facility. In the d(12B,p)13B study, the improved
Q-value resolution was crucial for separating two ex-
cited positive-parity states and studying their struc-
ture. The d(15C,p)16C experiment was the first study
of this reaction and it helped validate the theoretical
understanding of this nucleus in terms of the modern
shell model. Additional experiments have been carried
out for which the data analysis is ongoing. Several up-
grades are planned for the spectrometer. These include
a gas target for He induced reactions, a new, more ef-
ficient Si detector array, and a recoil PPAC and Bragg
curve detector. With these further improvements we
expect that the spectrometer will continue to support
a very fruitful scientific program.
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